
European Journal of Operational Research 277 (2019) 875–885

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Production, Manufacturing, Transportation and Logistics

Probabilistic Tabu Search for the Cross-Docking Assignment Problem

Oualid Guemri a , Placide Nduwayo

a , Raca Todosijevi ́c

a , Saïd Hanafi a , Fred Glover b , ∗

a Université Polythecnique Hauts de France, CNRS UMR 8201 - LAMIH, F-59313, Valenciennes, France
b College of Engineering & Applied Science, University of Colorado, Boulder, CO, 80309, USA

a r t i c l e i n f o

Article history:

Received 16 February 2018

Accepted 20 March 2019

Available online 27 March 2019

Keywords:

Metaheuristics

Probabilistic Tabu Search

Cross-Docking Assignment Problem

Combinatorial Optimization

a b s t r a c t

The Cross-Docking Assignment Problem (CDAP) is a challenging optimization problem in supply chain

management with important practical applications in the trucking industry. The goal is to assign incom-

ing trucks (outgoing trucks) to inbound (outbound) doors to minimize the material handling cost within

a cross-docking platform while respecting the capacity and assignment constraints. A capacity constraint

is imposed on each inbound/outbound door and an associated assignment constraint is imposed on each

incoming/outgoing truck requiring it to be assigned to only one inbound/outbound door. To solve this NP-

hard optimization problem, we develop two novel heuristics based on Probabilistic Tabu Search utilizing

a new neighborhood structure applicable both to CDAP and related problems. The proposed heuristics

are evaluated on 99 benchmark instances from the literature, disclosing that our approaches outperform

recent state-of-the-art approaches by reaching 45 previous best-known solutions and discovering 53 new

best-known solutions while consuming significantly less CPU time.

© 2019 Elsevier B.V. All rights reserved.

1

c

l

d

s

p

t

A

i

t

fi

a

d

r

o

d

s

s

a

A

(

h

c

2

t

t

I

p

t

H

s

P

C

m

i

s

b

a

s

m

a

i

a

i

h

0

. Introduction

The Cross-Docking Assignment Problem (CDAP) is an NP-hard

ombinatorial optimization problem that arises in the operational

evel of supply chain management. Considering a two-sided cross-

ocking facility where the inbound doors are at one side and the

ets of outbound doors are at the opposite side, the cross-docking

olicy consists in the following. Fully loaded incoming trucks en-

er the cross-docking platform and unload goods at inbound doors.

fter that the goods are immediately sorted and organized accord-

ng to their destinations, and transferred to outbound doors where

hey are loaded on outgoing trucks. The goal of the CDAP is to

nd an optimal assignment of incoming trucks to inbound doors

nd outgoing trucks to outbound doors so that the material han-

ling cost within the cross-docking platform is minimized. Mate-

ial handling cost is measured as total weighted traveled distance

f devices used to transfer goods between inbound and outbound

oors. To be feasible, a solution of the CDAP may be required to

atisfy various constraints, typically consisting of capacity and as-

ignment constraints.

In the literature, the CDAP is considered as an instance of an

ssignment problem (Guignard, Hahn, Pessoa, & da Silva, 2012).

ssignment problems are well-studied optimization problems that
∗ Corresponding author.

E-mail addresses: oualid.guemri@uphf.fr (O. Guemri), placide.nduwayo@uphf.fr

P. Nduwayo), raca.todosijevic@uphf.fr (R. Todosijevi ́c), said.hanafi@uphf.fr

(S. Hanafi), glover@opttek.com (F. Glover).

e

t

G

a

s

ttps://doi.org/10.1016/j.ejor.2019.03.030

377-2217/© 2019 Elsevier B.V. All rights reserved.
ave given rise to numerous proposals for solution algorithms in-

luding both metaheuristics and exact methods (see, e.g., Pentico,

007). To briefly indicate some of the more salient contribu-

ions, variants of assignment problems that have received atten-

ion include: The Generalized Assignment Problem (GAP) (Yagiura,

baraki, & Glover, 2006), the generalized quadratic assignment

roblem (Pessoa, Hahn, Guignard, & Zhu, 2010) and the quadratic

hree-dimensional assignment problem (Hahn et al., 2008). In (Zhu,

ahn, Liu, & Guignard, 2009), the authors observe a relation-

hip between the Generalized Quadratic 3-dimensional Assignment

roblem and the CDAP we study here which discloses that the

DAP can be solved as GQ3AP. Tsui and Chang (1990) propose a

athematical formulation for the CDAP which requires that each

ncoming truck is assigned to only one indoor and each indoor can

erve only one incoming truck. Tsui and Chang (1992) proposed a

ranch & bound method to solve the problem formulated in Tsui

nd Chang (1990) . Zhu et al. (2009) extend the Cross-Docking As-

ignment Problem presented in Tsui and Chang (1990) by allowing

ore than one truck to be assigned to a door and by imposing

 capacity constraint on the doors. The form of CDAP considered

n Zhu et al. (2009) includes the Generalized Assignment Problem

s a subproblem and like the GAP problem is NP-hard. Because of

ts NP-hard character, most of the studies of the CDAP in the lit-

rature have been dedicated to developing efficient heuristic solu-

ion approaches to cope with large scale instances. In this regard,

uignard et al. (2012) proposed two heuristics to solve the CDAP

s defined in Zhu et al. (2009) where the first is a multi-start local

earch where the authors derived two variants and the second is a

https://doi.org/10.1016/j.ejor.2019.03.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.03.030&domain=pdf
mailto:oualid.guemri@uphf.fr
mailto:placide.nduwayo@uphf.fr
mailto:raca.todosijevic@uphf.fr
mailto:said.hanafi@uphf.fr
mailto:glover@opttek.com
https://doi.org/10.1016/j.ejor.2019.03.030

876 O. Guemri, P. Nduwayo and R. Todosijevi ́c et al. / European Journal of Operational Research 277 (2019) 875–885

(

S

i

t

t

1

s

H

s

h

o

p

t

fi

f

p

h

r

b

t

s

t

o

h

d

P

i

e

t

p

p

S

b

2

p

h

a

e

s

N

c

e

o

y

s

X

l

i

c
metaheuristic called Convex Hull. Nassief et al. (2016) presented a

linear mixed integer programming (MIP) formulation and proposed

a Lagrangean relaxation algorithm to deal with CDAP as formu-

lated by Zhu et al. (2009) . In (Tarhini, Yunis, & Chamseddine, 2016),

the authors presented a scatter search and a genetic algorithm to

deal with CDAP based on the problem definition of Tsui and Chang

(1990) . Nassief, Contreras, and Jaumard (2018) presented a study

of the standard CDAP (as defined in (Zhu et al., 2009)) with and

without the load and unload times where they compared new MIP

formulations and LP relaxations. Ladier and Alpan (2016) studied

the gap between the academic literature and the industrial applica-

tions of cross-docking. For other cross-docking problems and/or lit-

erature reviews in cross-docking, we refer the reader to Bellanger,

Hanafi, and Wilbaut (2013) and Buijs, Vis, and Carlo (2014), Boysen

and Fliedner (2010), Van Belle, Valckenaers, and Cattrysse (2012) .

In this paper we deal with the realistic variant of the CDAP pro-

posed in Zhu et al. (2009) where the capacity constraint of each

inbound/outbound door must be satisfied as well as a constraint

requiring each origin/destination to be assigned to only one in-

bound/outbound door.

Formally the CDAP may be defined in the following way. We

are given a set of incoming trucks (treated as origins) M , a set of

outgoing trucks (treated as destinations) N , a set of inbound doors

I and a set of outbound doors J . When the origin m ∈ M is assigned

to the inbound door i ∈ I and the destination n ∈ N is assigned to

the outbound door j ∈ J a material handling cost is incurred. The

cost is calculated as the product of d i,j and f m,n where d i,j is the

distance between the door i and the door j , and f m,n is the num-

ber of pallets to be moved from the origin m to the destination

n . The total number of pallets transferred from origin m ∈ M is

s m

=

∑

n ∈ N f m,n and the total number of pallets received at desti-

nation n ∈ N is r n =

∑

m ∈ M

f m,n . The capacity of an inbound door

i ∈ I is denoted by S i and the capacity of an outbound door j ∈ J

is denoted by R j . The capacity refers to the total number of pallets

processed at a door over given time interval (i.e., planning hori-

zon). Using binary variables x m,i and y n,j to indicate whether or not

an inbound truck m is assigned to inbound door i , and whether or

not an outbound truck n is assigned to outbound door j , respec-

tively, the CDAP may be formulated as the following 0–1 quadratic

program:

min f (x, y) =

∑

m ∈ M

∑

i ∈ I

∑

n ∈ N

∑

j∈ J
d i, j f m,n x m,i y n, j (1-a)

Subject to:
∑

i ∈ I
x m,i = 1 ∀ m ∈ M (1-b)

∑

j∈ J
y n, j = 1 ∀ n ∈ N (1-c)

∑

m ∈ M

s m

x m,i ≤ S i ∀ i ∈ I (1-d)

∑

m ∈ M

r n y n, j ≤ R j ∀ j ∈ J (1-e)

x m,i ∈ { 0 , 1 } , ∀ m ∈ M, ∀ i ∈ I (1-f)

y n, j ∈ { 0 , 1 } ∀ n ∈ N, ∀ j ∈ J (1-g)

The objective function (1-a) minimizes the material handling

cost inside the warehouse. The two sets of constraints (1-b) and

(1-c) ensure that each origin/destination must be allocated to one

and only one inbound/outbound door, respectively. The constraints

(1-d) (resp. (1-e)) guarantee that the capacity of each inbound

(resp. outbound) door is respected. The last two sets of constraints
1-f) and (1-g) impose binary requirement on decision variables.

ome other mixed integer programming formulations of the stud-

ed problem may be found in Guignard et al. (2012), Nassief, Con-

reras, and As’ ad (2016) and Gelareh et al. (2018) . According to

he results reported in Gelareh et al. (2018) , instances with up to

5 origins/destinations and 7 indoors/outdoors may be optimally

olved by the CPLEX MIP solver within the time limit of two hours.

owever, the largest instances remain elusive for the CPLEX MIP

olver and therefore there is a need for heuristic approaches.

