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a b s t r a c t 

This paper addresses a network design and traffic grooming problem arising in optical telecommunica- 

tion networks that are based on wavelength division multiplexing. Given a set of nodes and a set of 

traffic demands between these nodes, the network design and traffic grooming problem (NDGP) consists 

of installing a minimum number of lightpaths between the nodes and of routing the demand on the 

lightpaths while respecting capacity constraints. We introduce a new mathematical formulation of the 

NDGP as well as a hybrid algorithm capable of finding high quality solutions in short computing times. 

The proposed algorithm uses linear and mixed integer programming as slave methods and embeds them 

within a tabu search procedure. Computational results and comparisons with an existing method from 

the literature show the effectiveness of the proposed algorithm. Further analyses also show the efficiency 

of the neighborhood structure and of its evaluation technique. 

© 2018 Published by Elsevier Ltd. 
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. Introduction 

The network design and traffic grooming problem (NDGP) arises

n the design of optical telecommunication networks. One of the

ain costs in a wavelength division multiplexing (WDM) network

s that of the transceivers installed, which provide optical connec-

ions (edges) between pairs of nodes in the network [21] . The op-

ical connections in the network are called lightpaths and they are

esponsible for transferring traffic demands. In practice, the capac-

ty of lightpaths is usually much larger than the bandwidth of one

raffic demand. Assigning an exclusive lightpath to each demand

s thus costly and unjustified. Since one lightpath can usually be

hared by several demands, effective optimization algorithms can

e developed to reduce the cost of the required transceivers. 

In the optical network design field, there exist two main

hases: one is the planning phase, which focuses on constructing

he lightpath network with the minimum cost; the other is the op-

rating phase, which considers how to use the existing lightpath

etwork most efficiently. In the operating phase, traffic grooming,

outing, and wavelength assignment problems are usually consid-

red in an independent or integrated manner based on a prede-

ned lightpath network, while in the planning phase similar prob-
� This manuscript was processed by Associate Editor Sterna. 
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ems (i.e., traffic grooming and routing) are studied too, but the

ain concern is to design the lightpath network with the mini-

um cost. In the literature, most existing papers study the oper-

ting phase problems instead of the planning phase ones, which

otivates us to study the planning phase problem in this paper.

he importance of the planning phase was also raised by our in-

ustrial partner, and hence we do not focus attention on the wave-

ength assignment problem, as is usually done, since the latter is

estricted to operating phases. The effect known as attenuation

s another important concern which should be considered in the

lanning phase of optical network design. A lightpath is an unsub-

tantial connection between two sites, which may traverse several

ites and fibers before reaching its destination. The lightpath may

ot be possible to create if the route is too long. To make the prob-

em more general, we do not consider the attenuation issue in this

tudy. However, the proposed algorithm can be adapted to consider

his issue naturally as described in Section 3.2.2 . 

The NDGP tackled in this paper was recently introduced by Wu

t al. [32] and can be stated as follows. Given a set of nodes and a

et of traffic demands, the objective is to design an optical network

ith the smallest number of lightpaths to satisfy all the traffic de-

ands. Wu et al. proposed a two-level iterated local search (TL-

LS) algorithm, which consists of two local search procedures in a

ested structure. The main local search handles the transformation

f the topology (to decrease the number of lightpaths) while the

nner search validates the feasibility of the current solution (i.e. the

rooming subproblem). The inner algorithm, which is implemented
c for a telecommunication network design problem with traffic 
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through a tree-search based neighborhood, is the most important

part of the TL-ILS. This algorithm uses a breadth-first search strat-

egy and a cutoff mechanism when there is no hope to find a bet-

ter route. These components reduce redundant calculations when

the candidate routes for a given traffic demand share common sub-

paths. 

In this paper, we propose a matheuristic, i.e., an algorithm

that combines local search with mathematical programming tech-

niques, for the NDGP. The proposed algorithm implements tabu

search as the master algorithm and embeds two slave algorithms,

which are linear programming and mixed integer programming.

This new algorithm has found improved solutions to 21 of 22 in-

stances in a benchmark set. 

During the last decades, optimization problems arising in WDM

networks have received extensive attention due to their economic

significance. One of these problems is the traffic grooming prob-

lem which consists of routing each traffic demand in the network

while respecting the capacity of the lightpaths. This problem was

proven to be NP-complete by Wang and Gu [29] . Chen et al. pro-

posed an effective and efficient hierarchical traffic grooming frame-

work for WDM networks [8] , while Saleh and Kamal addressed

the problem of designing and provisioning WDM networks to sup-

port many-to-many traffic grooming in order to minimize the over-

all network cost [26] . They also introduced two novel approxima-

tion algorithms for the many-to-many traffic grooming problem

[27] . A mathematical formulation of the traffic grooming problem

in WDM mesh networks was presented by Zhu and Mukherjee

[40] . Zhang et al. [38] proposed a multi-layer auxiliary graph to

jointly solve the electrical-layer routing and optical-layer routing

and spectrum assignment problems. This work was then improved

by Zhang et al. [37] , who added a “sub-transponder layer” in the

auxiliary graph and proposed two spectrum reservation schemes

for multi-flow transponders to improve the transponder’s utiliza-

tion. 

Liu et al. [19] investigated the survivable traffic grooming prob-

lem for elastic optical networks with flexible spectrum grid em-

ploying new transmission technologies. Rubio et al. [25] pro-

posed two evolutionary algorithms, which are multiobjective vari-

ants of the standard differential evolution and variable neigh-

borhood search, for solving the traffic grooming problem. Wu

et al. [34] studied a very similar problem as this paper but with

an additional simple physical path constraint for each traffic de-

mand. Dutta et al. [10] articulated how the traditional optical net-

working research area of traffic grooming may be combined with

recent advances in Internet architecture, specifically the proposed

ChoiceNet Future Internet architecture, to create an agile system

capable of reflecting both provider and customer interests on an

ongoing basis as network conditions change. Yazar et al. [36] in-

vestigated the green field design and the copper field re-design

problems originating from one of the largest Turkish Internet ser-

vice providers. Their computational results show the efficacy of the

proposed models for moderate dimension scenarios. 

The traffic grooming problem is often combined with the rout-

ing and wavelength assignment problem, which is denoted as the

traffic grooming routing and wavelength assignment (GRWA) prob-

lem [4,7,16,18,39] . Vignac et al. [28] proposed a mathematical for-

mulation and an exact method for solving the GRWA problem.

Their approach is highly effective for realistic instances. Rubio-

Largo et al. [3] presented a tri-objective optimization algorithm for

solving the traffic grooming and wavelength assignment problem

with objectives of very different scales. They applied their pro-

posed algorithm to a real-world telecommunication problem and

obtained very promising results. The routing and wavelength as-

signment problem is itself an important problem aimed at reduc-

ing the usage of wavelengths (see, e.g., [6,22,24,33] ). 
s  
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The NDGP is also related to the classical multi-commodity ca-

acitated network design problem (MCND) [9,11] . However, as has

een noted in [32] , the NDGP is different from the MCND and its

ariants [1,2,5,15] , not only because it requires the flow variables

o be integer, but also because the network to be designed can be

 multi-graph in the case of the NDGP. These features make the

DGP particularly challenging to solve. There are several similar

roblems (especially the non-bifurcated network design problem

NBNDP) [5] ) studied in the literature but most consider a given set

f edges that should either be open or closed. This contrasts with

he NDGP in which only a set of nodes is given and the network,

hich may form a multi-graph, has to be designed from scratch. 

The remainder of the paper is organized as follows. A new

athematical formulation of the problem is presented in Section 2 .

he framework of the proposed matheuristic is then presented in

ection 3 , while the formulation used in the slave algorithms is in-

roduced in Section 3.1 . The neighborhood structure of the master

roblem is described in Section 3.2 , and the proposed algorithm is

etailed in Section 3.3 . Experimental results and the analysis are

escribed in Section 4 , before concluding the paper in Section 5 . 

. Problem definition and mathematical formulation 

.1. Problem description 

The network design and traffic grooming problem is defined as

ollows. We are given a node set V = { 1 , . . . , n } and a set of m traf-

c demands �. The elements of � are tuples ( s t , d t , b t ) represent-

ng the source and sink nodes as well as the bandwidth of each

raffic demand t . The objective is to design an optical network, de-

oted as a multi-graph G = (V, L ) , and groom all the demands in

et � with the minimum number of lightpaths. Here, L represents

he set of lightpaths used in the network. Note that set L is not de-

ned a priori but is actually the output of the optimization model.

