
Chapter 8

A Class of Parametric Tree-Based Clustering Methods

Fred Glover and Yang Wang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76406

Provisional chapter

DOI: 10.5772/intechopen.76406

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

A Class of Parametric Tree-Based Clustering Methods

Fred Glover and Yang Wang

Additional information is available at the end of the chapter

Abstract

We introduce a class of tree-based clustering methods based on a single parameter W
and show how to generate the full collection of cluster sets C(W), without duplication,
by varying W according to conditions identified during the algorithm’s execution. The
number of clusters within C(W) for a given W is determined automatically, using a graph
representation in which cluster elements are represented by nodes and their pairwise con-
nections are represented by edges. We identify features of the clusters produced which
lead to special procedures to accelerate the computation. Finally, we introduce a related
node-based variant of the algorithm based on a parameter Y which can be used to gen-
erate clusters with complementary features, and a method that combines both variants
based on a parameter Z and a weight that determines the contribution of each variant.

Keywords: clustering, minimum spanning trees, spanning forests, machine learning,
big data analytics

1. Introduction

Clustering methods have long been a mainstay of statistics and machine learning [1–3], and
have experienced a surge in importance with the advent of Big Data Analytics [4, 5]. A highly
successful use of clustering in practical applications has been to seek out particular kinds of
clustering methods that are effective in particular settings, based on the finding that different
classes of problems respond best to specific classes of clustering methods. This finding moti-
vates the work of this paper, which introduces a new class of tree-based clustering methods
with an ability to modify the kinds of clusters produced by changing the value of a particular
parameter. Moreover, we show all members of class can be generated without duplication by
a process that adaptively determines each new parameter value from the information pro-
duced by executing the class member that precedes it.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

We are motivated to use a tree-based algorithm due to their applications in genome analysis
[6–8], image segmentation [9, 10], statistics [11] and microaggregation [12]. The most common
forms of the tree-based clustering methods in the literature [8, 13–15] begin with a minimum
spanning tree and then successively delete edges according to various criteria. However, our
approach has a greater level of flexibility than these commonly applied methods due to the
fact that the clusters produced include those that cannot be obtained by removing edges of a
minimum spanning tree.

We introduce special techniques for accelerating the execution of our basic approach by
exploiting its underlying properties and then introduce a closely related clustering algorithm
that replaces an “edge-based” focus with a complementary “node-based” focus. We unify
these two classes of approaches by identifying a third class that marries their complementary
features, and which provides additional variation by means of a weight that permits the con-
tribution of these complementary approaches to be varied along a continuum. We conclude
by demonstrating how the procedures for accelerating the first method can be expressed in a
more general form to accelerate the execution of the combined procedure as well.

The ability to generate a family of clustering methods from each of the three basic clustering
designs by varying a single parameter (and the weight employed by the third method) invites
empirical research to determine parameter ranges that are effective for specific types of clus-
tering applications, opening the possibility to produce clusters exhibiting features different
from those customarily obtained.

2. Cluster problem formulation

The clustering problem in our treatment is formulated by reference to a graph G = (N, E)
where N = {1, …, n} is a set of nodes (cluster elements) and E is a set of edges (pairwise connec-
tions between elements) given by E ⊂N × N = {(p,q): p,q∈N}. The notation (p,q) is understood
to represent an unordered pair (hence (p,q) = (q,p), and is equivalently represented by the
set notation {p,q}). Each edge e = (p,q) ∈ E has an associated cost (or length) denoted by c(e)
(= c(p,q)). It is not necessary to assume that G is complete or connected. We also do not require
that the costs c(e) be nonnegative.

The goal is to partition N into sets (clusters) Nk, k∈ K = {1, …, ko}, where the value ko is auto-
matically determined by the clustering process. We also identify an associated set of edges Ek⊂
{(p,q), p,q∈ Nk}, where the subgraph (Nk,Ek) of G constitutes a min cost spanning tree over the
nodes of Nk. In contrast to those tree-based clustering approaches that begin with a min cost
spanning tree over all of G and selectively delete particular edges, our algorithm produces
subgraphs (Nk,Ek), k ∈ K, that may not be possible to obtain by deleting edges from such a tree.

The class of clustering methods we describe is based on specifying the value of a parameter
W, whose value uniquely determines the outcome of each clustering method within the class.
W is expressed as an additive threshold for selecting edges and hence nodes to be added to a
current construction (collection of subgraphs), and observe that W can equally be expressed as
a multiplicative threshold in the case where the costs are nonnegative and the two approaches
are equivalent in this instance.

Recent Applications in Data Clustering136

We start with any selected value W = Wo≥ 0 and after obtaining a collection of clusters C(W)
for a given W we systematically modify W so that over successive iterations all possible clus-
ter collections C(W) for W ≥ Wo will be generated without duplication. The complete range of
cluster collections results by choosing Wo = 0 (or Wo = 1 in the multiplicative version).

3. Algorithm to generate the cluster collections C(W)

In overview, we index the edges of E in ascending cost order so that c(e(1)) ≤ c(e(2)) ≤ … ≤ c
(e(|E|)), and identify the nodes of edge e(s) by writing e(s) = (p(s), q(s)). We start with each
cluster Nk consisting of just the node k, that is, each cluster is a degenerate single node tree
given by.
 Nk =  {k} , k ∈ K for K = N =  {1, … , n}

The associated set Ek of edges in the tree corresponding to Nk is empty (Ek = ∅). As the algo-
rithm progresses, the composition of the clusters will change and the index set K of clusters
will change accordingly.

In addition, we keep a cost value denoted by MinCost(k) for each k ∈ K which identifies the
cost of the minimum cost edge e ∈ Ek. To begin, since no cluster yet contains an edge, we
define MinCost(k) = Large, a large positive number, for all k ∈ K. (We will not have to exam-
ine the set Ek to identify MinCost(k) = Min(c(e): e ∈ Ek) because the structure of the algorithm
will insure that MinCost(k) will equal the cost of the first edge added to Ek. In general, while
we describe the composition of Ek and the manner in which it changes, the organization of
the algorithm assures that it is unnecessary to keep track of Ek since the sets Nk, for k∈ K, will
identify the elements in the clusters produced.)

