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ABSTRACT

This paper pregents extensive computational experience with
a special purpose primal simplex algorithm. The performance is
compared to that of several "state of the art" out-of-kilter
computer codeg. The computational characteristics of several
different primal feasible start procedures and pivot selection
8trategies are also examined.

The study discloses the advantages, in both computation
time and memory requirements, of the primal approach over the
out-of-kilter method. The test environment has the following
distinguishing properties: (1) all of the codes are teated on
the same machine and the same problems, (2) the test get in-
cludes capacitated and uncapacitated transhipment networks,
transportation problems, and aseignment problems, and (3) prob-

lem sizes ranging from 200 to 8,000 nodes with up to 35,000 arcs
are examined.

1.0 INTRODUCTION

1.1 Scope of the Computational Analysis

Over the years a great deal of code development and compu-~
tational testing [1,2,4,5,7,9,12,13,17,19,20,21,22,23,25,27,28]
has been performed on transportation and minimum cost flow net-
work problems. Primarily this development and testing has been
confined to transportation codes, and most of the more recently
developed codes (since 1960) are based on pPrimal-dual algorithms
of the out-of-kilter genre [1,2,4,7,9,17,23,25,28]. Surprisingly,
the literature does not Seem to report any code development or
computational testing of a simplex based minimum cost flow net-
work code. No doubt, this is due in part to the conclusion of
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192 GLOVER, KARNEY AND KLINGMAN

Dantzig [5] and Ford and Fulkerson [8] that for hand calcula-
tions, the out-of-kilter method is better than the MODI, or
Row=Column Sum Method [3,5] for transportation problems. Also
the finding of [7] that a primal-dual {"non-simplex") code was
superior to MODI codes, helped to shift code development away
from specializations of the simplex algorithm.

The recent challenge to the supposed superiority of such
primal-dual approaches in the favorable computational comparison
of the primal simplex based transportation code [12]) against the
out-of-kilter codes of SHARE, Boeing, and the Texas Water Devel-
opment Board on transportation problems (for which the primal
transportation code proved to be faster by a factor of approxi-
mately 10), has led us to develop additional, more general,
network codes in order to obtain more adeguate comparisons of
simplex and non-simplex procedures on problems other than trans-
portation problems. The first step in this direction was the
development of a new version of the out~of-kilter code, called
SUPERK, reported in [1]. The second step, which constitutes our
current focus, has been the development of both primal and dual
simplex-based codes for general network flow problems, and the
testing of these codes against the out-of-kilter methods pre-
viously developed.

The main purposes of this paper are to report this develop-
ment and to discuss the computation comparison of these codes
against the codes of Bennington [2], Boeing, General Motors,
SHARE ([4,25], SUPERK [1l]1, Texas Water Development Board, and
TRANS [12). The test environment has the following distinguish-
ing properties:

1. BAll of the codes are tested on the same machine (CDC
6600) , the same problems, and computer jobs were executed during
periods when the machine load was approximately the same.

2. The test set includes capacitated and uncapacitated
minimum cost flow networks, transportation problems, and assign-—
ment problems.

3. Problem sizes ranging from 200 to 8,000 nodes with up
to 35,000 arcs are examined.

4. Any researcher wishing to test his codes on the same
problems may easily do so by simply obtaining a copy of the
machine independent network generator [20] used to create the
problems.

In addition to the computational comparison using the CDC
6600 we solved a subset of the test problems using the primal
network codes on an IBM 360/65, a UNIVAC 1108, a CDC 6400, a
CDC 3100, and a BURROUGHS 4704 in order to gain some insight on
how such a code would perform on different machines.
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1.2 Major Highlights of the Computational Analysis

The special purpose primal simplex network codes using
streamlined procedures for updating the basis tree {11,16] turn
out to be substantially superior to the dual simplex code and
the non-simplex codes tested both in computational times and
memory requirements. To illustrate, the primal network codes
require only 1/3 to 2/3 the memory space for data of the non-
simplex codes, enabling it to solve much larger problems. Fur-

- ther, the primal network codes were never equalled in computa-

tional efficiency by any of the other codes on the broad range
of minimum cost flow network, transportation, and assignment
problems tested. For example, the primal network codes were at
least four times faster than the SHARE, Texas Water Development
Board, General Motors, Boeing, and Bennington codes. The primal
codes were also found to be at least 100 times faster than the
state of the art large scale L.P. code, OPHELIE/LP. The primal
method's median solution time on 1,500 node networks with 4,342
to 5,730 number of arcs is 17 seconds on a CDC 6600 computer
using the RUN compiler (which is classed as 3 to 15 times slower
than the FIN compiler). The largest problems solved were a
5,000 node, 35,000 arc problem and an 8,000 node, 15,000 arc
problem with solution times of 384 seconds and 245 seconds, re-
spectively, on the CDC 6600.

Another finding, which seems unusual in view of the marked
superiority of primal simplex codes, (but which accords with
the studies of [12,13] on transportation problems) is that the
non~simplex network codes are superior to the dual simplex net-
work code.