The traffic demands and the lightpaths are undirected. The net-

ork to be designed is a multi-graph, i.e., there may be several

ightpaths in the graph with the same source and sink nodes. What

akes the problem difficult is that the traffic demands are unsplit-

able in the sense that every traffic demand has to be assigned to

 unique sequence of lightpaths forming a path from the origin to

he destination of the demand. Thus, we cannot consider the light-

ath capacity to be additive on each edge. 

Fig. 1 depicts an example: We are given a node set V with

 nodes and a traffic set T with 6 traffic demands of bandwidth

rom 1 to 2, assuming that the capacity of each lightpath is 3. The

traightforward solution to this problem is to construct a network

ith 6 lightpaths, each carrying one traffic demand, as shown in

ig. 1 (a). The lightpaths are represented by the gray bold lines

hile the traffic demands are represented by the colored lines. As

n alternative, we can groom traffic (A, C, 1) to one of the light-

aths AB and lightpath BC, and groom traffic demand (D, A, 1) to

nother of the lightpaths AB, lightpath BC and CD, as shown in

ig. 1 (b). Thus, only 4 lightpaths are needed to satisfy all the 6

raffic demands, saving 2 lightpaths compared to the previous so-

ution. The network with 4 lightpaths is the optimal solution for

his example. However, if only one lightpath is permitted between

ach pair of nodes, the optimal solution would be 5 lightpaths, as

hown in Fig. 1 (c). 

The model introduced in [32] assumes that when several light-

aths are installed between a pair of nodes, their capacity can be

hared, which may lead to infeasible solutions. Suppose there are

hree traffic demands with bandwidth of 2 and the capacity of a

ightpath is 3. If these demands all travel through the same two

odes, there should be at least three lightpaths between the pair

f nodes to carry them all. However, according to the model de-

cribed in [32] two lightpaths are enough, which does not reflect
c for a telecommunication network design problem with traffic 
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Fig. 1. An example for the NDG. 
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eality. The reason lies in the fact that each traffic should be as-

igned to a specific lightpath when there are multiple traffic de-

ands between a pair of nodes. By respecting this constraint, the

inear programming model is insufficient to describe the problem

xactly. 

In the following section, we introduce a new mathematical for-

ulation that properly models the case where traffic demands are

nsplittable. 

.2. Problem formulation 

Let C denote the capacity of each lightpath. We define T t 
i 

to

qual 1 if traffic t originates from i , −1 if traffic t is destined to i ,

nd 0 otherwise. K represents the maximum number of lightpaths

hat can be installed in the network. Since in the worst case each

raffic demand will be assigned to a different lightpath, the num-

er of lightpaths will not exceed the number of traffic demands.

hus, an upper bound on the number of lightpaths is m (number

f traffic demands). To make the model feasible, we can set K = m

r another value less than m if a better upper bound is already

nown. For each potential lightpath l (with 1 ≤ l ≤ m ), we also de-

ne the following binary decision variables: 

x l equals 1 if lightpath l is in use, and 0 otherwise; 

s l 
i 

equals 1 if the origin of lightpath l is node i , and 0 otherwise;

d l 
i 

equals 1 if the destination of lightpath l is node i , and 0 oth-

erwise; 

v t 
l 

equals 1 if demand t uses l in the forward direction, and 0

otherwise; 

w 

t 
l 

equals 1 if demand t uses l in the reverse direction, and 0

otherwise. 

Although the graph G = (V, L ) to be designed is undirected, we

reat l ∈ L as a pair of two directed arcs (denoted as v t 
l 

and w 

t 
l 
) to

ake the formulation clear. 

Given this notation, we can formulate the NDGP as follows. 
Please cite this article as: X. Wu, Z. Lü and F. Glover, A matheuristi
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Minimize 

K 
 

l=1 

x l (1) 

ubject to: 

n 
 

i =1 

s l i = x l l = 1 , 2 , . . . , K (2)

n 
 

i =1 

d l i = x l l = 1 , 2 , . . . , K (3)

 l − v t l − w 

t 
l ≥ 0 t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K (4)

K 
 

l=1 

v t l 
(
s l i −d l i 

)
+ 

K ∑ 

l=1 

w 

t 
l 

(
d l i −s l i 

)
= T t i t = 1 , 2 , . . . , m i = 1 , 2 , . . . , n 

(5) 

m 

 

t=1 

b t (v t l +w 

t 
l ) ≤Cx l l = 1 , 2 , . . . , K (6)

 l , s 
l 
i , d 

l 
i , v 

t 
l , w 

t 
l ∈ { 0 , 1 } t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n

(7) 

Constraints (2) and (3) ensure that each lightpath has one

ource and one sink if the corresponding lightpath is used. Con-

traints (4) ensure that every traffic demand only uses feasible

ightpaths, and one lightpath cannot be used by the same traffic

emand both forward and backward. Constraints (5) ensure that

ach traffic demand has a feasible path from its origin to destina-

ion. Specifically, for each node on the path of each traffic demand,
c for a telecommunication network design problem with traffic 
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Algorithm 1 Algorithm for the NDGP. 

1: X best ← Init ializat ion () 
2: iter ← 0 
3: while iter < nbIter do 
4: X ← remove_lightpath (X best ) 
5: (succ, X, iterT S) ← TS_kNDG (X, nbIter − iter ) 
6: iter ← iter + iterT S 
7: if succ = true then 
8: X best ← X 
9: else 

10: return X best 

11: end if 
12: end while 
13: return X best 
the difference between the out-degree and in-degree is equal to

1, -1 or 0 depending on whether the node is the origin, destina-

tion or an intermediate node for the traffic, respectively. Since the

flow variables v t 
l 

and w 

t 
l 

are binary variables, they specify whether

the traffic demand uses the lightpath or not. This ensures that traf-

fic demands will not be split. Constraints (6) ensure that capacity

constraints are satisfied. 

The network of lightpaths to be designed is undirected. How-

ever, there is a direction in describing the flow of the traffics. Thus,

variables v and w are respectively used to denote the forward and

reverse directions when a lightpath is used by a traffic demand.

The two variables are summed when calculating the bandwidth in

constraints (6) . 

Since the above formulation contains the quadratic constraints

(5) , we propose the following linearization model. 

2.3. Linearization model 

Our linearization model succeeds in removing the quadratic

constraints (5) to yield a formulation that is tractable for a com-

mercial general solver, like CPLEX. We first change the constraints

(5) into the following form: 

K ∑ 

l=1 

(
v t l s 

l 
i − v t l d 

l 
i + w 

t 
l d 

l 
i − w 

t 
l s 

l 
i 

)
= T t i t = 1 , 2 , . . . , m i = 1 , 2 , . . . , 

(8)

Next, we add the following constraints, enabling the quadratic ele-

ments in the constraints of (8) to be replaced by four sets of vari-

ables ( α, β , γ , ζ ). 

αt 
li ≤ v t l t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n (9)

αt 
li ≤ s l i t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n (10)

αt 
li ≥ v t l + s l i − 1 t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n 

(11)

βt 
li ≤ v t l t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n (12)

βt 
li ≤ d l i t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n (13)

βt 
li ≥ v t l + d l i − 1 t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n 

(14)

γ t 
li ≤ w 

t 
l t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n (15)

γ t 
li ≤ d l i t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n (16)

γ t 
li ≥ w 

t 
l + d l i − 1 t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n 

(17)

ζ t 
li ≤ w 

t 
l t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n (18)

ζ t 
li ≤ s l i t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n (19)

ζ t 
li ≥ w 

t 
l + s l i − 1 t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n 

(20)
Please cite this article as: X. Wu, Z. Lü and F. Glover, A matheuristi

grooming, Omega, https://doi.org/10.1016/j.omega.2018.11.012 
t 
li , β

t 
li , γ

t 
li , ζ

t 
li ≥ 0 t = 1 , 2 , . . . , m l = 1 , 2 , . . . , K i = 1 , 2 , . . . , n.

(21)

iven the above constraints, the constraints (8) can then be

hanged into: 

K 
 

l=1 

(αt 
li − βt 

li +γ t 
li − ζ t 

li ) = T t i t = 1 , 2 , . . . , m i = 1 , 2 , . . . , n (22)

Therefore, the problem can now be expressed in an integer lin-

ar programming model as follows. 

Minimize 

K 
 

l=1 

x l 

ubject to : (2) –(4), (6), (7), (9) –(22) 

In spite of the improvements represented by the preceding

ormulation, our experiments demonstrate that this linearized

odel is still intractable for an ILP solver for moderate and large

cale instances. Therefore, we have developed a specially tailored

atheuristic to solve the NDG problem. 

. Solution method 

The matheuristic algorithm that we propose to solve the NDGP

s a matheuristic that relies on a local search to design the net-

ork and on linear programing to solve the grooming problem.

or an overview of matheuristics, we refer the interested reader to

aniezzo et al. [20] . Tabu search is a natural procedure to use as a

aster algorithm for a matheuristic, since it was proposed and im-

lemented together with exact algorithms, and included the design

f mixed integer programming methods using linear programming

12,13] , long before the “matheuristic” term was invented. 