In this work we propose two Probabilistic Tabu Search (PTS)

euristics which differ in the way they construct a candidate list

f solutions and accept new incumbent solutions. In addition, we

ropose a new extension of the swap neighborhood that allows

he exchange of more than two elements and we design an ef-

cient heuristic method to explore it. Extensive testing is per-

ormed on benchmark instances from the literature to assess the

erformance of our proposed approaches, showing that our PTS

euristics outperform the previous state-of-the art approaches by

eaching 45 previous best-known solutions and discovering 53 new

est-known solutions on a set of 99 instances. In addition, the CPU

ime consumed by our approaches is substantially less than con-

umed by the previous state-of-the art methods. We also conduct

ests to show that our heuristic exploration yields a good trade-

ff between solution quality and CPU time in comparison with ex-

austive exploration of our new neighborhood structure.

The rest of the paper is organized as follows. The next section

escribes the main ingredients of the proposed heuristics based on

robabilistic Tabu Search, including a procedure for constricting an

nitial solution, as well as the neighborhood structures used and

fficient ways of exploring them. Section 3 presents two Probabilis-

ic Tabu Search heuristics built on the ingredients described in the

receding section and Section 4 is dedicated to computational ex-

eriments to assess the merit of the proposed approaches. Finally,

ection 5 offers concluding observations and sketches some possi-

le future research directions.

. Main ingredients of the Probabilistic Tabu Search approaches

In this section we present the main ingredients of our pro-

osed Probabilistic Tabu Search heuristics with multiple neighbor-

ood structures. First, we present the procedure used to generate

n initial solution and then we describe neighborhood structures

xploited by our PTS heuristics. In addition, we expose the data

tructures and updating procedures used in our implementation.

A solution of the CDAP is represented by partitions of M and

 denoted by X and Y, respectively. Each element X i of X is a set

ontaining all origins assigned to the inbound door i ∈ I. Similarly,

ach element Y j is a set containing all destinations assigned to the

utbound door j ∈ J. More formally, if we use binary variables x m,i ,

 n,j defined in the introductory section, the set X i and Y j may be

tated as:

 i = { m ∈ M : x m,i = 1 } and Y j =

{
n ∈ N : y n, j = 1

}
.

We note that some sets X i or Y j can be empty in a feasible so-

ution.

The objective function of a solution (X, Y) may be calculated as

f (X, Y) =

∑

i ∈ I

∑

j∈ J

∑

m ∈ X i

∑

n ∈ Y j
d i, j f m,n

Correspondingly, the cost incurred by assigning origin m ∈ M to

nbound door i ∈ I, for a given partition Y , may be expressed as

o
m,i (Y) =

∑

j∈ J

∑

n ∈ Y j
d i, j f m,n (2-a)

O. Guemri, P. Nduwayo and R. Todosijevi ́c et al. / European Journal of Operational Research 277 (2019) 875–885 877

a

f

c

i

i

S

R

2

F

l

g

t

t

w

c

t

d

c

t

t

s

e

t

g

o

b

a

t

t

u

g

t

3

a

i

o

s

a

t

f

i

e

a

t

p

t

2

M

t

t

Algorithm 1 Constructive heuristic.

1. Create empty solution: X i = ∅ for all i ∈ I, and Y j = ∅ for all j ∈ J;
2. Sort the origins m ∈ M in descending order of their s m values;

3. For each m ∈ M do

4. Let I ′ = { i ∈ I : S(X i) + s m ≤ S i } be the set of indoors that can receive the

origin m ;

5. If I ′ � = ∅ then

6. Select randomly an indoor i ∈ I ′ ;
7. X i = X i ∪ { m } ;
8. EndIf

9. EndFor

10. Sort the destinations n ∈ N in descending order of their r n values;

11. For each n ∈ N do

12. Let J ′ = { j ∈ J : R (Y j) + r n ≤ R j } be the outdoors that can receive the

destination n ;

13. If J ′ � = ∅ then

14. Let j = argmin { c d
n, j ′ (X) : j ′ ∈ J ′ } ;

15. Y j = Y j ∪ { n } ;
16. EndIf

17. EndFor

18. Return (X, Y);

o

s

o

w

a

i

i

b

l

t

i

p

2

f

t

s

r

s

s

r

.

i

b

s

X

n

i

t

t

F

m

b

a

t
nd the cost of assigning destination n ∈ N to outbound door j ∈ J,

or a given partition X , may be expressed as

d
n, j (X) =

∑

i ∈ I

∑

m ∈ X i
d i, j f m,n (2-b)

The amount of capacity S(X i) (resp. R (Y j)) consumed at each

nbound (resp. outbound) door with respect to the solution (X, Y)

s expressed as

 (X i) =

∑

m ∈ X i
s m

∀ i ∈ I

(
Y j

)
=

∑

m ∈ Y j
r n ∀ j ∈ J.

.1. Constructive heuristic to generate the initial solution

We use the following procedure to generate an initial solution.

irst, the procedure sorts the origins so that their numbers of pal-

ets, s m

, are in descending order of size, and then assigns these ori-

ins to the inbound doors in a random fashion (Step 6) respecting

he capacity constraint of these doors (Step 4). The destinations are

hen assigned to the outbound doors using a greedy procedure in

hich the destinations are similarly sorted in descending order ac-

ording to the total number of pallets r n, they receive (Step 10). Af-

er that, one by one the destinations are assigned to the outbound

oors following the established order. This latter assignment is ac-

omplished by assigning a destination n to a door j associated with

he minimum assignment cost c d
n, j

(X) , where c d
n, j

(X) depends on

he given assignment of origins (Steps 11–17). We have found that

orting the origins and destinations in this simple manner greatly

nhances the algorithm’s ability to find a feasible initial solution

hat satisfies the doors’ capacities, although of course there is no

uarantee that this starting solution will be feasible. Namely, some

rigins (destinations) may remain non-assigned to inbound (out-

ound) doors. If this happens, non-assigned origins (destinations)

re assigned to inbound (outbound) doors in a greedy way so that

he violation of the capacity constraints is minimized. To measure

he violation of the capacity constraints the following function is

sed:

 (X, Y) =

∑

i ∈ I
max { 0 , S (X i) − S i } +

∑

j∈ J
max { 0 , R

(
Y j

)
− R j } .

After that, in order to attain feasibility, we launch a Probabilis-

ic Tabu Search (PTS) algorithm, whose steps are given in Section

 . In this case, the PTS considers g(X, Y) as the objective function

nd may accept also infeasible solutions. Once a feasible solution

s found, it is used as an initial solution for the PTS which works

nly with feasible solutions and uses the CDAP objective function,

f (X, Y) (see Section 3 for more details). If the best solution found

o far by PTS, denoted (X

∗, Y ∗), is infeasible, PTS considers g(X, Y)

s an objective function. Once feasibility of the modified solu-

ion (X

∗, Y ∗) is attained our approach considers the CDAP objective

unction f (X, Y) . Starting from this point, a candidate list N (X, Y)

s forced to contain only feasible solutions at each subsequent it-

ration. The procedure is depicted in Algorithm 1 . Note that the

lgorithm verifies the capacity constraints (Steps 4 and 12) using

he residual capacities S(X i) and R (Y j) . The residual capacities, as

reviously defined, refer to the amount of capacity consumed at

he certain door by origins/destinations currently assigned to it.

.2. Neighborhood structures and move evaluation

A solution (X , Y) corresponds to a partition of the set of origins

 and a partition of set of destinations N , respectively. The moves

hat define the neighborhood structure consist of transferring a

ruck from one door to another, and of exchanging two subsets
f trucks between two doors. Hence, we define the neighborhood

tructures of the current solution N

τ (X, Y) that affect either the

rigins (τ = o) or the destinations (τ = d). For each side τ ∈ { o, d } ,
e denote by τ̄ the opposite side of τ , i.e., if τ = o then τ̄ = d

nd vice-versa. Specifically, we divide the moves into the follow-

ng two types Shift moves and Swap moves. It is worth mention-

ng that we consider only feasible moves when defining the neigh-

orhood structure. However, in the exceptional case where the so-

ution returned by the initial solution procedure is not feasible,

he algorithm accepts only those moves that decrease infeasibil-

ty until a feasible solution is found. Then, only feasible moves are

erformed.

.2.1. Shift moves

A shift move transfers a selected truck (origin or destination)

rom one door to another (inbound door or outbound door). For

he origin side τ = o, a solution that is a neighbor of the current

olution (X , Y) is obtained by shifting an origin m ∈ M from its cur-

ent inbound door i (m ∈ X i) to another inbound door i ∗ ∈ I − { i }
elected randomly among the k best inbound doors (having the

mallest costs c o
m, i ∗ (Y)). More precisely, for each origin m ∈ M, we

e-index the inbound doors i ′ ∈ I − { i } so that c o
m, 1

(Y) ≤ c o
m, 2

(Y) ≤
 . . ≤ c o

m, | I|−1
(Y) and let I k m

= { 1 , . . . , k } be the set identifying the

nbound doors i ′ ∈ I − { i } with the k smallest values c o
m,i ′ . A neigh-

oring solution (X ′ , Y ′) ∈ N

o,k
Shi f t

(X, Y) is obtained by setting Y ′ = Y ,

electing randomly i ∗ ∈ I k m

and for all i ′ ∈ I setting

′
i ′ =

⎧ ⎨

⎩

X i − { m } i f i ′ = i

X i ∗ + { m } i f i ′ = i ∗

X i otherwise

(3-a)

Analogously, for the destination side τ = d, a solution in the

eighborhood of the current solution (X , Y) is obtained by shift-

ng a destination n ∈ N from its current outbound door j (n ∈ Y j)

o another outbound door j ∗ ∈ J − { j} selected randomly among

he k best outbound doors (having the smallest costs c d
n, j ∗ (X)).

or the sake of completeness, we provide definitions of these

oves as well: for each destination n ∈ N, we re-index the out-

ound doors j ′ ∈ J − { j} so that c d
n, 1

(X) ≤ c d
n, 2

(X) ≤ . . . ≤ c d
n, | J|−1

(X)

nd let J k n = { 1 , . . . , k } be the set identifying the outbound doors

j ′ ∈ J − { j} with the k smallest values c d
n, j ′ (X) . A neighboring solu-

ion (X ′ , Y ′) ∈ N

d,k
Shi f t

(X, Y) is obtained by setting X ′ = X , selecting

878 O. Guemri, P. Nduwayo and R. Todosijevi ́c et al. / European Journal of Operational Research 277 (2019) 875–885

Y

Y

d

o

a

i

b

�

�

t

j

t

�

�

c

t

t

�

e

(

O

c

o

p

c

c

c

c

m

i

2

O

p

a

O

f

b

f

P

b

i

f

randomly j ∗ ∈ J k n − { j} and for all j ′ ∈ J setting

′
j ′ =

⎧ ⎨

⎩

Y j − { n } i f j ′ = j

Y j ∗ + { n } i f j ′ = j ∗

Y j otherwise

(3-b)

Remark 1. if k = 1, the origin m (resp. the destination n) is trans-

ferred to the best inbound (resp. outbound) door, while if k = | I | −1

(resp. k = | J | −1) it is transferred to a randomly selected inbound

(resp. outbound) door.