The study shows in addition that the selution times of the
primal network code do not fluctuate on different computers in
accordance with commonly believed variations in machine capabil-
ities. For instance, the code runs only 10% slower on a UNIVAC
1108, only 12% slower on an IBM 360/65, only 20 times slower on
a BURROUGHS 4704, and only 10 times slower on a CDC 3100. These
results are presumed chiefly to be due to differences in the
FORTRAN compilers available on the machines. However, they
serve to reinforce the finding of [12} that any conclusion about
the relative efficiencies of different codes based on running
times involving different computers, compilers, or pProblems, must
be more speculative than substantive.

The study also reveals that the pPrimal network codes only
run 10% slower on transportation problems than the primal trans-
portation code [12] which is the fastest known transportation
code. We have also conversely applied the primal transportation
code [12] to network problems by first transforming these prob-
lems into equivalent transportation form using the methods of
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[24,29]. By means of this device, the primal transportation

code runs 25%-35% slower on network problems than the primal calle
network code. Since the transformation of a network problem
into a transportation problem greatly emlarges the problem equal
{and since the network codes store only one more node-length SUP?E
array than the transportation code) we conclude that the best pros:
single code to have available is a primal network code. This
In subsedquent sections we expand upon these computational senti
findings and also report the effect on solution times of vary- T
ing problem structure (e.g., capacitation, the number of nodes,
and the number of arcs). of th
point
2.0 PROBLEM STATEMENT AND TERMINOLOGY e
for =
A capacitated minimum cost flow network problem (tranship- [3,5
ment problem) can be stated as follows: B _’
pagio
Problem 1: caller
Minimize: C; 4%y (1) ‘
(i'j)EA xij i
. nonba:
Subject to: > X 2 xg=a ieN (2
{i,j)eA J (j.i)ear the w;
satis:
<x,. <U._., (i,3 3 Feasi:
Lij e __Ulj. (i,3) e A (3) :
where N denotes the set of nodes, A denotes the set of arcs, a, tials’
denotes the supply or demand at node i (with a nonzero supply Tij' i
being denoted by a negative a_), z a, = 0, c,. is the cost of zero {
i . i ij =
1eN if in
shipping one unit of flow across the arc from node i to node j, L. . ar
and L.. and U.. are the lower and upper bounds on arc (i,]). ij
+3 +J Using
Some of the common terminology associated with transhipment it isg
problems is: once t
. . to dex:
1. A source node is a node that only has arcs leading out The de
of it. In addition, a source node usually has a nonzero supply our c:
associated with it. T
2. A gink node is a node that only has arcs leading into
it. A sink node usually has a nonzero demand associated with it. sent v
3. A transhipment node is a node with arcs leading inzo It dual o
and leading out of it. If a transhipment node has a supply (det pricir.
mand) associated with it, it is called a irmEnizTswc FI02F 7ode a basi
(transhipment sink node). Otherwise, it is czallisl =z Tnome TP0- for th

shipment node.
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4. A transhipment problem with no transhipment nodes is
called a tranasportation problem.

5. A transhipment problem with no transhipment nodes, an
equal number of source nodes and sink nodes, and in which the

supply (demand} of each node is -1 {l), is called an asaignment
problem.

This terminology will be used in subsequent sections when pre-
senting computational results. Note that none of the defini-
tions requires the existence of eve possible arc.

A set of [N| - 1 arcs (where [N] denotes the cardinality
of the set N) is a basie if each node of the network is an end-
point of at least one of these arcs and if no subset of these
arcs constitutes a closed loop. This structure of the basis
for Problem 1 is commonly known as the spanning tree structure
[3,5,29]. An arc (and its associated variable xij) is called

basie if it is contained among those arcs in the basis and is
called nonbasic otherwise.

A basic solution is the unique assignment of values to the
xij variables satisfying Equation (2) that results once each

nonbasic xij has been set equal to I.ij or equal to Uij {provided

the value of the relevant bound is finite). If such a solution
satisfies (3) for all of the variables, then it is called primal
feasible.

Corresponding to a particular basis is a set of "node poten-
tials" w, (not unique) such that the "updated cost coefficients"
“ij' defined by “ij =-w 4 wj - cij for each arc (i,j) ¢ A, is
zero for all basic variables; a basic solution is dual feasible
if in addition wij < 0 for all nonbasic variables set equal to

L.. and 7.. > 0 for all nonbasic variables x,. set equal to U, ..
ij ij = ij ij

Using the triangularity (spanning tree) property of the basis,
it is quite simple to determine the value of the basic variables
once the value of the nonbasic variables are set and similarly
to determine the node potentials and updated costs [11,16,3,5].
The details of such determinations are, however, unimportant to
our present concern.

Since the node potentials on which the “ij are based repre-

sent values assigned to the variables of the linear programming
dual of the transhipment problem, their determination is called
pricing-out the basis. By fundamental linear programming theory,
a basic solution that is both primal and dual feasible is optimal
for the transhipment problem.