The pseudocode of our algorithm is given in Algorithm 1 , where

 best records the best solution, i.e., the network with the fewest

ightpaths found so far. At the beginning, X best is initialized by

 greedy algorithm. The initialization method is the same as in

32] and can be described as follows: from an empty solution, as-

ign each traffic demand sequentially in the current network, intro-

ucing a new lightpath whenever the assignment of a demand is

nfeasible. In each local search iteration, a randomly selected light-

ath is removed from X best . The resulting network is then passed to

he TS_kNDG procedure, whose role is to try to find a feasible net-

ork with a number of lightpaths k = | X best | − 1 . The solution with

he smallest number of lightpaths found by the algorithm is re-

urned at the end of the nbIter local search iterations, where nbIter

s a parameter of the algorithm, and iterTS represents the number

f iterations used by procedure TS_kNDG . 

In the above description, the stopping criterion is the total

umber of iterations ( nbIter ), but it is easy to adapt the algorithm
c for a telecommunication network design problem with traffic 
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o use an alternative stopping criterion, such as the total comput-

ng time. 

It can be seen that our approach is based on a reduction to the

ecision version of the problem, the k -NDGP. In order to solve a

DGP instance, i.e., to design a network G = (V, L ) with the fewest

ightpaths, our algorithm tries repeatedly to find a network G with

 lightpaths, i.e., it tackles a series of k -NDGP instances with de-

reasing values of k . This is one of the main differences between

he proposed algorithm and that of [32] . Therefore, in the follow-

ng sections we mainly discuss the k -NDGP as well as the detail of

he procedure TS_kNDG . 

.1. A MIP approach to the grooming subproblem 

In this section we introduce an exact method to solve the

rooming subproblem of the NDGP which we define as follows.

iven a fixed optical network and a set of traffic demands, the goal

s to determine the routes for all the traffic demands ensuring that

here is no overloaded lightpath in the network. From the previ-

us definition of NDGP, it is clear that the grooming subproblem is

xactly the NDGP with fixed lightpath decision variables ( x l , s 
l 
i 

and

 

l 
i 
). For the grooming subproblem, if the integrality constraints on

he flow variables ( v t 
l 

and w 

t 
l 
) are relaxed, the problem becomes

 multi-commodity flow problem with constraints but without an

bjective function. This multi-commodity flow problem with frac-

ional flow variables can easily be solved by linear programming.

owever, this recourse to an easy constraint satisfaction formula-

ion does not help very much. In order to embed the exact method

ithin the local search heuristic, it is desirable to understand the

auses of infeasibility when the instance is infeasible. Therefore,

e change this decision problem into another optimization prob-

em. For each lightpath l , we define a new constant �l 
i 

equal to 1

f the lightpath originates from i , -1 if it terminates at i , and 0 oth-

rwise. We also define variables δl representing the overload for

ach lightpath l . The model for the grooming subproblem can then

e given as follows. 

Minimize 

 = 

| L | ∑ 

l=1 

δl (23) 

ubject to 

| L | 
 

l=1 

(
�l 

i v 
t 
l − �l 

i w 

t 
l 

)
= T t i t = 1 , 2 , . . . , m i = 1 , 2 , . . . , n (24)

m 

 

t=1 

b t 
(
v t l + w 

t 
l 

)
− δl ≤ C l = 1 , 2 , . . . , | L | (25)

l ≥ 0 l = 1 , 2 , . . . , | L | (26)

 

t 
l , w 

t 
l ∈ { 0 , 1 } t, l = 1 , 2 , . . . , m. (27)

Constraints (24) ensure the flows for each traffic demand. They

re almost identical to constraints (5) in the original model. Con-

traints (25) guarantee that the flow on lightpath l minus δl should

e less than or equal to the capacity of one lightpath. The objec-

ive function (23) is the total overload of the network. It is clear

hat the solution represents a feasible grooming configuration if

nd only if F = 0 . Moreover, the solution identifies the overloaded

ightpaths when the grooming configuration is infeasible. 

This mixed integer programming problem can be solved by a

IP solver such as CPLEX in reasonable time, because the number

f variables is not excessive. Another good feature of this formu-

ation is that it has a small integrality gap, a characteristic that

roves valuable when the model is used to evaluate the neighbor-

ood structure. 
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.2. A matheuristic for the k -NDGP 

In this section, we explain how the exact algorithm for the

rooming subproblem is embedded within a local search algo-

ithm. The local search algorithm is considered as the master al-

orithm while the MIP and LP procedures are used as slave proce-

ures integrated into the local search. 

In the following, we first present the local search approach by

efining the search space, the cost function, and the neighborhood.

he procedure to tackle the k -NDGP is described in Section 3.3 . 

.2.1. Search space and cost function 

The search space (set of configurations) explored by our local

earch procedure is denoted by S . In the proposed local search ap-

roach, a configuration X is any network of k edges (lightpaths)

ith an associated assignment for each traffic demand. 

The cost f ( X ) is defined as the overload of the network: 

f (X ) = 

m ∑ 

l=1 

[ 

max 

( 

m ∑ 

t=1 

b t (v t l + w 

t 
l ) − Cx l , 0 

) ] 

. (28) 

e note that a configuration X represents a feasible solution of the

 -NDG if and only if f (X ) = 0 . In our algorithm, f ( X ) is evaluated by

olving the grooming subproblem which is described in Section 3.1 .

.2.2. Neighborhood definition 

Given a configuration X ∈ S, we denote by < x, y > the oper-

tion, named a twist operator, by which a lightpath x is removed

rom G , and a new lightpath y is added to G , with the restriction

hat x and y must share a common vertex, and the traffic is re-

roomed on G . In addition, X �< x, y > denotes the configuration

btained by applying the twist operator < x, y > to X . 

The twist operation is illustrated in Fig. 2 . The bold gray lines

epresent the lightpaths and the thin black lines represent the

raffic demands, where � = { t AB , t CB , t BD } and L = { l AC , l AB , l AD } . We

enote by X ′ = X� < l AD , l BD > the configuration obtained by ap-

lying move < l AD , l BD > to configuration X . This gives X 

′ with

 = { l AC , l AB , l BD } and the assignment for t BD changes from { l AB , l AD }

o { l BD }. 

The time complexity is O (2 | L | (| V | − 1)) if all the configura-

ions in the neighborhood are checked. However, the calculation

o check all configurations is excessive. In most cases, there is no

dvantage to applying a move to a lightpath which lies in a part of

he graph with no binding capacity restrictions. Instead, we only

pply moves to lightpaths which are adjacent to an overloaded

ightpath. More specifically, assuming there is an overloaded light-

ath l ij with endpoints i and j , the lightpaths l iv ( l jv ) with one end-

oint i ( j ) will be evaluated to see if it would improve the cost

unction to twist it to l jv ( l iv ), which is the move < l iv , l jv > ( < l jv ,

 iv > ), in the hope that some traffic demands on l ij will change

heir route to avoid using l ij so that the overload can be decreased.

or example, in Fig. 2 , if lightpath l AB is overloaded, the two moves

hat should be evaluated are < l AD , l BD > and < l AC , l CB > . In this

ay, the calculation can be reduced to O (2 O D ) , where O repre-

ents the number of overloaded lightpaths and D represents the

verage degree of the vertices in the network. 

At each iteration, the best move, which leads to the minimum

 ( X ), is chosen and applied to the current configuration. In other

ords, the best-improvement strategy is used. 

In practice, the issue of attenuation should be considered too.

 constraint to handle this can be naturally added into the pro-

osed neighborhood. If site j is too far away from site v we can

imply prohibit the move < l iv , l jv > . Thus, the signal strength can

e guaranteed. However, to make the problem more general, we

o not consider the attenuation issue in this study. 
c for a telecommunication network design problem with traffic 
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Fig. 2. Illustration of the twist operator < l AD , l BD > . 

Fig. 3. Illustration of the twist operator with three lightpaths. 
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3.2.3. The essence of the twist neighborhood 

In this section we explain the essence of the proposed twist

neighborhood. For most of the configurations which are infeasible

solutions, there are usually only a few overloaded lightpaths. Thus,

it makes sense to only do operations related to the overloaded

lightpaths to save time. 