2.2.2. Swap moves

A swap move consists of exchanging trucks between two dif-

ferent doors. In our implementation, we consider two groups of

swap moves: elementary swap moves and multiple swap moves . An

elementary swap move consists of exchanging two different trucks

between two different doors, while a multiple swap move consists

of exchanging two subsets of trucks between two different doors.

Formally, for the origin side τ = o, a neighborhood solution

(X ′ , Y ′) ∈ N

o,p,q
Swap

(X, Y) is obtained by setting Y ′ = Y , choosing i, i ′ ∈ I

with i � = i ′ , selecting P ⊆ X i such that | P | = p and Q ⊆ X i ′ such that

| Q| = q and for all h ∈ I setting

X

′
h =

⎧ ⎨

⎩

X h − P + Q i f h = i

X h − Q + P i f h = i ′

X h otherwise

(4-a)

Similarly, for the destination side τ = d, a neighboring solution

(X ′ , Y ′) ∈ N

d,p,q
Swap

(X, Y) is obtained by setting X ′ = X , choosing j, j ′ ∈
J with j � = j ′ , selecting P ⊆ Y j such that | P | = p and Q ⊆ Y j ′ such

that | Q| = q and for all h ∈ J setting

′
h =

⎧ ⎨

⎩

Y h − P + Q i f h = j

Y h − Q + P i f h = j ′

Y h otherwise

(4-b)

Remark 2. The elementary swap moves can be derived from the

above definition by choosing p = 1 and q = 1.

The set of neighboring solutions generated by swap moves

that affect sets X i and X i ′ (resp. Y j and Y j ′) will be denoted

by N X
o,p,q
Swap

(X i , X i ′) (resp. N Y
d,p,q
Swap

(Y j , Y j ′)). Using these defini-

tions we have N

o,p,q
Swap

(X, Y) =

⋃

i,i ′ ∈ I, i � = i ′ N

o,p,q
X Swap

(X i , X i ′) and similarly

N

d,p,q
Swap

(X, Y) =

⋃

j, j ′ ∈ J, j � = j ′ N

d,p,q
Y Swap

(Y j , Y j ′) . In Section 2.2.4 , we de-

scribe an efficient procedure to explore the swap neighborhood.

2.2.3. Data structures for evaluation of moves and their updates

To efficiently evaluate each move presented in the preceding

section we use auxiliary data structures. By move evaluation here

we mean the change in the objective function caused by execut-

ing a certain move on a current solution. Here we present only a

method for efficiently evaluating the shift moves, since each swap

move (elementary or multiple) can be easily transformed into a set

of shift moves.

From Eq. (1-a) the objective function value of a solution (X , Y)

can be expressed as

f (X, Y) =

∑

i ∈ I

∑

j∈ J

∑

m ∈ X i

∑

n ∈ Y j
d i, j f m,n

Using Eq. (2-a) , this can be rewritten as

f (X, Y) =

∑

i ∈ I

∑

m ∈ X i
c o m,i (Y) . (5-a)

Or equivalently by Eq. (2-b) :

f (X, Y) =

∑

j∈ J

∑

n ∈ Y j
c d n, j (X) . (5-b)
Again, we differentiate shift moves that affect origin-inbound

oor assignments (τ = o) and those that affect destination-

utbound door assignments (τ = d) .

First consider a shift move on origin side (τ = o), that transfers

n origin m ∈ M from its current inbound door i (m ∈ X i) to another

nbound door i ∗ ∈ I k m

− { i } . The objective function change produced

y this shift move is given by

o (m, i, i ∗) = f
(
X

′ , Y
)

− f (X, Y) .

Using Expressions (4-a) and (5-a) we obtain

o (m, i, i ∗) = c o m, i ∗ (Y) − c o m,i (Y) (6-a)

Next consider a shift move on the destination side (τ = d),

hat transfers a destination n ∈ N from its current inbound door

 (n ∈ Y j) to another inbound door j ∗ ∈ J k n − { j} . The objective func-

ion change produced by this shift move is given by

d (n, j, j ∗) = f
(
X, Y ′

)
− f (X, Y) .

Similarly, using Expressions (4-b) and (5-b) we obtain

d (n, j, j ∗) = c d n, j ∗ (X) − c d n, j (X) . (6-b)

As consequence of Expressions (6-a) and (6-b) , the shift move

an be evaluated in constant time O (1), if we make reference to the

wo matrices c o
m,i

(Y) and c d
n, j

(X) . Hence, to achieve this constant

ime computation of the objective function change �o (m, i, i ∗) and
d (n, j, j ∗) , we need to update the two matrices c o

m,i
and c d

n, j
after

ach shift move.

Let c
′ o
m,i

(Y) (resp. c
′ d
n, j

(X)) be the value of entry (m, i) (resp.

 n, j)) in the matrix c o
m,i

(Y) (resp. c d
n, j

(X)) after a shift move.

bserve from Eq. (2-a) and (2-b) that provide the definitions of

o
m,i

(Y) and c d
n, j

(X) respectively, that the execution of a shift move

n the side τ = o affects the matrix c d
n, j

(X) and vice versa. More

recisely, after a shift move on the side τ = o, we have

′ d
n, j

(
X

′) =

∑

i ∈ I

∑

m ∈ X ′
i

d i, j f m,n .

Using Expression (3-a) , we obtain

′ d
n, j

(
X

′) = c d n, j (X) + f m,n (d i ∗, j − d i, j) . (7-a)

Similarly, after a shift move on the side τ = d, we have

′ o
m,i

(
Y ′

)
=

∑

j∈ J

∑

n ∈ Y ′
j

d i, j f m,n .

Using Expression (3-b) , we obtain

′ o
m,i

(
Y ′

)
= c o m,i (Y) + f m,n (d i, j ∗ − d i, j) . (7-b)

As a consequence, the complexity of updating �o after a shift

ove on the side τ = d is O (| N | × | J |) and the complexity of updat-

ng �d after a shift move on the side τ = o is O (| M | × | I |).

.2.4. Efficient exploration of the swap neighborhood

The complexity of the neighborhood N

o,p,q
Swap

(X, Y) is

(∑

i. i ′ ∈ I, i � = i ′
(| X i |

p

)(| X i ′ |
q

))
. Consequently, the exhaustive ex-

loration of the union of neighborhoods N

o,p,q
Swap

(X, Y) , 1 ≤ p ≤ | X i |
nd 1 ≤ q ≤ | X i ′ | , which we denote by N

o
Swap

(X, Y) , has complexity

 (
∑

i,i ′ ∈ I, i � = i ′ 2
| X i | + | X i ′ |) . However, if each solution in N

o
Swap

(X, Y) is

easible, then the best solution in this neighborhood can be found

y an exploration of smaller complexity, as we demonstrate in the

ollowing proposition.

roposition. The best solution within the union of swap neigh-

orhoods N

o
Swap

(X, Y) can be determined with time complex-

ty O (
∑

i. i ′ ∈ I, i � = i ′ | X i | + | X i ′ |) if all solutions in N

o
Swap

(X, Y) are

easible.

O. Guemri, P. Nduwayo and R. Todosijevi ́c et al. / European Journal of Operational Research 277 (2019) 875–885 879

P

{

B

f

X

m

O

g

s

N

f

l

b

m

p

p

m

i

i

i

�

w

m

s

b

s

�

f

m

t

n

h

l

(

s

n

s

t

b

s

m

′

a

r

A

i

m

w

s

t

O

R

h

A

s

N

3

p

a

(

a

i

p

a

A

Y

d

(

s

c

d

v

o

o

s

b

A

roof. Consider two sets X i and X i ′ and define X
imp
i

=
 m ∈ X i : �

o (m, i, i ′) < 0 } and X
imp

i ′ = { m

′ ∈ X i ′ : �o (m

′ , i ′ , i) < 0 } .
y these definitions the best multiple swap move that af-

ects sets X i and X i ′ is one that exchanges sets X
imp
i

and

imp

i ′ . Denote the solution obtained from such a swap

ove by (X i,i
′
, Y) . The generation of this solution requires

 (| X i | + | X i ′ |) operations, since sets X
imp
i

and X
imp

i ′ may be

enerated in linear time complexity O (| X i |) and O (| X i ′ |) , re-

pectively. Consequently, the best solution in the neighborhood

o
Swap

(X, Y) , i.e., (X ∗, Y ∗) = argmin { f (X i.i ′ , Y) : i, i ′ ∈ I, i � = i ′ } may be

ound with complexity O (
∑

i. i ′ ∈ I, i � = i ′ | X i | + | X i ′ |) . �

The preceding result does not hold if there is an infeasible so-

ution in the neighborhood N

o
Swap

(X, Y) . This can be demonstrated

y a small example involving only 3 incoming trucks m 1 , m 2 and

 3 with loads s m 1
= 3, s m 2

= 5 and s m 3
= 8, respectively. Sup-

ose we have only two incoming doors i 1 and i 2 both with ca-

acity S i 1 = S i 2 = 10 . Further, in the solution (X, Y), assume trucks

 1 and m 2 with loads 3 and 5 are assigned to the first incom-

ng door i 1 and truck m 3 with load 8 is assigned to the door

 2 . Then the neighborhood N

o
Swap

(X, Y) contains both feasible and

nfeasible solutions with respect to the capacity constraints. Let
o (m 1 , i 1 , i 2) > 0 , �o (m 2 , i 1 , i 2) < 0 and �o (m 3 , i 2 , i 1) < 0 . Then if

e use the procedure from the preceding proposition only the

ove that exchanges trucks m 2 and m 3 between doors will be con-

idered as a potential improving move, but this move is infeasi-

le. Consequently, the current solution (X, Y) would be the best

olution. However, in the case that �o (m 1 , i 1 , i 2) + �o (m 2 , i 1 , i 2) +
o (m 3 , i 2 , i 1) < 0 , a swap move that exchanges trucks m 1 and m 2

rom one side with a truck m 3 from the other side is an improving

ove. So, the procedure used in the preceding proposition may fail

o reach the best solution if there is an infeasible solution in the

eighborhood N

o
Swap

(X, Y) .