196 GLOVER, KARNEY AND KLINGMAN

The standard primal simplex approach to solving a tranship-
ment problem is to obtain a primal basic "feasible" solution.
{Such starting solutions normally involve artificial arcs since,
in general, a one-pass procedure for obtaining a primal basic
feasible solution to a transhipment problem has not been devised.)
Once a starting basis has been obtained, the basis is priced-out
and the updated costs are successively computed and scanned until
a dual infeasiblity is found or optimality is determined. Once
a dual infeasiblity is found, a pivot is made which brings some
dual infeasible arc into the basis. This change of basis modi-
fies the flow on the arcs in the loop formed in the old basis
graph when the entering nonbasic arc is added to it. The basis
arcs in this loop are normally referred as the basies equivalent
path of the entering arc. The change of basis also modifies
the node potentials in one of the subtrees created when the arc
leaving the basis is deleted from the old basis graph.

The standard dual simplex approach [14] for solving a tran-
shipment problem begins by obtaining a dual feasible solution.
(In contradistinction to the primal approach, this can easily
be done using the procedure of [15].) Once a starting basis has
been obtained, the flow on each nonbasic arc is set equal to its
lower bound and the flows on the basic arcs are determined using
the triangularity property of the basis. These flows are then
successively scanned until a primal infeasiblity is found or
optimality is determined. Once a primal infeasiblity is deter-
mined, a pivot is made which brings into the basis, a particular
nonbasic arc which has a nonzero coefficient in the unique up-
dated linear equation which expresses this basic variable as a
linear combination of the current nonbasic variables (for a
complete description see [14]). The important aspect is that
the coefficients of this linear equation must be calculated and
further that these coefficients can be calculated by re-pricing-
out the basis with pseudo-costs of zero on all basic arcs except
for the basic arc leaving the basis. Its pseudo-cost is set
equal to one. Using the new pseudo-node potentials, the coeffi-
cients of the linear eguation for each nonbasic arc (i,j) is
equal to - wi + wj {again for a more complete description of

this procedure, see [14]). The determination of the pseudo—-node
potentials and coefficients of the linear equation is called
double pricing. Having determined the come-in arc, the pivot is
executed by finding the basis equivalent path of the come-in arc
and modifying the flows of the basic arcs appropriately.
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3.0 DEVELOPMENT OF THE SPECIAL, PURPOSE PRIMAL SIMPLEX CODE
BY SUBROUTINE

3.1 Overview

The computer code was written in FORTRAN IV, is an in-core
code, and was initially tested using the run compiler on a CDC
6600 with a maximum memory of 130,000 words. In this code, a
transhipment problem with N nodes and A arcs (without exploit-
ing the word size of the machine) requires 6N + 2A + 10,000
words for uncapacitated problems and 6N + 3A + 10,000 words for
capacitated problems. It would be possible by expleoiting the
fact that the costs, flows, node numbers and node potentials
are integer-valued, to store moxe than one per word and in this
manner reduce these storage requirements. However, our purpose
was to develop a code whose capabilities did not depend on the
unique characteristics of a particular computer (e.g., word size,
etc.). The obvious advantage of this approach is the ease with
which it enables the code to be tested on different machines.
Further, we used a "manilla" FORTRAN IV so that recoding to fit
differing machine conventions would be minimized.

Within these constraints, we tried to minimize our storage
requirements, at the same time making sure the code could solve
the "thoroughly general” transhipment problem. For example, we
designed the code to allow multiple arcs between the same nodes
and to handle arbitrarily capacitated problems. (Thus, for ex-
ample, the code will accommodate a piecewise linear convex cost
minimization.) Since any lower and upper capacitated tranship-
ment problem can be transformed into an equivalent transhipment
problem with lower capacitates of zero, we rerform this transla-
tion of variables upon inputing the problem in order to elimi-
nate an arc length array of data.

The program consists of a main Program and ten subroutines,
and may be conceptually depicted as in boxes 1-4 in Figure 1.
Subdividing the program into many different subroutines made it
possible to test numerous variations without extensive recoding.
However, this subdivision inevitably slowed the code somewhat
by requiring the computer to process subroutine calls and returns
rather than jump instructions.

The total time spent in each subroutine was recorded by
calling a Real Time Clock (accurate to a millisecond) upon enter-
ing and leaving that subroutine. A count was also made of the
total numbexr of pivots performed. 1In Table I, we report median
values (with five problems per group) for the total solution time
(exclusive of input and output), the start time (time spent in
box 1}, the number of pivots, the total pivot time (total time
spent in boxes 2, 3, and 4), and the average pivot time (total
pivot time divided by the number of pivots).
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"feasible" starting solutions, we undertook to modify this
starting procedure to handle transhipment problems. This modi-
fication was accomplished in the following manner.

