
A Learning-based Memetic Algorithm for the Multiple

Vehicle Pickup and Delivery Problem with LIFO

Loading

Bo Penga, Yuan Zhanga, Zhipeng Lüb,∗, T.C.E. Chengc, Fred Gloverd
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Abstract

The multiple vehicle pickup and delivery problem is a generalization of the

traveling salesman problem that has many important applications in supply

chain logistics. One of the most prominent variants requires the route dura-

tions and the capacity of each vehicle to lie within given limits, while perform-

ing the loading and unloading operations by a last-in-first-out (LIFO) pro-

tocol. We propose a learning-based memetic algorithm to solve this problem

that incorporates a hybrid initial solution construction method, a learning-

based local search procedure, an effective component-based crossover opera-

tor utilizing the concept of structured combinations, and a longest-common-

subsequence-based population updating strategy. Experimental results show

that our approach is highly effective in terms of both computational efficiency

and solution quality in comparison with the current state-of-the-art, improv-
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ing the previous best-known results for 132 out of 158 problem instances,

while matching the best-known results for all but three of the remaining

instances.

Keywords: pickup and delivery problem; routing; traveling salesman;

memetic algorithms; hybrid heuristics; learning mechanisms.

1. Introduction

The travelling salesman problem with pickup and delivery (TSPPD) is

a generalization of the well-known traveling salesman problem with many

important applications (Pavone (2013), Yu et al. (2016) and Azadian et al.

(2017)). TSPPD consists of determining a minimum cost circuit travelled

by a vehicle to service several predefined requests to transport items from a

specified pickup location to a specified delivery location. The vehicle starts

from the depot and returns to it after all the requests have been serviced.

There exist two ways in which the loading and unloading operations cor-

responding to the pickup and delivery activities, respectively, are performed,

namely first-in-first-out (FIFO) and last-in-first-out (LIFO), which corre-

spond to two variants of TSPPD, called TSPPD with LIFO and TSPPD

with FIFO. The FIFO policy implies that when a pickup node is visited,

its corresponding item is loaded in a linear queue and an item can only be

delivered if it is the first item of the queue, while the LIFO policy utilizes

the mechanism of stack instead of queue, i.e., an item can be delivered if it is

on the top of the stack. Figure 1 depicts the two different policies, in which

0+ and 0− represent the depot at the beginning and end of the two routes,

and i+ and i− represent the pickup and the delivery nodes for item i (and

similarly for item j), where Figures 1(a) and 1(b) show the FIFO and LIFO

loadings, respectively.

In practice, TSPPD with FIFO exists in many real-life applications such

as the dial-a-ride system where the major concern is fairness, i.e., the passen-
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gers (such as patients) picked up earlier must be dropped off earlier. Previous

contributions to solve this problem include a branch-and-bound algorithm by

Carrabs et al. (2007) , a branch-and-cut algorithm by Cordeau et al. (2010a)

that can solve instances with up to 25 requests, and two effective heuristics

based on probabilistic tabu search and iterated local search by Erdoğan et al.

(2009). Recently, Lu et al. (2018) proposed a multi-restart iterative search

approach based on combined utilization of six move operators to tackle this

problem.

On the other hand, TSPPD with LIFO likewise occurs in many applica-

tions, such as the transport of bulky, fragile, or hazardous items. Cordeau

et al. (2010b) proposed a branch-and-cut algorithm that can solve instances

with up to 17 requests, while Li et al. (2011) proposed a variable neighbour-

hood search heuristic based on a tree representation to improve the previous

results in the literature. In general, TSPPD and its variants have been exten-

sively researched in the literature, where the recent studies include Furtado

et al. (2017), Montero et al. (2017), Veenstra et al. (2017), Chami et al.

(2017) and Naccache et al. (2018).

(a) FIFO loading.

(b) LIFO loading.

Figure 1: The FIFO and LIFO loadings in the pickup and delivery problem.

In this paper we focus on the pickup and delivery problem under the LIFO

policy, utilizing a general framework that can also be applied to address the
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problem under the FIFO policy. Specifically, we extend the TSPPD problem

to involve multiple vehicles, enabling the single vehicle problem to be handled

as a special case.

Over the past decades, several state-of-the-art algorithms have been pro-

posed for solving TSPPD with the multiple vehicle extension. Cherkesly et al.

(2015) proposed a population-based metaheuristic to address the multiple

vehicle pickup and delivery problem with LIFO loading and time windows,

called the MPDPL with time windows. The authors combined local search

with a genetic algorithm to produce high-quality solutions within reasonable

computing times. Cheang et al. (2012) considered the case where the route

length of each vehicle cannot exceed a maximum limit and the vehicles have

unlimited capacity, called MPDPL with distance constraints, abbreviated as

PDPLD. They proposed a two-stage approach for solving the problem to

minimize the total distance and the number of vehicles, employing simulated

annealing and ejection pool in the first stage, and variable neighbourhood

search and probabilistic tabu search in the second stage. Benavent et al.

(2015) addressed MPDPL with distance constraints (PDPLD) as a special

case of MPDPL with maximum time (which is called the pickup and de-

livery problem with limited time, abbreviated as PDPLT), observing that

minimizing the total distance is equivalent to minimizing the total time and

that minimizing the number of vehicles as the primary objective can be ad-

dressed by adding a large number to the travel times of the arcs leaving the

depot. However, the exact method of Benavent et al. (2015) can only solve

instances with up to 60 nodes, while their proposed tabu search can solve

larger instances with up to 400 nodes. This difference between the exact and

metaheuristic methods motivates us to employ a metaheuristic approach to

tackle large-size instances of the PDPLT problem. The main contributions

of our study are as follows:

• A learning-based memetic algorithm (LMA) for solving PDPLT, which
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introduces a hybrid initial solution construction method by incorporat-

ing the splitting approach and the Lin-Kernighan heuristic (LKH) for

the asymmetric travelling salesman problem (ATSP), a subproblem of

PDPLT, to generate a random initial population with high quality.

• A reward and punishment mechanism inspired by reinforcement learn-

ing to manage the multiple neighbourhood moves and guide the search.

• A component-based crossover operator and a longest-common-subsequence-

based (LCS-based) population updating strategy to obtain a better

trade-off between intensification and diversification of the search.

• Our experimental results demonstrate that the performance of our L-

MA is highly effective compared to state-of-the-art approaches in the

literature by improving the previous best-known results for 131 out of

158 problem instances (including both PDPLD and PDPLT instances),

while matching the best-known results for all but three of the remaining

instances.

We organize the rest of the paper as follows: Section 2 introduces the

PDPLT problem and Section 3 presents the proposed memetic algorithm

for solving PDPLT in detail. Section 4 presents and discusses the proper

setting of the key parameters and examine the performance of the proposed

algorithm against the current best performing algorithms for both PDPLT

and PDPLD. In Section 5 we analyze the main strategic components of our

algorithm. Finally, we conclude the paper and suggest topics for future

research in Section 6.

5



2. Problem Description and Definitions

2.1. Problem description

In PDPLT, we are given a set N = {1, . . . , n} of n requests, each of

which concerns the transport of an item with a load from pickup vertex i+

to delivery vertex i− (1 ≤ i ≤ n). There are several vehicles with limited

capacity that starts from a depot vertex 0+ and return to a depot vertex

0− with the objective of minimizing the total travel time incurred by all the

vehicles. The vehicles must fulfill all the requests by visiting each pickup

vertex to pick up the indicated load and travel to the corresponding delivery

vertex to deliver the load in accordance with the LIFO policy. Specifically,

PDPLT is defined on a complete weighted undirected graph G = (V,E) with

the following features.

• V = P ∪D ∪O denotes the set of nodes, where P = {1+, 2+, ..., n+}
denotes the set of pickup nodes, D = {1−, 2−, ..., n−} is the set of

delivery nodes, O denotes the set of starting and ending nodes {0+, 0−},
also called depots, and E = {(u, v) : u, v ∈ V, u ̸= v} is the edge set.

• Each item must be picked at i+ ∈ P and delivered at i− ∈ D, where

the load of the item is denoted by di.

• The service time at each pickup node or delivery node u ∈ P ∪ D is

denoted by stu, and the travel time to traverse the arc (u, v) ∈ E is

denoted by ttu,v.

• The maximum capacity of each vehicle is MC.

• The maximum duration of each route including the service time and

traversal time is MD.