However, to avoid exhaustive exploration of the neighbor-

ood N

o
Swap

(X, Y) , which may be time consuming due to its

arge cardinality, but to be still able to find a near best solution

i.e. a solution with a quality near to the quality of the best

olution), we propose the following heuristic exploration of the

eighborhood N

o
Swap

(X, Y) . We consider two sets X i and X i ′ and

ort the origins in X i (resp. X i ′) in ascending order with respect

o �o (m, i, i ′) (r esp . �o (m

′ , i ′ , i)) . Repr esent the established order

y X i = { m 1 , m 2 , . . . , m | X i | } and X i ′ = { m

′
1
, m

′
2
, . . . , m

′ | X
i ′ | } , re-

pectively. Then the procedure tries to find the best improving

ove by exchanging sets L = { m 1 , m 2 , . . . , m p } , 1 ≤ p ≤ | X i | and
 = { m

′
1
, m

′
2
, . . . , m

′
q } 1 ≤ q ≤ | X i ′ | . The steps of the procedure

re given in Algorithm 2 . As will be shown in the computational

esults section, this procedure is able to find a solution which
lgorithm 2 Exploration of swap neighborhood (o, X i , X i ′).

1. Sort the origins m ∈ X i in ascending order of the values �o (m, i, i ′) ;
2. Sort the origins m

′ ∈ X i ′ in ascending order of the values �o (m

′ , i ′ , i) ;
3. Set N o X Swap

(X i , X i ′) = ∅ ; and L = Ø;
4. For each m ∈ X i do

5. L = L + { m } ; L ′ = Ø;
6. For each m

′ ∈ X i ′ do

7. L ′ = L ′ + { m

′ } ;
8. If S(X i) + S(L ′) − S(L) ≤ S i and S(X i ′) + S(L) − S(L ′) ≤ S i ′ then

9. (X ′ , Y ′) = (X, Y) ;
10. X ′

i
= X ′

i
+ L ′ − L ;

11. X ′
i ′ = X ′

i ′ + L − L ′ ;
12. N

o
X Swap

(X i , X i ′) = N

o
X Swap

(X i , X i ′) + { (X ′ , Y ′) } ;
13. EndIf

14. EndFor

15. EndFor

16. Return N

o
X Swap

(X i , X i ′) ;

3

l

{

μ

N

h

N

τ

d
s the best solution or close to the best solution, while taking

uch smaller CPU time than exhaustive exploration. Henceforth,

hen we speak of the swap neighborhood we refer to the set of

olutions inspected by the procedure in Algorithm 2 .

Hence, the complexity of the procedure that explores the en-

ire swap neighborhood of a solution (X , Y) on the side τ = o is

 (
∑

i. i ′ ∈ I, i � = i ′ | X i | | X i ′ | + | X i | log | X i | + | X i ′ | log | X i ′ |) .
emark 3. If there is no infeasible solution in the swap neighbor-

ood of the current solution the heuristic procedure described in

lgorithm 2 and the exhaustive exploration procedure return the

ame solution at the output.

Analogous results hold for the exploration of the neighborhood

d
Swap

(X, Y) and we will not bother to describe them.

. Probabilistic Tabu Search

In this section we present the Probabilistic Tabu Search ap-

roaches we use to solve the CDAP. Probabilistic Tabu Search is

 variant of the metaheuristic Tabu Search introduced by Glover

1986) . The main steps of the PTS procedure for solving the CDAP

re presented in Algorithm 3 . Starting from an initial solution, PTS

s run until a predefined stopping criterion is met. The procedure

resented in Algorithm 1 is used to generate an initial solution and

fterward using the following function to evaluate visited solutions

t each iteration, our PTS approach constructs a candidate list N (X,

), selects a solution from it to be new incumbent solution, up-

ates the tabu list TL , auxiliary data structures c o
m,i

(Y) and c d
n, j

(X)

explained in the preceding section) and the best solution found

o far. To construct a candidate list N (X, Y) and select a new in-

umbent solution we propose two approaches which lead to two

ifferent variants of PTS which we denote PTS1 and PTS2. In both

ariants the tabu list (TL) (referred to as short term memory in the

riginal tabu search approach) is managed in the simplest way. The

ld incumbent solution (X, Y) is added to the tabu list and if the

ize of the list is greater than l, the oldest solution in TL , added

efore the l most recent iterations, is deleted.

lgorithm 3 Probabilistic Tabu Search: general framework.

1. Generate an initial solution (X, Y) using the procedure in Algorithm 1 ;

2. Assign any non-assigned trucks in a greedy way using the function g (X,Y) ;

3. Set (X ∗, Y ∗) = (X, Y) ; T L = ∅ ;
4. While a stopping criterion is not met do

5. If (X ∗, Y ∗) is feasible then F (X, Y) = f (X,Y) ;

6. Else F (X, Y) = g (X,Y) ;

7. N (X, Y) = Construct_candidate_list(X, Y, TL);

8. (X, Y) = Select_solution (N (X, Y) , F (X, Y));

9. Update matrices c o
mi

(Y) and c d
n j

(X) ;

10. Update tabu list T L ;

11. (X ′′ , Y ′′) = argmin { F (X ′ , Y ′) : (X ′ , Y ′) ∈ N (X, Y) } ;
12. (X ∗, Y ∗) = argmin { F (X ′′ , Y ′′) , F (X ∗, Y ∗) } ;
13. EndWhile

14. Return (X ∗, Y ∗) ;

.1. Probabilistic Tabu Search: Variant 1

The first PTS variant, denoted PTS1, constructs a candidate

ist N (X, Y) by Algorithm 4 . The procedure first selects side τ ∈
 o, d } at random. After that, it constructs a candidate list of size

, selecting half of the solutions from the shift neighborhoods

τ,k
Shi f t

(X, Y) and half of the solutions from the swap neighbor-

ood N Z
τ
Swap (Z i , Z i ′) (where N Z

τ
Swap (Z i , Z i ′) corresponds either to

 X
o
Swap (X i , X i ′) or N Y

d
Swap (Y j , Y j ′) depending on the chosen side

). Solutions from the neighborhoods are chosen based on a ran-

om variable p generated in [0, 1]: if p ∈ [0, 0.6] the best solution

880 O. Guemri, P. Nduwayo and R. Todosijevi ́c et al. / European Journal of Operational Research 277 (2019) 875–885

Algorithm 4 Candidate list construction in PTS1.

Function Construct_candidate_list ((X, Y), μ, b, TL)

1. N (X, Y) = ∅;
2. Select a side τ ∈ { o, d } at random;

3. For 1 to μ/2 do

4. p = random (0,1);

5. If p ∈ [0, 0.6] then k ∗ = 1 ;

6. If p ∈]0.6, 0.8] then k ∗ = b;
7. If p ∈]0.8, 1] and τ = o then k ∗ = | I| ;
8. If p ∈]0.8, 1] and τ = d then k ∗ = | J| ;
9. Select a random solution (X ′ , Y ′) ∈ N

τ, k ∗

Shi f t
(X, Y) − T L ;

10. N (X, Y) = N (X, Y) + (X ′ , Y ′) ;
11. EndFor

12. For 1 to μ/2 do

13. If τ = o then (Z, Z ′) = (X i , X i ′) , i � = i ′ , (X i , X i ′) chosen at random;

14. If τ = d then (Z, Z ′) = (Y j , Y j ′) , j � = j ′ , (Y j , Y j ′) chosen at random;

15. p = random (0,1);

16. If p ∈ [0, 0.6] then Select the best solution (X ′ , Y ′) ∈ N o Z Swap
(Z, Z ′) − T L ;

17. If p ∈]0.6, 0.8] then Among b best select a random

(X ′ , Y ′) ∈ N o Z Swap
(Z, Z ′) − T L ;

18. If p ∈]0.8, 1] then Select a random solution

(X ′ , Y ′) ∈ N o Z Swap
(Z, Z ′) − T L ;

19. N (X, Y) = N (X, Y) + (X ′ , Y ′) ;
20. EndFor

21. Return N (Y, Y) ;

Algorithm 6 Candidate list construction in PTS2.

Procedure Construct_candidate_list(X, Y, TL)

1. N (X, Y) = ∅;
2. Select a side τ ∈ { o, d } at random;

3. N (X, Y) = N

τ, 1
Shi f t

(X, Y) − T L ;
4. If no improving solution is available in N (X, Y) then

5. N (X, Y) = N (X, Y) + N

τ, 1 , 1
Swap

(X, Y) − T L ;
6. Endif

7. If no improving solution is available in N (X, Y) then

8. // multiple swap moves

9. If τ = o then L = { (X i , X i ′) : i, i ′ ∈ I, i � = i ′ } ;
10. If τ = d then L = { (Y j , Y j ′) : j, j ′ ∈ J, j � = j ′ } ;
11. For each pair (Z, Z ′) ∈ L do

12. Select the best solution (X ′ , Y ′) ∈ N Z
τ
Swap (Z, Z ′) − T L ;

13. N (X, Y) = N (X, Y) + { (X ′ , Y ′) };
14. EndFor

15. EndIf

16. Return N (X, Y) ;

o

r

i

s

s

c

i

A

4

h

s

t

t

t

w

b

2

u

o

f

d

S

o

d

d

d

a

T

e

[

d

o

A
from the neighborhood is chosen, if p ∈]0.6, 0.8] a solution among

the b best ones is chosen, and finally if p ∈]0.8, 1] a random solu-

tion is chosen. The procedure considers solutions to be admissible

only if they are not in the tabu list TL.