The Modified Row Minimum Rule for transportation problems
Scans each row of the transportation fableau sequentially. Each
time a row is scanned, the current minimum cost cell is selected
{every cell is assumed to exist; thus inadmissible cells have a
large cost) and a flow equal to the minimum of the current sup-
ply, demand, and upper bound associated with thig cell is as-
signed to its variable. If the supply or demand associated with
the cell is exhausted by the assignment then the cell is entered
into the basis and the cells of the row or column (but not both)
associated with the exhausted supply or demand are deleted from
consideration. Then a new row is scanned. If the supply or
demand is not exhausted, then the row is re-scanned to select a
new cell for the basis. This rule differs from the Row Minimum
Rule [12] in that it selects only one basic cell each time the
row is examined, whereas the Row Minimum Rule continues to select
row cells (on a single pass) until the total supply of the row
has been exhausted.

One may easily verify that if a transhipment problem is
written as a transportation problem using Orden's transformation
procedure [24] (splitting each node into an origin node and a
destination node, adding large "buffer" supplies and demands to
the new nodes, and inserting a zero-cost arc from the "origin
half" to the "destination half" of each split node), that the
Modified Row Minimum Rule yields a starting basis for both the
equivalent transportation problem and the transhipment problem
if the costs are positive. While this result is not presented
anywhere in the literature, it follows quite simply from the
fact that the Modified Row Minimum Rule will first select as
basic arcs the INI "inserted" arcs with zero cost since each
such arc is uncapacitated, is the minimum cost arc in its row,
and lie in different rows and columns.

For the above reasons, the first starting criterion that
we coded implieitly transformed each transhipment problem into
a transportation problem and applied the Modified Row Minimum
Rule. Since this start yields a basis for both the transporta-
tion problem and the transhipment problem, we solved some tran-
shipment problems twice, once using the transhipment code devel-
oped in this paper and once using the transportation code of
[12] (applied to the problem after transforming it to the trans-
portation structure). For both codes we used the Modified Row
Minimum Rule and the same pivot criterion. To our surprise, the
codes made exactly the same pivots. The transportation code
required about 30% longer to solve these problems than the tran-
shipment code. We examined other transportation start criteria
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to see if they would also "naturally” yield a basis for tran-
shipment problems in the manner provided by the Modified Row
Minimum Rule. Unfortunately none of the standardly purposed
procedures succeeds in giving such a start. Consequently, since
no primal start procedures have been proposed in the literature
the only other start procedures we tested were variations of the
Modified Row Minimum Rule. None of the minor alternates that we
rested reduced our total solution time. Consequently, to save
space their description and solution times are not presented.

3.3 Pivot Criteria

An important factor influencing computational efficiency
is the basis change criterion. The relevant tradeoffs for the
basis change criterion involve time consumed in searching for
a new arc to enter the basis and the number of pivots required
to find an optimal solution (time per pivot versus total number
of pivots).

Three different criteria for determining the variable to
enter the basis were examined (box 2 of Figure 1) to ascertain

their effect upon the total solution time.
The first criterion tested was the "Most Negative Evaluator

Rule." This rule examines each arc and picks that arc to enter

the basis whose dual constraint is violated by the largest amount.
The "Outward-Node First Negative Evaluator" was tested next.

This method scans the arcs leading out of the nodes until it en—
counters the first arc whose updated cost signals that this arc
is dual infeasible.

The last pivot procedure tested was the "Outward-Node Most
Negative Evaluator." This criterion gscans the arcs leading out
of the nodes until it encounters the first node containing a
dual infeasible arc, and then selects the outward arc of this
node which violates dual feasibility by the largest amount to
enter the basis.

The "Outward-Node Most Negative Evaluator" was found to be
best from the standpoint of total solution time. (We have not

itemized individual computation times in order to conserve space.)
This result agrees with the findings of [6,12,27] on transporta-

tion problems. The rule is the one we initially conijectured
would be best for transhipment problems since it was best on
non-dense transportation problems i2j.

In brief, the study discloses that the most efficient primal

network code arises by coupling the primal algorithm with the
Modified Row Minimum Rule and the Outward-Node Most Negative
Evaluator. In subsequent sections, this code is referred to as

PNET.
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3.4 BAlternative List Structures

The code used in the above computational testing employs
the augmented predecessor index (API} method [1l1] for storing
and updating a spanning tree. This structure was used because
extensive testing {[27] showed that the APT method {11] is at
least twice as fast as any previous purposed list structures
for transportation problems. Subsequent to the above code
development and computation testing, we developed a new list
structure (for storing and updating the spanning tree informa-
tion needed for executing pivots in a simplex algorithm) dubbed
the augmented threaded index (ATI) method [16], which we felt
would be more efficient than the APT method [11]. Consequently,
we modified subroutines 1, 3, and 4 of PNET in order to test
the ATI method [16]. This code is called PNET-I. Computaticnal
results indicate that PNET-I is about 10% faster than PNET.

This comparison is discussed in detail in Section 5.0. (Note
that we simply used the conclusions on the best start and pivot
procedures based on using the API method to develop PNET-I.)

