
Journal of Heuristics (2019) 25:521–537
https://doi.org/10.1007/s10732-018-9384-y

Diversification-based learning in computing
and optimization

Fred Glover1,2 · Jin-Kao Hao3,4

Received: 14 May 2017 / Revised: 11 June 2018 / Accepted: 11 July 2018 / Published online: 18 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Diversification-based learning (DBL) derives from a collection of principles andmeth-
ods introduced in the field of metaheuristics that have broad applications in computing
and optimization. We show that the DBL framework goes significantly beyond that of
the more recent opposition-based learning (OBL) framework introduced in Tizhoosh
(in: Proceedings of international conference on computational intelligence for mod-
elling, control and automation, and international conference on intelligent agents, web
technologies and internet commerce (CIMCA/IAWTIC-2005), pp 695–701, 2005),
which has become the focus of numerous research initiatives in machine learning and
metaheuristic optimization. We unify and extend earlier proposals in metaheuristic
search (Glover, in Hao J-K, Lutton E, Ronald E, Schoenauer M, Snyers D (eds) Artifi-
cial evolution, Lecture notes in computer science, Springer, Berlin, vol 1363, pp 13–54,
1997; Glover and Laguna Tabu search, Springer, Berlin, 1997) to give a collection of
approaches that are more flexible and comprehensive than OBL for creating intensifi-
cation and diversification strategies in metaheuristic search.We also describe potential
applications of DBL to various subfields of machine learning and optimization.

Keywords Learning-based optimization · Diversification strategies · Metaheuristic
search

B Jin-Kao Hao
jin-kao.hao@univ-angers.fr

Fred Glover
glover@colorado.edu

1 ECEE-College of Engineering and Applied Science, University of Colorado – Boulder, Boulder,
CO 80309, USA

2 OptTek Systems, Boulder, CO, USA

3 LERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers, France

4 Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-018-9384-y&domain=pdf
http://orcid.org/0000-0001-8813-4377

522 F. Glover, J.-K. Hao

1 Introduction

Opposition-based learning (OBL) has become a source of numerous initiatives in the
area of machine learning in artificial intelligence and associated initiatives to enhance
metaheuristic search algorithms in optimization. Since its introduction in Tizhoosh
(2005), a flood of proposals and studies have emerged to exploit its underlying ideas
in a variety of contexts. (See for example, the surveys of Al-Qunaieer et al. 2010;
Ergezer and Sikder 2011; Xu et al. 2014a.)

An earlier framework introduced in the field of metaheuristic search (Glover 1977;
Glover and Laguna 1997) provides a foundation that subsumes many of the OBL
proposals, and gives a basis for additional enhancements. Starting from this foun-
dation, we introduce a diversification-based learning (DBL) framework that yields a
collection of new strategies which enlarges those currently available in the OBL field.
Accompanying this, we describe potential applications of DBL to various subfields of
machine learning and optimization.

2 Background of opposition-based learning

The notion of an “opposite number” or “opposite vector” in OBL bears a close rela-
tionship to the notion of a complemented solution in binary optimization. The original
OBL definition is as follows.

2.1 OBL definition of an opposite number

Relative to a given number x′ ∈ [L, U], the opposite number is given by x′′ �U+L−
x′.

It may be noted that in the case of a binary number x′ ∈ [0, 1], this definition cor-
responds precisely to the definition of the complement of x′ given by x′′ �1−x′. The
definition extends to the situation where x′ is a vector, i.e., x′ � (xj′: j∈ �{1,…,n}),
by identifying bounds Lj and Uj for each component xj’ of x′, and generating a corre-
sponding opposite value xj” for each xj’ to give the components of an opposite vector
x′′.

Subsequently, we will describe other definitions of an opposite number drawn from
the OBL literature which we will compare to new definitions we propose that are
motivated by metaheuristic considerations of diversification.

Historically, OBL has found applications in continuous optimization and has been
used to reinforce a number of population evolutionary metaheuristics. This is typi-
cally achieved by coupling the generation of a candidate solution with the generation
of its corresponding opposite solution during the population initialization and solu-
tion evolution phases. For instance, under the framework of differential evolution,
OBL was employed to generate a diverse set of initial solutions and extend the cur-
rent population by including their opposite solutions during the evolution process
(Rahnamayan et al. 2008a, b). The same approach was also applied to other general
methods like particle swarm optimization (Han and He 2007), artificial neural net-

123

Diversification-based learning in computing and optimization 523

works (Ventresca and Tizhoosh 2009), reinforcement learning (Tizhoosh 2006), and
population-based incremental learning (Ventresca and Tizhoosh 2008). The idea of
using OBL to solve discrete optimization problems has become an object of study in
recent years. For instance, several authors have investigatedOBLwithin the framework
of Biogeography-based optimization to provide approximation methods for traveling
salesman and graph coloring problems (Ergezer and Simon 2011; Xu et al. 2014b).
OBL was also combined with the memetic search framework to solve the maximum
diversity problem (Zhou et al. 2017). In these studies, several alternative definitions of
an opposite solution have been suggested to adapt the OBL concept to these specific
problems.

3 Related framework frommetaheuristic search

As previously observed, the notion of an “opposite number” or “opposite vector” in
OBL bears a close relationship to the notion of a complemented solution in binary
optimization. As we will show in Sect. 4 below, there is a natural way to extend the
definition of a binary complement to refer to numbers x′ ∈ [L, U] (for general lower
and upper bounds L and U) that give a definition of an opposite number different from
the OBL definition (x′′ �U+L−x′) and that possesses useful features. First, however,
we introduce a framework that can be used to exploit both the classical OBL definition
and the new definitions we will subsequently introduce.