Let R be one route in a solution S and R = {u0 = 0+, u1, u2, . . . , um = 0−},
where uk is the kth node visited in R (1 ≤ k ≤ m). If the visited node is
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a pickup node (i.e., uk ∈ P ), the corresponding load capacity of the vehicle

after visiting it is l(uk) = l(uk−1) + duk
, while the corresponding load of the

vehicle after visiting it is equal to l(uk) = l(uk−1) - duk
if the visited node is a

pickup node (i.e., uk ∈D). For each node in the route, the corresponding load

cannot exceed the given maximum capacity, i.e., l(uk) ≤ MC. We denote by

DT (R) =
∑m−1

k=0 ttuk,uk+1
the total traversal time and ST (R) =

∑m−1
k=1 stk the

total service time. The corresponding duration of each route including the

traversal time and service time cannot exceed the given maximum duration,

i.e., DT (R) + ST (R) ≤ MD. In addition, the LIFO policy is followed for

both pickup and delivery operations. A feasible solution to this problem

is a set of vehicle routes that satisfy three constraints, i.e., the maximum

capacity, maximum duration, and LIFO constraints. The objective is to find

a feasible solution with the minimum total travel time as follows:

Minimize f(S) =

|S|∑
i=1

DT (Ri) + ST (Ri), (1)

We refer the reader to (Benavent et al., 2015) for more details of the

mathematical formulation of the problem.

2.2. Definitions

A pair consisting of the pickup vertex i+ and the corresponding delivery

vertex i− is called a couple, i.e., request. A component is a set of vertices,

before the beginning and at the end of which there are no requests being

transported by the vehicle. Erdoğan et al. (2009) first defined the concept of

component for FIFO and we extend this concept for both FIFO and LIFO

policies in this study. In particular, we introduce a term σ(k) to denote the

number of uncompleted requests when the kth vertex is visited in a route.

If the value of σ(k) for the pickup vertex k is equal to 1, then k is the

beginning of its component. If the σ(k) for the pickup vertex k is equal to

0, then k is the end of its component. Figure 2 is an example in which there
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are two components in the route. The vertices in positions 1 and 7 identify

the beginnings of the two components as their σ values are equal to 1, i.e.,

there are no requests transported by the vehicle before visiting these two

nodes. The delivery vertices in positions 6 and 10 respectively correspond

to the ends of the components as their σ values are equal to 0. There are

no requests for the vehicle after serving these two vertices. Hence, the paths

from positions 1 to 6 and positions 7 to 10 denote two different components.

FIFO :

LIFO :

1Positions :

σ value :

1
+

2
+

3
+

2
-

1
-

3
-

4
+

5
+

4
-

5
-

1
+

2
+

3
+

2
-

3
-

1
-

4
+

5
+

5
-

4
-

2 3 4 5 6 7 8 9 10

1 12101232 0

First component Second component

Figure 2: Example of components.

3. Memetic Algorithm

3.1. Main framework

A memetic algorithm is a general-purpose metaheuristic approach that

typically combines a local search optimization procedure with a population-

based framework, which has been successfully applied to tackle many classi-

cal combinatorial optimization problems, including the quadratic assignment

problem (Benlic and Hao, 2015), which provides a different generalization of

the traveling salesman problem. The purpose of combining local search and

population-based strategies is to take advantage of both the crossover oper-

ator as a diversification mechanism for discovering promising unexplored re-
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gions of the search space and the local optimization as an intensification pro-

cedure to obtain high-quality solutions within a search region. We outline our

Algorithm 1 Framework of the memetic algorithm for solving PDPLT
Require: Benchmark instance (B); the maximum computing time (Tmax)

Ensure: Best-found solution (S∗)

/∗ Generate np feasible solutions as an initial population (Section 3.2) ∗/
1: Pc = {S1, . . . , Snp} ← Hybird inital solution(B)

/∗ Improve each individual Si in the population with a learning-based local search (Section 3.3) ∗/
2: for i = 1, . . . , np do

3: Si ← Learning based localsearch(Si)

4: end for

5: while The maximum computing time Tmax is not reached do

6: Randomly select parent solutions Si and Sj from P where 1 ≤ i, j ≤ np and i ̸= j

/∗ Generate offspring Sc from Si and Sj (Section 3.4) ∗/
7: Sc ← Si ⊕ Sj = Component based crossover(Si,Sj)

/∗ Improve Sc with a learning-based local search (Section 3.3) ∗/
8: Sc ← Learning based localsearch(Sc)

9: if Sc is better than S∗ then

10: S∗ ← Sc

11: end if

/∗ The longest-common-subsequence based population updating strategy (Section 3.5) ∗/
12: Determine the worst individual Sw where the goodness value GS(Sw, Pc) = min{GS(Sk, Pc)} ,

1 ≤ k ≤ np (see equation 7)

13: if GS(Sc, Pc ∪ Sc) > GS(Sw, Pc ∪ Sc) then

14: Pc ← Pc ∪ Sc \ Sw

15: end if

16: end while

17: return (S∗)

proposed memetic algorithm for PDPLT in Algorithm 1. At the beginning of

the algorithm, we iteratively employ a hybrid heuristic method to generate

the initial population (line 1). Following this, we employ a learning-based

local search to optimize the solutions in the population (lines 2-4). Later,

we iteratively combine two parent solutions randomly selected from the pop-

ulation to generate offspring solutions using a component-based crossover

operator under the LIFO policy until the stopping criterion, i.e., maximum

computing time, is satisfied (lines 5-7). After each use of the crossover opera-
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tor, we improve the generated offspring solution using a learning-based local

search to guide the search to promising regions (line 8). During this process,

S∗ records the best solution found so far (lines 9-11). We then apply the

longest-common-sequence-based (LCS-based) population updating strategy

to possibly replace the worst individual in the population with the improved

offspring solution (lines 12-15).

3.2. Hybrid initial solutions

We construct the initial solutions by iteratively using a hybrid initial pro-

cedure based on a splitting approach that is able to obtain high-quality initial

solutions within short computing time. A similar hybrid initial procedure has

been successfully employed to tackle various vehicle routing problems (VRP-

s), e.g., multi-depot VRP (Escobar et al., 2014) and multi-route VRP (Azi

et al., 2014). In order to generate high-quality initial solutions, we first adap-

t the splitting mechanism for our problem by employing the Lin-Kernighan

heuristic (LKH) for the ATSP subproblem in PDPLT to improve the solution

quality of the initial solutions. The steps of the construction procedure are

presented in Algorithm 2 and can be summarized in the following steps:

C1 Depot

C2

C6

C5
C4

C3

C1 Depot

C2

C6

C5

C4

C3

Figure 3: Illustration of the construction mechanism for initial solutions.

• Step 1. Generate a set of components C by randomly setting k (1 ≤
k ≤ 3) couples {i+1 , . . . , i+k , i

−
k , . . . , i

−
1 } as one component with satisfy-
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Algorithm 2 Hybrid initial solution
Require: Benchmark instance (B)

Ensure: The initial solution (S0)

/∗ Step 1: Generate a set of components by randomly setting k couples as one component, with

satisfying the maximum capacity constraint∗/
1: t ← 0

2: while The request set N is not empty, i.e., N ̸= ∅ do
3: Construct each component by randomly selecting k requests (i.e., i1, . . . , ik) from the request set

N , by satisfying the maximum capacity constraint, i.e.,
k∑

s=1
dis <= MC

4: N ← N \ {i1, . . . , ik}
5: t ← t + 1

6: Ct ← {i+1 , . . . , i+k , i−k , . . . , i−1 }
7: end while

/∗ Step 2: Construct a composite ATSP tour containing all the components generated in Step 1 by

employing the well-known LKH as implemented ∗/
8: S ← LKH ATSP((C1, C2, . . . , Ct)) /∗ t denotes the number of components generated in Step 1 ∗/

/∗ Step 3: Split the composite ATSP tour into several routes with satisfying the maximum duration

constraint ∗/
9: Rm ← 0, m ← 1

10: for i = 1, . . . , t do

11: if DT(Rm ⊕ Ci) + ST(Rm ⊕ Ci) ≤ MD then

12: Rm ← Rm ⊕ Ci

13: else

14: m ← m + 1

15: Rm ← Ci

16: end if

17: end for

/∗ Step 4: Use LKH to optimize each route ∗/
18: for i = 1, . . . ,m do

19: LKH ATSP(Ri)

20: end for

21: S0 ← (R1,. . .,Rm)

22: return (S0)

ing both the LIFO constraint and maximum capacity constraint (see

lines 1-6 in Algorithm 2). For example, in Figure 3, there exist six

components, i.e., C1-C6.