4.0 DEVELOPMENT OF THE SPECIAL PURPOSE DUAL SIMPLEX CODE
BY SUBROUTINE

4.1 Overview

A computer code embodying the ideas of the Section 2.0 and
[14] was written in FORTRAN IV and tested on a CbC 6600 using
the RUN compiler with a maximum memory of 130,000 words. To
solve a capacitated transhipment problem with N nodes and A arcs
(without exploiting the word size of the machine) this in~core
code requires 3A + 9N + 11,000 words. For uncapacitated prob-
lems, it requires one less arc~length array. The code uses the
augmented predecessor index method [14] to store and update the
spanning tree.

The program consists of a main Program and fifteen sub-
routines, and may be conceptually depicted as in boxes 1-5 in
Figure 2. Subdividing the brogram into many different sub-
routines made it possible to test numerous variations without
extensive recoding. However, this subdivision ineviatably
slowed the code somewhat.

The total time spent in each of the boxes 1-5 was recorded
by calling a Real Time Clock upon entering and leaving each of
these functions. A count was also made of the total number of
pivots performed. In Table I we report median values for the
total solution time, the start time {time spent in box 1), the
number of pivots, the total pivot time {total time spent in
boxes 2-5), and the average pivot time (total pivot time divided
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by the number of pivots) for the dual code and PNET. In addi-~
tion, Table I contains the total time spent finding the non-
basic arc to enter the basis (total time spent in box 3) in the

dual code. il e
1. START & =
Find a basic dual feasible solution S =
to the problem, the node potential = =
values, and the flow values. Deter- & e
mine the augmented predecessor lists ' = e
for the starting basis
5 pL
l e P
5 o=
2. OPTIMALITY 0 ft=3
Check for an arc that violates one 52 s
of its bounds. If none exists,
stop. Otherwise, pick a basic arc - i
to leave the basis. = =
l 15 L
3. NEWARC
Apply the double pricing procedure “oaver f b
and simultaneously calculate the i
needed LI values. Determine the e =
incoming nonbasic variable. i :
Pivot l . I
Process
LY s
4. LOOP s e
Find the basis equivalent path as-
sociated with the incoming nonbasic = =
arc and alter the flow values along oo
this loop. = -
L nx
| = s
5. UPDATE = =
Update the augmented predecessor =2 Lo
lists and the node potential values S o
for the new basis.

Fig. 2 TFlow Diagram for the Dual Network Code.
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50 500 .507 187 L340 1 266 .009
So0 1500 23,671 4428 19,246 595 12,338 .032
500 30 25.889  3.843 27,046 852 15.473 .02
»00 2130 I 0885 29.486 1008 2.145 .029
| S 2300 40.269 4296 158073 1one 26,924 o
300 4230 38.872 4675 34,197 sqr 26,775 .03
1000 2500 117.599  12.944 104.635 2283 71.477 046
1000 300 121,905 13,927 107.978 21188 17,287 049
1500 4500 5,95 20.3%6 217.360 3330 167.262 063
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TABLE I
COMPUTATIONAL RESULTS ON DUAL PIVOT CRITEMA AdD PNET SOLUTION TIMES

* Time to find the nev atc entering the basls.
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MODIFIED FIRST WECATIVE CRITERIOH

Pivote

Tine Tias NEWANC*  Piva
.a77 .033 ? 000 008
.70 .158 29 048 005
007 W72 29 013 006
097 413 [N 179 008
127 L5335 L] 249 ]
W62 1412 40 .232 010
4421 16.8%4 461 8,743 031
2.812  36.637 861 20.787 LO43
3.841  18.849  BS4 23,460 J0AS
4,629 41,735 818 26,852 081
4.719 38,166 1033 40,163 088
12,916 139,372 2126 78,500 066
13.860 151.847 2147 83,030 on
28,777 340.671 3603 193,655 093

PHET

Solution Stare Plver No. of Tiag/
Tine Tine Tima rivote Fivor
098 032 076 46 002
.078 .02% Nt a7 .001
132 040 092 ” .001
.182 D4y A3 121 001
220 048 JA72 101 .002
294 058 .136 110 .002
3.892 3 3,288 594 006
2,998 W29 2,626 910 .003
4,489 408 4,001 1246 003
3,450 421 5,029 1779 003
5.549 446 510 1663 . 003
9.961 L6268 9.340 758 004
11,266 672 10,594 1387 003
21,342 J383 20,959 5051 004
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4.2 start and Pivot Criteria

In developing the dual code only the dual start procedure
developed in [15] was tested.

Three different pivot criteria were tested for picking the
variable to leave the basis. These criteria were the first
negative criterion, modified first negative criterion, and most
negative criterion. The relevant tradeoffs for the basis change
criteria involve the time consumed in searching for the variables
to enter and leave the basis versus the number of pivots required
to obtain an optimal solution (time per pivot versus total number
of pivots)

The most negative criterion examines each basic variable
and picks that variable to leave the basis which violates its
(upper or lower) bound by the largest amount.