The basic idea is to keep the overloaded lightpaths unchanged,

but to make changes to those that are neighbors of the overloaded

ones, in the hope that some traffic demands on the overloaded

lightpath will change their routes and reduce the overload. For ex-

ample, Fig. 3 illustrates a part of one configuration. To make things

clearer, we only present three lightpaths and three traffic demands

here to represent three different kinds of lightpaths and traffic de-

mands involved during a twist operation. Suppose lightpath AB is

overloaded and lightpath AC is the one to be moved, i.e., the move

operator is < AC, BC > . There are three kinds of traffic demands

which are as follows: 

t 1 The traffic demand only passes through the lightpath ( AC ) to be

moved but not through the overloaded lightpath ( AB ); 

t 2 The traffic demand passes through both the overloaded light-

path ( AB ) and the lightpath ( AC ) to be moved; 

t 3 The traffic demand only passes through the overloaded light-

path ( AB ) but not the lightpath ( AC ) to be moved. 

After the move operation, t 2 is highly likely to change its route

to avoid traversing AB , and in this case the overload will decrease.

But t 1 is also likely to change its route to traverse AB , and in this

case the overload may be worse. Usually t 3 is not affected by the

move. Therefore, if there are more traffic demands of type t 2 than

t 1 affected by the move, this move may reduce the overload of the

corresponding lighpath. 

The proposed twist neighborhood is essentially different from

the two-level neighborhood (TLN) described in [32] . First, the two

neighborhoods use totally different search spaces. The twist neigh-

borhood tries to find a feasible solution for the k -NDGP problem
Please cite this article as: X. Wu, Z. Lü and F. Glover, A matheuristi
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y exploring infeasible solutions and decreasing k gradually. By

ontrast, the TLN directly optimizes the number of lightpaths and

nly accepts feasible solutions during the search. Second, the twist

eighborhood gathers more heuristic information about the config-

ration of the current solution, which can guide the search more

ffectively, while the topology transformation layer in TLN is ap-

arently “blinded” by adding or removing lightpaths randomly. 

.2.4. Completeness of the twist move 

Proposition 1 states that the twist operator is sufficient to ex-

lore the whole solution space of the k -NDGP. 

roposition 1. If X is a feasible solution for k-NDGP, then any con-

guration X 

′ can be altered to yield X by performing a finite number

f twist moves. 

roof. We first define a basic move operator ( p, q ) which consists

f deleting lightpath p from G and adding a new lightpath q to G

ithout other restrictions. Assuming that X is a feasible solution,

t is obvious that any configuration X 

′ can be altered to yield X by

erforming a finite number of basic moves ( p, q ), only if we require

hat p ∈ X 

′ and q ∈ X . For each ( p, q ), if p and q share a common

ertex then it is equivalent to the twist operator < p, q > ; other-

ise, it can be equal to a sequence of two twist operators [ < p, r > ,

 r, q > ] only if r shares common vertices both with p and q . The

ightpath r can be determined by choosing any endpoint of p and

 and making these two the endpoints of r . Thus a basic operator

an be replaced by one or a sequence of two twist operators, and

ny configuration X 

′ can be altered to yield the feasible solution X

y performing a finite number of twist moves. �

.2.5. Evaluation of the neighborhood 

Let M(S) denote the set of the candidate moves of configu-

ation S . It is important to be able to evaluate the effect of a

ove m in S in an efficient way. If we simply calculate for each

ove m the cost function f ( X �m ) of the resulting solution to see
c for a telecommunication network design problem with traffic 
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Algorithm 2 Evaluate the neighborhood. 

1: procedure Evaluate ( X) 
2: bestMv ← NULL 
3: for each overload lightpath l o do 
4: u = source node of l o 
5: v = sink node of l o 
6: for each lightpath l u that connected to u do 
7: if F(X� < l o , l u > ) < F(X � bestMv ) then 
8: bestMv ← < l o , l u > 

9: end if 
10: end for 
11: for each lightpath l v that connected to v do 
12: if F(X� < l o , l v > ) < F(X � bestMv ) then 
13: bestMv ← < l o , l v > 

14: end if 
15: end for 
16: end for 
17: return bestMv 
18: end procedure 
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hether the move is good or not, the computing time would be-

ome prohibitive. Different mechanisms have been proposed in the

iterature for neighborhood evaluation in a local search algorithm,

mong which the fast incremental evaluation has become the most

sed (see, e.g., [17,30,31,33,35] ). This evaluation calculates the score

f m , i.e. the amount by which m increases the cost of the config-

ration. Then the move with the least score will be considered to

e the best move in the case of a minimization problem. How-

ver, the fast incremental evaluation is usually effective only for

roblems with simple solution structures. In NDGP, the solution

tructure consists of the topology of the network and the routes

or each traffic. It is hard to design a fast evaluation mechanism

or the neighborhood introduced above. 

In this paper, an estimation method is used to evaluate each

ove. Here, the cost function of the configurations is evaluated

ather than the score of the moves. In other words, we estimate

 ( X �m ) to check whether m is good or not. The grooming subprob-

em formulation described in Section 3.1 is used to evaluate each

eighboring configuration. However, instead of solving the MIP

odel we solve the linear programming relaxation of this model

or each configuration in the neighborhood. The configuration with

inimum F is chosen to be the next solution. The pseudo-code of

he evaluation procedure is given in Algorithm 2 , where function

(X ) calculates the optimal linear programming objective value of

he grooming problem with the network of configuration X . Here,

e define F(X � NULL ) = ∞ . As mentioned before, we only con-

ider the lightpaths that are connected to an overload lightpath. 

.2.6. Applying the move 

The best move chosen is applied to the current configuration,

hich involves making changes to the network and reassigning the

outes for some traffic demands. As explained in Section 3.1 , the

rooming solution is obtained by solving the mixed integer pro-

ramming problem. Although this MIP model is tractable, it is still

ime consuming to solve it in each iteration. 

However, during the local search procedure, only the informa-

ion of the overload on each lightpath is needed for the evaluation.

he execution of traffic grooming only make sense when there is

o overload on any lightpath. Fortunately, the gap between the

ontinuous grooming model and the model with binary variables

s rather small (as we will see in Section 4.4 ). Thus it is possible to

olve the linear programming relaxation at each iteration to get the

stimated overload information when F is greater than zero, and

olve the integer program when F equals zero to verify whether

he network can satisfy all the traffic demands. 

The running time can be further reduced if we terminate the

IP process when the MIP solver finds a best bound greater than

, since a positive best bound indicates that there is impossibility

o get a non-overloaded solution. Thus, the detail of the routes for
Please cite this article as: X. Wu, Z. Lü and F. Glover, A matheuristi
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ach traffic demand is not necessary at this stage. Since the de-

ired objective for the MIP process is 0, there are 4 cases for the

ap value obtained by the solver: (i) no gap value available (feasi-

le solution not found), (ii) 100% (feasible solution found with best

ound of 0), (iii) less than 100% (feasible solution found with pos-

tive best bound) and (iv) un-defined value (solved optimally with

bjective value 0). We can set a cutoff gap to the solver with a

alue slightly less than 100%, for example 99.9%. In this way, the

IP solver will stop once it finds a positive best bound, reducing

he total running time. 

.3. The matheuristic 

In this section, we detail the tabu search procedure of the pro-

osed algorithm. Tabu search (TS) was first proposed by Glover

12–14] and has since been applied to numerous combinatorial op-

imization problems (see [23,33] ). A TS algorithm typically incor-

orates a tabu list as a recency-based memory structure to guar-

ntee that solutions visited within a certain span of iterations will

ot be revisited and to introduce robustness into the search. The

lgorithm then restricts its attention to moves not forbidden by

he tabu list. Additional techniques having their origins in tabu

earch and which are frequently used in metaheuristic optimiza-

ion are diversification and intensification, which typically involve

dditional forms of memory such as frequency memory. In partic-

lar, the goal of diversification is to drive the method to explore

ew regions of the search space, while intensification seeks to fo-

us the search in regions previously evaluated to be promising, and

s often carried out by a local search algorithm. A detailed descrip-

ion of these strategies and their interactions is provided in [14] . 

.3.1. Tabu search procedure 

The TS_kNDG procedure has two input parameters: the initial

onfiguration X 0 and the number of iterations nbIter . We denote

y k the number of lightpaths. 

The goal of the procedure is to explore the set of configurations

y applying a series of moves to discover a configuration of min-

mum cost. As already mentioned in Section 3.2 , a configuration

 corresponds to any network with k lightpaths. The cost of this

onfiguration is the total overload on the network and the set of

oves applicable to it is defined by the twist neighborhood. 

In order to escape from local optima, the TS_kNDG procedure

mploys a tabu search approach based on a simple tabu mecha-

ism of forbidding a newly added lightpath to be deleted for a

hort period. A lightpath belonging to the tabu list is said to be

abu. Also, any move < x, y > such that y belongs to the tabu list

s declared tabu. After a move m v = < x m v , y m v > is performed, the

ightpath y mv is inserted into the tabu list for tt iterations, where

t (the so-called tabu tenure) is determined by two parameters

amed ttMin and ttMax . 

