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Abstract

We introduce a class of tree-based clustering methods based on a single parameter W 
and show how to generate the full collection of cluster sets C(W), without duplication, 
by varying W according to conditions identified during the algorithm’s execution. The 
number of clusters within C(W) for a given W is determined automatically, using a graph 
representation in which cluster elements are represented by nodes and their pairwise con-
nections are represented by edges. We identify features of the clusters produced which 
lead to special procedures to accelerate the computation. Finally, we introduce a related 
node-based variant of the algorithm based on a parameter Y which can be used to gen-
erate clusters with complementary features, and a method that combines both variants 
based on a parameter Z and a weight that determines the contribution of each variant.

Keywords: clustering, minimum spanning trees, spanning forests, machine learning, 
big data analytics

1. Introduction

Clustering methods have long been a mainstay of statistics and machine learning [1–3], and 
have experienced a surge in importance with the advent of Big Data Analytics [4, 5]. A highly 
successful use of clustering in practical applications has been to seek out particular kinds of 
clustering methods that are effective in particular settings, based on the finding that different 
classes of problems respond best to specific classes of clustering methods. This finding moti-
vates the work of this paper, which introduces a new class of tree-based clustering methods 
with an ability to modify the kinds of clusters produced by changing the value of a particular 
parameter. Moreover, we show all members of class can be generated without duplication by 
a process that adaptively determines each new parameter value from the information pro-
duced by executing the class member that precedes it.
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We are motivated to use a tree-based algorithm due to their applications in genome analysis 
[6–8], image segmentation [9, 10], statistics [11] and microaggregation [12]. The most common 
forms of the tree-based clustering methods in the literature [8, 13–15] begin with a minimum 
spanning tree and then successively delete edges according to various criteria. However, our 
approach has a greater level of flexibility than these commonly applied methods due to the 
fact that the clusters produced include those that cannot be obtained by removing edges of a 
minimum spanning tree.

We introduce special techniques for accelerating the execution of our basic approach by 
exploiting its underlying properties and then introduce a closely related clustering algorithm 
that replaces an “edge-based” focus with a complementary “node-based” focus. We unify 
these two classes of approaches by identifying a third class that marries their complementary 
features, and which provides additional variation by means of a weight that permits the con-
tribution of these complementary approaches to be varied along a continuum. We conclude 
by demonstrating how the procedures for accelerating the first method can be expressed in a 
more general form to accelerate the execution of the combined procedure as well.

The ability to generate a family of clustering methods from each of the three basic clustering 
designs by varying a single parameter (and the weight employed by the third method) invites 
empirical research to determine parameter ranges that are effective for specific types of clus-
tering applications, opening the possibility to produce clusters exhibiting features different 
from those customarily obtained.

2. Cluster problem formulation

The clustering problem in our treatment is formulated by reference to a graph G = (N, E) 
where N = {1, …, n} is a set of nodes (cluster elements) and E is a set of edges (pairwise connec-
tions between elements) given by E ⊂N × N = {(p,q): p,q∈N}. The notation (p,q) is understood 
to represent an unordered pair (hence (p,q) = (q,p), and is equivalently represented by the 
set notation {p,q}). Each edge e = (p,q) ∈ E has an associated cost (or length) denoted by c(e)  
(= c(p,q)). It is not necessary to assume that G is complete or connected. We also do not require 
that the costs c(e) be nonnegative.

The goal is to partition N into sets (clusters) Nk, k∈ K = {1, …, ko}, where the value ko is auto-
matically determined by the clustering process. We also identify an associated set of edges Ek⊂ 
{(p,q), p,q∈ Nk}, where the subgraph (Nk,Ek) of G constitutes a min cost spanning tree over the 
nodes of Nk. In contrast to those tree-based clustering approaches that begin with a min cost 
spanning tree over all of G and selectively delete particular edges, our algorithm produces 
subgraphs (Nk,Ek), k ∈ K, that may not be possible to obtain by deleting edges from such a tree.

The class of clustering methods we describe is based on specifying the value of a parameter 
W, whose value uniquely determines the outcome of each clustering method within the class. 
W is expressed as an additive threshold for selecting edges and hence nodes to be added to a 
current construction (collection of subgraphs), and observe that W can equally be expressed as 
a multiplicative threshold in the case where the costs are nonnegative and the two approaches 
are equivalent in this instance.

Recent Applications in Data Clustering136



We start with any selected value W = Wo≥ 0 and after obtaining a collection of clusters C(W) 
for a given W we systematically modify W so that over successive iterations all possible clus-
ter collections C(W) for W ≥ Wo will be generated without duplication. The complete range of 
cluster collections results by choosing Wo = 0 (or Wo = 1 in the multiplicative version).

3. Algorithm to generate the cluster collections C(W)

In overview, we index the edges of E in ascending cost order so that c(e(1)) ≤ c(e(2)) ≤ … ≤ c 
(e(|E|)), and identify the nodes of edge e(s) by writing e(s) = (p(s), q(s)). We start with each 
cluster Nk consisting of just the node k, that is, each cluster is a degenerate single node tree 
given by.
  Nk =  {k} , k ∈ K for K = N =  {1, … , n}   

The associated set Ek of edges in the tree corresponding to Nk is empty (Ek = ∅). As the algo-
rithm progresses, the composition of the clusters will change and the index set K of clusters 
will change accordingly.