The modified most negative criterion scans the basic arcs
out of a node until it encounters the first node containing a
basic variable which violates a bound, and then selects the arc
out of this node with the greatest violation. The search is
then resumed on the next pivot with the node following the node
of the last pivot.

Over 100 problems were studied using these criteria. Table
I contains the typical results of testing these c¢riteria on 50,
500, 1,000, and 1,500 node uncapacitated networks. (Cost ranges
on these problems are 1-100 and the total supply is egual to
1,000 times the number of nodes.) Our results strongly indicated
that the first negative criterion was best for most problem sizes.
This was quite surprising since similar tests for the primal net-
work code showed the modified first negative criterion to be pre-
ferred.

Table T shows that more pivots are required on the 1,000
node problems as the simplicity of the criterion increases. This
is not always the case. For example, on the 500 node, 2,250 arc
problem, the number of pivots is larger for the most negative and
modified first negative criteria than for the first negative
criterion. In general, the superiority of the first negative
criterion strictly improves as the number of arcs increase. This
seems somewhat peculiar since a change in the number of arcs does
not affect the number of basic variables. A partial explanation
of this result is provided by studying the "NEWARC" column. More
precisely, observe that the "NEWARC" times are much larger for
the most negative and modified first negative criteria than for
the first negative criterion. This indicates that the basic
variable picked by the formex criteria have significantly more
negative coefficient values in the equation of nonbasic variables
associated with it than does the basic variable picked by the

-
e i

21,
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latter criterion. fThis conclusion is occasioned by the fact
that the updated costs associated with non-negative coefficient
values do not have to be calculated. (Recall thesge Problems
are uncapacitated.) '

Table I indicates that the most negative and modified first
negative criteria have little to offer by comparison with the
first negative criterion since they require more search time to
find the basic variable to leave the basis and more computation
to determine the nonbasic variable to enter the basis. More~
over, they do not substantially reduce the number of pivots.

The version of the dual code using the first negative criterion
will be called DNET.

4.3 Other Conclusions

It is interesting to compare the data in Table I for DNET
and PNET. This comparison indicates that PNET consistently re-
quires approximately twice as many pivots as DNET. However,
PNET is consistently 6-12 times faster. The basis of the infe-
riority of DNET (and the dual method) to PNET is seen when the
time per pivot of the two codes is compared. Table I indicates
that as problem size and/or number of arcs increase the time per
pivot in DNET grows disproportionately large. For instance, the
median time/pivot for DNET on the 500 node networks is .045 com~
pared to .003 for PNET. The primary cause is the large amount
of time required to find the variable to enter the basis. Since
the modifications of the dual algorithm in [14] were designed to
minimize thege calculations, we conclude that the dual method is
not a competitive "dead start® brocedure for solving large prob-
lems--i.e., its potential value for large Problems lies in those
situations in which an extremely good dual starting solution is
available. It should be noted, however, that if the code were
changed to use the augmented threaded index method {16] the dual
times would be improved by a greater factor than its use in the
primal code. We did not test this because the ATI method [16]
was developed subsequent to our original testing; however, we
strongly feel that its use would not change our conclusions.

5.0 COMPUTATIONAL COMPARTSON AND CODE REQUIREMENTS

5.1 Computational Comparison of Several Codes

Once the best versions of the primal and dual codes had
been ascertained, we sought to compare their computational ef-
ficiency to other codes.

The codes which we obtained for comparison include Bennington
[2], Boeing, General Motors, SHARE [4,25], SUPERK [1}, and the
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Texas Water Development Board. B2ll of these codes are variants
of the out-of-kilter method [10] except for Bennington [2]. To
our knowledge there are no primal codes in existence except for
PNET and PNET-I. Thus none were available for testing. How-
ever, a primal code is currently being developed by Graves and
McBride at UCILA.

The Boeing code was developed at Boeing, Inc., and the Gen-
eral Motors (GM) code at General Motors, Inc. The Texas Water
Development Board (TWB) code was developed by Paul Jensen at the
University of Texas. This code was later modified by the Texas
Water Development Board to enhance its computational efficiency
on small problems.

All of these codes are in-core codes; i.e., the rrogram and
all of the problem data simultaneously reside in fast-access
memory. They are all coded in FORTRAN and none of them (includ-
ing the primal and dual codes) have been tuned (optimized) for
a particular compiler. All of the problems were solved on the
CDC 6600 at the University of Texas Computation Center using the
RUN compiler. The computer jobs were executed during periods
when the machine load was approximately the same, and all solu-
tion times are exclusive of input and output; i.e., the total
time spent solving the problem was recorded by calling a Real
Time Clock upon starting to solve the problem and again when the
solution was obtained.