In our implementation, we do not use any auxiliary data struc-

ture or procedure to avoid repetition of solutions in the candidate

list. The reason is that the size of the candidate list is chosen to be

much smaller than the size of the pool of candidate solutions (see

the computational results in Section 4) and therefore the probabil-

ity of having repeated solutions is very small. Moreover, the use

of an auxiliary data structure or procedure would slow down the

proposed heuristics.

To choose a new incumbent solution, PTS1 uses the procedure

in Algorithm 5 , which selects the best solution in the candidate list

as the new incumbent.

Algorithm 5 Solution selection in PTS1.

Procedure Select_solution(N (X, Y), F (X, Y))

1. (X ′′ , Y ′′) = argmin { F (X ′ , Y ′) : (X ′ , Y ′) ∈ N (X, Y) }
2. Return (X ′′ , Y ′′) ;

3.2. Probabilistic Tabu Search: Variant 2

The second Probabilistic Tabu Search variant, denoted PTS2,

constructs a candidate list N (X, Y) by Algorithm 6 below. The pro-

cedure first chooses a side τ ∈ { o, d } , at random, as a basis for

building the candidate list. Then it adds to the candidate list so-

lutions from the neighborhood N

τ, 1
Shi f t

(X, Y) . If there is no improv-

ing solution available to be added, it proceeds by adding solutions

from the neighborhood N

τ, 1 , 1
Swap

(X, Y) . If still no improving solutions

exist to be added, it adds to the candidate list the best solutions

from the swap neighborhood N

τ
Swap

(X, Y) , which corresponds ei-

ther to N

o
Swap

(X, Y) or N

d
Swap

(X, Y) depending on the chosen side

τ . As in the first variant, the procedure considers solutions to be

admissible only if they are not in the tabu list TL.

To select a new incumbent solution, PTS2 uses Algorithm 7 .

The procedure first sorts the neighboring solutions of the solu-

tion (X , Y) in increasing order with respect to the objective func-

tion (Step 1). Then if the set of the improving neighboring solu-

tions N

∗(X, Y) is not empty we set η∗ = min (| N

∗(X, Y) | , b) and
therwise set η∗ = b. After this, in Step 5 the procedure selects at

andom one of the η∗ best solutions in the candidate list to be new

ncumbent solution. This means that in the case where improving

olutions exist the choice is made among at most b best improving

olutions. On the other hand, if there is no improving solutions, the

hoice is made among exactly the b best (non-improving solutions)

n the candidate list.

lgorithm 7 Solution selection in PTS2.

Procedure Select_solution (N (X, Y) , F (X, Y), b)

1. Sort solutions in N (X, Y) in increasing order with respect to the function

F (X, Y), i.e.,

F (X ′ 1 , Y ′ 1) ≤ F (X ′ 2 , Y ′ 2) ≤ . . . ≤ F (X ′ η, Y ′ η) , where η = | N (X, Y) | ;
2. Let N

∗(X, Y) = { (X ′ k , Y ′ k) : F (X
′ k , Y

′ k) < F (X, Y) }
3. If N

∗(X, Y) � = ∅ then η∗ = min (| N

∗(X, Y) | , b) ;
4. Else η∗ = b;
5. Select a solution (X ’ ′ , Y ’ ′) randomly from the set {(X

′ 1 , Y
′ 1), (X

′ 2 , Y
′ 2), ….,

(X
′ η∗

, Y
′ η∗

)}

6. Return (X ’ ′ , Y ’ ′) ;

. Computational Results

In this section, we first compare the results of exhaustive and

euristic exploration of the swap neighborhood. The goal is to

how that our heuristic exploration yields a good trade-off be-

ween solution quality and CPU time in comparison with exhaus-

ive exploration. Following this, we compare our methods with

he state-of-the art methods from the literature. Our approaches

ere implemented in Java and executed on a PC with 16 giga-

ytes of RAM and using an Intel Xeon E3-1505 M v5 processor with

.80 gigahertz. For testing purposes, two benchmark data sets were

sed: the first one proposed in Guignard et al. (2012) and the sec-

nd proposed subsequently by the same authors.

Guignard et al. (2012) generated the set of instances in the

ollowing way. The number of origins is equal to the number of

estinations and is chosen from the set {8, 9, 10, 11, 12, 15, 20}.

imilarly, the number of inbound doors is equal to the number of

utbound doors and is selected from the set {4, 5, 6, 7, 10}. The

istance between two doors is chosen from the interval [8, 8 + | I |]

epending on the position of the two doors in the facility. The

istance between two doors that are face-to-face is set to 8, while

t each successive door the distance is incremented by one unit.

he flow matrix is generated by setting the values of 25% of the

lements of matrix f m,n to be random integers from the interval

10, 50], and setting the values of remaining elements to 0. This is

one so that each destination receives products from at least one

rigin and each origin sends products to at least one destination.

ll doors are given the same capacity determined as follows as a

O. Guemri, P. Nduwayo and R. Todosijevi ́c et al. / European Journal of Operational Research 277 (2019) 875–885 881

Table 1

Heuristic Vs. Exhaustive exploration of swap neighborhood.

Data Set Heuristic Exhaustive %dev #same

CPU(ms) Value #solutions CPU(ms) Value #solutions

SetA 0.00 11,419.04 65.84 0.40 11,416.80 331.76 0.020 33

SetB 3.27 562,505.60 2542.98 11,960.76 562,459.90 51,537,734.50 0.008 38

s

i

c

w

i

b

t

T

5

a

m

g

i

e

e

d

4

n

h

A

t

f

h

s

f

o

e

‘

a

e

‘

h

u

i

a

o

fi

t

a

s

o

a

4

i

n

p

(

t

t

t

T

s

s

i

r

o

G

i

t

T

d

t

o

h

o

g

d

C

t

N

f

o

t

v

t

t

r

d

t

p

t

‘

t

r

v

(

s

s

P

i

t

t

2

(

o

b

t

s

o

o

b

r

s

pecified fraction of total incoming flow and the number indoors

ncreased by the capacity slack. The capacity slack is calculated as

 % of the fraction of total incoming flow and the number indoors,

here c ∈ {5, 10, 15, 20, 30}.

Later, the authors generated a new set of large-scale instances

n the same manner. In the newly generated instances, the num-

er of origins/destinations is chosen from {25, 50, 75, 100} and

he number of indoors/outdoors is chosen from {10, 20, 30, 43}.

he first set of test problems is referred to as “SetA” and contains

0 instances, while the second (large-scale) set is denoted “SetB”

nd contains 49 instances. The name of each instance has the for-

at 00 × 00S00, where the first 00 refers to the number of ori-

ins/destinations, the second 00 after x refers to the number of

nbound/outbound doors and the last 00 after S is the slack. For

xample, the instance name 8 × 4S30 refers to an instance with

ight origins, eight destinations, four inbound doors, four outbound

oors and slack equal to 30%.

.1. Comparison of exhaustive and heuristic exploration of swap

eighborhood

In order to highlight the advantage of using our proposed

euristic exploration of the swap neighborhood presented in

lgorithm 2 , as contrasted to exhaustive exploration, we perform

he following test. On each test instance we generate an initial

easible solution using Algorithm 1 and perform heuristic and ex-

austive exploration of the swap neighborhood starting from this

olution. For comparison purposes we store the best solution value

ound, the CPU time consumed (in milliseconds) and the number

f solutions evaluated by both approaches. Table 1 presents the av-

rages of these values over the SetA and SetB instances (Columns

CPU’, ‘value’ and ‘#solutions’). In addition, we report the aver-

ge percentage deviations of solution values found by heuristic

xploration from those found by exhaustive exploration (Column

% dev.’), and the number of instances in each data sets where

euristic and exhaustive exploration reach the same value (Col-

mn ‘#same.’). The outcomes show that the heuristic exploration

s significantly faster than the exhaustive one as a result of evalu-

ting significantly fewer solutions (as expressed in the proposition

f Section 2.2.4). Despite evaluating fewer solutions, it is able to

nd solutions whose quality is only slightly worse than that ob-

ained by exhaustive exploration, as evidenced by the fact that the

verage percentage deviations are 0.02% and 0.008% on setA and

etB, respectively. In addition, it should be emphasized that on 71

ut of 99 instances these two approaches return the same solution

s final.

.2. Comparison with the methods from the literature

As a basis for comparison, we refer to the following four lead-

ng heuristics from the literature: two local search based heuristics,

amed LS1 and LS2, the Convex Hull Relaxation (CHR) heuristic

roposed in Guignard et al. (2012) and the Lagrangean relaxation

LR) heuristic proposed in Nassief et al. (2016) .

After some tuning, the parameters of our algorithms are set in

he following way. Both PTS1 and PTS2, use a stopping criterion

hat limits the number of iterations performed. For both methods,
he limiting number is set to 10 5 on SetA and to 2 × 10 5 on SetB.

he parameter b of the selection procedures is set to 3 and the

ize of the tabu list (TL) is set to (| M| + |N| + |I| + |J |)/16. For PTS1, the

ize μ of the neighborhood N (X, Y) is set to (| M | + | N |)/2. On each

nstance, our PTS heuristics are executed 10 times using different

andom seeds.

In Tables 2 and 3 , we compare the results of PTS1 and PTS2

n SetA with the best-known solution (BKS) values reported in

uignard et al. (2012) and Nassief et al. (2016) . The BKS values

n Table 2 are found by the L S1, L S2, CHR, CPLEX and LR heuris-

ics, while the BKS values in Table 3 are found by LS1 and LS2.

ables 2 and 3 provide summary results over test classes while

etailed results may be found in the Appendix. By convention,

he test class is formed by Instances with the same number of

rigins/destinations and inbound/outbound doors. Therefore, the

eadings of Tables 2 and 3 are defined as follows. The number of

rigins/destinations and inbound/outbound doors in each class is

iven in the first column in the form | N | × | I |. The second column is

edicated to BKS values. In columns two and three we present the

PU time needed for CPLEX to solve the recent best MIP formula-

ions for CDAP, where column two (Column ‘MIP1’) is taken from

assief et al. (2016) and column three (Column ‘MIP2’) is taken

rom Gelareh et al. (2018) . Remaining columns report the results

f our heuristics. On each instance our heuristics were executed 10

imes recording the best solution value and the average solution

alue found in 10 runs, and the average CPU time spent in solving

he instance. The averages of these values over the instances from

he same test class are reported in Columns ‘Best’, ‘Avg.’, and ‘CPU’,

espectively.