• Step 2. Construct a composite ATSP tour by employing the well-

known LKH procedure (Helsgaun, 2000) to optimize all the compo-
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nents (C1, C2, . . . , Ct) generated in Step 1 (line 8). The reason why we

deploy the ATSP model to obtain high-quality route stems from the

fact that the traveling time from component C1 to component C2 is

not necessarily equal to the traveling time from C2 to C1.

• Step 3. Split the composite ATSP tour into several routes, by iterative-

ly inserting each component C into the current route R if the current

route satisfies the maximum duration constraint. Otherwise, we insert

it into a new route (lines 9-17). For example, in Figure 3, the route of

the whole ATSP tour is split into three routes to satisfy the maximum

duration constraint.

• Step 4. For each route R, we obtain an ATSP tour by using LKH to

minimize the total travelling cost for visiting the customers belonging

to the route (lines 18-21). Finally, the generated solution S0 is returned

as the initial solution (line 22).

The hybrid initial solution construction procedure proposed above is usu-

ally able to generate feasible solutions that satisfy the three constraints, i.e.,

the maximum duration, maximum capacity, and LIFO constraints. In addi-

tion, high-quality solutions are generated within reasonable computing times.

In Section 5.1 we demonstrate the efficacy of our procedure in comparison

with other constructive methods proposed in the literature.

3.3. Learning-based local search

One of the key components of our memetic algorithm is the learning-based

local search procedure that plays the critical role of intensifying the search.

With the exception of tabu search, traditional local search utilizes a set of

moves to search the solution regions without maintaining a memory of the

process, while the local search based on our reinforcement learning mechanis-
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m is able to effectively exploit memory to manage the neighbourhood moves

and guide the search to promising regions.

3.3.1. Neighbourhood moves

Our algorithm employs both intra-route moves (performed in the same

route) and inter-route moves (performed between two different routes), as

follows:

• Request-Insertion (M1): A request (e.g., {i+, i−}) is removed from its

current route and inserted either in a different position of the same

route or in a different route.

• Request-Swap (M2): Two requests (in the same route or in different

routes) exchange their positions.

• Double-Request-Swap (M3): Two pairs of consecutive requests ex-

change their positions. This operator extends the Request-Swap move

by considering consecutive requests i and j defined to be consecutive

if the pickup node j+ of request j is the closest to pickup node i+ of

request i in the route.

• Component-Insertion (M4): A component is removed from its current

route and inserted either in a different position of the same route or in

a different route.

• Component-Swap (M5): Two components (in the same route or in

different routes) exchange their positions.

• Double-Component-Swap (M6): Two pairs of consecutive components

exchange their positions. This operator extends the Component-Swap

move by considering two pairs of consecutive components.
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In our local search, we only consider neighbourhood moves that can satisfy

all the three constraints, i.e., the maximum capacity, maximum duration,

and LIFO constraints. Obviously, in cases where the constraints are tight,

it is very difficult to find feasible solutions in a single move as confirmed in

(Benavent et al., 2015). Hence, the main difference of our approach from

that proposed in Benavent et al. (2015), where only the Request-Insertion

move is used, is that we employ six different neighbourhood moves to expand

the search space in order to find more promising feasible solutions, instead

of relaxing the maximum duration constraint and penalizing violations.

3.3.2. Learning mechanism

Reinforcement learning is an area of machine learning concerned with how

an agent should take actions in an environment so as to maximize cumulative

reward. The intuition underlying reinforcement learning is that actions that

lead to large rewards should be made more likely to recur.

We employ a reward and penalty strategy to dynamically manage the

neighbourhood moves and guide the search based on the expectation that

different neighbourhood moves may be preferable for different problem in-

stances or search landscapes. Consequently, we keep track of a score for each

neighbourhood move, which measures how well the move has performed for

the current instance or landscape, adopting the perspective that alternating

among different moves based on the proposed learning mechanism may yield

more robust performance.

To select moves, we assign scores to different moves and use the roulette

wheel selection principle. If we have n moves with scores sci (i ∈ 1, 2, ..., n),

move k is selected with probability λk, where

λk =
sck∑n
i=1 sci

, k = 1, 2, ..., n. (2)

At the beginning of the search, each neighbourhood move has the same
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score sc0 and hence the same probability of being chosen. After each iteration

j, the score of the neighbourhood used is updated as follows:

sci,j+1 = sci,j + α ∗ βl, i, j = 1, 2, ..., n; l = 1, 2. (3)

where the reaction factor α controls how quickly the score adjustment func-

tion reacts to changes according to the performance of the moves, and pa-

rameter β denotes the different incremental scores according to the following

several situations. If one move can produce a new best solution, we reward

this neighbourhood move by choosing β1 in Equation 3. If one move can gen-

erate a better solution than the current solution, the neighbourhood move

would still be rewarded β2. However, if the generated solution is worse than

the current solution, then we punish the move by multiplying the score by γ

as follows:

sci,j+1 = γ ∗ sci,j, i, j = 1, 2, ..., n. (4)

The learning-based local search phase proceeds with iterative exploitation

of the six neighbourhood moves as shown in Algorithm 3. In each iteration,

one neighbourhood move is picked with probability λi (lines 3-4). Then, if

the neighbourhood solution S
′
obtained by this neighbourhood move cannot

improve the current solution S, the next neighbourhood move is chosen from

those remaining; otherwise, the current solution S is replaced by the best

neighbourhood solution S
′
generated by current neighborhood move (lines

5-10). Subsequently, the score of the neighbourhood move Ni is updated by

Eqs. 3 and 4 (line 11). During this process, Sb records the best solution

found in the local search, S∗ preserves the best found solution so far, and

no improv iter denotes the number of iterations without improving the best

found solution Sb (lines 12-16). When none of the moves can improve the

current best solution, we apply a simple perturbation strategy to achieve a
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better trade-off between diversification and intensification of the search (lines

17-19).

Algorithm 3 learning-based local search
Require: Initial current solution(S);

Ensure: Best found solution(Sb) during the search

/∗ The set of neighbourhood moves denoted by I including the six neighbourhood moves proposed in

Sec. 3.3.1∗/
1: I = {M1,M2, . . . ,M6} , I0 ← I, Sb ← S, no improv iter ← 0

2: while no improv iter < n ∗ ϵ do

3: Calculate the probability λi of each neighbourhood move Mi by equation 2

4: Randomly select one neighbourhood move Mi from I with probability λi, where 1 ≤ i ≤ |I0|
5: Choose the best neighboring solution S

′
from the set of neighboring solutions generated by Mi

move, (i.e., S
′ ← S ⊕ Mi)

6: if S
′
is not better than S then

7: I ← I\{Mi}
8: else

9: S ← S′, I ← I0

10: end if

11: Update the score of the neighbourhood move Mi by equations 3 and 4

12: if S
′
is better than S∗ (or Sb) then

13: S∗ (or Sb) ← S
′
, no improv iter ← 0

14: else

15: no improv iter ← no improv iter + 1

16: end if

17: if |I| = 0 then

18: S ← Perturbation(Sb), I ← I0

19: end if

20: end while

21: return (Sb)

To apply the perturbation operator, we randomly delete part of the re-

quest nodes (n/ζ) from the current solution and re-insert the deleted request

nodes into the partial solution based on a greedy strategy.

3.4. Component-based crossover operator

The crossover operator is another key component of our memetic algo-

rithm. In practice, it is important to devise a dedicated re-combination

operator that has strong “semantics” with respect to the studied problem.

16



In the last few years, several kinds of crossover operator have been used in

the literature. Li et al. (2011) introduced a complicated crossover operator

based on the tree representation and Cherkesly et al. (2015) proposed an

adapted-order-based crossover operator. Both operators can only be used

for the LIFO policy and cannot deal with the FIFO constraint. In this study

we propose a general crossover operator, which is different from the previous

ones as follows: First, our crossover operator always generates feasible solu-

tions with respect to all the constraints, i.e., the LIFO, maximum time, and

maximum capacity constraints. Thus, it is unnecessary to employ the repair

strategy to ensure feasibility of the generated solutions. Second, based on an

iterated greedy construction mechanism, our crossover operator can obtain

high-quality offspring solutions.