3.1 Opposite (diverse) collections versus opposite solutions

Within the setting of binary optimization, the paper Glover (1997) proposes several
diversification generators that start from an arbitrary binary vector x′ � (xj′: j∈N�
{1,…,n}) and create a diverse collectionD(x′) of additional vectors that differ from x′
and from each other in various ways. (Each vector in D(x′) is accompanied by its com-
plement as a special case.) Consequently, from the perspective of opposition-based
learning, this approach may be interpreted as replacing the notion of an opposite solu-
tion with the notion of a diverse (“opposite”) collection, as embodied in the criteria
for diversity used to create D(x′). (The diversification generators in Glover (1997) for
creating various collections D(x′) are described in the “Appendix”, including gener-
ators to create diverse sets of permutation vectors in a sequencing context, to give a
clearer idea of the kinds of criteria that can be relevant.)

3.2 Diverse collections and feasibility

A key insight for exploiting a collection of “opposites” embodied in a diverse collec-
tion comes from the observation that not all elements of a collection D(x′) may be
admissible or feasible relative to the requirements of a given setting—i.e., there may
be constraints that exclude various element x ∈D(x′) from being relevant.

Let xo denote a solution drawn from D(x′)\{x′} (which may or may not be the
complement of x′) and let X denote the set of feasible solutions. Then it becomes

123

524 F. Glover, J.-K. Hao

useful to create a mapping that transforms an infeasible vector xo into a feasible
vector which is “close to” xo.

For this, consider a proximity function fo(x) that embodies a measure of the proxim-
ity of x to xo. Then, for a given xo ∈D(x′) such that xo is infeasible, we use a heuristic
or exact method to

Maximize fo(x) : x ∈ X (1)

The solution thus obtained will then take the place of xo as a member of the diverse
set D(x′).

An example of fo(x) given in Glover (1997) for the binary case is the simple linear
function

fo(x) �
∑

(f0j xj : j ∈ N) (2)

where foj >0 if xoj �1 and foj <0 if xoj �0. Thus, an optimal solution to (1), which
maximizes fo(x) subject to x ∈X, would set xj �1 for foj >0 (hence for xoj �1) and
set xj �0 for foj <0 (hence for x

o
j �0) if such a solution is feasible, yielding xo itself.

For example, the simplest form of fo(x) is given by foj �1 if xoj �1 and foj �– 1 if
xoj �0, thus producing the objective

Maximize
∑

(xj : j ∈ N : x0j � 1)−
∑

(x j : j ∈ N : x0j � 0)

By choosing positive and negative coefficients foj different from 1 and −1 it becomes
possible to produce solutions that possess various desirable features. In the context of
metaheuristic optimization, for instance, it can be useful to allow these coefficients to
embody intensification and diversification goals, as where a positive foj is made larger
to more strongly emphasize setting xj �1 (or a negative foj is made smaller to more
strongly emphasize setting xj �0) according to a frequency memory that counts the
number of times xj �xoj in solutions of various categories (e.g., high quality solutions)
found in the past. Such foj coefficients can be generated either deterministically or
probabilistically as a function of frequency memory.

3.2.1 Useful and exploitable forms of X

As an alternative to stipulating that X represents the set of feasible solutions to a
particular problem, we can instead stipulate that X represents a set of solutions derived
from a problem relaxation. In this case, a solution x ∈X that minimizes fo(x) can be
taken as a starting point for metaheuristic or exact algorithms that generate fully
feasible solutions. In the metaheuristic setting, such algorithms may be based on
neighborhood search, where feasibility can be embodied in the definitions of the
neighborhoods employed. In Sect. 5we discuss the use ofmetaheuristics for generating
such solutions in greater detail.

When fo(x) takes the form
∑

(foj xj: j∈N) indicated in (2), a number of commonly
occurring types of constraints allow fo(x) to be optimized very simply. We identify a
few examples as follows.

123

Diversification-based learning in computing and optimization 525

Multiple choice (GUB) constraints These constraints are given by

∑
(xj : j ∈ Ni) � 1, i ∈ M

where the sets Ni, i∈M form a partition of N. Maximizing fo(x) over such constraints
is accomplished by setting

xj(i) � 1 for j(i) ∈ Ni and xj � 0 for j ∈ Ni\{j(i)}

where j(i)�arg max (foj : j∈Ni). When foj has the elementary form where each foj is 1
or −1, then any j∈Ni with foj �1 qualifies as j(i), and otherwise every j∈Ni qualifies
as j(i) (since all coefficients foj for j∈Ni are 0. Evidently, it is useful to differentiate
among multiple optimal solutions by generating foj coefficients that differ from 1 and
−1 (again, for instance, determined probabilistically or deterministically according
to values of xj in past solutions).

Generalized multiple choice constraints A generalized instance of the foregoing
GUB constraints takes the form

∑
(xj : j ∈ Ni) � mi , i ∈ M

where 0<mi < |Ni| and, as before, the sets Ni, i∈M, form a partition of N. The set of
optimal solutions consist of those that satisfy

xj � 1 if j ∈ Ni(mi), i ∈ M and xj � 0 otherwise

where Ni(mi) consists of mi elements of Ni having the largest values of foj .