We also maintain a list L(i) for each i∈ N that names the cluster that node i belongs to. Hence,
initially, L(i) = (i) since i∈ Ni = {i} for all i∈ N. The redundancy provided by this list enables
updates to be performed efficiently. Subsequently, L(i) is modified as node i becomes the
member of a new cluster Nk. As this is done, the list K will come to have “holes” in it, i.e., will
not consist of consecutive indexes. (At the end of the algorithm we can rename the clusters
indexes, if desired, so that K = {1, 2, …, ko} where ko = |K|.)

Finally, during the process of generating the cluster collection C(W) for the current W value,
we will identify a value Wnext so that the process may then be repeated for W: = Wnext to
generate a new collection of clusters. As previously noted, by starting with W = Wo = 0 (or
W = Wo = 1 in the multiplicative version), and then successively identifying Wnext each time a
cluster collection C(W) is generated, we can ultimately generate all possible collections C(W),
without duplication. The process terminates when W becomes large enough that C(W) con-
sists of a min cost spanning tree over each connected component of G. (A simple condition for
identifying this termination point is identified below.)

Building on these observations, we now state the full form of our algorithm.

C(W) Algorithm (Multiplicative Version)

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Wo value for W.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

137

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set W = Wo and sLast = |E|

Begin Outer Loop

While W < Large

Initialization(A). Set Wnext = Large, K = {1, …, n}, and for each k ∈ K let L(k) = k,

Nk = {k}, Ek = ∅, and MinCost(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)), to create the first non-
degenerate cluster (containing more than one node and hence more than 0 edges) by
identifying k′ = L(i′) and k″ = L(i″) and absorbing Nk″ into Nk′ to create the cluster Nk′: =
Nk′∪ Nk″ = {i′, i″} with edge set Ek′ = e(1). Set MinCost(k′) = c(e(1)) and conclude by elimi-
nating the superfluous cluster Nk″ (now contained within Nk′) by setting K: = K \ {k″}.
Finally, initialize the edge index s by setting s = 1.

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′)
and k″ = L(i″). There are three cases:

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next
 iteration of the Inner Loop.

Case (2): If c(e(s)) > W + MinCost0, for MinCost0 = Min(MinCost(k′), MinCost(k″)),
 then edge e(s) is forbidden to be added to join the clusters Nk′ and Nk″ into
 a single cluster. In this case, compute Wnext = Min(Wnext, c(e(s)) –MinCost0)
 and continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply)1: Absorb Nk″ into Nk′ to create the larger
 cluster Nk′ := Nk′∪Nk″ with its associated edge set Ek″: = Ek′∪ Ek″∪{e(s)}.
 Correspondingly, update L(i) by setting L(i) = k′for all i∈ Nk″, and set
 MinCost(k′) := Min(MinCost(k′), MinCost(k″), c(e(s)). Finally, eliminate the
 superfluous cluster Nk″(whose elements are now contained within Nk′) by
 setting K : = K \ {k″}.

Endwhile.

// The node and edge sets for the collection of clusters C(W) for the current W are given.

// by Nk and Ek for k ∈ K. The node sets can alternatively be recovered by reference to.

// the values L(i), i = 1, …, n.

W = Wnext

Endwhile

End of C(W) Algorithm

1Case (3) generalizes Initialization(B).

Recent Applications in Data Clustering138

We employ the customary convention that a loop of the form “While x < Constant” will be
bypassed if the beginning value of x does not satisfy “x < Constant” and that the execution of
the loop will not be interrupted if x is changed so that x ≥ Constant within the loop (though
the execution will then terminate at the loop’s conclusion). Hence, for example, in the Inner
Loop when s: = s + 1 results in s = sLast, the loop will continue its execution until the current
iteration ends.

We now make several observations about the algorithm.

Remark 1: The multiplicative version of the C(W) Algorithm results by modifying Case (2) to
replace W + MinCost0 by W∙MinCost0 and to replace Wnext = Min(Wnext, c(e(s)) – MinCost0)
by Wnext = Min(Wnext, c(e(s))/MinCost0). (Hence, addition is replaced by multiplication and
subtraction is replaced by division.) These approaches will generate the same collection of
clusters under the assumption that all c(e) > 0 for the following reason: a positive value W′ can
always be found for the multiplicative case that will cause Wnext to screen out the same set of
elements as any positive value W for the additive case, and vice versa. This relationship can
also be extended to cover the situation where all c(e)are nonnegative.

Remark 2: The assignment W = Wnext at the end of the outer loop can be replaced by setting
W:= Wnext + Δ for a chosen increment Δ to generate only a subset of the possible C(W) col-
lections. Experimentation with a given class of cluster applications may additionally lead to
identifying upper and lower bounds on W (or specific intervals for W) that prove most effec-
tive for that class.

Remark 3: To reduce the updating effort of Case (3), the indexes i′ = p(s) and i″ = q(s) can be
interchanged (hence also interchanging k′ and k″) to assure that |Nq(s)| ≤ |Np(s)|. (More
comprehensive ways of reducing computation are identified in Sections 4 and 7.)

Remark 4: The justification of terminating the outer loop of the algorithm when W = Large
(after setting W = Wnextat the conclusion of the inner loop) derives from the observation
that Wnext = Large implies the condition c(e(s)) > W + MinCost0 is never satisfied in Case (2).
(When this terminating condition occurs in a connected graph, the method will have gener-
ated a min cost spanning tree.) Moreover, if the algorithm is repeated for W = Large, the same
outcome will result.