In addition, the tabu status of a move < x, y > can be overrid-

en by an aspiration criterion. We employ the simplest (commonly

sed) instance of such a criterion which disregards tabu status if

pplying this move leads to a configuration whose cost is smaller

han the cost fBest of the best configuration previously found. Fi-

ally, we define a candidate move to be a move that is non-tabu

r that satisfies the aspiration criterion. In each iteration, the tabu

lgorithm selects the best candidate move, i.e., the one having the

owest score. 

The TS_kNDG procedure also employs a rudimentary type of di-

ersification technique, which implements several random moves

o give more diversity to the algorithm. The pseudocode of the

S_kNDG is given in Algorithm 3 . 

In Algorithm 3 , X represents the current configuration of the

abu search procedure. X is first set to the initial configuration X 0 ,

hich is a parameter of the procedure. In each iteration, the best
c for a telecommunication network design problem with traffic 
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Algorithm 3 Tabu search procedure for the k -NDGP. 

1: init() 

2: for iter = 1 . . . nbIter do 
3: < x, y > ← select_move(X) 

4: apply_move ( < x, y > ) 
5: tt ← rand ( ttMin , ttMax ) 
6: render_move_tabu (< x, y >, t t ) 
7: if f (X ) = 0 then 
8: return (true, X, iter ) 
9: end if 

10: apply_diversification() 

11: end for 
12: return ( false, X, iter ) 
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candidate move < x, y > applicable to X is selected by breaking

ties randomly among those moves with the lowest score. Then,

move < x, y > is applied to configuration X by removing x from X

and adding y to X , whereon the linear programming or mixed in-

teger programming problem is solved depending on the current F
(see Section 3.2 ). Finally, lightpath y is made tabu for tt iterations,

where tt is an integer randomly chosen from the interval [ ttMin,

ttMax ], and ttMin and ttMax are two parameters of the algorithm.

The procedure stops when a zero-cost configuration is discovered

or nbIter iterations have elapsed. 

3.3.2. Diversification technique 

In our tabu diversification procedure, we perform a simple per-

turbation consisting of a series of random moves whose strength

is measured by the number of random moves to be performed.

Therefore, the strength of the perturbation may be interpreted as

the “amplitude” of a jump in the search space. 

The diversification mechanism is governed by two parameters:

strength and perturbPeriod . Parameter strength is used to set the

value of the perturbation strength, while parameter perturbPeriod

is used to determine when the perturbation is triggered. Also, the

algorithm manipulates two values named X best and iterStagnation.

X best denotes the best configuration; i.e., the last improved config-

uration visited by the procedure. Therefore, X best is updated when-

ever f ( X ) ≤ f ( X best ). iterStagnation represents the number of itera-

tions elapsed since the last improvement of the best configuration

or since the last perturbation was triggered. 

In our diversification approach, a perturbation is triggered

when perturbPeriod iterations have been performed without im-

proving the best configuration. In this case, a perturbation whose

strength equals strength is applied to X best . The pseudo-code of

the diversification procedure is given in Algorithm 4 . It should be

noted that variables iterStagnation, X and X best are global and are

maintained through the tabu search procedure. 
Algorithm 4 Procedure used to apply the diversification mecha- 

nism on each iteration. 

1: procedure apply_diversification() 

2: if f (X ) < f (X best ) then 
3: iterStagnation ← 0 
4: X best ← X 
5: else if f (X ) = f (X best ) then 
6: iterStagnation ← iterStagnation + 1 
7: X best ← X 
8: else 
9: iterStagnation ← iterStagnation + 1 

10: end if 
11: if iterStagnation ≥ per tur bPer iod then 
12: X ← perturbation (X best , strength ) 
13: iterStagnation ← 0 
14: end if 
15: end procedure 
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.3.3. Parameters of the matheuristic 

In addition to the input traffic demands, the input of the

atheuristic algorithm consists of the following parameters: 

• the parameters ttMin and ttMax used to set the tabu list; 
• the parameter strength used to set the value of perturbation

strength; 
• the parameter perturbPeriod used to determine when a pertur-

bation is triggered; 
• the parameter nbIter used for the stopping criterion. 

Parameter nbIter depends on the available computing time.

ests performed in order to set the other parameters are presented

n Section 4.2 . 

. Computational results 

In this section, we present experiments performed in order to

valuate the performance of our algorithm. The matheuristic algo-

ithm was programmed in the Java 8 language. All experiments

ave been executed on a Windows 7 PC with an intel i5 2.7 GHz

PU and 8 GB of RAM. CPLEX 12.61 was used to solve the lin-

ar programming and the integer programming subproblems in-

ide the algorithm. 

.1. Benchmark and algorithms used for comparison 

For our tests, we have selected the benchmark proposed in [32] ,

onsisting of 22 large instances with up to 100 nodes and 500

raffic demands. Three small scale instances are added in order

o make comparisons with CPLEX. For the group NDG20_t400, the

andwidth of traffic demands ranges from 1 to 16. For the remain-

ng instances, half of the demands have a bandwidth of 1, and

he remaining demands have a bandwidth of 2. For all instances,

he lightpath capacity is set to be 32.These instances were ran-

omly generated according to real world scenarios from one of the

iggest telecommunication companies in China. The first number

n each instance name indicates the size of the node set, and the

econd number indicates the size of the demand set. 

We also provide computational tests comparing out proposed

atheuristic with CPLEX, the two-level iterated local search (TL-

LS) algorithm proposed in [32] and the RTS algorithm for NBNDP

5] . The TL-ILS and RTS algorithms were re-programmed in JAVA

nd run on the same platform as the Matheuristic algorithm pro-

osed in this paper. 

.2. Calibration of the parameters of the tabu search algorithm 

In this section, we present preliminary experiments conducted

o set the values of the key parameters of the matheuristic: 

• Parameters ttMin and ttMax determine the range of the tabu

tenure ( tt ). We have tested two possible values for these pa-

rameter pairs: [1, 5] and [5,10]. 
• Parameter strength is used for setting the strength of the pertur-

bation. We have tested two possible values for this parameter:

0.1| L | and 0.2| L |. 
• Parameter perturbPeriod corresponds to the period used to ap-

ply a perturbation. We have tested two values for this parame-

ter: 0.5| L | and | L |. 

For this experiment, a subset of seven instances was

sed: NDG20_t10 0.1, NDG20_t20 0.1, NDG20_t30 0.1, NDG40_t20 0.1,

DG40_t20 0.5, NDG40_t40 0 and NDG10 0_t50 0. The algorithm was

un 10 times on each instance and for each parameter setting. The

ime limit was set to 4 hours for each run. The results of these

xperiments are presented in Table 1 . Each row in the table cor-

esponds to a particular combination of the parameters. The first
c for a telecommunication network design problem with traffic 
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Table 1 

Calibration experiments for parameter setting. 

Parameters Average 

tt perturbPeriod strength gap (%) time (s) 

[5,10] | L | 0.1| L | 21.26 3662 

[5,10] | L | 0.2| L | 21.99 3084 

[5,10] 0.5| L | 0.1| L | 21.38 4530 

[5,10] 0.5| L | 0.2| L | 21.86 3377 

[1,5] | L | 0.1| L | 21.81 3692 

[1,5] | L | 0.2| L | 21.97 3368 

[1,5] 0.5| L | 0.1| L | 22.34 3251 

[1,5] 0.5| L | 0.2| L | 21.68 3223 
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olumns indicate the combinations of the parameters. The last two

olumns display, for the considered combination, the gap between

he lower bound (calculated as in [32] ) and the average score of

he solutions returned by the algorithm over the 10 runs, and the

verage running time to reach the best solution. 

Table 1 shows that the differences in the performance of the

lgorithm between the different settings are small, which indicates

he stability of the matheuristic. However, the parameter settings

[5, 10], 1.0| L |, 0.1| L |) lead to the best performance. 

.3. Computational results 

In this section we compare the proposed matheuristic algo-

ithm (using parameter settings ([5, 10], 1.0| L |, 0.1| L |)) with other

lgorithms using the full set of instances. The reference algorithms

ompared with the proposed matheuristic are as follows. 

• CPLEX: The public general solver CPLEX using the linearization

model introduced in Section 2.3. 
• TL-ILS: The TL-ILS algorithm proposed in [32] . 
• RTS: The RTS algorithm which is the original method for solv-
ing NBNDP introduced in [5] . 

Table 2 

Computational results. 