A commonly encountered special case A frequently encountered version of the
Generalized Multiple Choice Constraints occurs when M contains a single element,
thus yielding a single constraint

∑
(xj: j∈N1)�m1. For the elementary instance of

fo(x) where each foj is 1 or−1, an optimal solution is constructed simply by observing
that the set N1(m1) is composed by selecting asmany elements j∈Nas possible with foj�1 (equivalently, with xoj �1) among the m1 elements of N1. The “opposite solution”
proposed in Zhou et al. (2017) for the maximum diversity problem corresponds to
such a solution.

Additional useful and commonly occurring types of constraints Other kinds of con-
straints that often arise in practical settings, and that can easily be exploited by special
cases of the preceding framework, include various types of network flow structures,
especially those embodied in network assignment and distribution constraints. Opti-
mal solutions in these instances can be obtained by standard network optimization
algorithms. Likewise, a wide class of problems is attended by multiple knapsack con-
straints, and a variety of metaheuristic approaches can be used to obtain approximately
optimal solutions to (1) in these situations.

123

526 F. Glover, J.-K. Hao

4 An alternative definition of opposite solution from the DBL
perspective

We first introduce a definition of an opposite solutions that generalizes the notion of
a complementary solution and show that this definition has useful features that are
missing from the classical OBL definition. Then we show how our definition can be
embodied in a framework that generalizes the framework described in Sect. 3.

4.1 DBL opposite definition

Once again consider the simplified situation where x′ is a number satisfying x′ ∈ [L,
U]. As an alternative to the OBL definition of an opposite value given by x′′ �U+L−
x′, we introduce the following notation.

Let Lo and Uo be values satisfying Lo ≥L and Uo ≤U, with Lo ≤Uo, as where
Lo �Lo(λL)�L+λL(U−L) and Uo �Uo(λU)�U−λU(U−L), for parameters λL
and λU from the half-open interval [0, 0.5). (For example, if λL �λU �0.2, then Lo

lies one-fifth of the way from L to U and Uo lies one-fifth of the way from U to L.)1

Then we define the “opposite” point x′′ associated with x′ to be the value of x in
the interval [Lo, Uo] that is farthest from x′. More precisely:

x′′ = L0 if x′ ≥ (L0 + U0)/2 and x′′ � U0 if x′′ ≤ (L0 + U0)/2

We observe that whenever x′ >(Lo +Uo)/2 the foregoing definition gives x′′ �Lo and
whenever x′ <(Lo +Uo)/2 the definition gives x′′ �Uo. (These outcomes also hold
if x′ >Uo and if x′ <Lo.) Both Lo and Uo qualify as the opposite of x′ when x′ is
the midpoint (Lo +Uo)/2, and in this case the tie between Lo and Uo can be settled
arbitrarily.

To allow latitude in applying this definition, in the case where Lo and Uo are
determined by reference to λL and λU, these parameters can be varied for different
components of a vector by choosing λL and λU randomly from chosen intervals (e.g.,
such as [1/6, 1/3] or [1/5, 2/5]).When x′ and x′′ are required to be integers, we stipulate
that x′′ be assigned the integer value closest to the value indicated by the preceding
DBLOpposite Definition. In the special case of binary vectors, this convention implies
that different values of λL and λU from the half-open interval [0, 0.5) all are equivalent
to defining x′′ to be the complement of x′. However, different outcomes occur for more
general continuous vectors and non-binary vectors.

The motivation for the preceding definition comes from two sources. First, this def-
inition avoids a drawback of the classical OBL definition x′′ �U+L−x′, as illustrated
in the situation where x′ �0.5(U+L). In this case the “opposite” of x′ is in fact the
same as x′. (For example, when x′ ∈ [0, 1] and takes the midpoint value x′ �0.5, the

1 When Lo and Uo are given as functions of parameters λL and λU, we normally do not choose λL and
λU to be the same, which would cause Lo and Uo to differ by the same amount from L and U. The reason
for this asymmetric treatment of Lo and Uo is because in many applications of optimization, L is given as a
lower bound that is frequently attained (characteristically, L�0), whereas U is typically chosen larger than
any value that x will normally receive.

123

Diversification-based learning in computing and optimization 527

opposite of x′ is also 0.5.) Moreover, the closer x′ is to the interval midpoint, the less
that x′′ differs from x′.

By contrast, according to our preceding definition, the values x′′ �Lo and x′′ �Uo

both qualify as opposites of x′ when x′ lies halfway between Lo and Uo, as previously
noted. This holds for the special case where Lo �L and Uo �U, which gives a direct
comparison with the classical OBL definition.

More generally, we are motivated to choose Lo and Uo to differ from L and U
because of an optimization strategy introduced in Glover et al. (1984) that progres-
sively manipulates lower and upper bounds (therefore generating values that can be
represented by Lo andUo) which enables a complex optimization problem to be solved
by solving a series of much simpler problem relaxations.2 Motivation is also provided
by a parametric strategy for mixed integer programming (Glover 2006) that imposes
bounds through a parameterized objective function in place of a customary branching
procedure, using adaptive memory strategies from tabu search to provide a control
mechanism.3

Several alternative definitions of an opposite solution from the OBL literature that
invite comparison with the DBL definition are offered in the papers Rahnamayan et al.
(2008a, b), Ergezer et al. (2009), Ergezer and Simon (2011), Rahnamayan and Wang
(2009) and Wang et al. (2009). All but one of these definitions fail to drive x′′ away
from x′ in a manner that escapes being constrained by the midpoint of the interval, but
instead generate a point at random that lies between this midpoint and another point
(where the latter is either the point given by the classical OBL definition or the initial
point x′ itself). The definition that constitutes an exception, producing what is called
the generalized opposite point in Wang et al. (2009), can be interpreted as attempting
to drive x′′ away from the midpoint, but has the curious weakness of failing to be
invariant under translations of the bounds L and U. In addition, this approach often
generates a point x′′ that lies outside of the interval [L, U], which is then “repaired”
by replacing x′′ with a point selected at random from the [L, U] interval.4

4.2 Broadened definitions and themax–min distance principle

We now consider several broader definitions of an opposite solution. In each of these,
x′′ is chosen to be the point farthest from x′ subject to being constrained to lie in a
specified interval of values.