Remark 5: When Wo = 0 (or Wo = 1 for the multiplicative case), each resulting node-disjoint
subgraph (Nk, Ek) in the collection C(W) consists of a tree in which the cost c(e) for all edges
e ∈ Ek is the same.

Remark 6: In a complete graph, the algorithm will leave at most one node isolated (with
Nk = {k} and Ek = ∅) at the conclusion of the Inner Loop for any W. In a graph that is not
complete or not connected, no node that is not isolated in G will be left isolated in the collec-
tion C(W) for W sufficiently large. (To permit additional isolated nodes, a limit clim may be
imposed that prevents C(W) from including any edges e such that c(e) > clim.)

Remark 7: When there are tied (duplicate) cost values c(e), all orderings of e(1) to e(|E|) sat-
isfying c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)) will produce the same collection of clusters C(W) in
the following sense: For a given value of W, all orderings will produce the same node sets Nk
defining C(W), and the sum of costs over the edge sets Ek will also be the same, though the
edges within these sets may differ.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

139

4. Fundamental relationships for accelerating the algorithm

A number of key relationships hold for the C(W) Algorithm that make it possible to accelerate its
execution. We discuss the relationships here in broad outline and then incorporate them in Section 7
within a template for a computer code that applies not only to C(W) but to additional related
types of cluster collections C(Y) and C(Z) whose algorithms are described in Sections 5 and 6.

4.1. Early termination of the inner loop

The Inner Loop can typically terminate far in advance of satisfying the condition s = sLast for
sLast = |E|, hence making it unnecessary to examine all edges of the graph.

First note that the process of examining the edges in ascending cost order implies that once
c(e(s)) > W + MinCost(k) for a given k = ko∈ K, then the inequality c(e(v)) > W + MinCost(ko)
will also hold for all subsequent edges e(v) for v > s. Hence, by Case (2) of the algorithm, no
nodes or edges will be adjoined to the cluster sets Nko and Eko for v > s. In addition, it will be
unnecessary to update Wnext by reference to ko in the future.

It may further be observed that the MinCost(k) values are generated in a sequence that makes
it possible to readily identify (without sorting) the values k(1), k(2), …, k(m), so that Min
Cost(k(1)) ≤ MinCost(k(2)) ≤ … ≤ MinCost(k(m)). It is convenient to define m so that these
values refer just to those k ∈ K such that MinCost(k) < Large. (Recall that MinCost(k) = Large
implies that Nk consists of a single node k, and Ek = ∅.)

Thus if c(e(s)) > W + MinCost(k(m)), we know that none of the clusters indexed from k(1) to
k(m) can take part in the creation of new clusters. Alternatively, if we start by checking whether
c(e(s)) > W + MinCost(k(h)) holds for h = 1 and work forward until finding the first index k(h*)
for which the inequality does not hold, then on future encounters with Case (2) it is possible
to start from k(h*) rather than k(1) to begin checking whether c(e(s)) > W + MinCost(k(h)).

In consideration of these relationships, it should be kept in mind that when two clusters k′
and k″ are joined, then MinCost(k″) will no longer be referenced (since the cluster k″ will no
longer exist). To see the consequences of this, suppose that k′ and k″ are interchanged, if nec-
essary, so that MinCost(k′) ≤ MinCost(k″). Then when Nk″ is absorbed into Nk′, the following
two possibilities arise:

i. MinCost(k′) < Large (hence MinCost(k′) identifies the cost of an edge previously added)
and MinCost(k′) will be unchanged;

ii. MinCost(k′) = Large, and the new MinCost(k′) will be the value c(e(s)) of the edge e(s)
currently added.

This implies that in the sequence MinCost(k(1)) ≤ MinCost(k(2)) ≤ … ≤ MinCost(k(m)),
the value MinCost(k″) will drop out, and the value MinCost(k′) will either be unchanged
and retain its position, or else it will change from a Large value to become the new value
MinCost(k(m)) at the end of the ordered list.

However, applying this knowledge to shortcut the checks performed in Case (2) does not
make it possible to save appreciable computation, since the amount of effort to perform the

Recent Applications in Data Clustering140

checks of Case (2) is not great in any case. Instead, we can make use of the foregoing relation-
ships in a simpler manner without having to keep track of the values k(1), k(2), …, k(m).

To accomplish this, we record the number of elements nk in each node set Nk by initializing all
nk = 1, and then setting nk′: = nk′ + nk″ when Nk″ is absorbed into Nk′ in Case (3). We also record
the number of times t(i) each node i is encountered as a node i′ = p(s) or i″ = q(s) by initial-
izing t(i) = 0 for all i, and then setting t(i′): = t(i′) + 1 and t(i″): = t(i″) + 1 when the edge e(s) is
examined in the prelude to Case (1)of the algorithm (and also for i′ and i″ in the Initialization).
Note that t(i) is bounded by tMax(i) which is the number of nodes adjacent to i in the graph G
(where tMax(i) = n – 1 if G is complete).

We are interested in determining when t(i) = tMax(i) for an isolated node. We can conve-
niently identify the condition of being isolated by i = L(i). In conjunction with the preceding
records, this makes it possible to keep track of the number nTrack of nodes that cannot take
part in any further steps of adding an edge to C(W), and hence permitting the inner loop to
terminate when nTrack = n.

Specifically, by initializing nTrack = 0, the first time c(e(s)) > W + MinCost(k)occurs for a given
k = k′ or k″ in Case (2), we set nTrack: = nTrack + nk. (To identify this first occurrence, initialize
FirstTime(k) = True, and then set FirstTime(k) = False at the point of setting nTrack: = nTrack
+ nk.) We also set nTrack: = nTrack + 1 whenever t(i) is incremented for i = i′ and i″ in the pre-
lude to Cases (1) to (3) to yield t(i) = tMax(i) under the condition that i = L(i). By checking for
nTrack = n at each point where nTrack changes its value, we can then terminate the inner loop
when this condition occurs.