To compare the codes fairly we sought a set of problems
which would include different types of problems (e.g., assign-
ment, transportation, and minimum cost flow network problems),
both capacitated and uncapacitated, and with varying node and
arc requirements. BAlso we desired the problems to be generally
available to other researchers and the problem set to be reason-
ably small. The 40 benchmarked problems in [20] suited these
requirements perfectly. The problem specifications of these 40
problems as required on the input cards to the network generator

in [20]) are given in Table II. Problems 1-5 are 100 X 100 trans-
portation problems; problems 6-10 are 150 x 150 transportation
problems. Problems 11-15 are 200 x 200 assignment problems.
Problems 16-27 are 400 node capacitated transhipment problems;
problems 28-35 are uncapacitated 1,000 and 1,500 node tranship~
ment problems. Problems 36-40 are very large transhipment prob-
lems varying from 3,000 nodes and 35,000 arcs to 8,000 nodes and
15,000 arcs. Tahle III contains the solution times for each of
these problems for each of the codes.

A noteworthy feature of the computational results is that
PNET, PNET-I, and SUPERK are decidedly superior to the other
codes. Roughly, PNET, PNET-I, and SUPERK are at least 4 times
and in many cases B-10 times faster than the other codes. Fur-
thermore, PNET-I strictly dominates PNET and SUPERK. PNET-I is
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approximately 10% faster than PNET, thus the ATI method [16]
appears to be superior to the aPT method [11]. Additionally,
PNET-I is roughly twice as fast as SUPERK which is the fastest
known out-of-kilter code. This result is extremely important
since it completely contradicts the folklore that the out-of-
kilter method is the fastest (in terms of total solution time)
means for solving transhipment problems. aAnother important
result which can be gleaned from Table IIY is that the dual
method is not competitive with either the primal codes or the
out-of-kilter codes.

Table IT
PROBLEM SPECIFICATICHS*
Humbey Mumber ‘umber thmbar Parcent Parcant

of of of of Total Jranshippants of of Upper Bound Rangs  Random
Kodes  Sources Sinks Arcs Supply Sources Sinks High Cost Capacitatsd Hin Max NHo. Eeed
1. 200 to0 100 * 1300 100,000 1] [+] Q [+] 0 -] 13302460
200 100 100 1500 100,000 o 0 o o o o 13502480
3, 200 100 100 3000 100, 000 [} [} 0 0 a o 13502450
4. 200 100 100 200 100,000 o o ] 1] ] 0 13502460
200 100 oo 2900 100,000 -] 0 '] 0 /] 0 11502460
. 00 150 150 3t 130,000 Q o 4] Q -] 4] 13502460
7. 300 150 150 4500 150,000 1] ] o o [} o 13802460
a. 300 150 150 5155 150,000 -] -] 0 1] 4] o 11502460
9. ] 150 150 6075 150,000 ] o 4] ] -] 1] 13502460
10, Joo 130 150 6300 150,000 1] 0 [} Qo [+] 0 13502460
11. 400 200 200 1500 200 ] o 0 Q @ o 13502460
12. 400 00 no 2250 200 o o 1] ] 0 ] 13502460
13, 400 200 200 3000 200 1] Q [1] o 1] 0 135024860
14. 400 200 200 Irso 200 [} 0 0 L1} o [} 13502460
15. 400 200 00 4300 200 o [} 0 -] 0 [} 13502460
16, 400 ] 60 1306 400, 000 -] 0 Jo. 20. 16,000 30,000 13502460
17. 400 a 60 24402 400,000 o ] 30 20 15,000 30,000 13503460
18, 400 a (] 1306 400,000 0 o 30 20, 20,000 120,000 13802460
19. 400 a8 (2] 2443 400, 000 Q 1] » 0. 20,000 120,000 13503460
20. 400 B8 &0 1416 400,000 5 50 I} 40, 16,000 30,000 13302460
. £00 g &0 2836 400,000 5 S0 30. 40 16,000 10,000 13502460
22. 400 a &0 1416 400,000 5 50 30. 40. 20,000 120,000 13307460
23, 400 a 60 2836 400,000 5 50 0. 40 20,000 120,000 13502460
24, 400 4 12 1382 400,000 0 [} 0 [1+] 16,000 30,000 13502460
a3, 400 L] 12 1676 400,000 [+] -] 0. 80, 16,000 30,000 13502460
6. 400 4 12 1302 400, 000 o ] 30. ao. 20,000 130,000 13502460
7. 400 4 12 2676 400,000 4] 0 30. ao. 20,000 130,000 13502460
h. 1000 50 50 2900 1,000,000 ] -] a /] o 4] 13502450
29. 1000 50 50 3400 1,000,000 0 ] 1] 1] [1] ] 13302460
30. 1000 1] 50 4400 1,000,000 Q 0 ] ] ] 4] 13502460
3. 1000 50 50 4800 1,000,000 o -] ] -] o 1] 13502460
32.  1%00 75 s 4342 1,500,000 0 o 0 [} 0 [} 13502460
3. 1500 %5 % 4385 1,500,000 Q 0 [} ] -] 0 13502480
34, 1500 5 75 $107 1,500,000 o o 0 -] o ] 13302460
35. 1500 15 % 5730 1,500,000 -] 0 -} [1] [} a 13502460
3. 800D 200 1000 15000 4,000,000 100 300 [} 0 Jo o 13502460
J7. sooo 150 800 3000 4,000,000 50 100 o 1] 0 -3 13502460
as. o000 125 500 35000 2,000,000 25 %0 L] a 0 13502460
39.  S0o0 180 700 15000 4,000,000 100 3o 1 .7 3000 $o000 13502460
40. goo 100 00 13000 2,000,000 50 100 .1 .7 2000 4000 LasoMe0