We design the proposed crossover operator such that the elite components

are transferred from the parents to the offspring to a large extent, which fol-

lows the general principles underlying the structured combination approach

introduced in Glover (1994), and operates in the following two sequential

steps:

• Step 1. Generate components: We divide the two selected parents into

their corresponding components. To illustrate this, Figure 4 depicts

an example with two parents Ia = {V a
1 , V

a
2 } and Ib = {V b

1 , V
b
2 }, where

V a
1 and V a

2 (V b
1 and V b

2 ) denote the two routes of solution Ia (Ib).

Obviously, there are three components in the two routes for Ia, i.e.,

(1+, 2+, 2−, 1−), (5+, 5−), and (3+, 4+, 4−, 3−), while there are only two

components for Ib, i.e., (1+, 4+, 5+, 5−, 4−, 1−) and (2+, 3+, 3−, 2−).

• Step 2. Iterated greedy construction based on components: For each

route, components are added sequentially according to a best saving

criterion. The candidate insertion position of each component is either

before or after one component expected for being inserted into one
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new route. After each insertion, it is necessary to remove the same

couple of the inserted component from the other parent in order to

avoid redundancy. The best insertion position of each component cp in

the route is the one yielding the minimum value of f ′:

f ′ = ∆(f)/θ, (5)

where ∆(f) represents the incremental objective value after inserting

component cp in the route and θ denotes the number of couples in com-

ponent cp. As shown in Figure 4, we insert component (1+, 2+, 2−, 1−)

into route V c
1 and remove two couples (1+, 1−) and (2+, 2−) from Ia and

Ib. Then, we insert the next component (3+, 3−) with the best value f ′

into route V c
1 . Note that if all the cases for which one of the remaining

components is inserted into route V c
1 will violate the maximum time

constraint, then the selected component (4+,5+,5-,4- ) will constitute

one new route V c
2 .

3.5. LCS-based population updating strategy

To maintain healthy diversity of the population, we use the LCS-based

population updating strategy introduced by Cheng et al. (2016) to solve

the job shop scheduling problem, to decide whether the improved solution

should be inserted into the population or discarded. This population updat-

ing strategy simultaneously considers the solution quality and the distances

among the individuals in the population to guarantee diversity of the pop-

ulation. The underlying idea is that the similarity of two solutions based

on the longest common subsequence could clearly match the neighbourhood

moves based on the insert and swap operations. For this purpose, we first

make two definitions as follows:

Definition 1 (Distance between a solution and its population).

Given a solution Si and the population PP = {S1, S2, . . . , Snp}, the distance
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Figure 4: Illustration of the crossover operator with respect to the LIFO

policy.

DistPP (Si) between the solution Si and its population PP can be defined as

follows:

Dist(Si) = Min{2 ∗ n− lcs(Si, Sj) : 1 ≤ i, j ≤ np, i ̸= j}, (6)

where 2 ∗ n and lcs(Si, Sj) denote the number of all the pickup and delivery

nodes and the length of the longest common subsequence between Si and Sj,

respectively.

Definition 2 (Goodness score of a solution in the population).

The goodness score GS(Si) of a solution Si is defined by its objective function

value, as well as its distance to the population, as follows:

GS(Si) = δ × fmax − fSi

fmax − fmin + 1
+ (1− δ)× Dist(Si)−Distmin

Distmax −Distmin + 1
, (7)

where fmax and fmin denote the maximum and minimum objective values

of the individuals in the population PP , and Distmax and Distmin are the

19



maximum and minimum distances between a solution to the population,

respectively. The number 1 is used to avoid the possibility of a 0 denominator

and δ is a constant parameter.

In each generation, the offspring individual is inserted into the popula-

tion if the goodness score of the offspring is better than the worst solution

in the population according to the goodness score. Otherwise, the offspring

individual is discarded. It is clear that the greater the goodness score GS(Si)

is, the better is the solution Si. It is noted that this goodness score function

simultaneously considers the factors of solution quality and population di-

versity. On the one hand, we should maintain a population of elite solutions.

On the other hand, we have to emphasize the importance of the diversity of

the solutions to avoid premature convergence of the population.

4. Computational Studies

In this section we report extensive computational studies conducted to

assess the performance of the proposed learning-based memetic algorithm

(LMA) with the state-of-the-art reference algorithms in solving public bench-

mark instances of both PDPLD and PDPLT. Note that PDPLD is a special

case of PDPLT where the latter simply considers very high vehicle capacity

and ignores the service times in the request nodes.

4.1. Benchmark instances and experimental protocols

For experimental evaluations, we use two data sets in Benavent et al.

(2015) and Cheang et al. (2012). The first set of benchmark instances was

first proposed in Li and Lim (2003) for the pickup and delivery problem with

time windows (PDPTW), which consists of six classes of instances, namely

lc1, lc2, lr1, lr2, lrc1, and lrc2, where the nodes in the lc instances are in

clusters, in the lr instances are randomly distributed, and in the lrc instances

are partially clustered and partially randomly distributed. Benavent et al.
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(2015) modified these original instances to match the new problem PDPLT by

setting the maximum route duration equal to the width of the time window

associated with the depot and ignoring all the other time windows. Hence, in

our computational studies, we used the same benchmark instances as thosed

used in Benavent et al. (2015). The instances can be divided into two subsets

of 116 instances, including 56 small-size instances with 100-110 request nodes

and 60 large-size instances with 402-422 request nodes.

The second set of benchmark instances was used in Cheang et al. (2012)

for PDPLD. Since PDPLD is a special case of PDPLT, we compare our learn-

ing algorithm LMA with the reference algorithms in the literature by setting

a very high vehicle capacity limit for each vehicle and ignoring the service

time in each request vertex. These instances were derived from the six TSP

instances fn14461, brd14051, d15112, d18512, nrw1379, and pr1002 extract-

ed from TSPLIB (Reinelt, 1991). For each of these TSP instances, subsets

of vertices were selected with 25, 51, 75, 101,251, 501, and 751 vertices. In

addition, we imposed a travel distance limit dmax on each instance, where

dmax = max{d(0+, i+)+d(i+, i−)+d(i−, 0−)} (i ∈ r), which is the largest dis-

tance for any route involving a single request. All the benchmark instances

are publicly available on the website1, as well as the executable files of our

LMA method.

In this study we coded our LMA algorithm in C++ and ran it on a

PC with a AMD Athlon 3.0GHz CPU and 2Gb RAM operating under the

Windows 7 operating system. To evaluate the performance of LMA, we

compare it with the following state-of-the-art heuristics from the literature:

• The multi-start iterated tabu search (MS-ITS) for PDPLT proposed by

Benavent et al. (2015), who implemented it on a 2.66 GHz Core 2Quad

processor with 3Gb RAM under the Windows XP operating system.

1https://github.com/283224262/PDPLT
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• Eight heuristics including a Variable Neighbourhood Search (VNS) al-

gorithm, six reduced versions of the VNS heuristic, and the Probabilis-

tic Tabu Search (PTS) algorithm for PDPLD proposed in Cheang et al.

(2012), who tested their performance on a Dell server with an Intel X-

eon E5520 2.26 GHz CPU and 8 GB RAM operating under the Linux

operating system. The computing times reported are in CPU seconds

on this server.

In order to achieve relatively fair comparisons, we apply the method pro-

posed in Chen et al. (2016) to scale the computing times reported for the

mentioned heuristics in the corresponding studies. The procedure is based on

the assumption that the CPU speed is approximately linearly proportional to

the CPU frequency. Specifically, we performed ten independent runs of our

LMA for each instance, with the maximum time limit per run set to equal

the scaled CPU times by multiplying the computing time reported by the

current best-performing algorithms from Benavent et al. (2015) and Cheang

et al. (2012) with the ratio values (2.66/3.0) and (2.26/3.0), respectively.

4.2. Parameter tuning and parameter sensitivity analysis

Table 1 presents the settings of the LMA parameters used in the reported

experiments. We tuned the parameters (α, β1, β2, γ ,ζ, np, ϵ, and δ) with the

Iterated F-race (IFR) proposed by Birattari et al. (2010) and an automated

configure method that is part of the IRACE package from Lopez-Ibanez et al.

(2016). We performed the tuning process on instances LC1, LR1, LRC1,

brd14051, d15112, d18512, fnl4461, nrw1379, and pr1002 with 402-440, 501,

and 751 vertices. For each parameter, IFR requires a limited set of values as

input to choose from the “candidate values” which are empirically determined

and presented in Table 1. We set the total time budget for IRACE to 1,000

executions of LMA, with a time limit of 400 seconds for the PDPLT instances

LC1, LR1, and LRC1, and 3,000 seconds for the PDPLD instances brd14051,
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d15112, d18512, fnl4461, nrw1379, and pr1002. We denote the parameters

setting suggested by IFR as Final value in Table 1.