Having performed the foregoing operations to terminate early for W = Wo, we may take
advantage of another useful relationship to terminate early for all W > Wo. In particular, let
sEnd(W) equal the value of s for the final edge e(s) added to C(W) for a given W. Then for
values W′ and W″ such that W″ > W′, we are assured that sEnd(W″) ≤ sEnd(W′). Consequently,
we can exploit this fact by introducing a variable sEnd which is set to sEnd = s at the conclu-
sion of Case (3), which will cause sEnd to be the index s of the final edge added in construct-
ing the current C(W). Then it is only necessary to set sLast = sEnd after the termination of the
Inner Loop, thus overriding the initialization sLast = |E| to permit the next execution of the
Inner Loop to terminate earlier. We can also allow the final execution of the Inner Loop to
terminate earlier by the fact that the spanning tree generated on this execution will have n − 1
edges, while all other constructions must have fewer than this number of edges.

4.2. Advanced starting for successive W values

We can also accelerate the computation of the algorithm by saving information to produce an
advanced start on successive executions of the Inner Loop. The underlying relationships are
as follows.

Let s2(1), s2(2), …, s2(v2) denote the s indexes starting with s2(1) = 1 (when Wnext = Large)
where the values s2(v) for v > 1 identify successive edges e(s) for which a new (smaller)
value of Wnext is identified in Case (2). Also, starting with W(1) = Large, let W(1), W(2), …,
W(v″) denote the corresponding values for Wnext identified at these points (hence, for v2 > 1,
W(1) > W(2) > … > W(v2)). Similarly, let s3(1), s3(2), …, s3(v3) denote the s indexes starting with

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

141

s3(1) = 1 where the values s3(v) for v > 1 identify successive edges e(s) that are added in Case
(3) of the Inner Loop(to generate the current cluster collection C(W)).

After completing the Inner Loop for W = Wo (while saving this information), upon assigning
W the value Wnext = W(v2), the fact that Wnext < W(v) for v < v2 implies that the algorithm
will perform exactly the same sequence of steps until reaching s = s2(v2), at which point the
edge e(s) for s = s2(v2), will be added to the construction (although this edge was not added on
the previous execution of the inner loop).

Consequently, all edges e(s3(v)) for s3(v) < s2(v2) will again be added to the current con-
struction, and the values s2(v) for v < v2 will also be unchanged. Hence, letting v* = Max(v:
s3(v) < s2(v2)) we can start the current construction by simply adding the edges e(s) for s = s3(1)
to s3(v*), followed by adding the edge e(s) for s = s2(v2) (whose index s2(v2) therefore becomes
recorded as the new index s3(v* + 1)). Then the customary Inner Loop for W > Wo can be
executed starting with s initialized by setting s = s2(v2) instead of s = 1. Subsequent executions
of the Inner Loop continue to save the same information, which is used again to create an
advanced start in the manner described.

By this means, we avoid examining all edges e(s) for s < s2(v2) that were not added to the pre-
vious construction. We also avoid having to re-do the checks to determine that the remaining
edges qualify to be added. Together this can amount to a considerable savings in computation.

A possibility arises to save additional computation by using more memory. Each time a new
candidate for Wnext is identified, in the process of identifying the indexes s2(1), s2(2), …,
s2(v2), we can save a current copy of the arrays Nk, Ek, MinCost(k) and K used by the algo-
rithm, avoiding the burden of excessive memory by overwriting the previous copy each time
a new one is made. Then the latest copy will be available at the point where the edge e(s) for
s = s2(v2) is added on the current execution of the loop, making it possible to recover the arrays
without having to regenerate them to resume the current loop.

However, it may not be possible to take advantage of a current copy of the saved arrays on
every iteration of the Inner Loop (unless previous copies are not overwritten when new ones
are made). After re-starting by recovering the arrays for s2(v2), if now a new Wnext value is
determined for s > s2(v2) (referring to the v2 of the previous execution) then we can proceed by
again making a copy of the arrays for the next execution of the loop. But if it no new value of
Wnext is found for s > s2(v2), then the previous value W(v2–1) (for s = s2(v2–1) will be the new
final Wnext value, and no copies of the arrays remain in memory for this value.

Consequently, in this latter case we resort to the construction that does not rely on the copied
arrays, generating the arrays instead in the process of adding edges. Thus, on the next execu-
tion of the inner loop we will again have the copies available. Hence in this fashion we will
be able to take advantage of the copied arrays at least on every second execution of the loop,
if not more frequently.

As previously noted, the foregoing relationships and their implications are embodied in a for-
mat suitable for creating a computer code in Section 7, after we first describe two additional
algorithmic variants that can be exploited by analogous relationships.

Recent Applications in Data Clustering142

5. Algorithm C(Y): a node-based algorithmic variant

It is possible to formulate a node-based variant of the C(W) algorithm which follows a closely
related format and is supported by a similar rationale.

In the node-based approach, we replace the parameter W by a parameter Y which is linked
to costs associated with nodes in Nk rather than to costs associated with edges in Ek. (More
precisely, the costs associated with nodes are also derived from edges—i.e., the edges that
meet these nodes—though these edges are different from those referenced in the C(W)
algorithm.)

Accompanying this parameter change, we replace the value MinCost(k) associated with the
sets indexed by k ∈ K with a value MinCostB(i) associated with the nodes i∈ N, and more
particularly, we replace MinCost(k′) for k′ = L(i′) by MinCostB(i′), and replace MinCost(k″) for
k″ = L(i″) by MinCostB(i″)).

This replacement changes the updating rule when Nk″ is absorbed into Nk′ in Case (3).
Specifically, the values MinCostB(i′) and MinCostB(i″)) are updated by setting MinCostB(i):
= Min(MinCostB(i),c(e(s)) for i = i′ and i″, in contrast to the update involving MinCost(k′) and
MinCost(k″) (which setsMinCost(k′): = Min(MinCost(k′),MinCost(k″), c(e(s))).