In Table 4 , we report the total number of instances, over each

ata set, where the first approach in the comparison provides bet-

er, equal or worse solutions than the second approach in the com-

arison. For example, under the header PTS1 vs BKS, we provide

he total numbers of instances where PTS1 offers better (Columns

Best’), equal (Columns ‘Equal’), and worse (Columns ‘Worse’) solu-

ion than BKS.

From the results presented for SetA, we see that both algo-

ithms, PTS1 and PTS2, only fail to reach the best-known solution

alue previously reported in the literature on a single instance

i.e., 20 × 10S15), while they both establish new best-known

olution values for four instances. Regarding CPU-time, we ob-

erve that PTS2 is more than 2 times faster on average than

TS1. However, the average solution values found by PTS1 are

n general better than those of PTS2 and sometimes better than

he previously found best-known solution values (see Table 5 in

he Appendix, for the instances 20 × 10S5, 20 × 10S10, 20 × 10S20,

0 × 10S30). Furthermore, the results reported in Gelareh et al.

2018) and Nassief et al. (2016) show that instances with up to 15

rigins/destinations and 7 indoors/outdoors are optimally solved

y the CPLEX MIP solver within the maximum of 492 seconds. On

hese instances, the PTS algorithms were able to reach all optimal

olutions in less than 8 seconds. Moreover, for instances with 20

rigins/destinations and 10 indoors/outdoors, CPLEX did not reach

ptimal solutions in two hours while the PTS algorithms provide

etter results in less than 10 seconds. This comparison with CPLEX

esults indicates the merit of using Probabilistic Tabu Search for

olving hard optimization problem such as CDAP.

882 O. Guemri, P. Nduwayo and R. Todosijevi ́c et al. / European Journal of Operational Research 277 (2019) 875–885

Table 2

Summary results on “SetA” instances.

| N |x| I | BKS MIP1 MIP2 PTS1 PTS2

CPU(s) CPU(s) Best Avg. CPU(s) Best Avg. CPU(s)

8 × 4 5120.8 0.35 0.15 5120.8 5120.8 3.50 5120.8 5120.8 1.10

9 × 4 5978.2 0.54 0.21 5978.2 5978.2 4.04 5978.2 5978.2 1.03

10 × 4 6319.8 0.93 0.38 6319.8 6319.8 4.61 6319.8 6319.8 1.10

10 × 5 6427.8 3.17 1.00 6427.8 6427.8 4.20 6427.8 6427.8 1.46

11 × 5 7555.6 4.24 1.64 7555.6 7555.6 4.73 7555.6 7555.9 1.55

12 × 5 7970.2 14.32 3.67 7970.2 7970.2 5.29 7970.2 7970.2 1.53

12 × 6 10,449.8 80.48 26.09 10,449.8 10,449.8 4.84 10,449.8 10,453.1 2.06

15 × 6 13,756.4 622.78 132.93 13,756.4 13,756.4 6.55 13,756.4 13,773.0 2.29

15 × 7 14,688.8 3843.62 1044.73 14,688.8 14,688.8 6.13 14,688.8 14,703.0 2.81

20 × 10 29,171.4 720 0.0 0 720 0.0 0 29,151.2 29,157.8 7.89 29,151.2 29,342.0 5.17

Average 10,743.88 76 8.4 8 745.35 10,741.86 10,742.53 5.18 10,741.86 10,764.39 2.01

Table 3

Summary results on “SetB” instances.

| N |x| I | BKS PTS1 PTS2

Best Avg. CPU(s) Best Avg. CPU(s)

25 × 10 48,446.0 4 8,26 8.0 48,287.1 21.68 48,280.0 48,341.0 12.58

25 × 20 51,741.0 51,533.0 51,618.4 19.81 51,562.0 52,334.2 28.51

50 × 10 187,945.4 187,395.0 187,551.5 72.99 187,469.0 188,446.8 26.26

50 × 20 230,622.2 229,566.2 230,233.4 48.71 231,038.0 233,009.4 49.41

50 × 30 264,322.3 262,510.0 263,745.3 46.43 265,606.0 268,292.8 84.85

50 × 43 330,661.0 330,285.0 332,378.3 47.46 335,036.0 341,233.4 121.07

75 × 10 431,150.2 429,874.2 430,538.9 172.98 430,845.2 432,162.1 44.84

75 × 20 513,604.6 511,545.2 512,406.4 89.49 514,356.6 518,236.2 73.03

75 × 30 608,476.0 605,108.0 606,868.6 83.37 611,928.0 616,832.8 111.24

100 × 10 756,508.0 754,670.6 755,528.7 352.63 755,725.0 757,630.9 68.74

100 × 20 933,612.6 929,704.0 931,873.7 153.61 934,695.4 939,120.4 103.30

100 × 30 1,113,857.0 1,102,169.2 1,105,648.0 130.49 1,114,188.4 1,122,055.4 143.05

Average 504,253.51 501,137.59 502,307.05 117.41 504,369.71 507,363.03 70.51

Table 4

Comparison of methods in terms of solution quality.

Data Set PTS1 vs BKS PTS2 vs BKS PTS1 vs PTS2

Better Equal Worse Better Equal Worse Better Equal Worse

SetA 4 45 1 4 45 1 0 50 0

SetB 49 0 0 27 0 22 43 3 3

All 53 45 1 31 45 23 43 53 3

r

i

P

o

e

t

r

a

s

p

l

s

t

w

5

p

w

T

w

e

u
On the other hand, on SetB, PTS1 outperforms the state-of-

the-art methods, LS1 and LS2, in finding the best-found solution.

On several instances even the average solution values reported by

PTS1 are better than the best solution values found by LS1 and

LS2 (see Table 6 in the Appendix). Comparing the best solutions

found by PTS1 and PTS2, we see that PTS2 is better than PTS1 on

3 instances, ties with PTS1 on 3 instances, while on the remain-

ing 43 instances PTS1 is better than PTS2. Comparing the average

solution values of PTS1 and PTS2, we see that PTS1 outperforms

PTS2 on 48 out of 49 instances (see Table 6 in the Appendix). We

also see that PTS2 performs very well on instances with 10 in-

doors/outdoors where it obtains results very close to those of PTS1,

while consuming very little CPU time compared to PTS1. In addi-

tion, compared to the BKS method, PTS2 provides better solutions

on 27 instances out of 49 instances.

Previous findings indicate that PTS1 outperforms the other

approaches in terms of solution quality. In order to check if

this superior performance is significant or not, we perform the

Wilcoxon signed rank test (Wilcoxon, 1945). The resulting p -values

of 1.1101 × 10 −9 , 1.1101 × 10 −7, and 6.7951 × 10-9 when comparing

PTS1 vs LS1, PTS1 vs LS2, and PTS1 vs PTS2, respectively, reveal

the significance of the differences that establish the superiority of

PTS1.

Comparing the running times of PTS1 and PTS2, we see

that: PTS2 is better on instances with 10 doors (instances with
educed neighborhood structure); the methods are very similar on

nstances with 20 doors (where sometimes PTS1 is better than

TS2); PTS1 in general outperforms PTS2 in terms of running time

n instances with 30 doors and on one instance with 43 doors,

ven though the neighborhood considered in PTS1 is much larger

han the neighborhood considered in PTS2. On the other hand, the

unning times of our methods are much better than those of LS1

nd LS2 (see Table 6 in the Appendix).

In the light of these results, we conclude that PTS2 is more

uitable for small problems, while PTS1 is more suitable for large

roblems. We conjecture that the good performance of PTS1 on

arge instances may be explained by the fact that it explores a

maller neighborhood than PTS2, which enables it to achieve a bet-

er tradeoff between intensification and diversification than PTS2

ithin the same amount of time.

. Conclusion

In this study, two Probabilistic Tabu Search heuristics have been

resented to tackle the Cross-Docking Assignment Problem (CDAP)

hich has important applications in supply chain management.

he main differences between these methods are embodied in the

ays they generate candidate lists and accept solutions in each it-

ration. Our methods are implemented in an innovative manner

sing a new large swap neighborhood structure that is useful for

O. Guemri, P. Nduwayo and R. Todosijevi ́c et al. / European Journal of Operational Research 277 (2019) 875–885 883

s

p

h

b

e

t

v

l

s

p

o

o

w

p

a

s

t

h

v

A

o

T

u

s

A

w

a

t

t

t

n

C

(

e

t

s

4

a

w

n

r

p

b

C

L

o

a

n

c

a

n

D

c

(

c

P

A

s

8

t

v

u

i

T

D

olving either the CDAP or similar problems. In addition, a sup-

orting heuristic is proposed to explore the large swap neighbor-

ood efficiently. The merit of our proposed algorithms is assessed

y comparing them with the most effective methods from the lit-

rature on two established benchmark data sets. Computational

ests disclose that our approaches significantly outperform the pre-

iously proposed methods by reaching 45 previous best-known so-

utions and establishing 53 new best-known solutions over the full

et of 99 instances. In addition, the CPU time consumed by our ap-

roaches is substantially less than consumed by the previous state-

f-the art methods.

Future work will examine ways to exploit advantages of each

f the proposed PTS heuristics by combining their best features

ithin one schema to yield other variants for solving CDAP. We

lan to deal with extended versions of CDAP by considering the

rrival and departure times of trucks within the context of truck

cheduling. Finally, we envision that benefits will accrue from fu-

ure work that studies the impact of cross-docking facilities on ve-

icle scheduling in a supply chain by combining CDAP with the

ehicle routing problem.

cknowledgments

This research has been supported in part by the Key Laboratory

f International Education Cooperation of Guangdong University of

echnology. We are indebted to Monique Guignard for providing

s with benchmark instances as well as with results of two local

earch heuristics on SetB instances.

ppendix

In Tables 5 and 6 , we compare results found by our approaches

ith those reported in the literature by other methods. For PTS1

nd PTS2 we report the best solution value (Column ‘Best’) and

he average solution value found in 10 runs (Column ‘Avg.’) as well
able 5

etailed results on “SetA” instances.