To evaluate the sensitivity of each parameter, we performed a further

tuning study on these representative medium and large instances. For each

running, we evaluated each candidate value from Table 1 by fixing the re-

maining parameters to the corresponding values. We performed ten inde-

pendent runs for each instance. We present the distribution and range of

the average results for each parameter in a box-and-whisker plot in Figure 5.

In order to determine whether there exist statistically significant differences

in the solution samples for different values of each candidate parameter, we

conducted the the Friedman rank sum rest. We report the corresponding

p-values in Figure 5. The Friedman test reveals statistically significant dif-

ferences in performance for parameters α (p-value = 0.0033), β1 (p-value =

0.0451), β2 (p-value = 0.0472), γ (p-value = 0.0005), ζ (p-value = 0.0306),

and δ (p-value = 0.0247), while the remaining parameters do not exhibit sig-

nificant differences. From the plots in Figure 5, we further observe that the

best-performing parameter values are almost the same as the best parameter

values reported by IFR.

Table 1: Settings of some important parameters for LMA.

Parameter Description Candidate values Final value

α The reaction factor that controls how quickly the score adjustment function reacts to changes ac-

cording to the performance of the moves

0.1 , 0.2 , 0.3 0.1

β1 The reward parameter if a move produces a new best solution 1, 5, 10 5

β2 The reward parameter if a move improves the current solution 1 , 2 , 5 1

γ The punishment parameter if a generated solution is worse than the current solution 0.8, 0.9, 0.99 0.9

ζ The parameter of the ratio of the number of request nodes deleted in the perturbation strategy (n/ζ) 2,4,6 4

ϵ The threshold used to employ the dedicated perturbation (n*ϵ) 1 , 5, 10 5

np The number of individuals in the population 10, 20 , 30 10

δ The constant parameter to balance the objective value and the distance in the goodness value 0.5, 0.7 , 0.9 0.7

4.3. Computational results on the tested benchmark instances

In this section we evaluate the performance of LMA in solving PDPLT

in comparison with the best-performing algorithm MS-ITS proposed by Be-
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Figure 5: Box-and-whisker plots of the gaps between the objective values

and the best found solutions for the considered parameters.
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navent et al. (2015). Specifically, we applied LMA to solve each instance

for ten times, terminating each run when the time reached the maximum

time of 400 seconds. As depicted in Tables 2 and 3, the columns fbest, Veh,

favg, and Time report the best objective value, i.e., the minimum travelled

duration, the number of vehicles corresponding to the best solution, the aver-

age objective value over the ten runs, and the computing time, respectively.

In addition, the rows #best, #equal, and #worse indicate respectively the

numbers of instances for which the associated algorithm obtains better, e-

qual, or worse objective values in terms of fbest compared with the reference

results reported in the literature, and the row avg denotes the average value

over all the instances in the set.

Table 2: Results for solving public benchmark PDPLT instances with 100-

110 nodes.

MS-ITS LMA MS-ITS LMAInstances
fbest Veh Time fbest Veh favg Time

Instances
fbest Veh Time fbest Veh favg Time

lc101 9867.61 10 65.91 9867.29 9 9868.01 16.31 lc201 9825.64 3 125.00 9824.76 3 9825.73 28.75

lc102 9862.70 9 59.19 9862.70 9 9862.70 27.87 lc202 9860.47 3 115.66 9860.24 3 9861.17 16.07

lc103 9867.84 9 56.47 9867.84 9 9867.98 10.69 lc203 9873.71 3 107.53 9873.71 3 9874.13 17.30

lc104 9857.95 10 62.22 9857.80 9 9857.95 41.32 lc204 9832.31 3 121.44 9830.38 3 9831.28 16.94

lc105 9848.78 9 54.31 9848.01 9 9848.83 4.94 lc205 9794.84 3 103.66 9794.84 3 9794.84 15.84

lc106 9866.18 9 60.28 9866.18 9 9866.18 10.71 lc206 9882.15 3 116.55 9882.15 3 9882.15 17.49

lc107 9874.48 9 62.25 9874.48 9 9876.24 33.08 lc207 9802.90 3 98.61 9802.90 3 9802.90 16.25

lc108 9862.42 9 60.89 9862.42 9 9863.11 48.03 lc208 9803.00 3 99.86 9803.00 3 9803.00 15.31

lc109 9855.31 9 52.73 9855.31 9 9855.32 22.76

lr101 2140.15 11 61.36 2110.53 10 2120.47 33.78 lr201 1967.24 3 188.69 1948.63 2 1955.15 16.49

lr102 2125.61 10 62.24 2114.12 10 2126.19 13.96 lr202 2130.35 3 188.00 2124.35 3 2129.76 10.86

lr103 2113.11 10 49.53 2111.05 10 2113.66 38.62 lr203 2102.09 3 208.83 2100.92 3 2101.99 18.68

lr104 2072.80 10 47.72 2064.99 10 2076.81 46.35 lr204 2184.12 3 189.06 2179.69 3 2185.68 12.80

lr105 2114.97 10 51.80 2109.91 10 2110.01 11.52 lr205 2079.14 3 202.53 2065.66 3 2085.43 23.56

lr106 2147.80 10 58.52 2126.12 10 2139.85 38.58 lr206 2111.64 3 168.78 2110.17 3 2111.32 19.20

lr107 2188.71 11 52.13 2173.23 10 2193.84 11.41 lr207 2146.86 3 188.17 2144.38 3 2148.59 75.53

lr108 2150.33 10 45.59 2148.11 10 2151.92 39.51 lr208 2090.03 3 170.94 2082.15 3 2093.70 16.28

lr109 2165.48 11 60.38 2154.84 10 2163.55 45.93 lr209 2066.29 3 211.49 2045.65 3 2058.91 21.55

lr110 2041.50 10 54.05 2041.50 10 2042.16 42.09 lr210 2073.73 3 193.95 2068.44 3 2070.08 97.72

lr111 2114.81 10 60.55 2110.61 10 2115.86 21.61 lr211 2027.38 3 216.20 2027.38 3 2027.98 16.87

lr112 2102.96 10 53.89 2098.09 10 2100.47 19.24

lrc101 2289.98 10 50.88 2265.37 10 2287.39 18.55 lrc201 2203.00 3 161.02 2168.34 3 2187.96 17.20

lrc102 2336.21 10 48.58 2331.00 10 2340.18 14.82 lrc202 2250.50 3 158.69 2204.66 3 2235.81 38.47

lrc103 2213.32 11 61.28 2195.80 10 2207.54 26.77 lrc203 2192.66 3 157.36 2174.51 3 2189.39 50.17

lrc104 2191.28 10 57.22 2190.22 10 2198.88 35.40 lrc204 2018.41 3 158.92 2018.41 3 2019.13 16.05

lrc105 2335.36 11 60.52 2305.44 10 2321.17 25.32 lrc205 2261.11 3 171.17 2225.98 3 2249.28 18.26

lrc106 2238.28 10 57.77 2226.83 10 2237.95 17.59 lrc206 2281.59 3 145.84 2263.27 3 2279.38 10.88

lrc107 2218.77 10 50.31 2204.83 10 2220.36 43.51 lrc207 2426.00 4 169.05 2366.94 3 2388.16 14.88

lrc108 2201.42 10 51.73 2201.10 10 2202.11 19.21 lrc208 2176.96 3 154.55 2104.36 3 2149.66 18.86

avg 4560.90 9.93 56.22 4553.30 9.69 4559.89 26.88 4424.60 3.04 158.95 4410.96 2.96 4420.09 24.38

#better 22 21

#equal 7 6

#worse 0 0
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From Table 2, we observe that LMA outperforms the reference algorithm

MS-ITS in terms of fbest, Veh, and Time. In particular, LMA achieves better

results than the current best-performing algorithm MS-ITS in terms of ob-

taining the best objective value for 43 out of the 56 instances, while matching

the current best-known results for the remaining 13 instances. Moreover, L-

MA is able to obtain the best objective value within a very short time, which

is several times faster than the reference algorithm MS-ITS for the tested

instances, i.e., MS-ITS’s 56.22 and 158.95 versus LMA’s 26.88 and 24.38.