The reason for these changes is as follows. In the node-based version, to permit the edge e(s) = (i′, i″)
(= (p(s),q(s))) to be added and hence to join the subgraphs (Nk′, Ek′) and (Nk″, Ek″), we require
that c(e(s)) ≤ Y + MinCostB(i) for both i = i′ and i″. Hence we require c(e(s)) ≤ Y + MinCostB0, for
MinCostB0 = Min(MinCostB(i′), MinCostB(i″)). On the other hand, if c(e(s)) > Y + MinCostB0,
we are prevented from adding edge e(s), and by the preceding relationships this causes the first
part of Case (2) to retain exactly the same form as in the C(W) algorithm.

To update MinCostB(i′) and MinCostB(i″) in Case (3), we must account for the fact that each
of these two values is affected only by the cost of the edge e(s), and hence will either retain
its present value or become equal to c(e(s)), according to which is smaller. (It may be noted
that once node i for i = i′ or i″ has been assigned an edge cost c(e(s)), then MinCostB(i) will not
change thereafter, since any edge e(s) that is added later to meet node I will have a cost no less
than that of the earlier edge.)

Based on these observations, we can state the form of the C(Y) algorithm as follows.

C(Y) Algorithm (Node-Based Version)

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Yo value for Y.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Y = Yoand sLast = |E|.

Begin Outer Loop

While Y < Large

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

143

Initialization(A). Set Ynext = Large, K = {1, …, n}, and for each k ∈ K let L(k) = k,

Nk = {k}, Ek = ∅, and MinCostB(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)) by identifying k′ = L(i′)
and k″ = L(i″) and absorbing Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with
edge set Ek′ = e(1). Set MinCostB(k′) = c(e(1)) and set K: = K \ {k″}. Finally, initialize the
edge index s by setting s = 1.

Begin Inner Loop

While s < sLast|

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ =
L(i′) and k″ = L(i″).

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next
 iteration of the Inner Loop.

Case (2): If c(e(s)) > Y + MinCostB0, for MinCostB0 = Min(MinCostB(i′),
 MinCostB(i″)), then compute Ynext = Min(Ynext, c(e(s)) – MinCostB0) and
 continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply): Absorb Nk″ into Nk′ to create Nk′: = Nk′∪ Nk″
 with its associated edge set Ek″: = Ek′∪ Ek″ ∪ {e(s)}. Set L(i) = k′ for all i∈ Nk″,
 and setMinCostB(i): = Min(MinCostB(i), c(e(s)) for i = i′ and i″. Finally, set K:
 = K \ {k″}.

Endwhile.

Y = Ynext.

Endwhile.

End of C(Y) Algorithm

The Remarks concerning the C(W) algorithm in Section 3 can be applied as well to the C(Y)
algorithm.

Now we show how to join the C(W) and C(Y) algorithms.

6. Algorithm C(Z): a combination of C(W) and C(Y)

Each of the C(W) and C(Y) algorithms has features lacking in the other. However, the C(Y)
algorithm has a potential deficiency, which resides in the fact that it is subject to “drift”—a
phenomenon where the costs of edges in an edge set Ek can grow along a chain, where each
new edge added to Ek has a higher cost than the previous one. Such an eventuality can arise
because the cost of an edge in a chain is limited only by the cost of the previous edge.

Recent Applications in Data Clustering144

It is possible to combat drift and also take advantage of the different features of the C(W) and
C(Y) algorithms by joining these algorithms to create an algorithm C(Z) that incorporates the
MinCost evaluation criteria of both C(W) and C(Y) simultaneously.

Let α be a nonnegative weight applied to the edge selection criterion of C(W) and let β = 1 – αbe
a nonnegative weight applied to the edge selection criterion of C(Y). We construct Algorithm
C(Z) so that it will be the same as C(W) if α = 1 and will be the same as C(Y) if α = 0 (β = 1).

For notational convenience, we refer to the value MinCost(k) of the C(W) algorithm as
MinCostA(k). Then the MinCost evaluation criterion of C(Z) is given by.

 MinCostC(i) = α∙MinCostA(k) + β∙MinCostB(i), for k = L(i).

To apply this criterion, we create values MinCostC(i′) and MinCostC(i″) for nodes i′ = p(s) and
i″ = q(s), and for k′ = L(i′) and k″ = L(i″), given by

 MinCostC (i ′)  = α ∙ MinCostA (k ′) + β ∙ MinCostB (i ′)

 MinCostC (i ″)  = α ∙ MinCostA (k ″) + β ∙ MinCostB (i ″)

Associated with the foregoing values, we define

 MinCostC0 = Min (MinCostC (i ′) , MinCostC (i ″))

We state the C(Z) algorithm by reference to these definitions.

C(Z) Algorithm.

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Zo value for Z.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Z = Zo and sLast = |E|

Begin Outer Loop

While Z < Large

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and k″ =
L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with edge set Ek′
= e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and i″. Set.

K: = K \ {k″} and s = 1.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

145

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ =
L(i′) and k″ = L(i″).

Case (1): If k′ = k″, then continue to the next iteration of the Inner Loop.

Case (2): If c(e(s)) > Z + MinCostC0 (for MinCostC0 determined by the preceding
 definitions), then compute Znext = Min(Znext, c(e(s)) – MinCostC0) and
 continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply): Absorb Nk″ into Nk′ to create the larger clus
 ter Nk′: = Nk′∪ Nk″ with its associated edge set.

 Ek″: = Ek′∪ Ek″ ∪ {e(s)}.

Correspondingly, update L(i) by setting L(i) = k′ for all i∈ Nk″, and set MinCostA(k′):
= Min(MinCostA(k′),MinCostA(k″), c(e(s)); MinCostB(i): = Min(MinCostB(i),c(e(s))
for i = i′ and i″ (thus yielding MinCostC(i) by the definitions above).Finally, set K:
= K \ {k″}.