Instance BKS MIP1 MIP2 PTS1

CUP(s) CPU(s) Best A

8 × 4S5 5174 0.25 0.28 5174 5

8 × 4S10 5169 0.25 0.22 5169 5

8 × 4S15 5112 0.22 0.23 5112 5

8 × 4S20 5086 0.1 0.16 5086 5

8 × 4S30 5063 0.25 0.19 5063 5

9 × 4S5 6047 0.42 0.23 6047 6

9 × 4S10 6027 0.39 0.3 6027 6

9 × 4S15 5976 0.28 0.14 5976 5

9 × 4S20 5937 0.37 0.12 5937 5

9 × 4S30 5904 0.42 0.23 5904 5

10 × 4S5 6518 0.78 0.53 6518 6

10 × 4S10 6325 0.45 0.33 6325 6

10 × 4S15 6296 0.42 0.25 6296 6

10 × 4S20 6267 0.53 0.31 6267 6

10 × 4S30 6193 0.47 0.3 6193 6

10 × 5S5 6616 1.62 0.84 6616 6

10 × 5S10 6476 1.41 0.78 6476 6

10 × 5S15 6397 1.09 0.78 6397 6

10 × 5S20 6342 0.94 0.94 6342 6

10 × 5S30 6308 0.84 0.5 6308 6

11 × 5S5 7812 3,00 1.88 7812 7

11 × 5S10 7572 1.92 1.66 7572 7

11 × 5S15 7535 2.03 1.64 7535 7

11 × 5S20 7439 1.34 0.86 7439 7

11 × 5S30 7420 1.42 0.97 7420 7
he average CPU time (Column ‘CPU’). In Table 5 , together with

he best known solutions (Column ‘BKS’), we report the CPU time

eeded for CPLEX to solve the recent best MIP formulations for

DAP. The first one (Column ‘MIP1’) is taken from Nassief et al.

2016) and the second one (Column ‘MIP2’) is taken from Gelareh

t al. (2018) . The results reported show that instances with up

o 15 origins/destinations and 7 indoors/outdoors are optimally

olved by CPLEX MIP solver within the maximum time limit of

92 seconds. On these instances, PTS algorithms were able to reach

ll optimal solutions in less than 8 seconds. Moreover, for instances

ith 20 origins/destinations and 10 indoors/outdoors, CPLEX did

ot reach optimal solutions in two hours while the PTS algo-

ithms provide better results in less than 10 seconds. This com-

arison with CPLEX results, underscores the value of using Proba-

ilistic Tabu Search for solving hard optimization problem such as

DAP.

In Table 6 , The results are compared with those of the LS1 and

S2 heuristics proposed by Guignard et al. (2012) , which are the

nly two methods executed on the SetB instances so far. For LS1

nd LS2 we report the best solution value (Column ‘Cost’) and the

ormalized CPU time. Since LS1 and LS2 were executed on a ma-

hine with an AMD Phenom 9600 processor with 2.31 gigahertz,

 machine with different characteristics than our machine, we

ormalize their running times using the approach described in

ongarra (2014) and data from http://www.cpubenchmark.net/ . All

omparisons were made according to the Passmark CPU Score

PCPUS). The running times were normalized by using our ma-

hine as the reference point, i.e., Norm.Time(Algo) = PCPUS (AMD

henom 9600) × Time(Algo) /PCPUS(Intel Xeon E3-1505 M), where

lgo refers to LS1 & LS2. The Passmark CPU Scores of the proces-

ors AMD Phenom 9600 and Intel Xeon E3-1505 M are 2303 and

978, respectively.

In each table, the boldfaced values correspond to the values

hat are equal or better than current BKS values, while underlined

alues denote the new BKS values established by our PTS. The val-

es in italics correspond to the optimal solution values as reported

n Gelareh et al. (2018) .
PTS2

vg CPU (s) Best Avg CPU (s)

174.0 3.87 5174 5174.0 1.69

169.0 3.68 5169 5169.0 1.12

112.0 3.46 5112 5112.0 0.98

086.0 3.29 5086 5086.0 0.87

063.0 3.20 5063 5063.0 0.83

047.0 4.50 6047 6047.0 1.25

027.0 4.11 6027 6027.0 1.09

976.0 3.93 5976 5976.0 0.92

937.0 3.90 5937 5937.0 0.97

904.0 3.74 5904 5904.0 0.90

518.0 5.10 6518 6518.0 1.38

325.0 4.87 6325 6325.0 1.09

296.0 4.55 6296 6296.0 0.98

267.0 4.40 6267 6267.0 0.97

193.0 4.13 6193 6193.0 1.07

616.0 4.54 6616 6616.0 1.80

476.0 4.45 6476 6476.0 1.51

397.0 4.14 6397 6397.0 1.37

342.0 4.02 6342 6342.0 1.32

308.0 3.86 6308 6308.0 1.31

812.0 5.23 7812 7812.0 2.12

572.0 4.95 7572 7572.0 1.61

535.0 4.76 7535 7535.0 1.36

439.0 4.47 7439 7439.0 1.29

420.0 4.23 7420 7421.6 1.36

(continued on next page)

http://www.cpubenchmark.net/

884 O. Guemri, P. Nduwayo and R. Todosijevi ́c et al. / European Journal of Operational Research 277 (2019) 875–885

Table 5 (continued)

Instance BKS MIP1 MIP2 PTS1 PTS2

CUP(s) CPU(s) Best Avg CPU (s) Best Avg CPU (s)

12 × 5S5 8072 3.27 3.3 8072 8072.0 5.81 8072 8072.0 1.76

12 × 5S10 7978 2.98 2.73 7978 7978.0 5.53 7978 7978.0 1.58

12 × 5S15 7939 2.55 2.28 7939 7939.0 5.36 7939 7939.0 1.48

12 × 5S20 7939 3.09 2.24 7939 7939.0 5.06 7939 7939.0 1.43

12 × 5S30 7923 5.98 3.22 7923 7923.0 4.68 7923 7923.0 1.40

12 × 6S5 10,891 35.92 4.98 10,891 10,891.0 5.36 10,891 10,891.0 2.72

12 × 6S10 10,456 8.87 12.05 10,456 10,456.0 5.13 10,456 10,456.0 1.98

12 × 6S15 10,362 8.33 7.05 10,362 10,362.0 4.89 10,362 10,378.5 1.82

12 × 6S20 10,312 6.70 9.45 10,312 10,312.0 4.61 10,312 10,312.0 1.92

12 × 6S30 10,228 8.92 26.95 10,228 10,228.0 4.22 10,228 10,228.0 1.84

15 × 6S5 13,927 107.78 92.03 13,927 13,927.0 7.32 13,927 13,927.0 2.47

15 × 6S10 13,803 112.56 24.39 13,803 13,803.0 7.02 13,803 13,810.7 2.20

15 × 6S15 13,765 158.27 96.47 13,765 13,765.0 6.54 13,765 13,792.3 2.23

15 × 6S20 13,720 112.75 68.5 13,720 13,720.0 6.17 13,720 13,750.0 2.31

15 × 6S30 13,567 149.90 26.39 13,567 13,567.0 5.68 13,567 13,585.2 2.22

15 × 7S5 15,054 492,00 245.17 15,054 15,054.0 6.90 15,054 15,063.1 3.36

15 × 7S10 14,810 313.52 208.47 14,810 14,810.0 6.49 14,810 14,843.1 2.70

15 × 7S15 14,657 303.81 283.13 14,657 14,657.2 6.16 14,657 14,658.2 2.68

15 × 7S20 14,514 259.12 62.94 14,514 14,514.0 5.80 14,514 14,537.6 2.72

15 × 7S30 14,409 306.20 70.95 14,409 14,409.0 5.31 14,409 14,413.2 2.61

20 × 10S5 29,933 720 0.0 0 720 0.0 0 29,907 29,909.6 9.16 29,907 30,004.4 6.39

20 × 10S10 29,286 720 0.0 0 720 0.0 0 29,236 29,253.3 8.49 29,236 29,567.3 5.01

20 × 10S15 29,134 720 0.0 0 720 0.0 0 29,135 29,135.5 7.77 29,135 29,345.7 4.81

20 × 10S20 28,963 720 0.0 0 720 0.0 0 28,945 28,951.2 7.18 28,945 29,051.5 4.81

20 × 10S30 28,541 720 0.0 0 720 0.0 0 28,533 28,539.6 6.85 28,533 28,741.3 4.82

AVG 10,743.88 76 8.4 8 745.35 10,741.86 10,742.53 5.18 10,741.86 10,764.39 2.01

Table 6

Detailed results on “SetB” instances.

Instance LS1 LS2 PTS1 PTS2

Cost CPU(s) Cost CPU(s) Best AVG CPU(s) Best AVG CPU(s)