As in Sect. 3.1 above, we consider the relation of x′′ not just to a single value x′ but to
a diverse collection X′, where we want x′′ to be in opposition to (diversified in relation
to) all values x′ in X′. A reason for introducing such a conception of opposition stems
from the fact that in population-based metaheuristics we seek new solutions that are
meaningfully opposed to all points in the population. Thus we return to the perspective
where x′ and x′′ are not single values, but vectors x′ � (x1′, x2′, …, xn’) and x′′ � (x1”,

2 In this case, the relaxations consist of network relaxations.
3 Such strategies effectively augment diversification with intensification, and we later observe the relevance
of joining these two processes in the present setting of a diversification-based approach for generating
opposite solutions.
4 One other definition, in Xu et al. (2011), exhibits complications similar to those of Wang et al. (2009).

123

528 F. Glover, J.-K. Hao

x2”, …, xn”). Then we apply the DBL definition of an opposite to the components xj’
and xj” of these vectors. Thus, the set X′ now represents a collection of vectors (such
as a population or sub-population in a population-based metaheuristic) rather than a
collection of values.

An approach suggested in Glover (1994) provides a starting point for this extension,
in which the goal becomes to maximize the minimum distance of x′′ from all points
x′ ∈X′. A variation is to maximize a weighted sum of distances from the points x′ ∈X′,
but in this case the weights must be selected judiciously. A simple sum of distances
can lead to generating vectors that have unattractive features from the standpoint of
making x′′ meaningfully diverse relative to the points in X′.

Utilizing this perspective, we provide a simple component-by-component proce-
dure for generating x′′ in opposition to (diverse from) the vectors in X′.

4.3 Themax–min principle

For each component xj of x, write the corresponding values xj’ of the vectors x′ ∈X′
as x1j , x

2
j , …, xrj , for r� |X′|, where Lj ≤x1j ≤x2j , …,≤xrj ≤Uj. For simplicity, define

x0j �Lj and xr+1j �Uj.

4.4 Themax–min opposite x′′ relative to the set X′

Todetermine each component xj” of x′′, identify an indexh, 0<h≤ r+1 thatmaximizes
xhj −xh − 1

j . If h�1, let xj”�x0j and if h� r+1, let xj”�xr+1j . Otherwise, let xj”� (xhj
+xh − 1

j)/2.
It is easy to verify that this determination of xj” maximizes the minimum distance

from the values xj’ for the vectors x′ ∈X′. Moreover, relative to each component xj’
of x′, the result is equivalent to our earlier DBL definition if we stipulate that x0j �Lo

j

and xr+1j �Uo
j , where U

o
j receives a value that lies between x

r
j and Uj and Lo

j receives

a value that lies between x1j and Lj.
In Sect. 6 we introduce definitions that apply to vectors as units rather than treating

them component-by-component. Further use of the max–min Principle is described in
the “Appendix”.

5 Generalizing the framework of Sect. 3 to handle non-binary vectors

As a starting point, we observe that we may apply the DBL definition of an opposite
solution tomap thebinary solutions of a diverse collectionproducedbyadiversification
generator (such as one of those described in the “Appendix”) into a diverse collection
applicable to vectors x where xj ∈ [Lj, Uj]. Specifically, we operate as follows.

5.1 Generating a diverse collection for non-binary vectors x

Begin with an initial seed solution xs and denote the collection of diverse solutions
associated with xs by D#(xs), where to begin D#(xs)�{xs}

123

Diversification-based learning in computing and optimization 529

Map xs into a binary seed solution ys where ysj �0 if xsj ≤ (Lj +Uj)/2 and ysj �1 if
xsj ≥ (Lj +Uj)/2
Apply a diversification generator to ys to generate a diverse collection D(ys).
Map each solution yo ∈D(ys) into a solution xo ∈D#(xs) (i.e., add xo to D#(xs)) by
one of the following rules:

(R1) Set xoj �Lo
j if y

o
j �0 and xoj �Uo

j if y
o
j �1.

(R2) Set xoj �xsj if y
o
j �ysj and otherwise set x

o
j �Lo

j if y
o
j �0 and xoj �Uo

j if y
o
j�1.

In the foregoing, it should be borne in mind that the values Lo
j and Uo

j of (R1)
and (R2) may be chosen to take the form Lo

j �Lo
j (λL)�Lj +λL(Uj −Lj) and Uo

j �
Uo
j (λU)�Uj −λU(Uj −Lj), as indicated in Sect. 4, where λL and λU are selected

constants applied uniformly for all j∈N or may be allowed to vary for each j∈N (e.g.,
chosen randomly from a selected interval). We observe that if xs is represented by x′,
then the opposite solution x′′ generated by the DBL definition is the same solution
that will be generated by both (R1) and (R2) from the complement of ys.

5.2 Generalizing the feasibility mapping of Sect. 3

In order to map a solution xo ∈D#(xs)\{xs} into a feasible solution, we generalize the
approach of Sect. 3 as follows.