Instance Matheuristic CPLEX 

Best Average Time (s) Iteration Best Time (h) Diff

NDG8_t20.1 13 13 12 140 13 4 0 

NDG8_t20.2 14 14 2 23 14 4 0 

NDG8_t20.3 14 14 1 2 14 3 0 

NDG20_t100.1 19 19.0 8 9 – – –

NDG20_t100.2 19 19.0 10 12 – – –

NDG20_t100.3 19 19.0 10 12 – – –

NDG20_t100.4 19 19.0 7 20 – – –

NDG20_t100.5 19 19.0 8 10 – – –

NDG20_t200.1 23 23.0 385 157 – – –

NDG20_t200.2 23 23.0 232 89 – – –

NDG20_t200.3 23 23.0 547 318 – – –

NDG20_t200.4 22 22.0 239 79 – – –

NDG20_t200.5 23 23.0 928 296 – – –

NDG20_t300.1 34 34.5 5162 30 – – –

NDG20_t300.2 34 34.5 4699 43 – – –

NDG20_t300.3 33 33.7 4559 42 – – –

NDG20_t300.4 34 34.9 4464 26 – – –

NDG20_t300.5 34 34.4 6450 34 – – –

NDG20_t400.1 76 77.6 7161 13 – – –

NDG20_t400.2 78 78.0 6963 17 – – –

NDG20_t400.3 78 78.0 2634 12 – – –

NDG20_t400.4 75 76.4 3426 12 – – –

NDG20_t400.5 77 77.4 6883 13 – – –

NDG40_t200.1 22 22.0 1452 755 – – –

NDG40_t200.2 22 22.3 963 943 – – –

NDG40_t200.3 39 39.0 3689 34 – – –

NDG40_t200.4 39 39.0 239 39 – – –

NDG40_t200.5 39 39.0 260 41 – – –

NDG40_t400 52 52.0 8794 94 – – –

NDG10 0_t50 0 62 62.1 6312 19 – – - 

Please cite this article as: X. Wu, Z. Lü and F. Glover, A matheuristi

grooming, Omega, https://doi.org/10.1016/j.omega.2018.11.012 
The computational results are shown in Table 2 . Columns Best

eport the best results obtained by each algorithm over ten inde-

endent runs (only one run for CPLEX). The time limit was set to

 hours. Column Average reports the average objective value ob-

ained by the proposed matheuristic algorithm. Columns Time re-

ort the average time consumed by each algorithm to get the best

esult. Column Iteration reports the average number of iterations

or the matheuristic to get the best result. The computational re-

ults are presented in Table 2 where dash marks indicate that the

orresponding algorithm cannot get a feasible solution within the

ime limit. 

Table 2 shows that using the linearization formulation, CPLEX

an obtain feasible solutions for 3 small instances with 8 nodes

nd 20 traffic demands. However, CPLEX fails to prove optimality

ven for these small instances within the time limit. For the 22

emaining moderate and large instances, CPLEX fails to give a fea-

ible solution within the time limit or crashes due to lack of mem-

ry. We have additionally tested CPLEX using a generalized form

f the flow balance equations (5) by representing them as greater

han equality constraints rather than equality constraints, and find

hat CPLEX performs essentially the same with this version of the

odel. By contrast, our proposed Matheuristic obtains the same

esults for these 3 small instances within 12 seconds. 

One can see from Table 2 that the difference between the min-

mum score of the matheuristic algorithm and the TL-ILS algo-

ithm ranges from 0 to 7. The difference tends to increase with

he scale of the vertex set and the number of traffic demands. For

he NDG20_t300 instances the results produced by the TL-ILS are

2% to 15% larger than the ones produced by the matheuristic. For

he smaller instances, the matheuristic also improves the results by

 or 2 compared to the TL-ILS except for NDG20_t200.4. This indi-

ates that the matheuristic algorithm outperforms the TL-ILS by an

mportant margin. 
TL-ILS RTS-1 RTS-2 

Best Time (s) Diff Best Time (s) Diff Best Time (s) Diff

13 5 0 13 1 0 13 1 0 

14 1 0 14 1 0 14 1 0 

14 1 0 14 1 0 14 1 0 

20 8 1 20 2 1 20 13 1 

21 1 2 21 2 2 20 25 1 

20 1 1 20 32 1 20 45 1 

19 1 1 20 97 1 20 130 1 

21 1 2 20 95 1 20 98 1 

24 82 1 33 490 10 33 508 10 

24 622 1 33 151 10 33 285 10 

24 632 1 33 324 10 33 570 10 

22 925 0 33 242 11 33 320 11 

25 169 2 33 142 10 33 794 10 

38 459 4 59 11 25 57 378 23 

39 631 5 58 180 24 58 512 24 

37 902 4 56 461 23 55 917 22 

39 377 5 57 215 23 56 871 22 

39 556 5 58 68 24 55 623 21 

81 1270 5 118 38 39 109 35 30 

80 2921 2 121 341 43 105 173 27 

79 3468 1 124 46 46 105 380 27 

80 2314 5 125 37 50 107 37 32 

81 2548 4 121 196 44 109 27 32 

24 790 2 32 813 10 32 335 10 

25 278 3 33 87 11 32 812 10 

42 356 3 51 155 12 50 3985 11 

43 472 4 51 2386 12 51 4813 12 

43 159 4 52 56 13 52 349 13 

59 2384 7 91 786 39 90 8854 38 

69 2913 7 112 1504 50 111 5300 49 

c for a telecommunication network design problem with traffic 
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Fig. 4. Accuracy of the evaluation by the linear programming model. 
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From the above experiment we also observe that the solution

resembles a tree structure if there are relatively less traffic de-

mands compared to the size of the node set (i.e., a smaller ratio of

the number of traffic demands to the number of nodes). However,

as the demands increase, tree structure networks are not sufficient

to hold all the demands. Thus, our algorithm produces a structure

more akin to a mesh structure in such cases involving busy net-

works. 

The RTS method is a tabu search based algorithm, which per-

forms quite well on the NBNDP instances according to [5] . We re-

implemented and adapted the method to solve the NDGP by con-

sidering the initial network to be a complete graph and neglecting

the flow costs. The input parameters for the two RTS algorithms

are set as described in [5] except that the termination condition is

made same as in our proposed Matheuristic algorithm. Since there

is no limit on the number of edges between each pair of nodes in

NDGP, two variants of the RTS are considered. 

• RTS-1: The RTS algorithm, neglecting the flow costs, where at

most one lightpath is allowed between each pair of nodes in

the network. 
• RTS-2: The RTS algorithm, neglecting the flow costs, where at

most two lightpaths are allowed between each pair of nodes in

the network. 

From Table 2 , one observes that the two RTS algorithms are

comparable to the proposed Matheuristic and the TL-ILS on small

instances and perform similarly to the TL-ILS on instances with

up to 20 nodes and 100 traffic demands. However, as the traf-
Please cite this article as: X. Wu, Z. Lü and F. Glover, A matheuristi

grooming, Omega, https://doi.org/10.1016/j.omega.2018.11.012 
c demands increase, the gap between RTS and our Matheuris-

ic grows larger. One possible reason might lie in the fact that

he neighborhood structure of RTS employs a substantial amount

f heuristic information about the flow-cost on the edges while

here is no flow-cost in the NDGP. Thus, RTS is outperformed by

ur Matheuristic and TL-ILS on NDG instances when the number

f traffic demands becomes large. In addition, RTS-2 slightly out-

erforms RTS-1 when more computational time is allowed, since

t can examine a larger search space than RTS-1. This fact also

emonstrates that a strategy that does not restrict the number of

ightpaths between each pair of nodes can help to find better solu-

ions. In sum, our proposed Matheuristic outperforms the RTS al-

orithm for solving the NDGP. 

Table 3 reports the number of parallel lightpaths and the us-

ge percentage of lightpaths for the best solution of each in-

tance obtained by our proposed matheuristic. If there is more

han one lightpath created between the same pair of nodes, they

re counted as parallel lightpaths. The lightpaths usage percentage

s calculated as: 

K ∑ 

l=1 

m ∑ 

t=1 

b t (v t l + w 

t 
l 
) 

K ∑ 

l=1 

Cx l 

× 100% 

ne observes that the lightpath usage percentage is high when the

atio between the traffic demands and the number of nodes is rel-

tively high. The instances with less traffic demands get a lower
c for a telecommunication network design problem with traffic 
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Table 3 

Lightpaths status. 