25 × 10S5 49,144 49.76 49,335 50.79 49,013 49,014.8 26.11 49,013 49,013.0 13.81

25 × 10S10 4 8,94 9 29.76 48,941 33.09 48,672 48,699.3 23.49 48,740 48,869.5 12.50

25 × 10S15 48,556 31.29 48,504 33.60 48,407 48,415.6 20.08 48,407 48,477.0 12.10

25 × 10S20 48,215 21.80 48,235 23.09 47,934 47,949.3 19.11 47,926 47,977.6 12.24

25 × 10S30 47,480 19.75 47,426 20.78 47,314 47,356.5 19.61 47,314 47,368.1 12.25

25 × 20S30 51,921 46.43 51,741 51.30 51,533 51,618.4 19.81 51,562 52,334.2 28.51

50 × 10S5 191,773 1036.07 191,788 1153.30 191,160 191,241.3 78.29 191,186 192,350.7 26.58

50 × 10S10 189,409 1371.08 189,833 1362.87 189,166 189,478.5 66.16 189,573 190,316.3 26.19

50 × 10S15 188,006 862.66 188,264 800.33 187,315 187,417.9 69.16 187,377 188,834.9 26.45

50 × 10S20 186,800 988.61 186,578 956.55 186,085 186,246.2 72.28 185,975 186,788.2 26.24

50 × 10S30 183,961 423.76 184,013 401.96 183,249 183,373.7 79.04 183,234 183,943.9 25.85

50 × 20S5 238,048 1814.59 239,673 1874.62 237,656 238,244.5 59.28 239,835 241,379.3 50.66

50 × 20S10 235,178 2020.58 234,807 1985.69 233,341 234,045.4 44.56 235,326 236,932.9 51.59

50 × 20S15 230,758 2004.67 230,666 1921.30 229,638 230,429.2 45.58 230,375 233,110.0 48.04

50 × 20S20 227,698 1836.91 227,883 1879.75 226,448 227,134.2 45.65 228,332 230,201.4 50.93

50 × 20S30 221,892 1831.01 222,060 1783.04 220,748 221,313.8 4 8.4 8 221,322 223,423.5 45.85

50 × 30S15 275,973 1532.68 275,121 1782.79 273,166 274,455.9 50.52 276,938 278,798.1 91.23

50 × 30S20 264,199 632.82 263,790 783.91 261,725 263,099.9 43.55 264,729 267,802.5 86.29

50 × 30S30 254,056 481.99 254,795 503.28 252,639 253,680.2 45.23 255,151 258,277.8 77.02

50 × 43S30 332,318 1789.71 330,661 1893.34 330,285 332,378.3 47.46 335,036 341,233.4 121.07

75 × 10S5 440,248 2337.89 440,420 2423.05 439,055 439,478.3 158.11 440,181 441,088.8 44.82

75 × 10S10 435,985 2268.11 435,970 2354.30 434,275 435,134.7 157.91 435,595 437,051.9 44.88

75 × 10S15 431,405 2162.17 431,686 2185.77 430,005 430,781.3 171.16 430,663 432,183.0 45.28

75 × 10S20 427,468 2250.16 427,522 2084.70 426,385 427,176.8 179.44 427,168 428,920.9 44.74

75 × 10S30 420,851 1732.51 420,660 1704.04 419,651 420,123.3 198.28 420,619 421,566.1 44.48

75 × 20S5 531,762 2096.76 532,873 2243.49 529,131 529,964.2 86.09 532,968 535,724.6 72.92

75 × 20S10 523,447 2377.65 521,970 2479.23 520,127 521,708.1 86.09 524,001 526,829.3 72.91

75 × 20S15 514,760 2508.21 514,981 2466.14 512,170 512,788.7 87.11 515,098 519,040.7 73.93

75 × 20S20 506,346 2210.40 506,114 2512.06 504,502 505,141.8 90.33 506,313 511,407.4 72.29

75 × 20S30 493,417 2449.47 493,977 2527.96 491,796 492,429.4 97.83 493,403 498,179.1 73.09

75 × 30S10 636,697 1769.45 634,304 1792.02 630,259 631,982.2 78.17 637,957 644,569.3 113.86

75 × 30S15 620,356 1919.00 618,688 1921.56 613,001 614,840.5 81.81 621,149 626,365.0 112.66

75 × 30S20 600,422 2230.92 601,199 2151.91 599,329 601,011.5 84.85 605,055 610,181.4 114.44

75 × 30S30 580,490 2369.18 582,766 2349.43 577,843 579,640.3 88.66 583,551 586,215.3 103.99

100 × 10S5 773,971 1429.05 773,498 1369.54 771,172 771,976.4 319.05 771,368 774,128.9 68.89

100 × 10S10 764,866 1288.74 763,908 1384.93 762,282 763,320.3 311.69 763,469 765,036.1 69.55

100 × 10S15 757,159 1496.00 757,046 1368.00 755,040 755,955.7 348.72 756,236 758,154.4 68.04

100 × 10S20 750,658 1321.06 750,394 1323.62 748,611 749,327.1 367.73 750,047 751,747.3 68.52

100 × 10S30 738,033 1122.26 737,694 1253.34 736,248 737,063.8 415.95 737,505 739,087.7 68.69

(continued on next page)

O. Guemri, P. Nduwayo and R. Todosijevi ́c et al. / European Journal of Operational Research 277 (2019) 875–885 885

Table 6 (continued)

Instance LS1 LS2 PTS1 PTS2

Cost CPU(s) Cost CPU(s) Best AVG CPU(s) Best AVG CPU(s)

100 × 20S5 966,474 1262.06 970,189 1154.32 961,900 964,422.8 142.32 968,861 973,939.2 104.34

100 × 20S10 951,882 1147.65 949,715 1267.19 945,835 948,003.6 145.08 952,317 958,369.8 102.84

100 × 20S15 935,443 1294.64 936,227 1284.38 931,525 933,518.5 151.57 935,246 940,053.2 102.65

100 × 20S20 921,746 1266.68 922,768 1334.65 916,505 918,597.7 157.15 920,851 923,581.8 102.52

100 × 20S30 894,685 1424.95 896,656 1367.74 892,755 894,825.9 171.95 896,202 899,657.8 104.15

100 × 30S5 1,170,457 722.86 1,167,044 700.03 1,154,077 1,159,790.8 121.82 1,164,617 1,174,570.3 141.40

100 × 30S10 1,145,700 1065.31 1,142,881 1104.81 1,127,161 1,130,487.3 126.65 1,140,965 1,149,830.1 145.87

100 × 30S15 1,113,552 1149.70 1,119,040 1184.08 1,103,176 1,105,138.4 130.40 1,116,441 1,123,978.2 146.01

100 × 30S20 1,093,126 1264.11 1,096,146 1232.82 1,081,933 1,086,086.7 133.10 1,093,174 1,100,436.0 143.75

100 × 30S30 1,052,682 1292.33 1,057,544 1271.81 1,044,499 1,046,736.6 140.48 1,055,745 1,061,462.5 138.23

AVG 504,253.51 1388.88 504,448.86 1410.05 501,137.59 502,307.05 117.41 504,369.71 507,363.03 70.51

R

B

B

B

D

G

G

G

H

L

N

N

P

P

T

T

T

V

W

Y

Z

eferences

ellanger, A. , Hanafi, S. , & Wilbaut, C. (2013). Three-stage hybrid-flowshop model
for cross-docking. Computers & Operations Research, 40 (4), 1109–1121 .

oysen, N. , & Fliedner, M. (2010). Cross dock scheduling: Classification, literature

review and research agenda. Omega, 38 (6), 413–422 .
uijs, P. , Vis, I. F. , & Carlo, H. J. (2014). Synchronization in cross-docking networks: A

research classification and framework. European Journal of Operational Research,
239 (3), 593–608 .

ongarra, J. J. (2014). Performance of various computers using standard linear equa-
tions software. CS - 89 - 85 . University of Manchester .

elareh, S., Glover, F., Guemri, O., Hanafi, S., Nduwayo, P., & Todosijevic, R. (2018).

A comparative study of formulations for the Cross-dock Door Assignment Prob-
lem. Omega (Accepted December 6th). doi: 10.1016/j.omega.2018.12.004 .

lover, F. (1986). Future paths for integer programming and links to artificial intel-
ligence. Computers & Operations Research, 13 (5), 533–549 .

uignard, M. , Hahn, P. M. , Pessoa, A. A. , & da Silva, D. C. (2012). Algorithms for the
cross-dock door assignment problem. In Proceedings of the fourth international

workshop on model-based metaheuristics .

ahn, P. M. , Kim, B. J. , Stuetzle, T. , Kanthak, S. , Hightower, W. L. , Samra, H. , Ding, Z. ,
& Guignard, M. (2008). The quadratic three-dimensional assignment problem:

Exact and approximate solution methods. European Journal of Operational Re-
search, 184 (2), 416–428 .

adier, A.-L. , & Alpan, G. (2016). Cross-docking operations: Current research versus
industry practice. Omega, 62 , 145–162 .

assief, W. , Contreras, I. , & As’ad, R. (2016). A mixed-integer programming formu-

lation and Lagrangean relaxation for the cross-dock door assignment problem.
International Journal of Production Research, 54 (2), 494–508 .
assief, W. , Contreras, I. , & Jaumard, B. (2018). A comparison of formulations and

relaxations for cross-dock door assignment problems. Computers & Operations
Research, 94 , 76–88 .

entico, D. W. (2007). Assignment problems: A golden anniversary survey. European
Journal of Operational Research, 176 (2), 774–793 .

essoa, A . A . , Hahn, P. M. , Guignard, M. , & Zhu, Y. R. (2010). Algorithms for the
generalized quadratic assignment problem combining Lagrangean decomposi-

tion and the Reformulation-Linearization Technique. European Journal of Opera-

tional Research, 206 (1), 54–63 .
arhini, A . A . , Yunis, M. M. , & Chamseddine, M. (2016). Natural Optimization Algo-

rithms for the Cross-Dock Door Assignment Problem. IEEE Transactions on Intel-
ligent Transportation Systems, 17 (8), 2324–2333 .

sui, L. Y. , & Chang, C. H. (1990). A microcomputer based decision support tool
for assigning dock doors in freight yards. Computers & Industrial Engineering,

19 (1–4), 309–312 .

sui, L. Y. , & Chang, C. H. (1992). An optimal solution to a dock door assignment
problem. Computers & Industrial Engineering, 23 (1–4), 283–286 .

an Belle, J. , Valckenaers, P. , & Cattrysse, D. (2012). Cross-docking: State of the art.
Omega, 40 (6), 827–846 .

ilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin,
1 (6), 80–83 .

agiura, M. , Ibaraki, T. , & Glover, F. (2006). A path relinking approach with ejection

chains for the generalized assignment problem. European Journal of Operational
Research, 169 (2), 548–569 .

hu, Y.-R. , Hahn, P. M. , Liu, Y. , & Guignard, M. (2009). New approach for the cross–
dock door assignment problem. In Proceedings of the XLI Brazilian symposium on

operations research .

http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0004
https://doi.org/10.1016/j.omega.2018.12.004
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30269-3/sbref0022

	Probabilistic Tabu Search for the Cross-Docking Assignment Problem
	1 Introduction
	2 Main ingredients of the Probabilistic Tabu Search approaches
	2.1 Constructive heuristic to generate the initial solution
	2.2 Neighborhood structures and move evaluation
	2.2.1 Shift moves
	2.2.2 Swap moves
	2.2.3 Data structures for evaluation of moves and their updates
	2.2.4 Efficient exploration of the swap neighborhood

	3 Probabilistic Tabu Search
	3.1 Probabilistic Tabu Search: Variant 1
	3.2 Probabilistic Tabu Search: Variant 2

	4 Computational Results
	4.1 Comparison of exhaustive and heuristic exploration of swap neighborhood
	4.2 Comparison with the methods from the literature

	5 Conclusion
	Acknowledgments
	Appendix
	References