In addition, we keep a cost value denoted by MinCost(k) for each k ∈ K which identifies the 
cost of the minimum cost edge e ∈ Ek. To begin, since no cluster yet contains an edge, we 
define MinCost(k) = Large, a large positive number, for all k ∈ K. (We will not have to exam-
ine the set Ek to identify MinCost(k) = Min(c(e): e ∈ Ek) because the structure of the algorithm 
will insure that MinCost(k) will equal the cost of the first edge added to Ek. In general, while 
we describe the composition of Ek and the manner in which it changes, the organization of 
the algorithm assures that it is unnecessary to keep track of Ek since the sets Nk, for k∈ K, will 
identify the elements in the clusters produced.)

We also maintain a list L(i) for each i∈ N that names the cluster that node i belongs to. Hence, 
initially, L(i) = (i) since i∈ Ni = {i} for all i∈ N. The redundancy provided by this list enables 
updates to be performed efficiently. Subsequently, L(i) is modified as node i becomes the 
member of a new cluster Nk. As this is done, the list K will come to have “holes” in it, i.e., will 
not consist of consecutive indexes. (At the end of the algorithm we can rename the clusters 
indexes, if desired, so that K = {1, 2, …, ko} where ko = |K|.)

Finally, during the process of generating the cluster collection C(W) for the current W value, 
we will identify a value Wnext so that the process may then be repeated for W: = Wnext to 
generate a new collection of clusters. As previously noted, by starting with W = Wo = 0 (or 
W = Wo = 1 in the multiplicative version), and then successively identifying Wnext each time a 
cluster collection C(W) is generated, we can ultimately generate all possible collections C(W), 
without duplication. The process terminates when W becomes large enough that C(W) con-
sists of a min cost spanning tree over each connected component of G. (A simple condition for 
identifying this termination point is identified below.)

Building on these observations, we now state the full form of our algorithm.

C(W) Algorithm (Multiplicative Version)

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Wo value for W.
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Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set W = Wo and sLast = |E|

Begin Outer Loop

While W < Large

Initialization(A). Set Wnext = Large, K = {1, …, n}, and for each k ∈ K let L(k) = k,

Nk = {k}, Ek = ∅, and MinCost(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)), to create the first non-
degenerate cluster (containing more than one node and hence more than 0 edges) by 
identifying k′ = L(i′) and k″ = L(i″) and absorbing Nk″ into Nk′ to create the cluster Nk′: = 
Nk′∪ Nk″ = {i′, i″} with edge set Ek′ = e(1). Set MinCost(k′) = c(e(1)) and conclude by elimi-
nating the superfluous cluster Nk″ (now contained within Nk′) by setting K: = K \ {k″}. 
Finally, initialize the edge index s by setting s = 1.

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′) 
and k″ = L(i″). There are three cases:

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next  
  iteration of the Inner Loop.

Case (2): If c(e(s)) > W + MinCost0, for MinCost0 = Min(MinCost(k′), MinCost(k″)),  
 then edge e(s) is forbidden to be added to join the clusters Nk′ and Nk″ into  
 a single cluster. In this case, compute Wnext = Min(Wnext, c(e(s)) –MinCost0)  
 and continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply)1: Absorb Nk″ into Nk′ to create the larger  
 cluster Nk′ := Nk′∪Nk″ with its associated edge set Ek″: = Ek′∪ Ek″∪{e(s)}.  
 Correspondingly, update L(i) by setting L(i) = k′for all i∈ Nk″, and set  
 MinCost(k′) := Min(MinCost(k′), MinCost(k″), c(e(s)). Finally, eliminate the  
 superfluous cluster Nk″(whose elements are now contained within Nk′) by  
 setting K : = K \ {k″}.

Endwhile.

// The node and edge sets for the collection of clusters C(W) for the current W are given.

// by Nk and Ek for k ∈ K. The node sets can alternatively be recovered by reference to.

// the values L(i), i = 1, …, n.

W = Wnext

Endwhile

End of C(W) Algorithm

1Case (3) generalizes Initialization(B).
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We employ the customary convention that a loop of the form “While x < Constant” will be 
bypassed if the beginning value of x does not satisfy “x < Constant” and that the execution of 
the loop will not be interrupted if x is changed so that x ≥ Constant within the loop (though 
the execution will then terminate at the loop’s conclusion). Hence, for example, in the Inner 
Loop when s: = s + 1 results in s = sLast, the loop will continue its execution until the current 
iteration ends.

We now make several observations about the algorithm.

Remark 1: The multiplicative version of the C(W) Algorithm results by modifying Case (2) to 
replace W + MinCost0 by W∙MinCost0 and to replace Wnext = Min(Wnext, c(e(s)) – MinCost0) 
by Wnext = Min(Wnext, c(e(s))/MinCost0). (Hence, addition is replaced by multiplication and 
subtraction is replaced by division.) These approaches will generate the same collection of 
clusters under the assumption that all c(e) > 0 for the following reason: a positive value W′ can 
always be found for the multiplicative case that will cause Wnext to screen out the same set of 
elements as any positive value W for the additive case, and vice versa. This relationship can 
also be extended to cover the situation where all c(e)are nonnegative.