Instance Parallel Usage (%) Instance Parallel Usage (%) 

NDG20_t100.1 0 61 NDG20_t400.1 8 98 

NDG20_t100.2 0 62 NDG20_t400.2 6 95 

NDG20_t100.3 0 59 NDG20_t400.3 10 96 

NDG20_t100.4 0 58 NDG20_t400.4 6 96 

NDG20_t100.5 0 55 NDG20_t400.5 6 94 

NDG20_t200.1 0 89 NDG40_t200.1 0 86 

NDG20_t200.2 0 88 NDG40_t200.2 0 87 

NDG20_t200.3 0 87 NDG40_t200.3 0 59 

NDG20_t200.4 0 87 NDG40_t200.4 0 55 

NDG20_t200.5 0 88 NDG40_t200.5 0 53 

NDG20_t300.1 0 98 NDG8_t20.1 2 85 

NDG20_t300.2 0 99 NDG8_t20.2 0 89 

NDG20_t300.3 0 98 NDG8_t20.3 0 93 

NDG20_t300.4 0 98 NDG40_t400 0 92 

NDG20_t300.5 0 99 NDG10 0_t50 0 0 98 

Fig. 5. Computational performance comparison. 
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ercentage of lightpath usage due to the fact that the lightpath ca-

acity is much larger than the bandwidth of traffic demands. 

.4. Analysis of the neighborhood evaluation technique 

For a neighborhood search method, it is particularly impor-

ant to be able to rapidly evaluate the neighborhood. As described

n Section 3.2.5 , a relaxed linear programming model is used

o estimate the effects of the twist operator. Two experiments

ere carried out to analyze this evaluation technique on some

epresentative instances, which are NDG20_t10 0.1, NDG20_t20 0.1,

DG20_t30 0.1, NDG40_t20 0.1, NDG40_t20 0.5 and NDG40_t400.
Please cite this article as: X. Wu, Z. Lü and F. Glover, A matheuristi
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imilar results were observed on other instances. The time limit

or each run was set to 4 hours. 

.4.1. The accuracy of the evaluation technique 

As described in Section 3.2.5 , after each move the exact integer

rogramming problem is solved only if the cost function reaches

ero. In order to observe the accuracy of the evaluation, we have

reated a variant of the algorithm which solves the IP model af-

er each move. The cost function values given both by the relaxed

inear programming model and the integer programming model

re recorded and compared to see the differences. The results are

hown in Fig. 4 . 
c for a telecommunication network design problem with traffic 
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Table 4 

Computational performance comparison. 

Instance LB EAG PAG 

Best Average Time (s) Best Average Time (s) 

NDG20_t100.1 19 19 19 8 19 19 8 

NDG20_t200.1 19 22 22.9 661 22 22.8 3001 

NDG20_t300.1 30 35 35.4 2743 34 34.9 5506 

NDG40_t200.1 19 22 22.5 468 22 22.3 969 

NDG40_t200.5 39 39 39 481 39 39 327 

NDG40_t400 39 55 55 5550 53 53.8 10440 

NDG10 0_t50 0 39 63 63 4046 62 62.8 5594 
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We see that for most cases, the linear programming model cor-

rectly evaluates the actual cost of the configuration. The plots al-

most coincide in most of the cases, especially for some easy in-

stances like NDG20_t100.1 and NDG40_t200.5. For other instances

the gap between the original problem and the relaxation is very

narrow except for instance NDG20_t300.1 which has relatively

more traffic demand density than other instances (300 traffic de-

mands on 20 nodes). This may be the reason why the evaluation

is less accurate for this instance since there will be more combi-

nations of the routings of different traffic demands with respect

to the network scale and the gap between the ILP and LP models

becomes large. The above experiments indicate that our proposed

evaluation technique works well with the twist operator. 

4.4.2. The effectiveness of the evaluation technique 

Solving the integer programming problem at each iteration will

certainly give the algorithm more accuracy, however the computa-

tion is very time consuming and most of the time the detailed in-

formation of the configuration is not important. As we mentioned

in Section 3.2.5 , only the overload amount on each lightpath is

needed to produce a new solution of the problem. Thus, the in-

teger programming problem is only solved when the evaluation

method predicts a feasible solution, and then the algorithm tries

to prove that prediction by using integer programming. 

Here, we estimate how much time is saved by solving only

the relaxed model during the search procedure. The following

two strategies are considered: the proposed algorithm which only

solves the LP during the search process except when the cost func-

tion value equals zero (PAG); the algorithm used in the previous

section which will solve an integer programming problem at each

iteration (EAG). The evaluation of the average CPU time with the

number of iterations is shown in Fig. 5 . 

Fig. 5 discloses that the matheuristic with PAG is faster than

that with EAG on difficult instances, but seems worse for simple

instances. However, the difference on simple instances is negligi-

ble, since both algorithms obtain the optimal solution in very short

time. For difficult instances the two algorithms exhibit a similar

performance at early stages, but the gap gradually widens as k de-

creases. 

Table 4 shows the detailed results of this experiment, revealing

that PAG gets better average and best results than EAG. The table

also shows that PAG uses more CPU time. However, this is because

of the time limit of four hours. PAG happens to get better results

in the time limit, while EAG may need much more time to get the

same result as PAG. 

From this experiment we learn that the k -NDGP problem gets

more and more difficult as k decreases, and the proposed evalua-

tion technique proves very helpful when k is small. 

5. Conclusion 

We have proposed a hybrid algorithm embedding LP and MIP

within a tabu search method for tackling the NDGP, and have as-
Please cite this article as: X. Wu, Z. Lü and F. Glover, A matheuristi

grooming, Omega, https://doi.org/10.1016/j.omega.2018.11.012 
essed the performance of our algorithm on instances from the lit-

rature. Computational results show that the proposed algorithm

s highly effective compared to an existing iterated local search

euristic and succeeds in improving the upper bounds (best known

bjective function values) for all the instances except one in the

enchmark set. Further analysis indicates that the neighborhood

valuation technique proposed in this paper is essential to the

omputational efficiency of the proposed algorithm. Possible direc-

ions for future research to enhance our algorithm include intro-

ucing more advanced local search techniques (such as advanced

abu search strategies), together with more advanced diversifica-

ion frameworks (such as scatter search or path relinking) that rely

ore heavily on strategy in place of randomization. In addition,

epending on the demand structure, there may be critical pairs of

odes handling most of the demands, therefore making the net-

ork partly resemble to a tree structure. It would be informative to

nalyze the demand structure and divide the whole problem into

omponent problems which can be solved separately, thus reduc-

ng running time and further improving the solution quality. 

cknowledgments 

The research was supported in part by the National Natu-

al Science Foundation of China under grant number 61370183,

1320107001 and the program for New Century Excellent Talents

n University ( NCET 2013 ). We are grateful to Dr. Jean-François

ordeau whose comments and discussions with us have helped to

mprove the quality of the paper significantly. 

eferences 

[1] Agarwal Y , Venkateshan P . Survivable network design with shared-protection

routing. Eur J Oper Res 2014;238(3):836–45 . 

[2] Agarwal YK . K-partition-based facets of the network design problem. Networks
2006;47(3):123–39 . 

[3] Álvaro Rubio-Largo , Zhang Q , Vega-Rodrguez MA . A multiobjective evolution-
ary algorithm based on decomposition with normal boundary intersection for

traffic grooming in optical networks. Inf Sci (Ny) 2014;289:91–116 . 
[4] Azodolmolky S , Klinkowski M , Marin E , Careglio D , Pareta JS , Tomkos I . A sur-

vey on physical layer impairments aware routing and wavelength assignment

algorithms in optical networks. Comput Netw 2009;53(7):926–44 . 
[5] Bartolini E , Mingozzi A . Algorithms for the non-bifurcated network design

problem. J Heuristics 2009;15(3):259–81 . 
[6] Belgacem L , Charon I , Hudry O . A post-optimization method for the routing

and wavelength assignment problem applied to scheduled lightpath demands.
Eur J Oper Res 2014;232(2):298–306 . 

[7] Chatterjee BC , Sarma N , Sahu PP . Priority based routing and wavelength as-

signment with traffic grooming for optical networks. J Opt Commun Netw
2012;4(6):480–9 . 

[8] Chen B , Rouskas GN , Dutta R . On hierarchical traffic grooming in WDM net-
works. IEEE/ACM Trans Netw 2008;16(5):1226–38 . 

[9] Crainic TG , Frangioni A , Gendron B . Bundle-based relaxation methods for mul-
ticommodity capacitated fixed charge network design. Discrete Appl Math

2001;112(1):73–99 . 
[10] Dutta R , Rouskas GN , Baldin I . Traffic grooming: balancing choice and service

in optical networks. In: Advanced photonics for communications. Optical Soci-

ety of America; 2014. p. PM4C.1 . 
[11] Gendron B , Crainic TG , Frangioni A . Multicommodity capacitated network

design. In: Telecommunications network planning. Boston: Springer; 1999.
p. 1–19 . 