Endwhile

Z = Znext

Endwhile

End of C(Z) Algorithm

The next section shows how to carry out accelerated updates in the context of the preceding
algorithm.

7. Implementing accelerated updates for the C(Z) algorithm

We build on the relationships identified in Section 4 to apply them to the more general C(Z)
algorithm. By the implications described earlier, our general updates also apply directly to the
C(W) and C(Y) algorithms by respectively replacing Z with W and Y (hence Znext with Wnext
and Ynext) and replacing MinCostC(∙) by MinCost(∙) and MinCostB(∙).

7.1. Early termination for the C(Z) inner loop

Early termination for the Inner Loop of C(Z) is effected by creating an Initialization(C) imme-
diately following Initialization(B) (hence inheriting the assignments of Initialization(B)) and
modifying the Inner Loop as follows. We apply these changes for Z = Zo and thereafter take
advantage of setting sLast = sEnd as indicated below, in order to allow for the advanced
updating of C(Z) for successive Z values.

Recent Applications in Data Clustering146

Initialization(C) for Z = Zo:

Set nk = 1, k ∈ K \ {k′}, and nk′ = 2 (hence nk = |Nk|, k ∈ K); set t(i) = 0 for i∈ N \{i′, i″}and set
t(i′) = t(i″) = 1 (hence t(i) identifies the number of edges e(s) = (i,j) for all s currently examined
in the Inner Loop (and its initialization). Finally, set nTrack = 0 and set FirstTime(k) = True, k
∈ K (to identify the sets that have not been prevented from having an edge added to them).

Modification of Inner Loop for Z = Zo:

In the prelude to Case (1): Execute the following for i = i′ and i″: If i = L(i) then set t(i): = t(i) + 1
and if (now) t(i) = tMax(i) then set nTrack: = nTrack +1 and if (now) nTrack = n terminate the
Inner Loop. (tMax(i) denotes the number of nodes adjacent to i in the graph G.)

Re-organize Case (2) to become as follows: Execute the following for k = k′ and k = k″: If
FirstTime(k) = True, then if c(e(s)) > Z + MinCostC(k): set FirstTime(k) = False, set nTrack: =
nTrack + nk, compute Znext = Min(Znext, c(e(s)) – MinCostC(k) and if (now) nTrack = n, termi-
nate the Inner Loop.After performing the preceding for both k′ and k″: If FirstTime(k) = False
for k = k′ or k = k″, then continue to the next iteration of the Inner Loop. (Note: Case (2) could
also be moved to precede Case (1).)

In Case (3) (when Nk″ is absorbed into Nk′): Set nk′: = nk′ + nk″.

Modifications for all Z values:

Set sEnd = s at the end of Case (3) and set sLast = sEnd immediately after the conclusion of the
Inner Loop (following Z = Znext).

For early termination of the last execution of the Inner Loop:

Set ne = 1 in Initialization(B). Then at the end of Case (3) set ne = ne + 1 and if ne = n – 1 terminate the
Inner Loop. (The Outer Loop will automatically terminate as well, by the condition Z = Large.)

Because of the special modifications for Z = Zo that do not apply for Z > Zo, it is convenient
to insert the portion of the algorithm for Z = Zo at the very beginning of the C(Z) Algorithm,
before the Outer Loop.

7.2. Advanced updating for successive Z values

We draw on the relationships of Section 4.2 to create the instructions for updating C(Z) to
reduce the amount of computation required on successive iterations of the Inner Loop.

We adopt the following notation of Section 4.2, re-expressed in terms of the C(Z) algorithm:
s2(1), s2(2), …, s2(v2)identifies the successive s indexes that occur each time a new (smaller) value
of Znext is identified in Case (2) of the Inner Loop, beginning with the initialized value s2(1) = 1.
Similarly, s3(1), s3(2), …, s3(v3)identifies the s indexes of successive edges e(s) that are added in
Case (3), beginning with the initialized value s3(1) = 1. (In the re-organized Case (2) for Z = Zo in
Section 7.1, the value Znext may be reduced twice for a given edge e(s) and we only consider the
last (smaller) Znext value produced for e(s).) The sequence Z(1), Z(2), …, Z(v2) with the initializa-
tion Z(1) = Large, denotes the corresponding candidate values for Znext generated in Case (2).
We therefore have Z(1) > Z(2) > … > Z(v2), where the final Znext is given by Znext = Z(v2).

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

147

Assume the algorithm for Z = Zo has been inserted before the start of the Outer Loop, as
indicated in Section 7.1.

Modification of Initialization(B) for Z = Zo only:

Add v2 = v3 = 1; s2(1) = s3(1) = 1 and Z(1) = Large.

Modification of the Inner Loop for all Z:

In Case (2) when Znext is updated (reduced): set v2 = v2 + 1; s2(v2) = s, and Z(v2) = Znext.

In Case (3) upon adding e(s): set v3 = v3 + 1; s3(v3) = s.

Modification After the Inner Loop for all Z:

Following the instructions Z = Znext, and sLast = sEnd:If v2 = 1, terminate.

Modification Before the Inner Loop for Z > Zo:

Insert a Preliminary Loop before the Inner Loop for Z > Zo as follows:

(After Initialization(A) and Initialization(B))

Preliminary Loop

Set v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

v = 1

While v < v3

v: = v + 1

s = s3(v)

Insert the prelude to Case (1) followed by Case (3) (excluding the modification above
 that adds v3 = v3 + 1; s3(v3) = s)

EndWhile2

Set s = s3(v3)

7.3. Modifications involving additional memory

Added Modification to Initialization for Z = Zo:

Copy = False (where Copy indicates whether a copy is made of the arrays indicated in the
modification below).