Remark 2: The assignment W = Wnext at the end of the outer loop can be replaced by setting 
W:= Wnext + Δ for a chosen increment Δ to generate only a subset of the possible C(W) col-
lections. Experimentation with a given class of cluster applications may additionally lead to 
identifying upper and lower bounds on W (or specific intervals for W) that prove most effec-
tive for that class.

Remark 3: To reduce the updating effort of Case (3), the indexes i′ = p(s) and i″ = q(s) can be 
interchanged (hence also interchanging k′ and k″) to assure that |Nq(s)| ≤ |Np(s)|. (More 
comprehensive ways of reducing computation are identified in Sections 4 and 7.)

Remark 4: The justification of terminating the outer loop of the algorithm when W = Large 
(after setting W = Wnextat the conclusion of the inner loop) derives from the observation 
that Wnext = Large implies the condition c(e(s)) > W + MinCost0 is never satisfied in Case (2). 
(When this terminating condition occurs in a connected graph, the method will have gener-
ated a min cost spanning tree.) Moreover, if the algorithm is repeated for W = Large, the same 
outcome will result.

Remark 5: When Wo = 0 (or Wo = 1 for the multiplicative case), each resulting node-disjoint 
subgraph (Nk, Ek) in the collection C(W) consists of a tree in which the cost c(e) for all edges 
e ∈ Ek is the same.

Remark 6: In a complete graph, the algorithm will leave at most one node isolated (with 
Nk = {k} and Ek = ∅) at the conclusion of the Inner Loop for any W. In a graph that is not 
complete or not connected, no node that is not isolated in G will be left isolated in the collec-
tion C(W) for W sufficiently large. (To permit additional isolated nodes, a limit clim may be 
imposed that prevents C(W) from including any edges e such that c(e) > clim.)

Remark 7: When there are tied (duplicate) cost values c(e), all orderings of e(1) to e(|E|) sat-
isfying c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)) will produce the same collection of clusters C(W) in 
the following sense: For a given value of W, all orderings will produce the same node sets Nk 
defining C(W), and the sum of costs over the edge sets Ek will also be the same, though the 
edges within these sets may differ.
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4. Fundamental relationships for accelerating the algorithm

A number of key relationships hold for the C(W) Algorithm that make it possible to accelerate its 
execution. We discuss the relationships here in broad outline and then incorporate them in Section 7  
within a template for a computer code that applies not only to C(W) but to additional related 
types of cluster collections C(Y) and C(Z) whose algorithms are described in Sections 5 and 6.

4.1. Early termination of the inner loop

The Inner Loop can typically terminate far in advance of satisfying the condition s = sLast for 
sLast = |E|, hence making it unnecessary to examine all edges of the graph.

First note that the process of examining the edges in ascending cost order implies that once 
c(e(s)) > W + MinCost(k) for a given k = ko∈ K, then the inequality c(e(v)) > W + MinCost(ko) 
will also hold for all subsequent edges e(v) for v > s. Hence, by Case (2) of the algorithm, no 
nodes or edges will be adjoined to the cluster sets Nko and Eko for v > s. In addition, it will be 
unnecessary to update Wnext by reference to ko in the future.

It may further be observed that the MinCost(k) values are generated in a sequence that makes 
it possible to readily identify (without sorting) the values k(1), k(2), …, k(m), so that Min
Cost(k(1)) ≤ MinCost(k(2)) ≤ … ≤ MinCost(k(m)). It is convenient to define m so that these 
values refer just to those k ∈ K such that MinCost(k) < Large. (Recall that MinCost(k) = Large 
implies that Nk consists of a single node k, and Ek = ∅.)

Thus if c(e(s)) > W + MinCost(k(m)), we know that none of the clusters indexed from k(1) to 
k(m) can take part in the creation of new clusters. Alternatively, if we start by checking whether 
c(e(s)) > W + MinCost(k(h)) holds for h = 1 and work forward until finding the first index k(h*) 
for which the inequality does not hold, then on future encounters with Case (2) it is possible 
to start from k(h*) rather than k(1) to begin checking whether c(e(s)) > W + MinCost(k(h)).

In consideration of these relationships, it should be kept in mind that when two clusters k′ 
and k″ are joined, then MinCost(k″) will no longer be referenced (since the cluster k″ will no 
longer exist). To see the consequences of this, suppose that k′ and k″ are interchanged, if nec-
essary, so that MinCost(k′) ≤ MinCost(k″). Then when Nk″ is absorbed into Nk′, the following 
two possibilities arise:

i. MinCost(k′) < Large (hence MinCost(k′) identifies the cost of an edge previously added) 
and MinCost(k′) will be unchanged;

ii. MinCost(k′) = Large, and the new MinCost(k′) will be the value c(e(s)) of the edge e(s) 
currently added.