As in Sect. 3.2, we make use of a proximity function fo(x), which in this case
we express in terms of a measure of distance between x and xo, and hence refer to
minimization rather than maximization. Thus the objective becomes

Minimize f0(x) : x ∈ X (3)

where, for example, fo(x) takes the form

f0(x) �
∑(

f0j |xj−x0j |
)
: j ∈ N) (4)

and foj >0 for all j∈N. If xo is binary, then (3) and (4) are equivalent to (1) and (2). By
this means, we create diverse collections of solutions that satisfy x ∈X. In the contexts
normally used in OBL, where only a single opposite solution is generated for a given
solution, it is natural to designate the opposite of xs to be xo.

6 Uses of metaheuristics to generate opposite solutions

We identify several diversification methods for metaheuristics that are well-suited to
generate solutions that qualify as opposite solutions. A useful feature of these methods
is that the “opposite” solutions they produce retain feasibility when the metaheuristics
yield feasible solutions (as where a neighborhood process preserves feasibility).

123

530 F. Glover, J.-K. Hao

6.1 Creating opposite solutions by neighborhood search with tabu search
restrictions

A diversification strategy from tabu search (see, e.g., Glover and Laguna 1993, 1997)
periodically introduces a large tabu tenure to prevent the trajectory of neighboring
solutions from reversing any of its component moves. By selecting the number of
moves defined by “large,” it is possible to generate solutions that constitute varying
levels of opposition relative to the solution that launched the trajectory. An extreme
version of such an approach that uses an unbounded tabu tenure, and continues until no
more moves are available to be selected, was found to be highly effective in Kelly et al.
(1994). This outcome suggests that the use of large tabu tenures to identify opposite
solutions deserves further exploration.

6.2 Bi-directional opposite solutions from exterior path relinking

Exterior path relinking (Glover 2014; Duarte et al. 2015), is a population-based
approach utilizing an initiating solution xI and a guiding solution xG, to creates a
trajectory from xI to xG that goes beyond the guiding solution xG. By interchanging
the roles of the initiating and guiding solutions, the process may be viewed as cre-
ating an opposite solution from the pairing (xI, xG) in one direction and also from
the pairing (xG, xI) in the reverse direction, to create a bi-directional determination
of opposite solutions. The path relinking approach can also be applied with multiple
guiding solutions, and can be varied by choosing different distances beyond xG (or
xI) for generating the opposite solution. These distances have a built-in limit which
identifies an “extreme opposite” analogous to complementing a 0–1 vector.

6.3 Generating opposite solutions from clustering

Clustering provides an important opportunity for organizing the generation of oppo-
site solutions by metaheuristic processes (see, e.g., Glover 1977; Glover and Laguna
1993). For example, exterior path relinking trajectories can be created that select initi-
ating and guiding solutions from different clusters to induce a stronger diversification
effect than choosing them from a common cluster. Moreover, when initiating solutions
and guiding solutions are generated in this way, a solution generated on an interior
trajectory (that is, a solution between xI and xG) that lies outside of the clusters can
also qualify as being in opposition to xI and xG, according to its distance to the bound-
aries of the clusters containing xI and xG.5 This provides an additional distinction for
classifying opposite solutions according to their intensification/diversification focus
and invites research into the effect of this classification on generating useful opposite
solutions in various contexts.

5 The distance from a point x to a cluster boundary in this case can be defined as the distance to the point
in the cluster closest to x.

123

Diversification-based learning in computing and optimization 531

6.4 Creating opposite solutions by extracting diverse subsets from larger
populations

An alternative approach that provides a further basis for creating opposite solutions
arises by generating a relatively large population by initial diversification strategies and
then extractingmutually diverse subsets of points, based on criteria such asmaximizing
the minimum distance from other points in the set under construction. In a sequential
procedure for extracting the points (Glover 1994), these criteria can produce many
ties for the element to be selected next, once a small number of elements have been
selected. Even in the absence of ties such a constructive approach can ultimately create
collections of points that can be improved according to the diversity criteria employed.

Drawing on this observation, a variety of more sophisticated iterative approaches
are introduced in Glover (2016) for obtaining collections of points that are more
diverse than those found by simpler constructive methods. These approaches, which
are developed in the context of creating seed points for clustering, can equally be
applied in other contexts to produce solutions that satisfy useful criteria of opposition.

7 Conclusions

The notion of “opposition” that gives rise to the definitions of an opposite solution
introduced in opposition based learning (OBL) can be significantly extended by refer-
ence to earlier notions of diversification that have emerged in the area of metaheuristic
search. The resulting diversification based learning (DBL) framework is not onlymore
flexible than OBL, but overcomes limitations in the OBL definitions of an opposite
solution. TheDBLperspective further broadens the notion of opposition by conceiving
it to refer not only to a single solution as an opposing partner of a given solution, but
to refer to an “opposite collection” of solutions, as obtained by a diversification gen-
erator. These alternative notions lead to a model that allows the concept of opposition
to operate within the context of feasibility, which is missing from the OBL framework
except by the device of simply rejecting an infeasible opposite solution as inadmissi-
ble, without offering a direct means of establishing a connection to feasibility. Finally,
we demonstrate how earlier diversification ideas for binary vectors can be generalized
in the DBL framework to apply equally to non-binary vectors, identifying a range of
metaheuristic procedures that can produce solutions that can meaningfully qualify as
opposite solutions. The enhanced scope and adaptability of DBL opens the possibility
of creating applications of this framework in realms where OBL has been too narrow
to find a use, and invites studies in the area of metaheuristics where the principles
underlying DBL remain largely unexplored.

Acknowledgements We are grateful to the reviewers for their comments which helped us to improve the
paper.