Added Modification of the Inner Loop for all Z:

Each time Case (2) yields a new value of Znext (after checking for both k′ and k″ for Z = Zo)
record a copy of ne, the set K and arrays Nk,Ek, MinCostA(k), k ∈K and the arrays L(i),

2As before, we adopt the convention whereby the loop is bypassed if v3 = 1 but will be executed on the iteration where
v: = v + 1 results in v = v3.

Recent Applications in Data Clustering148

MinCostB(i), MinCostC(i), i∈ N (writing over any previous copy). Let Copy = True if such a
copy is made. (As remarked earlier, it is not necessary to keep track of the Ek array.)

Added Modification for the Preliminary Loop

If Copy = False, execute the Preliminary Loop. Otherwise, if Copy = True, instead of executing
the Preliminary Loop read the copies of the saved arrays into the active form of these arrays,
followed by setting s = s2(v2) and Copy = False. (The Inner Loop immediately follows this
modification.)

The complete C(Z) Algorithm that incorporates all of these changes is shown in the Appendix
for convenience.

8. Conclusions

The new classes of tree-based clustering algorithms represented by C(W), C(Y) and in the most
general case by C(Z), afford the possibility to generate clusters with a range of different charac-
teristics as the parameters W, Y and Z are varied. The fact that the key parameter can be varied
adaptively to generate all cluster collections in its class without duplication invites empirical stud-
ies to identify parameter ranges that are effective for particular types of clustering applications.

The C(Z) Algorithm can be made still more general by changing the implicit definition of
MinCostC(i) for i = i′ and i″ by defining MinCostA(k), for k = k′ and k″, to be any convex
combination of the costs of edges in the set E(Nk) = {e = (i,j) ∈ Nk}⊂ E (hence (Nk,E(Nk)) is the
subgraph of G spanned by the nodes of Nk) and defining MinCostB(i) to be any convex combi-
nation of the edges of E(Nk) that are adjacent to node i in G. However, this requires updating
these MinCost values in a more complex way than in the current form of Case (3).

Future work to exploit the properties of these algorithms can include an investigation of the
choice of the parameter α (and hence β = 1 – α) in Algorithm C(Z) to similarly determine
ranges that are effective for particular types of clustering applications.

Acknowledgements

This research was supported in part by the Key Laboratory of International Education
Cooperation of Guangdong University of Technology and by the Fundamental Research
Funds for the Central Universities (No3102017zy059).

A. Appendix

A.1. Algorithm C(Z) with accelerated updates

We identify the form of the C(Z) algorithm that results by incorporating all of the accelerated
updates of Section 7. As before, the sets Ek do not need to be maintained unless they are of

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

149

interest for experimental purposes. The case where added memory is used is identified in
Case (2) so that this memory need not be used if desired. (In that case, the variable Copy will
always remain False, as in Initialization(B).)

C(Z) Algorithm with Accelerated Updates

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Zo value for Z.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Z = Zo and sLast = |E|. Copy = False.

Execute Routine for Z = Zo (Given Below)

Begin Outer Loop for Z > Zo

While Z < Large

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and k″ =
L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with edge set Ek′
= e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and i″ and set K: = K
\ {k″}. Then set ne = 1 and s = 1.

If (Copy = False) then.

Execute Preliminary Loop

Set v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

v = 1

While v < v3

v: = v + 1

s = s3(v)

Identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′) and k″
= L(i″).

Execute Case (3): Absorb Nk″ into Nk′ by setting Nk′: = Nk′∪ Nk″ with its
associated edge set Ek″: = Ek′∪ Ek″ ∪ {e(s)}. Set L(i) = k′ for all i∈ Nk″, and set
MinCostA(k′): = Min(MinCostA(k′),MinCostA(k″), c(e(s)); MinCostB(i): =
Min(MinCostB(i),c(e(s)) for i = i′ and i″ (thus yielding MinCostC(i) by the
definitions of Section 7). Set K: = K \ {k″} and sEnd = s. Set ne: = ne + 1 and if
ne = n – 1 terminate the C(Z) Algorithm.

EndWhile

Set s = s3(v3)

Else

Read the latest copy of ne and the arrays saved in Case (2) of the Inner Loop into the
active form of these arrays. Set s = s2(v2) and Copy = False.

Recent Applications in Data Clustering150

Endif

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′) and
k″ = L(i″).

Case (1): If k′ = k″, then continue to the next iteration of the Inner Loop.

Case (2): If c(e(s)) > Z + MinCostC0, then compute Znext = Min(Znext, c(e(s)) –
 MinCostC0), set v2 = v2 + 1, s2(v2) = s, Z(v2) = Znext.

 For added memory case:

 Set Copy = True and record a copy of ne, the set K and arrays Nk, Ek, MinCostA(k),
 k ∈K and the arrays L(i), MinCostB(i), MinCostC(i), i∈ N (writing over any previous
 copy).

 Continue to the next iteration of the Inner Loop.

Case (3): Absorb Nk″ into Nk′ by setting Nk′: = Nk′∪Nk″ with its associated edge set Ek″:
 = Ek′∪ Ek″ ∪{e(s)}. Set L(i) = k′ for all i∈ Nk″, and set MinCostA(k′): = Min(MinCostA(k′),
 MinCostA(k″), c(e(s)); MinCostB(i): = Min(MinCostB(i), c(e(s)) for i = i′ and
 i″ (thus yielding MinCostC(i) by the definitions of Section 7). Set K: = K \ {k″}
 and sEnd = s.Set v3:= v3 + 1, s3(v3) = s, ne:= ne + 1 and if ne = n – 1 terminate the
 Inner Loop.

Endwhile

Z = Znext

sLast = sEnd

If v2 = 1 terminate the C(Z) Algorithm

Endwhile

End of C(Z) Algorithm

Routine for Z = Zo

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and.

k″ = L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with
edge set Ek′ = e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and
i″ and set K: = K \ {k″}. Set v2 = v3 = 1; s2(1) = s3(1) = 1 and Z(1) = Large. Set ne = 1
and s = 1.