This implies that in the sequence MinCost(k(1)) ≤ MinCost(k(2)) ≤ … ≤ MinCost(k(m)), 
the value MinCost(k″) will drop out, and the value MinCost(k′) will either be unchanged 
and retain its position, or else it will change from a Large value to become the new value 
MinCost(k(m)) at the end of the ordered list.

However, applying this knowledge to shortcut the checks performed in Case (2) does not 
make it possible to save appreciable computation, since the amount of effort to perform the 
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checks of Case (2) is not great in any case. Instead, we can make use of the foregoing relation-
ships in a simpler manner without having to keep track of the values k(1), k(2), …, k(m).

To accomplish this, we record the number of elements nk in each node set Nk by initializing all 
nk = 1, and then setting nk′: = nk′ + nk″ when Nk″ is absorbed into Nk′ in Case (3). We also record 
the number of times t(i) each node i is encountered as a node i′ = p(s) or i″ = q(s) by initial-
izing t(i) = 0 for all i, and then setting t(i′): = t(i′) + 1 and t(i″): = t(i″) + 1 when the edge e(s) is 
examined in the prelude to Case (1)of the algorithm (and also for i′ and i″ in the Initialization). 
Note that t(i) is bounded by tMax(i) which is the number of nodes adjacent to i in the graph G 
(where tMax(i) = n – 1 if G is complete).

We are interested in determining when t(i) = tMax(i) for an isolated node. We can conve-
niently identify the condition of being isolated by i = L(i). In conjunction with the preceding 
records, this makes it possible to keep track of the number nTrack of nodes that cannot take 
part in any further steps of adding an edge to C(W), and hence permitting the inner loop to 
terminate when nTrack = n.

Specifically, by initializing nTrack = 0, the first time c(e(s)) > W + MinCost(k)occurs for a given 
k = k′ or k″ in Case (2), we set nTrack: = nTrack + nk. (To identify this first occurrence, initialize 
FirstTime(k) = True, and then set FirstTime(k) = False at the point of setting nTrack: = nTrack 
+ nk.) We also set nTrack: = nTrack + 1 whenever t(i) is incremented for i = i′ and i″ in the pre-
lude to Cases (1) to (3) to yield t(i) = tMax(i) under the condition that i = L(i). By checking for 
nTrack = n at each point where nTrack changes its value, we can then terminate the inner loop 
when this condition occurs.

Having performed the foregoing operations to terminate early for W = Wo, we may take 
advantage of another useful relationship to terminate early for all W > Wo. In particular, let 
sEnd(W) equal the value of s for the final edge e(s) added to C(W) for a given W. Then for 
values W′ and W″ such that W″ > W′, we are assured that sEnd(W″) ≤ sEnd(W′). Consequently, 
we can exploit this fact by introducing a variable sEnd which is set to sEnd = s at the conclu-
sion of Case (3), which will cause sEnd to be the index s of the final edge added in construct-
ing the current C(W). Then it is only necessary to set sLast = sEnd after the termination of the 
Inner Loop, thus overriding the initialization sLast = |E| to permit the next execution of the 
Inner Loop to terminate earlier. We can also allow the final execution of the Inner Loop to 
terminate earlier by the fact that the spanning tree generated on this execution will have n − 1 
edges, while all other constructions must have fewer than this number of edges.

4.2. Advanced starting for successive W values

We can also accelerate the computation of the algorithm by saving information to produce an 
advanced start on successive executions of the Inner Loop. The underlying relationships are 
as follows.

Let s2(1), s2(2), …, s2(v2) denote the s indexes starting with s2(1) = 1 (when Wnext = Large) 
where the values s2(v) for v > 1 identify successive edges e(s) for which a new (smaller) 
value of Wnext is identified in Case (2). Also, starting with W(1) = Large, let W(1), W(2), …, 
W(v″) denote the corresponding values for Wnext identified at these points (hence, for v2 > 1, 
W(1) > W(2) > … > W(v2)). Similarly, let s3(1), s3(2), …, s3(v3) denote the s indexes starting with 
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s3(1) = 1 where the values s3(v) for v > 1 identify successive edges e(s) that are added in Case 
(3) of the Inner Loop(to generate the current cluster collection C(W)).

After completing the Inner Loop for W = Wo (while saving this information), upon assigning 
W the value Wnext = W(v2), the fact that Wnext < W(v) for v < v2 implies that the algorithm 
will perform exactly the same sequence of steps until reaching s = s2(v2), at which point the 
edge e(s) for s = s2(v2), will be added to the construction (although this edge was not added on 
the previous execution of the inner loop).

Consequently, all edges e(s3(v)) for s3(v) < s2(v2) will again be added to the current con-
struction, and the values s2(v) for v < v2 will also be unchanged. Hence, letting v* = Max(v: 
s3(v) < s2(v2)) we can start the current construction by simply adding the edges e(s) for s = s3(1) 
to s3(v*), followed by adding the edge e(s) for s = s2(v2) (whose index s2(v2) therefore becomes 
recorded as the new index s3(v* + 1)). Then the customary Inner Loop for W > Wo can be 
executed starting with s initialized by setting s = s2(v2) instead of s = 1. Subsequent executions 
of the Inner Loop continue to save the same information, which is used again to create an 
advanced start in the manner described.