Table 3: Results for solving public benchmark PDPLT instances with 402-

422 nodes.

MS-ITS LMA MS-ITS LMAInstances
fbest Veh Time fbest Veh favg Time

Instances
Best Veh Time fbest Veh favg Time

LC1 4 1 42336.75 30 405.08 42237.43 30 42340.19 307.99 LC2 4 1 40714.04 12 732.05 40670.71 12 40691.66 210.03

LC1 4 2 42366.74 30 382.77 42346.62 30 42410.56 357.37 LC2 4 2 41140.66 14 737.39 40866.52 12 40919.77 394.92

LC1 4 3 42599.50 30 402.63 42569.57 30 42578.89 386.35 LC2 4 3 41316.85 13 741.09 41014.62 12 41210.58 278.97

LC1 4 4 42482.09 30 417.38 42402.31 30 42456.06 355.22 LC2 4 4 41035.84 13 764.05 40870.53 12 40981.32 324.30

LC1 4 5 42312.18 30 395.00 42213.65 30 42289.31 358.27 LC2 4 5 40996.57 13 772.70 40735.31 12 40810.29 297.03

LC1 4 6 42284.78 29 437.97 42271.70 30 42299.72 388.61 LC2 4 6 40727.48 12 744.81 40594.96 12 40661.76 223.93

LC1 4 7 42257.38 30 391.61 42163.86 30 42231.43 303.67 LC2 4 7 41001.45 13 752.27 40687.18 12 40883.25 385.95

LC1 4 8 42409.92 30 400.83 42381.73 30 42399.15 385.35 LC2 4 8 40925.04 13 737.17 40667.13 12 40760.51 247.25

LC1 4 9 42657.31 30 377.06 42645.50 30 42660.04 371.78 LC2 4 9 40810.30 13 788.56 40745.74 12 40781.96 275.21

LC1 4 10 42539.79 30 406.77 42524.90 30 42539.11 376.14 LC2 4 10 41060.15 14 735.99 40873.01 13 40987.03 366.40

LR1 4 1 10502.64 18 840.63 9851.86 14 9917.68 274.60 LR2 4 1 12095.03 7 1598.11 11186.32 4 11199.84 231.22

LR1 4 2 10624.45 18 827.59 9845.99 14 9941.57 272.03 LR2 4 2 12087.73 10 1528.31 11126.38 4 11564.79 351.06

LR1 4 3 10515.92 18 805.61 9784.51 14 9856.29 284.36 LR2 4 3 11890.15 7 1578.91 10876.17 4 11239.41 314.20

LR1 4 4 9910.92 17 850.89 9147.95 14 9403.33 399.28 LR2 4 4 11445.21 10 1612.69 10371.95 4 10685.31 296.48

LR1 4 5 10190.46 16 762.41 9602.53 13 9820.47 374.79 LR2 4 5 11753.71 6 1622.72 11076.18 6 11542.49 399.52

LR1 4 6 10414.40 16 829.00 9952.60 14 10231.68 396.33 LR2 4 6 11549.06 6 1540.38 10666.13 4 10869.72 155.28

LR1 4 7 10321.30 20 851.63 9495.14 13 9853.49 298.65 LR2 4 7 11454.11 8 1658.30 10383.31 4 10534.97 398.30

LR1 4 8 9290.86 15 856.17 8922.60 12 9127.58 393.68 LR2 4 8 11684.98 6 1472.44 10688.82 5 10898.28 162.62

LR1 4 9 10447.86 18 827.13 9801.38 13 9910.65 373.73 LR2 4 9 11695.28 9 1574.20 10786.47 4 11349.26 136.39

LR1 4 10 10041.44 17 848.27 9417.07 13 9823.10 316.42 LR2 4 10 12228.19 8 1589.20 11064.19 4 11901.38 159.49

LRC1 4 1 9700.01 17 818.39 9178.79 14 9320.28 389.15 LRC2 4 1 10733.52 6 1617.91 9656.87 4 9810.79 349.17

LRC1 4 2 9651.76 16 838.09 8871.73 13 8913.31 305.77 LRC2 4 2 10444.30 5 1670.25 9515.38 4 9882.12 277.20

LRC1 4 3 9667.97 16 759.05 9220.59 14 9513.77 389.64 LRC2 4 3 10704.17 7 1577.23 9673.14 4 10106.65 361.75

LRC1 4 4 9015.70 14 772.53 8823.12 13 8948.09 399.86 LRC2 4 4 10857.97 12 1489.13 9477.39 5 9811.89 368.64

LRC1 4 5 9555.94 16 791.08 8879.86 13 9135.54 292.87 LRC2 4 5 10288.07 7 1612.36 9484.97 4 9879.17 256.31

LRC1 4 6 9363.88 17 814.67 9023.08 14 9136.72 365.37 LRC2 4 6 10596.35 10 1638.67 9275.77 4 9513.30 292.73

LRC1 4 7 9645.08 18 870.91 8828.10 13 9132.86 362.44 LRC2 4 7 11160.72 7 1551.36 9861.02 4 10391.22 385.31

LRC1 4 8 9528.92 16 829.53 8855.54 13 9111.02 386.94 LRC2 4 8 10882.58 11 1478.17 9441.73 4 9689.08 358.19

LRC1 4 9 9634.73 17 837.19 8949.42 13 9095.33 189.92 LRC2 4 9 11054.00 7 1578.86 9668.99 4 9910.38 206.83

LRC1 4 10 9639.88 16 838.55 8975.52 13 9110.15 398.25 LRC2 4 10 10855.83 7 1590.75 9786.51 4 10213.11 389.08

avg 20730.35 21.17 682.89 20306.15 18.90 20450.25 348.83 21172.98 9.53 1302.87 20393.11 6.83 20656.04 295.13

#better 30 30

#equal 0 0

#worse 0 0

To further compare the performance of LMA and the reference algorithm

MS-ITS, we applied them to solve the large-size instances with 402-422 nodes.
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Table 3 presents the results in detail. It is evident that LMA is able to obtain

better results in terms of both the best objective value and computing time

for all tested instances. Furthermore, in terms of the number of vehicles

corresponding to the best objective value, LMA usually outperforms MS-

ITS for the tested instances, i.e., MS-ITS’s 21.17 and 18.9 versus LMA’s 9.53

and 6.83.

Table 4: Performance comparisons among VNS, PTS, and LMA for solving

PDPLD instances.

BKS VNS PTS LMAInstance Size
fbest Veh favg Gap(%) Time favg Gap(%) Time fbest Gap(%) Veh favg Gap(%) Time

brd14051 25 5086 2 5086.0 0 1.62 5087.2 0.02 0.54 5084 -0.04 2 5084 -0.04 0.41

51 9352 2 9352.0 0 7.27 9438.7 0.93 2.96 9354 0.02 2 9355.4 0.04 2.71

75 8543 2 8543.4 0 19.05 8544.8 0.02 6.84 8544 0.01 2 8544.2 0.01 2.48

101 11,169 2 11,169.0 0 21.31 11,169.0 0 6.42 11,156 -0.12 2 11246.7 0.7 4.81

251 27,195 8 28,196.1 3.68 172.9 28,730.2 5.65 119.51 26,690 -1.86 5 27372.6 0.65 89.89

501 58,028 8 59,090.0 1.83 965.21 60,699.8 4.6 907.25 57,419 -1.05 8 57810.2 -0.38 330.32

751 96,068 12 96,421.5 0.37 1345.17 97,976.6 1.99 4559.2 95,167 -0.94 13 95597.1 -0.49 471.86

d15112 25 108,207 2 108,207.0 0 1.45 108,439.0 0.21 0.31 108,208 0 2 108211.3 0 1.09

51 178,863 3 179,086.0 0.12 5.29 179,859.0 0.56 1.13 178,866 0 3 178866.5 0 2.33

75 239,511 4 244,600.7 2.13 13.82 251,313.9 4.93 3.71 239,516 0 4 239516.1 0 8.29

101 325,761 5 339,504.3 4.22 14.19 346,055.0 6.23 5.28 325,761 0 5 325761.3 0 4.22

251 700,366 10 720,770.3 2.91 98.15 727,627.5 3.89 200.22 697,292 -0.44 10 703117.9 0.39 65.85

501 1,145,838 16 1,165,275.3 1.7 252.73 1,188,016.3 3.68 663.22 1,143,485 -0.21 17 1145970 0.01 330.32