Initialization(C): Set nk = 1, k ∈ K \ {k′}, and nk′ = 2; set t(i) = 0 for i∈ N \{i′, i″} and
set t(i′) = t(i″) = 1. Set nTrack = 0 and set FirstTime(k) = True, k ∈ K.

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

151

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ =
L(i′) and k″ = L(i″). For i = i′ and i″: If i = L(i) then set t(i): = t(i) + 1 and if (now)
t(i) = tMax(i) then set nTrack: = nTrack +1 and if (now) nTrack = n terminate the
Inner Loop.

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next
iteration of the Inner Loop.

Case (2): Execute the following for k = k′ and k = k″: If FirstTime(k) = True, then
if c(e(s)) > Z + MinCostC(k): set FirstTime(k) = False, set nTrack: = nTrack + nk,
compute Znext = Min(Znext, c(e(s)) – MinCostC(k) and if (now) nTrack = n,
terminate the Inner Loop. After performing the preceding for both k′ and k″: If
FirstTime(k) = False for k = k′ or k = k″ execute the following (and otherwise pro-
ceed to Case (3)): set v2 = v2 + 1, s2(v2) = s, Z(v2) = Znext.

For added memory case:

Set Copy = True and record a copy of ne, the set K and arrays Nk, Ek, MinCostA(k),
k ∈K and the arrays L(i), MinCostB(i), MinCostC(i), i∈ N (writing over any previ-
ous copy).

Continue to the next iteration of the Inner Loop.

Case (3): Absorb Nk″ into Nk′ to create the larger cluster Nk′: = Nk′∪ Nk″ with its asso-
ciated edge set Ek″: = Ek′∪ Ek″ ∪{e(s)}. Correspondingly, update L(i) by setting L(i) = k′
for all i∈ Nk″, and set MinCostA(k′): = Min(MinCostA(k′),MinCostA(k″), c(e(s));
MinCostB(i): = Min(MinCostB(i),c(e(s)) for i = i′ and i″ (thus yielding MinCostC(i)
by the definitions of Section 7). Set K: = K \ {k″}, nk′: = nk′ + nk″, and sEnd = s. Set v3:=
v3 + 1, s3(v3) = s, ne:= ne + 1 and if ne = n – 1 terminate the Inner Loop.

Endwhile

Z = Znext

sLast = sEnd

If v2 = 1 then

Terminate the C(Z) Algorithm

Else.

v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

Endif

End of Routine for Z = Zo

Recent Applications in Data Clustering152

Author details

Fred Glover1* and Yang Wang2

*Address all correspondence to: fredwglover@yahoo.com

1 School of Engineering and Science, University of Colorado, Boulder, CO, USA

2 School of Management, Northwestern Polytechnical University, Xian, China

References

[1] Anderberg MR. Cluster analysis for applications. In: Monographs and Textbooks on
Probability and Mathematical Statistics. New York: Academic Press, Inc.; 1973

[2] Stefik MJ. Machine learning: An artificial intelligence approach. R.S. Michalski,
J.G. Carbonell and T.M. Mitchell, (Tioga, Palo Alto, CA); 572 pages, $39.50. Artificial
Intelligence. 1985;25(2):236-238

[3] Michalski RS, Carbonell JG, Learning TMMM. An artificial intelligence approach.
Understanding the Nature of Learning. 1983;2:3-26

[4] Rinzivillo S, Pedreschi D, Nanni M, Giannotti F, Andrienko N, Andrienko G. Visually
driven analysis of movement data by progressive clustering. Information Visualization.
2008;7(3):225-239

[5] Chen H, Chiang RHL, Storey VC. Business intelligence and analytics: From big data to
big impact. MIS Quarterly. 2012;36(4):1165-1188

[6] Xu Y, Olman V, Xu D. Minimum spanning trees for gene expression data clustering.
Genome Informatics. 2001;12:24-33

[7] Xu Y, Olman V, Xu D. Clustering gene expression data using a graph-theoretic approach:
An application of minimum spanning trees. Bioinformatics. 2002;18(4):536-545

[8] Jana PK, Naik A, editors. An efficient minimum spanning tree based clustering algo-
rithm. In: Proceedings of International Conference on Methods and MODELS in Com-
puter Science; 2009

[9] Grygorash O, Zhou Y, Jorgensen Z, editors. Minimum spanning tree based clustering
algorithms. In: IEEE International Conference on TOOLS with Artificial Intelligence;
2008

[10] Wang ZM, Soh YC, Song Q, Kang S. Adaptive spatial information-theoretic clustering
for image segmentation. Pattern Recognition. 2009;42(9):2029-2044

[11] Gower JC, Ross GJS. Minimum spanning trees and single linkage cluster analysis.
Journal of the Royal Statistical Society. 1969;18(1):54-64

A Class of Parametric Tree-Based Clustering Methods
http://dx.doi.org/10.5772/intechopen.76406

153

[12] Laszlo M, Mukherjee S. Minimum spanning tree partitioning algorithm for microag-
gregation. IEEE Transactions on Knowledge and Data Engineering. 2005;17(7):902-911

[13] Asano T, Bhattacharya B, Keil M, Yao F, editors. Clustering algorithms based on mini-
mum and maximum spanning trees. In: Symposium on Computational Geometry; 1988

[14] Päivinen N. Clustering with a minimum spanning tree of scale-free-like structure.
Pattern Recognition Letters. 2005;26(7):921-930

[15] Wang X, Wang X, Wilkes DM. A divide-and-conquer approach for minimum span-
ning tree-based clustering. IEEE Transactions on Knowledge and Data Engineering.
2009;21(7):945-958

Recent Applications in Data Clustering154

	Chapter 8
A Class of Parametric Tree-Based Clustering Methods