By this means, we avoid examining all edges e(s) for s < s2(v2) that were not added to the pre-
vious construction. We also avoid having to re-do the checks to determine that the remaining 
edges qualify to be added. Together this can amount to a considerable savings in computation.

A possibility arises to save additional computation by using more memory. Each time a new 
candidate for Wnext is identified, in the process of identifying the indexes s2(1), s2(2), …, 
s2(v2), we can save a current copy of the arrays Nk, Ek, MinCost(k) and K used by the algo-
rithm, avoiding the burden of excessive memory by overwriting the previous copy each time 
a new one is made. Then the latest copy will be available at the point where the edge e(s) for 
s = s2(v2) is added on the current execution of the loop, making it possible to recover the arrays 
without having to regenerate them to resume the current loop.

However, it may not be possible to take advantage of a current copy of the saved arrays on 
every iteration of the Inner Loop (unless previous copies are not overwritten when new ones 
are made). After re-starting by recovering the arrays for s2(v2), if now a new Wnext value is 
determined for s > s2(v2) (referring to the v2 of the previous execution) then we can proceed by 
again making a copy of the arrays for the next execution of the loop. But if it no new value of 
Wnext is found for s > s2(v2), then the previous value W(v2–1) (for s = s2(v2–1) will be the new 
final Wnext value, and no copies of the arrays remain in memory for this value.

Consequently, in this latter case we resort to the construction that does not rely on the copied 
arrays, generating the arrays instead in the process of adding edges. Thus, on the next execu-
tion of the inner loop we will again have the copies available. Hence in this fashion we will 
be able to take advantage of the copied arrays at least on every second execution of the loop, 
if not more frequently.

As previously noted, the foregoing relationships and their implications are embodied in a for-
mat suitable for creating a computer code in Section 7, after we first describe two additional 
algorithmic variants that can be exploited by analogous relationships.
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5. Algorithm C(Y): a node-based algorithmic variant

It is possible to formulate a node-based variant of the C(W) algorithm which follows a closely 
related format and is supported by a similar rationale.

In the node-based approach, we replace the parameter W by a parameter Y which is linked 
to costs associated with nodes in Nk rather than to costs associated with edges in Ek. (More 
precisely, the costs associated with nodes are also derived from edges—i.e., the edges that 
meet these nodes—though these edges are different from those referenced in the C(W) 
algorithm.)

Accompanying this parameter change, we replace the value MinCost(k) associated with the 
sets indexed by k ∈ K with a value MinCostB(i) associated with the nodes i∈ N, and more 
particularly, we replace MinCost(k′) for k′ = L(i′) by MinCostB(i′), and replace MinCost(k″) for 
k″ = L(i″) by MinCostB(i″)).

This replacement changes the updating rule when Nk″ is absorbed into Nk′ in Case (3). 
Specifically, the values MinCostB(i′) and MinCostB(i″)) are updated by setting MinCostB(i): 
= Min(MinCostB(i),c(e(s)) for i = i′ and i″, in contrast to the update involving MinCost(k′) and 
MinCost(k″) (which setsMinCost(k′): = Min(MinCost(k′),MinCost(k″), c(e(s))).

The reason for these changes is as follows. In the node-based version, to permit the edge e(s) = (i′, i″)  
(= (p(s),q(s))) to be added and hence to join the subgraphs (Nk′, Ek′) and (Nk″, Ek″), we require 
that c(e(s)) ≤ Y + MinCostB(i) for both i = i′ and i″. Hence we require c(e(s)) ≤ Y + MinCostB0, for 
MinCostB0 = Min(MinCostB(i′), MinCostB(i″)). On the other hand, if c(e(s)) > Y + MinCostB0, 
we are prevented from adding edge e(s), and by the preceding relationships this causes the first 
part of Case (2) to retain exactly the same form as in the C(W) algorithm.

To update MinCostB(i′) and MinCostB(i″) in Case (3), we must account for the fact that each 
of these two values is affected only by the cost of the edge e(s), and hence will either retain 
its present value or become equal to c(e(s)), according to which is smaller. (It may be noted 
that once node i for i = i′ or i″ has been assigned an edge cost c(e(s)), then MinCostB(i) will not 
change thereafter, since any edge e(s) that is added later to meet node I will have a cost no less 
than that of the earlier edge.)

Based on these observations, we can state the form of the C(Y) algorithm as follows.

C(Y) Algorithm (Node-Based Version)

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Yo value for Y.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Y = Yoand sLast = |E|.

Begin Outer Loop

While Y < Large
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Initialization(A). Set Ynext = Large, K = {1, …, n}, and for each k ∈ K let L(k) = k,

Nk = {k}, Ek = ∅, and MinCostB(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)) by identifying k′ = L(i′) 
and k″ = L(i″) and absorbing Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with 
edge set Ek′ = e(1). Set MinCostB(k′) = c(e(1)) and set K: = K \ {k″}. Finally, initialize the 
edge index s by setting s = 1.

Begin Inner Loop

While s < sLast|

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = 
L(i′) and k″ = L(i″).

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next  
 iteration of the Inner Loop.