751 1,596,048 22 1,622,964.0 1.69 1036.52 1,637,573.1 2.6 1765.95 1,587,880 -0.51 22 1600147.6 0.26 979.01

d18512 25 5086 2 5086.0 0 1.63 5087.2 0.02 0.54 5084 -0.04 2 5084 -0.04 1.38

51 9245 2 9256.8 0.13 6.67 9286.0 0.44 1.17 9250 0.05 2 9250.1 0.06 2.72

75 10,147 2 10,148.8 0.02 16.85 10,180.7 0.33 8.41 10,146 -0.01 2 10146 -0.01 2.92

101 11,742 2 11,765.6 0.2 31.13 11,909.0 1.42 6.24 11,614 -1.09 2 11747.2 0.04 18.53

251 27,945 5 28,933.5 3.54 229.93 29,314.2 4.9 206.38 27,757 -0.67 5 28757.9 2.91 204.08

501 56,790 8 57,787.4 1.76 733.32 58,928.0 3.76 1241.01 56,575 -0.38 8 58109.2 2.32 528.32

751 91,670 11 94,016.2 2.56 2346.58 95,612.5 4.3 3765.94 90,801 -0.95 12 91862.9 0.21 2970.85

fnl4461 25 2168 1 2168.0 0 2.35 2168.0 0 0.40 2170 0.09 2 2170 0 0.21

51 4830 2 4830.0 0 4.68 4830.0 0 1.11 4832 0.04 2 4832 0 2.49

75 7399 3 7432.2 0.45 15.83 7466.5 0.91 8.22 7406 0.09 2 7406 0.09 6.19

101 10,608 4 10,765.3 1.48 18.29 10,897.8 2.73 7.32 10,604 -0.04 4 10615.9 0.07 13.68

251 30,651 4 31,334.1 2.23 255.07 31,782.4 3.69 210.30 30,546 -0.34 4 30842.9 0.63 39.84

501 81,994 7 83,246.3 1.53 667.54 85,081.8 3.77 1596.72 81,454 -0.66 7 81702.6 -0.36 478.17

751 135,940 12 138,626.0 1.98 2163.77 139,106.8 2.33 3172.93 135,592 -0.26 12 138392.2 1.8 1908.04

nrw1379 25 3464 2 3464.0 0 2.00 3466.1 0.06 0.58 3465 0.03 2 3465 0 0.22

51 5398 2 5423.4 0.47 8.71 5499.3 1.88 2.43 5397 -0.02 2 5397 0 2.74

75 8207 3 8352.2 1.77 20.23 8403.4 2.39 11.84 8219 0.15 3 8220.5 0.16 11.66

101 11,933 4 12,220.9 2.41 33.06 12,537.3 5.06 18.82 11,733 -1.68 4 11989.7 0.48 23.78

251 31,075 7 31,635.0 1.8 96.03 32,217.6 3.68 186.17 30,957 -0.38 7 31348.5 0.88 76.51

501 68,202 13 68,962.5 1.12 293.56 70,800.0 3.81 775.82 67,684 -0.76 13 67914.8 -0.42 150.78

751 122,587 21 124,711.0 1.73 858.91 125,859.0 2.67 1740.60 122,179 -0.33 22 123753.9 0.95 771.56

pr1002 25 16,221 1 16,221.0 0 1.75 16,221.0 0 0.21 16,221 0 1 16221 0 0.28

51 47,905 3 47,989.0 0.18 4.60 47,980.6 0.16 1.20 47,129 -1.62 2 47293.5 -1.28 3.64

75 64,102 4 64,889.0 1.23 11.94 65,197.8 1.71 7.49 63,869 -0.36 4 63960.4 -0.22 8.98

101 87,700 5 88,260.8 0.64 13.78 88,373.9 0.77 7.65 87,692 -0.01 5 87717.8 0.02 19.01

251 257,198 8 263,657.4 2.51 60.59 264,251.3 2.74 157.55 254,460 -1.06 8 256864.3 -0.13 10.12

501 597,464 14 611,917.4 2.42 396.32 620,169.5 3.8 776.39 595,095 -0.4 15 599562.1 0.35 297.45

751 1,008,027 19 1,031,423.3 2.32 1045.75 1,034,424.5 2.62 1723.79 1,000,604 -0.74 20 1017101.2 0.9 375.67

avg 250.71 174422.21 6.40 177923.54 1.27 316.56 179942.44 2.27 568.57 173641.83 -0.39 6.45 174960.23 0.26 243.41

#better 29

#equal 2

#worse 11
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In view of its good performance, we further compare LMA with the eight

heuristic algorithms for PDPLD instances in Cheang et al. (2012). As shown

in Table 4, the first two columns present the instance identifiers and the

number of the request vertices, respectively. The following two columns

report the best objective value fbest, and the number of the vehicles V eh

corresponding to the best known solution (BKS) found by the eight heuristics

denoted as BKS, including a VNS algorithm, six reduced versions of the VNS

heuristic, and the PTS algorithm for PDPLD in Cheang et al. (2012). We

present the average results of the objective value favg, the gap of favg value

to the BKS value in percentage (%), and computing time Time obtained

by the VNS and PTS algorithms in ten executions in columns 5-10. The

last six columns show that LMA obtains better results for 29 out of 42

instances, matches the current best-known results for 2 instances, and is

slightly worse than MS-ITS for 11 instances. However, considering the very

small differences between our best results fbest and the best-known results

reported in Cheang et al. (2012), it is likely that the differences are caused

by round-off errors. In addition, LMA outperforms VNS and PTS in terms

of the average objective value, the average gap and the average computing

time for most tested instances.

To summarize, the results of the above extensive computational studies

demonstrate the efficacy of LMA in tackling PDPLT in terms of both solution

quality and computational efficiency.

5. Analysis and Discussions

In this section we analyze two key components and one important pa-

rameter of LMA, including the hybrid initial solution (HIS) method, the

learning-based mechanism to manage the neighbourhood moves, and the pa-

rameter δ for the goodness score, with a view to understanding their impacts

on the performance of LMA.
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5.1. Comparisons between the hybrid initial solution method and the previous

construction methods

To study the effectiveness of the proposed HIS method, we compare it

with the two effective reference methods, namely random solution with con-

secutive pickups and deliveries (RCPD), and random solution with pickups

before deliveries (RPBD), proposed in Benavent et al. (2015) for PDPLT.

Since all the initial solution generation methods only run within a very short

time (in fact, less than one second) for all the benchmark instances, we ig-

nore the comparison in terms of computing time. We performed ten runs

of each method to solve each instance and recorded the best objective value

(minimum duration) and the corresponding number of vehicles. Table 5 and

Table 5: Comparisons of HIS with RCDP and RDPD on public benchmark

PDPLT instances.

RCPD RPBD HISInstances Set
fbest favg Vavg fbest favg Vavg fbest favg Vavg

lc1 11666.49 11954.37 10 12992.87 13245.64 12 10126.75 10201.19 9

lc2 12191.51 12330.29 4 13329.51 14019.83 5 10738.37 10894.22 4

lr1 3662.08 3844.15 19 4196.58 4321.40 23 2553.86 2778.01 12

lr2 4083.73 4308.95 4 4527.36 4742.02 5 2891.91 2996.54 3

lrc1 4415.38 4764.21 22 4957.51 5119.48 28 2836.88 3008.18 13

lrc2 5007.25 5214.66 5 5556.38 5794.76 6 3318.75 3428.90 4

LC1 61759.62 67891.54 46 76303.72 80432.01 58 44253.90 47812.32 32

LC2 59966.55 65048.99 17 70925.37 74501.11 20 44595.98 48676.67 13

LR1 31547.26 35674.50 43 41113.11 46487.24 61 13548.62 15998.56 18

LR2 34561.74 37529.64 11 43408.86 48645.30 14 17700.74 19741.52 6

LRC1 31231.48 35671.47 46 42537.10 45789.69 68 12493.77 13987.12 17

LRC2 34043.98 38485.91 11 46199.36 49975.54 16 16365.12 17895.55 5

avg 24511.42 26893.22 19.83 30503.98 32756.17 26.33 15118.72 16451.56 11.33

#better 12

#equal 0

#worse 0

Figure 6 present the comparisons of the HIS method with the RCDP and

RPBD methods on different classes of instances. Table 5 presents for each

instance set its name, the average results in terms of the best objective val-

ue fbest and the average objective value favg for each instance set, and the
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average number of vehicles Vavg corresponding to the best solution, which is

rounded to an integer. Figure 6 graphically shows the comparisons of HIS

with RCDP and RPBD, where the horizontal axis denotes the sets of in-

stances, and the vertical axis denotes the total duration and the number of

vehicles, respectively.