123

532 F. Glover, J.-K. Hao

Appendix: some basic diversification generators for 0–1 Vectors

We indicate two basic types of diversification generators, one for problems that can
be formulated in a natural manner as optimizing a function of zero–one variables,
and the other for problems that can more appropriately be formulated as optimizing a
permutation of elements. The generators described here are a subset of those identified
in Glover (1997), and more advanced forms of these generators, along with additional
types, can be found in Glover (1997).

The following approaches embody the precept that diversification is not the same as
randomization, and hence differ from the randomized approaches for creating variation
that are proposed in connection with a variety of evolutionary approaches. The goal of
diversification is to produce solutions that differ from each other in significant ways,
and that yield productive (or “interesting”) alternatives in the context of the problem
considered. By contrast, the goal of randomization is to produce solutions that may
differ from each other in any way (or to any degree) at all, as long as the differences
are entirely “unsystematic”. From the present viewpoint, a reliance on variation that
is strategically generated can offer advantages over a reliance on variation that is
distinguished only by its unpredictability.

Diversification generators for zero–one vectors

The first type of diversification generator takes a binary vector x as its seed solution,
and generates a collection of solutions associatedwith an integer h�1, 2,…, h*, where
h* ≤ n−1. (Recommended is h* ≤ n/5.)

We generate two types of solutions, x′ and x′′ for each value of h, by the following
rule:

Type 1 Solution Let the first component x
′
1 of x

′ be 1−x1 and let x1+kh’�1−x1+kh
for k�1, 2, 3,…, k*, where k* is the largest integer satisfying k*≤n/h. Remaining
components of x′ equal 0.

To illustrate for x � (0,0,…,0): The values h�1, 2 and 3 respectively yield x′ �
(1,1,…,1), (1,0,1,0,1…) and (1,0,0,1,0,0,1,0,0,1,…). This progression suggests the
reason for preferring h* ≤ n/5. As h becomes larger, the solutions x′ for two adjacent
values of h differ from each other proportionately less than when h is smaller. An
option to exploit this is to allow h to increase by an increasing increment for larger
values of h.

Type 2 Solution Let x′′ be the complement of x′.

Again to illustrate for x � (0,0,…,0): the values h�1, 2 and 3 respectively yield
x′′ � (0,0,…,0), (0,1,0,1,…) and (0,1,1,0,1,1,0,…). Since x′ duplicates x for h�1, the
value h�1 can be skipped when generating x′′.

The preceding design extends to generate additional solutions as follows. For values
of h≥3 the solution vector is shifted so that the index 1 is instead represented as a vari-
able index q, which can take the values 1, 2, 3,…, h. Continuing the illustration for x�
(0,0,…,0), suppose h�3. Then, in addition to x′ � (1,0,0,1,0,0,1,…), the method also

123

Diversification-based learning in computing and optimization 533

generates the solutions given by x′ � (0,1,0,0,1,0,0,1,…) and (0,0,1,0,0,1,0,0,1…), as
q takes the values 2 and 3.

The following pseudo-code indicates how the resulting diversification generator
can be structured, where the parameter MaxSolutions indicates the maximum number
of solutions desired to be generated. Comments within the code appear in italics,
enclosed within parentheses.

First diversification generator for zero–one solutions

The number of solutions x′ and x′′ produced by the preceding generator is approxi-
mately q*(q*+1). Thus if n�50 and h*�n/5�10, the method will generate about
110 different output solutions, while if n�100 and h*�n/5�20, the method will
generate about 420 different output solutions.

Since the number of output solutions grows fairly rapidly as n increases, this number
can be limited, while creating a relatively diverse subset of solutions, by allowing q to
skip over various values between 1 and q*. The greater the number of values skipped,
the less “similar” the successive solutions (for a given h) will be. Also, as previously
noted, h itself can be incremented by a value that differs from 1.

For added variation:
If further variety is sought, the preceding approach can be augmented as follows.

Let h�3,4,…, h*, for h ≤ n - 2 (preferably h* ≤ n/3). Then for each value of h,
generate the following solutions.

Type1ASolutionLet x1′ �1−x1 andx2′ �1−x2. Thereafter, let x1+kh’�1−x1+kh
and let x2+kh’�1−x2+kh, for k�1,2,…,k*, where k* is the largest integer such
that 2+kp ≤ n. All other components of x′ are the same as in x.

Type 2A Solution Create x′′ as the complement of x′, as before.
Related variants are evident. The index 1 can also be shifted (using a parameter q)

in a manner similar to that indicated for solutions of type 1 and 2.

A sequential diversification generator

The concept of diversification invites a distinction between solutions that differ from
a given solution (e.g., a seed solution) and those that differ from each other.6 Our
preceding comments refer chiefly to the second type of diversification, by their concern
with creating a collection of solutions whose members exhibit certain contrasting
features.

Diversificationof thefirst type canbe emphasized in the foregoingdesignby restrict-
ing attention to the complemented solutions denoted by x′′ when h becomes larger
than 2. In general, diversification of the second type is supported by complementing
larger numbers of variables in the seed solution. This type of diversification by itself
is incomplete, and the relevance of diversification of the first type is important to heed
in many situations.

6 These distinctions have often been overlooked by the genetic algorithm community.

123

534 F. Glover, J.-K. Hao

123

Diversification-based learning in computing and optimization 535

A sequential diversification generator for 0-1 vectors that follows the prescription to
maximize the minimum distance from preceding vectors is embodied in the following
procedure. We say that a solution y complements x over an index set J if yj �1−xj
for j ∈ J and yj �xj for j ∈ N\J.