Case (2): If c(e(s)) > Y + MinCostB0, for MinCostB0 = Min(MinCostB(i′),  
 MinCostB(i″)), then compute Ynext = Min(Ynext, c(e(s)) – MinCostB0) and  
 continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply): Absorb Nk″ into Nk′ to create Nk′: = Nk′∪ Nk″  
 with its associated edge set Ek″: = Ek′∪ Ek″ ∪ {e(s)}. Set L(i) = k′ for all i∈ Nk″,  
 and setMinCostB(i): = Min(MinCostB(i), c(e(s)) for i = i′ and i″. Finally, set K:  
 = K \ {k″}.

Endwhile.

Y = Ynext.

Endwhile.

End of C(Y) Algorithm

The Remarks concerning the C(W) algorithm in Section 3 can be applied as well to the C(Y) 
algorithm.

Now we show how to join the C(W) and C(Y) algorithms.

6. Algorithm C(Z): a combination of C(W) and C(Y)

Each of the C(W) and C(Y) algorithms has features lacking in the other. However, the C(Y) 
algorithm has a potential deficiency, which resides in the fact that it is subject to “drift”—a 
phenomenon where the costs of edges in an edge set Ek can grow along a chain, where each 
new edge added to Ek has a higher cost than the previous one. Such an eventuality can arise 
because the cost of an edge in a chain is limited only by the cost of the previous edge.
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It is possible to combat drift and also take advantage of the different features of the C(W) and 
C(Y) algorithms by joining these algorithms to create an algorithm C(Z) that incorporates the 
MinCost evaluation criteria of both C(W) and C(Y) simultaneously.

Let α be a nonnegative weight applied to the edge selection criterion of C(W) and let β = 1 – αbe 
a nonnegative weight applied to the edge selection criterion of C(Y). We construct Algorithm 
C(Z) so that it will be the same as C(W) if α = 1 and will be the same as C(Y) if α = 0 (β = 1).

For notational convenience, we refer to the value MinCost(k) of the C(W) algorithm as 
MinCostA(k). Then the MinCost evaluation criterion of C(Z) is given by.

 MinCostC(i) = α∙MinCostA(k) + β∙MinCostB(i), for k = L(i). 

To apply this criterion, we create values MinCostC(i′) and MinCostC(i″) for nodes i′ = p(s) and 
i″ = q(s), and for k′ = L(i′) and k″ = L(i″), given by

  MinCostC ( i   ′ )  = α ∙ MinCostA ( k   ′ )  + β ∙ MinCostB ( i   ′ )   

  MinCostC ( i   ″ )  = α ∙ MinCostA ( k   ″ )  + β ∙ MinCostB ( i   ″ )   

Associated with the foregoing values, we define

  MinCostC0 = Min (MinCostC ( i   ′ ) , MinCostC ( i   ″ ) )   

We state the C(Z) algorithm by reference to these definitions.

C(Z) Algorithm.

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Zo value for Z.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Z = Zo and sLast = |E|

Begin Outer Loop

While Z < Large

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and k″ = 
L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with edge set Ek′ 
= e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and i″. Set.

K: = K \ {k″} and s = 1.
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Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = 
L(i′) and k″ = L(i″).

Case (1): If k′ = k″, then continue to the next iteration of the Inner Loop.

Case (2): If c(e(s)) > Z + MinCostC0 (for MinCostC0 determined by the preceding  
 definitions), then compute Znext = Min(Znext, c(e(s)) – MinCostC0) and  
 continue to the next iteration of the Inner Loop.

Case (3) (If (1) and (2) do not apply): Absorb Nk″ into Nk′ to create the larger clus 
 ter Nk′: = Nk′∪ Nk″ with its associated edge set.

 Ek″: = Ek′∪ Ek″ ∪ {e(s)}.

Correspondingly, update L(i) by setting L(i) = k′ for all i∈ Nk″, and set MinCostA(k′): 
= Min(MinCostA(k′),MinCostA(k″), c(e(s)); MinCostB(i): = Min(MinCostB(i),c(e(s)) 
for i = i′ and i″ (thus yielding MinCostC(i) by the definitions above).Finally, set K: 
= K \ {k″}.

Endwhile

Z = Znext

Endwhile

End of C(Z) Algorithm

The next section shows how to carry out accelerated updates in the context of the preceding 
algorithm.

7. Implementing accelerated updates for the C(Z) algorithm

We build on the relationships identified in Section 4 to apply them to the more general C(Z) 
algorithm. By the implications described earlier, our general updates also apply directly to the 
C(W) and C(Y) algorithms by respectively replacing Z with W and Y (hence Znext with Wnext 
and Ynext) and replacing MinCostC(∙) by MinCost(∙) and MinCostB(∙).

7.1. Early termination for the C(Z) inner loop

Early termination for the Inner Loop of C(Z) is effected by creating an Initialization(C) imme-
diately following Initialization(B) (hence inheriting the assignments of Initialization(B)) and 
modifying the Inner Loop as follows. We apply these changes for Z = Zo and thereafter take 
advantage of setting sLast = sEnd as indicated below, in order to allow for the advanced 
updating of C(Z) for successive Z values.
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Initialization(C) for Z = Zo:

Set nk = 1, k ∈ K \ {k′}, and nk′ = 2 (hence nk = |Nk|, k ∈ K); set t(i) = 0 for i∈ N \{i′, i″}and set 
t(i′) = t(i″) = 1 (hence t(i) identifies the number of edges e(s) = (i,j) for all s currently examined 
in the Inner Loop (and its initialization). Finally, set nTrack = 0 and set FirstTime(k) = True, k 
∈ K (to identify the sets that have not been prevented from having an edge added to them).