[12] Glover F . Tabu search-part i. ORSA JComput 1989;1(3):190–206 . 
c for a telecommunication network design problem with traffic 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004602
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0001
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0001
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0001
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0002
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0002
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0003
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0003
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0003
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0003
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0004
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0004
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0004
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0004
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0004
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0004
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0004
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0005
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0005
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0005
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0006
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0006
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0006
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0006
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0007
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0007
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0007
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0007
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0008
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0008
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0008
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0008
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0009
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0009
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0009
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0009
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0010
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0010
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0010
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0010
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0011
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0011
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0011
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0011
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0012
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0012
https://doi.org/10.1016/j.omega.2018.11.012


X. Wu, Z. Lü and F. Glover / Omega xxx (xxxx) xxx 13 

ARTICLE IN PRESS 

JID: OME [m5G; November 19, 2018;18:17 ] 

 

 

 

 

 

 

 

 

[  

[  

 

[  

[  

 

[  

 

[

 

 

[  

 

[  

[  

 

 

[  

[  

 

[  

[  

 

[  

 

 

[  

[  

 

[  
[13] Glover F . Tabu search-part II. ORSA JComput 1990;2(1):4–32 . 
[14] Glover F , Laguna M . Tabu search. Springer, New York; 1997 . 

[15] Hamid F , Agarwal YK . A polyhedral approach for solving two facility network
design problem. In: Network optimization. Springer; 2011. p. 92–7 . 

[16] Hu JQ , Leida B . Traffic grooming, routing, and wavelength assignment in opti-
cal wdm mesh networks. In: INFOCOM 2004. Twenty-third annual joint confer-

ence of the IEEE computer and communications societies, 1; 2004. p. 495–501 .
[17] Huang W , Lü Z , Shi H . Growth algorithm for finding low energy configurations

of simple lattice proteins. Phys Rev E 2005;72(1):016704 . 

[18] Lee C , Cao X , Yoshikane N , Tsuritani T , Rhee J-KK . Scalable software-defined
optical networking with high-performance routing and wavelength assignment

algorithms. Opt Express 2015;23(21):27354–60 . 
[19] Liu M , Tornatore M , Mukherjee B . Survivable traffic grooming in elastic optical

networks-shared protection. J Lightwave Technol 2013;31(6):903–9 . 
20] Maniezzo V , Stützle T , Voß S . Matheuristics: hybridizing metaheuristics and

mathematical programming. New York: Springer; 2009 . 

[21] Mukherjee B . Optical communication networks. McGraw-Hill; 1997 . 
22] Palmieri F , Fiore U , Ricciardi S . Selfish routing and wavelength assignment

strategies with advance reservation in inter-domain optical networks. Comput
Commun 2012;35(3):366–79 . 

23] Peng B , Lü Z , Cheng T . A tabu search/path relinking algorithm to solve the job
shop scheduling problem. Comput Oper Res 2015;53:154–64 . 

24] Rubio-Largo Á, Vega-Rodríguez MA . Applying MOEAs to solve the static routing

and wavelength assignment problem in optical WDM networks. Eng Appl Artif
Intell 2013;26(5):1602–19 . 

25] Rubio-Largo A , Vega-Rodriguez MA , Gomez-Pulido JA , Sanchez-Perez JM . Mul-
tiobjective metaheuristics for traffic grooming in optical networks. IEEE Trans

Evol Comput 2013;17(4):457–73 . 
26] Saleh MA , Kamal AE . Design and provisioning of WDM networks with many–

to-many traffic grooming. IEEE/ACM Trans Netw 2010;18(6):1869–82 . 

[27] Saleh MA , Kamal AE . Approximation algorithms for many-to-many
traffic grooming in optical WDM networks. IEEE/ACM Trans Network

2012;20(5):1527–40 . 
Please cite this article as: X. Wu, Z. Lü and F. Glover, A matheuristi

grooming, Omega, https://doi.org/10.1016/j.omega.2018.11.012 
28] Vignac B, Vanderbeck F, Jaumard B. Reformulation and decomposition ap-
proaches for traffic routing in optical networks. Networks 2016. doi: 10.1002/

net.21672 . 
29] Wang Y , Gu Q . On the complexity and algorithm of grooming regular traffic in

WDM optical networks. J Parallel Distrib Comput 2008;68(6):877–86 . 
30] Wang Y , Hao J-K , Glover F , Lü Z , Wu Q . Solving the maximum vertex

weight clique problem via binary quadratic programming. J Comb Optim
2016;32(2):531–49 . 

[31] Wang Z , Lü Z , Ye T . Multi-neighborhood local search optimization for machine

reassignment problem. Comput Oper Res 2016;68:16–29 . 
32] Wu X , Lü Z , Guo Q , Ye T . Two-level iterated local search for WDM network

design problem with traffic grooming. Appl Soft Comput 2015;37:715–24 . 
33] Wu X , Yan S , Wan X , Lü Z . Multi-neighborhood based iterated tabu

search for routing and wavelength assignment problem. J Comb Optim
2015;32(2):445–68 . 

34] Wu X , Ye T , Guo Q , Lü Z . GRASP for traffic grooming and routing with simple

path constraints in WDM mesh networks. Comput Netw 2015;86:27–39 . 
35] Xu H , Lü Z , Yin A , Shen L , Buscher U . A study of hybrid evolutionary algorithms

for single machine scheduling problem with sequence-dependent setup times.
Comput Oper Res 2014;50:47–60 . 

36] Yazar B , Arslan O , Kara ̧s an OE , Kara BY . Fiber optical network design problems:
a case for turkey. Omega (Westport) 2016;63:23–40 . 

[37] Zhang J , Ji Y , Song M , Zhao Y , Yu X , Zhang J , et al. Dynamic traffic grooming

in sliceable bandwidth-variable transponder-enabled elastic optical networks.
J Lightwave Technol 2015;33(1):183–91 . 

38] Zhang S , Martel C , Mukherjee B . Dynamic traffic grooming in elastic optical
networks. IEEE J Sel Areas Commun 2013;31(1):4–12 . 

39] Zhang X , Qiao C . An effective and comprehensive approach for traffic groom-
ing and wavelength assignment in SONET/WDM rings. IEEE/ACM Trans Netw

20 0 0;8(5):608–17 . 

40] Zhu K , Mukherjee B . Traffic grooming in an optical WDM mesh network. IEEE
J Sel Areas Commun 2002;20(1):122–33 . 
c for a telecommunication network design problem with traffic 

http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0013
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0013
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0014
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0014
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0014
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0015
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0015
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0015
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0016
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0016
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0016
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0017
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0017
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0017
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0017
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0018
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0018
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0018
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0018
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0018
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0018
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0019
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0019
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0019
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0019
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0020
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0020
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0020
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0020
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0021
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0021
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0022
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0022
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0022
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0022
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0023
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0023
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0023
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0023
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0024
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0024
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0024
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0025
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0025
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0025
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0025
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0025
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0026
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0026
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0026
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0027
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0027
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0027
https://doi.org/10.1002/net.21672
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0029
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0029
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0029
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0030
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0030
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0030
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0030
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0030
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0030
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0031
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0031
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0031
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0031
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0032
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0032
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0032
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0032
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0032
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0033
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0033
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0033
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0033
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0033
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0034
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0034
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0034
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0034
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0034
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0035
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0035
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0035
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0035
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0035
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0035
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0036
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0036
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0036
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0036
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0036
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0037
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0037
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0037
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0037
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0037
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0037
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0037
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0037
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0038
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0038
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0038
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0038
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0039
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0039
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0039
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0040
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0040
http://refhub.elsevier.com/S0305-0483(17)30539-X/sbref0040
https://doi.org/10.1016/j.omega.2018.11.012

	A matheuristic for a telecommunication network design problem with traffic grooming
	1 Introduction
	2 Problem definition and mathematical formulation
	2.1 Problem description
	2.2 Problem formulation
	2.3 Linearization model

	3 Solution method
	3.1 A MIP approach to the grooming subproblem
	3.2 A matheuristic for the k-NDGP
	3.2.1 Search space and cost function
	3.2.2 Neighborhood definition
	3.2.3 The essence of the twist neighborhood
	3.2.4 Completeness of the twist move
	3.2.5 Evaluation of the neighborhood
	3.2.6 Applying the move

	3.3 The matheuristic
	3.3.1 Tabu search procedure
	3.3.2 Diversification technique
	3.3.3 Parameters of the matheuristic


	4 Computational results
	4.1 Benchmark and algorithms used for comparison
	4.2 Calibration of the parameters of the tabu search algorithm
	4.3 Computational results
	4.4 Analysis of the neighborhood evaluation technique
	4.4.1 The accuracy of the evaluation technique
	4.4.2 The effectiveness of the evaluation technique


	5 Conclusion
	Acknowledgments
	References