From Table 5 and Figure 6, we observe that HIS is able to obtain better

results than RCDP and RPBD in terms of the best objective value and the

corresponding number of vehicles. As the size of the instances becomes larger,

the advantage of LMA becomes more evident. In sum, HIS is a very effective

initial solution generation method for PDPLT.

5.2. Analysis of the learning-based mechanism

To highlight the importance of the learning-based mechanism in LMA, we

carried out the following computational studies. We use LMA and WLMA

to denote the learning-based memetic algorithm and the memetic algorithm

without the learning mechanism, respectively. In other words, under WLMA,

the neighbourhood moves are chosen in a token-ring fashion (i.e., N1, . . . , N6)

with the same fixed probability without the learning-based reward and pun-

ishment strategy, while other ingredients are kept unchanged.

We independently solved each instance for ten times by using LMA and

WLMA. We report the computational results in Table 6, which shows the

average result in terms of the best objective value and average objective value,

fbest and favg, respectively, in each instance set, and the average computing

time per successful run, i.e., Time, where we indicate the best objective

values between the two algorithms in bold.

Table 6 shows that when the learning-based mechanism is used, LMA

outperforms WLMA on all the public benchmark instances. In particular, in

terms of the best and average objective values, LMA obtains better values

than WLMA for all the tested instances, as illustrated by WLMA’s 66473.22

30



0

20000

40000

60000

80000

LRC2LRC1LR2LR1LC2LC1lrc2lrc1lr2lr1lc2

To
ta

l d
ur

at
io

n

Instances

 RCPD
 RPBD
 HIS

lc1

(a)

0

10

20

30

40

50

60

70

LRC2LRC1LR2LR1LC2LC1lrc2lrc1lr2lr1lc2

 RCPD
 RPBD
 HIS

N
um

be
r o

f v
eh

ic
le

s

Instances
lc1

(b)

Figure 6: Comparative results of HIS with RCPD and RPBD in terms of

(a)average total duration (b)the corresponding number of vehicles, respec-

tively.
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and 67290.66 versus LMA’s 66241.09 and 66757.84. As for the average run-

ning time, the two algorithms are very close to each other, i.e., WLMA’s

223.81 versus LMA’s 198.48. Specifically, LMA takes shorter (longer) aver-

age computing times to reach the average best results on 13 (5) sets of the

tested instances, respectively, compared with WLMA.

Table 6: Comparison of the memetic algorithms with and without the

learning-based mechanism on public benchmark PDPLT and PDPLD in-

stances.

WLMA LMAInstances Set
fbest favg Time fbest favg Time

lc1 9863.21 9865.69 20.59 9862.57 9862.93 23.37

lc2 9834.25 9842.23 17.72 9834.01 9834.40 17.84

lr1 2117.58 2136.90 29.54 2113.59 2121.18 30.80

lr2 2085.46 2315.71 35.14 2082.07 2288.05 33.25

lrc1 2246.18 2304.58 27.09 2240.07 2251.93 25.69

lrc2 2210.52 2227.36 20.11 2190.81 2212.35 23.10

LC1 42390.90 42551.95 385.68 42375.73 42420.45 360.08

LC2 40972.84 41056.29 312.42 40772.57 40868.81 300.34

LR1 9715.79 9801.76 323.63 9582.16 9788.584 338.38

LR2 11788.35 12183.44 281.18 10822.59 11178.55 260.46

LRC1 9210.61 9431.28 360.73 9030.575 9141.71 348.02

LRC2 9712.52 10233.04 345.24 9584.18 9920.77 324.52

brd14051 30510.23 30719.17 345.24 30487.29 30711.20 143.43

d15112 611889.62 619696.93 187.57 611571.29 614512.51 198.01

d18512 30384.21 30890.80 589.35 30175.29 30708.19 532.69

fnl4461 39077.55 40018.72 305.10 38942.86 39422.04 352.65

nrw1379 35723.52 36001.26 206.96 35662.00 36012.01 149.56

pr1002 296784.67 299954.69 235.22 295010.00 298385.43 110.43

avg 66473.22 67290.66 223.81 66241.09 66757.84 198.48

#better 18

#equal 0

#worse 0
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In order to further study the characteristics of the learning mechanism.

We obtain the percentage of the chosen times for six neighborhood moves

during the search of LMA for ten representative instances with different s-

cales2. We run each instance once with the maximum time limit of 360

seconds by using LMA. Figure 7 shows the experimental results for the per-

centage of the chosen moves for all the six neighborhood moves in LMA. The

probability of choosing small moves with no more than two requests (such

as M1 and M2) clearly decreases as the size of the instances increases (for

sizes ranging from 25 to 501). In contrast, the probability of choosing large

moves based on components (such as M4, M5 and M6) significantly increas-

es. One can clearly observe that the large moves are preferred in the large

scale instances. In general, the probability of each move being selected varies

for difference instances, which are significantly different from the token-ring

fashion for WLMA (with the same probability for each move) verifying the

impact of our proposed learning mechanism.

The above results indicate that our learning-based mechanism plays a

crucial role in boosting the performance of LMA in solving PDPLT.

5.3. Importance of the parameter δ

The LCS-based population updating strategy considers both solution

quality and the distances between solutions and the population in updat-

ing the search. The parameter δ is used to balance these two factors in order

to achieve a better trade-off between intensification and diversification of the

search. In order to ascertain the importance of δ in LMA, we conducted the

following computational studies. Specifically, we selected eight representa-

tive sets of instances with different scales of the benchmark instances, namely

lc2, lr2, lrc2, LC2, LR2, LRC2, fn14461 and pr1002. Taking into account the

2Ten representative instances consists of brd14051 25, d15112 51, d18512 75,

fn14461 101, lc101, lr101, nrw1379 251, LC1 4 1, LR1 4 1, and pr1002 501.
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randomness of the algorithm, we ran it ten times for each parameter setting

(0, 0.1, . . ., 1.0). Figure 8 presents the average results over all the tested

instances, where the horizontal axis denotes the value of the parameter δ

and the vertical axis denotes the computing time and the objective values

normalized by the following normalized function:

θ(z) =
z − zmin

zmax − zmin

. (8)

Figure 8 shows the trajectories of the computing time and objective value

over different δ values. When δ is equal to 1, which gives all the weight to

the objective value and none to the population distance, the corresponding
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algorithm is the fastest but cannot find high-quality solutions because the al-

gorithm does not consider the diversity of the population, while the algorithm

can obtain the best values with δ set at 0.6 to 0.8. The results demonstrate

that premature convergence of the algorithm can be avoided by employing

the LCS-based population updating strategy. We further observe that the

best-performing parameter values are the same as the best parameter values

analyzed in Figure 5.

6. Conclusion

Our learning-based memetic algorithm LMA for the pickup and delivery

problem under the LIFO loading policy demonstrates the effectiveness of its

key features, which include a hybrid initial solution construction method, a

learning-based local search procedure, a component-based crossover opera-

tor utilizing the ideas of structured combinations, and a longest-common-

subsequence-based population updating strategy.

Experimental evaluations on two sets of public benchmark instances show

that our LMA performs very favourably compared to the current state-of-

the-art reference algorithm MS-ITS (Benavent et al., 2015) and the eight

heuristics including a VNS algorithm, its six reduced versions, and PTS for

PDPLD proposed in Cheang et al. (2012). In particular, LMA is able to ob-

tain highly competitive results in terms of both computational efficiency and

solution quality for most of the PDPLT and PDPLD instances, improving the

best-known results for 132 out of 158 of the tested problem instances, while

matching the best-known results for all but three of the remaining instances.

In addition, our computational studies demonstrate the effectiveness of the

key strategies incorporated into our proposed LMA.

These outcomes motivate future research to extend our work in the fol-

lowing directions: First, it would be interesting to employ a powerful tabu

search method (such as granular tabu search) to improve the search capa-
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bility of the learning-based local search phase. Second, the design of our

approach invites the development of related procedures that combine its s-

trategies with those of other population-based frameworks like path-relinking

(Glover et al., 2000) should be very promising. Finally, the success of these

ideas for tackling the PDPLT problem suggests that it would be worthwhile

to test their performance in dealing with other variants of the vehicle routing

problem.
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