Modification of Inner Loop for Z = Zo:

In the prelude to Case (1): Execute the following for i = i′ and i″: If i = L(i) then set t(i): = t(i) + 1 
and if (now) t(i) = tMax(i) then set nTrack: = nTrack +1 and if (now) nTrack = n terminate the 
Inner Loop. (tMax(i) denotes the number of nodes adjacent to i in the graph G.)

Re-organize Case (2) to become as follows: Execute the following for k = k′ and k = k″: If 
FirstTime(k) = True, then if c(e(s)) > Z + MinCostC(k): set FirstTime(k) = False, set nTrack: = 
nTrack + nk, compute Znext = Min(Znext, c(e(s)) – MinCostC(k) and if (now) nTrack = n, termi-
nate the Inner Loop.After performing the preceding for both k′ and k″: If FirstTime(k) = False 
for k = k′ or k = k″, then continue to the next iteration of the Inner Loop. (Note: Case (2) could 
also be moved to precede Case (1).)

In Case (3) (when Nk″ is absorbed into Nk′): Set nk′: = nk′ + nk″.

Modifications for all Z values:

Set sEnd = s at the end of Case (3) and set sLast = sEnd immediately after the conclusion of the 
Inner Loop (following Z = Znext).

For early termination of the last execution of the Inner Loop:

Set ne = 1 in Initialization(B). Then at the end of Case (3) set ne = ne + 1 and if ne = n – 1 terminate the 
Inner Loop. (The Outer Loop will automatically terminate as well, by the condition Z = Large.)

Because of the special modifications for Z = Zo that do not apply for Z > Zo, it is convenient 
to insert the portion of the algorithm for Z = Zo at the very beginning of the C(Z) Algorithm, 
before the Outer Loop.

7.2. Advanced updating for successive Z values

We draw on the relationships of Section 4.2 to create the instructions for updating C(Z) to 
reduce the amount of computation required on successive iterations of the Inner Loop.

We adopt the following notation of Section 4.2, re-expressed in terms of the C(Z) algorithm: 
s2(1), s2(2), …, s2(v2)identifies the successive s indexes that occur each time a new (smaller) value 
of Znext is identified in Case (2) of the Inner Loop, beginning with the initialized value s2(1) = 1. 
Similarly, s3(1), s3(2), …, s3(v3)identifies the s indexes of successive edges e(s) that are added in 
Case (3), beginning with the initialized value s3(1) = 1. (In the re-organized Case (2) for Z = Zo in 
Section 7.1, the value Znext may be reduced twice for a given edge e(s) and we only consider the 
last (smaller) Znext value produced for e(s).) The sequence Z(1), Z(2), …, Z(v2) with the initializa-
tion Z(1) = Large, denotes the corresponding candidate values for Znext generated in Case (2). 
We therefore have Z(1) > Z(2) > … > Z(v2), where the final Znext is given by Znext = Z(v2).
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Assume the algorithm for Z = Zo has been inserted before the start of the Outer Loop, as 
indicated in Section 7.1.

Modification of Initialization(B) for Z = Zo only:

Add v2 = v3 = 1; s2(1) = s3(1) = 1 and Z(1) = Large.

Modification of the Inner Loop for all Z:

In Case (2) when Znext is updated (reduced): set v2 = v2 + 1; s2(v2) = s, and Z(v2) = Znext.

In Case (3) upon adding e(s): set v3 = v3 + 1; s3(v3) = s.

Modification After the Inner Loop for all Z:

Following the instructions Z = Znext, and sLast = sEnd:If v2 = 1, terminate.

Modification Before the Inner Loop for Z > Zo:

Insert a Preliminary Loop before the Inner Loop for Z > Zo as follows:

(After Initialization(A) and Initialization(B))

Preliminary Loop

Set v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

v = 1

While v < v3

v: = v + 1

s = s3(v)

Insert the prelude to Case (1) followed by Case (3) (excluding the modification above  
 that adds v3 = v3 + 1; s3(v3) = s)

EndWhile2

Set s = s3(v3)

7.3. Modifications involving additional memory

Added Modification to Initialization for Z = Zo:

Copy = False (where Copy indicates whether a copy is made of the arrays indicated in the 
modification below).

Added Modification of the Inner Loop for all Z:

Each time Case (2) yields a new value of Znext (after checking for both k′ and k″ for Z = Zo) 
record a copy of ne, the set K and arrays Nk,Ek, MinCostA(k), k ∈K and the arrays L(i), 

2As before, we adopt the convention whereby the loop is bypassed if v3 = 1 but will be executed on the iteration where 
v: = v + 1 results in v = v3.
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MinCostB(i), MinCostC(i), i∈ N (writing over any previous copy). Let Copy = True if such a 
copy is made. (As remarked earlier, it is not necessary to keep track of the Ek array.)