‘Cost Pange: Min = 1, Max, = 100
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9.59
15.70
20.20
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384.08
245,40
140.98
193.42
105.09

TABLE II1

Solution Times (in seconds)

PNET-L
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DNET

12.85
13.56
21.44
17.96
23.34
46.10
74.88
97.92
101.65
95.96
19.87
26.58
27.98
30.15
31.57
14.77
DHR
DNR
DNR
DRR
DNR
DNR
DNR
DNR

BENN

20.25
24.36
34.56
31.45
52.10
61.00
DNR
DNR
DNR
DNR
17.44
20.31
24.92
27.40
DNR
11.77
20.10
1.1
20.62
10.38
20.35
9.97
19.81
11.71
18.27
11.38
16.37
DNR
DRR
INR
NR
DHR
DNR
DNR
DNR
NA
NA
NA
RA
HA

SUPERK oM
5.68 46.25
6.47 63.30
6.87 105.72
6.57 70.74
6.77 90.10

11.05 92.32

12.86 157.31

13.69 160.71

13.40 158.01

14,13 197.82
6.44  35.67
6.47 28.43
7.25 31.39
6.95 18.62
7.56 23.48
5.27 60.27
8.36 96.66
5.13 61.54
8.49 DNR
4.69 DNR
7.96 DNR
4.60 DNR
7.9 DNR
5.59 DNR
8.37 DNR
5.51 DNR
7.50 DNR

13.91 DNR

14.51 DNR

16.00 DNR

17.05 INR

22,98 DNR

25.89 DER

25.42 DNR

29.96 DNR
HA HA
RA NA
NA NA
RA NA
HA KA

SHARE

17.76
21.34
26.16
25.13
30.97
46.40
65.92
81.00
81.21
84.24
19.93
21.17
25.81
24.95
27.05
21.51
32.40
20.06
31.75
1.1
32.60
17.91
32.66
25.27
33.19
25.05
30.45
53.87
52.53
61.33
61.33
78.63
101.92
92.25
DNR

EEEEE

NHA - Code and data would not fit in 104,000 words of memory.

DNR- Did not run.

Looking at the out-of-kilter and dual codes solution times,
it is interesting to note that these solution times are much more
dependent on the number of arcs (holding all other parameters of
the problem constant) than the primal codes.

5.2 Memory Requirements of the Codes

Table IV indicates the number of node and arc length arrays
required in each of the codes tested for solving capacitated”
It should be noted that memory requirements of all of

problems.

Boeing

30.25
21.59
31.47
36.47
47.73
46.64
113.12
175.10
186.99
184.75
30.39
22.08
20.02
23.11
21.08
15.05
64 .64
18.31
61.07
25.72
61.39
24.84
67.96
21.57
48.40
19.34
41.98
83.98
117.83
152.21
135.73
553.93
210.14
248.16
DNR
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the codes tested were quite close (within 1,000

words) excluding
the array requirements. Thus the important fac

tor in comparing
arrays. Also,

less arc length array if the problem is uncapac
all of the problems solved by an out-of-
tated due to the ecirculation arcs.

itated, whereas,
kilter code are capaci-

TABLE IV

CODE SPECIFICATIONS

Developer Name Type Number of Arrays
1. Barr, Glover, SUPERK Out-of-kilter 4N + 94
Klingman
2. DBennington BENN Non-simplex 6N + 114
3. Boeing Boeing Out-of-kilter 6N + BA
4. Clasen SHARE OQut-of-kilter 68 + 7A
5. Glover, Karney PNET Primal network 68 + 3a
Klingman
6. Glover, Karney DNET Dual network 9N + 37
Klingman
7. Glover, Karney, PNET-1 Primal network SN+ 3
Klingman, Stutz
8. CGeneral Hotors GM Out-of-kilter 3N + 6A
9. Texas Water De- VB Out-of-kilter 4N +0%7A

velopment Board

R - Node Length

A~ Arc Length

Looking at Table IV and keeping in mind that any
ful network problem has to have more arcs than nodes, it is
Clear that the primal andg dual codes have a distinct advantage
(in terms of memory requirements) over all of the other codes.
Further, this advantage greatly increases as the number of ares
increase and if the pProblem is uncapacitated. For example, con-
sider a problem which has 10 times as many arcs as nodes.

meaning-
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PNET, PNET-I, or DNET require only about one-half the
memory that the best (in terms of memory requirements) of the
other codes require, enabling simplex based codes to solve
much larger problems than other codes.
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