Sequential (max/min) diversification generator

1. Designate the seed solution x and its complement to be the first two solutions
generated.

2. Partition the index set N �{1,…,n} for x into two sets N’ and N” that, as nearly
as possible, contain equal numbers of indexes. Create the two solutions x′ and x′′
so that x′ complements x over N’ and x′′ complements x over N”.

3. Define each subset of N that is created by the most recent partition of N to be a
key subset. If no key subset of N contains more than 1 element, stop. Otherwise
partition each key subset S of N into two sets S’ and S” that contain, as nearly as
possible, equal numbers of elements. (For the special case where S may contain
only 1 element, designate one of S’ and S” to be the same as S, and the other to be
empty.) Overall, choose the designations S’ and S” so that the number of partitions
with |S’| > |S”| equals the number with |S”|> |S’|, as nearly as possible.

4. Let N’ be the union of all subsets S’ and let N” be the union of all subsets S”.
Create the complementary solutions x′ and x′′ relative to N’ and N” as in Step 2,
and then return to Step 3. (The partition of each critical set into two parts in the
preceding execution of Step 3 will cause the number of critical sets in the next
execution of Step 3 to double.)

The foregoing process generates approximately 2(1+ log n) solutions. If n is a power
of 2, every solution produced maximizes the minimum Hamming distance from all
previous solutions generated. (This maxmin distance, measured as the number of
elements by which the solutions differ, is n/2 for every iteration after the first two
solutions are generated in Step 1. Such amaxmin value is also approximately achieved
when n is not a power of 2.)

In particular, starting with k�n, and updating k at the beginning of Step 3 by
setting k:�k/2 (rounding fractional values upward), the number of elements in each
key subset is either k or k-1. Thus, the method stops when k�1. The balance between
the numbers of sets S’ and S” of different sizes can be achieved simply by alternating,
each time a set S with an odd number of elements is encountered, in specifying the
larger of the two members of the partition to be S’ or S”.

Useful variations result by partitioning N in different ways. Again, descriptions of
these approaches may be found in Glover (1997).

Diversification generator for permutation problems

Although permutation problems can be formulated as 0-1 problems, they constitute
a special class that preferably should be treated somewhat differently. Assume that a

123

536 F. Glover, J.-K. Hao

given trial permutation P used as a seed is represented by indexing its elements so they
appear in consecutive order, to yield P� (1,2,…, n). Define the subsequence P(h:s),
where s is a positive integer between 1 and h, to be given by P(h:s)� (s, s+h, s+2 h,…,
s+ rh), where r is the largest nonnegative integer such that s+ rh ≤n. Then define the
permutation P(h), for h ≤ n, to be P(h)� (P(h:h), P(h:h-1),…, P(h:1)).

Illustration:
Suppose P is given by

P � (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)

If we choose h�5, then P(5:5)� (5,10,15), P(5:4)� (4,9,14), P(5:3)� (3,8,13,18),
P(5:2)� (2,7,12,17), P(5:1)� (1,6,11,16), to give:

P(5) � (5, 10, 15, 4, 9, 14, 3, 8, 13, 18, 2, 7, 12, 17, 1, 6, 11, 16)

Similarly, if we choose h�4 then P(4:4)� (4,8,12,16), P(4:3)� (3,7,11,15), P(4:2)�
(2,6,10,14,18), P(4:1)� (1,5,9,13,17) to give:

P(4) � (4, 8, 12, 16, 3, 7, 11, 15, 2, 6, 10, 14, 18, 1, 5, 9, 13, 17)

In this illustration we have allowed h to take the two values closest to the square
root of n. These values are interesting based on the fact that, when h equals the square
root of n, the minimum relative separation of each element from each other element
in the new permutation is maximum, compared to the relative separation of exactly 1
in the permutation P. In addition, other useful types of separation result, and become
more pronounced for larger values of n.

In general, for the goal of generating a diverse set of permutations, preferable values
for h range from 1 to n/2. We also generate the reverse of the preceding permutations,
denoted by P*(h), which we consider to be more interesting than P(h). The preference
of P*(h) to P(h) is greater for smaller values of h. For example, when h�1, P(h)�P
and P*(h) is the reverse of P. (Also, P(n)�P*(1).) In sum, we propose a Diversification
Generator for permutation problems to be one that generates a subset of the collection
P(h) and P*(h), for h�1 to n/2 (excluding P(1)�P).

References

Al-Qunaieer, F.S., Tizhoosh, H.R., Rahnamayan, S.: Opposition based computing–a survey. In: Proceedings
of International Joint Conference on Neural Networks (IJCNN-2010), pp. 1–7 (2010)

Duarte, A., Sánchez-Oro, J., Resende, M.G.C., Glover, F., Marti, R.: Greedy randomized search procedure
with exterior path relinking for differential dispersion minimization. Inf. Sci. 296, 46–60 (2015)

Ergezer, M., Sikder, I.: Survey of oppositional algorithms. In: Proceedings of International Conference on
Computer and Information Technology, 22–24 December, Dhaka, Bangladesh, pp. 623–628 (2011)

Ergezer, M., Simon, D., Du, D.W.: Oppositional biogeography-based optimization. In: Proceedings of IEEE
International Conference on Systems,Man andCybernetics, SanAntonio,USA, pp. 1009–1014 (2009)

Ergezer, M., Simon, D.: Oppositional biogeography-based optimization for combinatorial problems. In:
Proceedings of Congress on Evolutionary Computation (CEC-2011), pp. 1496–1503 (2011)

Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8(1), 156–166 (1977)

123

Diversification-based learning in computing and optimization 537

Glover, F.: Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discret.
Appl. Math. 49, 231–255 (1994)

Glover, F.:A template for scatter search andpath relinking. In:Hao, J.-K., Lutton, E., Ronald, E., Schoenauer,
M., Snyers, D. (eds.) Artificial Evolution. Lecture Notes in Computer Science, vol. 1363, pp. 13–54.
Springer, Berlin (1997)

Glover, F.: Parametric Tabu search for mixed integer programs. Comput. Oper. Res. 33(9), 2449–2494
(2006)

Glover, F.: Exterior path relinking for zero-one optimization. Int. J. Appl. Metaheur. Comput. 5(3), 1–8
(2014)

Glover, F.: Pseudo-centroid clustering. Soft. Comput. 21(22), 6571–6592 (2016)
Glover, F., Laguna, M.: Tabu search. In: Reeves, C. (ed.) Modern Heuristic Techniques for Combinatorial

Problems, pp. 71–140. Blackwell Scientific Publishing, New York (1993)
Glover, F., Laguna, M.: Tabu Search. Springer, Berlin (1997)
Glover, F., Glover, R., Martinson, F.: A netform system for resource planning in the U.S. bureau of land

management. J. Oper. Res. Soc. 35(7), 605–616 (1984)
Han, L.,He,X.S.:Anovel opposition-based particle swarmoptimization for noisy problems. In: Proceedings

of International Conference on Natural Computation, 24–27 August, Haikou, China, pp. 624–629
(2007)

Kelly, J.P., Laguna,M., Glover, F.: A study of diversification strategies for the quadratic assignment problem.
Comput. Oper. Res. 21(8), 885–893 (1994)

Rahnamayan, S., Tizhoosh, H.R., Salama, M.: Opposition-based differential evolution. IEEE Trans. Evolut.
Comput. 12(1), 64–79 (2008a)

Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Opposition versus randomness in soft computing tech-
niques. Appl. Soft Comput. 8(2), 906–918 (2008b)

Rahnamayan, S., Wang, G.G.: Center-based sampling for population-based algorithms. In: Proceedings of
IEEE Congress on Evolutionary Computation, Trondheim, Norway, pp. 933–938 (2009)

Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In: Proceedings
of International Conference on Computational Intelligence for Modelling, Control and Automa-
tion, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce
(CIMCA/IAWTIC-2005), pp. 695–701 (2005)

Tizhoosh, H.R.: Reinforcement learning based on actions and opposite actions. J. Adv. Comput. Intell.
Intell. Inform. 10(4), 578–585 (2006)

Ventresca, M., Tizhoosh, H.R.: A diversity maintaining population-based incremental learning algorithm.
Inf. Sci. 178(21), 4038–4056 (2008)

Ventresca, M., Tizhoosh, H.R.: Improving gradient-based learning algorithms for large scale feed forward
networks. In: Proceedings of the International Joint Conference on Neural Networks, 14–19 June,
Atlanta, USA, pp. 3212–3219 (2009)

Wang, H.,Wu, Z.J., Liu, Y.,Wang, J., Jiang, D.Z., Chen, L.L.: Space transformation search: a new evolution-
ary technique. In: Proceedings of ACM/SIGEVO Summit on Genetic and Evolutionary Computation,
Shanghai China, pp. 537-544 (2009)

Xu, Q., Wang, L., He, B.M., Wang, N.: Opposition-based differential evolution using the current optimum
for function optimization. J. Appl. Sci. 29, 308–315 (2011)

Xu, Q., Wang, L., Wang, N., Hei, X., Zhao, L.: A review of opposition based learning from 2005 to 2012.
Eng. Appl. Artif. Intell. 29, 1–12 (2014a)

Xu, Q., Guo, L., Wang, N., He, Y.: COOBBO: a novel opposition-based soft computing algorithm for TSP
problems. Algorithms 7, 663–684 (2014b)

Zhou, Y., Hao, J.-K., Duval, B.: Opposition-based memetic search for the maximum diversity problem.
IEEE Trans. Evol. Comput. 21(5), 731–745 (2017)

123

	Diversification-based learning in computing and optimization
	Abstract
	1 Introduction
	2 Background of opposition-based learning
	2.1 OBL definition of an opposite number

	3 Related framework from metaheuristic search
	3.1 Opposite (diverse) collections versus opposite solutions
	3.2 Diverse collections and feasibility
	3.2.1 Useful and exploitable forms of X

	4 An alternative definition of opposite solution from the DBL perspective
	4.1 DBL opposite definition
	4.2 Broadened definitions and the max–min distance principle
	4.3 The max–min principle
	4.4 The max–min opposite x″ relative to the set X′

	5 Generalizing the framework of Sect. 3 to handle non-binary vectors
	5.1 Generating a diverse collection for non-binary vectors x
	5.2 Generalizing the feasibility mapping of Sect. 3

	6 Uses of metaheuristics to generate opposite solutions
	6.1 Creating opposite solutions by neighborhood search with tabu search restrictions
	6.2 Bi-directional opposite solutions from exterior path relinking
	6.3 Generating opposite solutions from clustering
	6.4 Creating opposite solutions by extracting diverse subsets from larger populations

	7 Conclusions
	Acknowledgements
	Appendix: some basic diversification generators for 0–1 Vectors
	Diversification generators for zero–one vectors
	First diversification generator for zero–one solutions
	A sequential diversification generator
	Sequential (max/min) diversification generator
	Diversification generator for permutation problems
	References