Added Modification for the Preliminary Loop

If Copy = False, execute the Preliminary Loop. Otherwise, if Copy = True, instead of executing 
the Preliminary Loop read the copies of the saved arrays into the active form of these arrays, 
followed by setting s = s2(v2) and Copy = False. (The Inner Loop immediately follows this 
modification.)

The complete C(Z) Algorithm that incorporates all of these changes is shown in the Appendix 
for convenience.

8. Conclusions

The new classes of tree-based clustering algorithms represented by C(W), C(Y) and in the most 
general case by C(Z), afford the possibility to generate clusters with a range of different charac-
teristics as the parameters W, Y and Z are varied. The fact that the key parameter can be varied 
adaptively to generate all cluster collections in its class without duplication invites empirical stud-
ies to identify parameter ranges that are effective for particular types of clustering applications.

The C(Z) Algorithm can be made still more general by changing the implicit definition of 
MinCostC(i) for i = i′ and i″ by defining MinCostA(k), for k = k′ and k″, to be any convex 
combination of the costs of edges in the set E(Nk) = {e = (i,j) ∈ Nk}⊂ E (hence (Nk,E(Nk)) is the 
subgraph of G spanned by the nodes of Nk) and defining MinCostB(i) to be any convex combi-
nation of the edges of E(Nk) that are adjacent to node i in G. However, this requires updating 
these MinCost values in a more complex way than in the current form of Case (3).

Future work to exploit the properties of these algorithms can include an investigation of the 
choice of the parameter α (and hence β = 1 – α) in Algorithm C(Z) to similarly determine 
ranges that are effective for particular types of clustering applications.

Acknowledgements

This research was supported in part by the Key Laboratory of International Education 
Cooperation of Guangdong University of Technology and by the Fundamental Research 
Funds for the Central Universities (No3102017zy059).

A. Appendix

A.1. Algorithm C(Z) with accelerated updates

We identify the form of the C(Z) algorithm that results by incorporating all of the accelerated 
updates of Section 7. As before, the sets Ek do not need to be maintained unless they are of 
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interest for experimental purposes. The case where added memory is used is identified in 
Case (2) so that this memory need not be used if desired. (In that case, the variable Copy will 
always remain False, as in Initialization(B).)

C(Z) Algorithm with Accelerated Updates

Inputs: The graph G(N, E), cost vector c(e), e ∈ E, initial Zo value for Z.

Edges are ordered so that the costs satisfy c(e(1)) ≤ c(e(2)) ≤ … ≤ c(e(|E|)).

Set Z = Zo and sLast = |E|. Copy = False.

Execute Routine for Z = Zo (Given Below)

Begin Outer Loop for Z > Zo

While Z < Large

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and k″ = 
L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with edge set Ek′ 
= e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and i″ and set K: = K 
\ {k″}. Then set ne = 1 and s = 1.

If (Copy = False) then.

Execute Preliminary Loop

Set v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

v = 1

While v < v3

v: = v + 1

s = s3(v)

Identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′) and k″ 
= L(i″).

Execute Case (3): Absorb Nk″ into Nk′ by setting Nk′: = Nk′∪ Nk″ with its 
associated edge set Ek″: = Ek′∪ Ek″ ∪ {e(s)}. Set L(i) = k′ for all i∈ Nk″, and set 
MinCostA(k′): = Min(MinCostA(k′),MinCostA(k″), c(e(s)); MinCostB(i): =  
Min(MinCostB(i),c(e(s)) for i = i′ and i″ (thus yielding MinCostC(i) by the 
definitions of Section 7). Set K: = K \ {k″} and sEnd = s. Set ne: = ne + 1 and if 
ne = n – 1 terminate the C(Z) Algorithm.

EndWhile

Set s = s3(v3)

Else

Read the latest copy of ne and the arrays saved in Case (2) of the Inner Loop into the 
active form of these arrays. Set s = s2(v2) and Copy = False.
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Endif

Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = L(i′) and 
k″ = L(i″).

Case (1): If k′ = k″, then continue to the next iteration of the Inner Loop.

Case (2): If c(e(s)) > Z + MinCostC0, then compute Znext = Min(Znext, c(e(s)) –  
 MinCostC0), set v2 = v2 + 1, s2(v2) = s, Z(v2) = Znext.

 For added memory case:

 Set Copy = True and record a copy of ne, the set K and arrays Nk, Ek, MinCostA(k),  
 k ∈K and the arrays L(i), MinCostB(i), MinCostC(i), i∈ N (writing over any previous  
 copy).

 Continue to the next iteration of the Inner Loop.

Case (3): Absorb Nk″ into Nk′ by setting Nk′: = Nk′∪Nk″ with its associated edge set Ek″:  
 = Ek′∪ Ek″ ∪{e(s)}. Set L(i) = k′ for all i∈ Nk″, and set MinCostA(k′): = Min(MinCostA(k′),  
 MinCostA(k″), c(e(s)); MinCostB(i): = Min(MinCostB(i), c(e(s)) for i = i′ and  
 i″ (thus yielding MinCostC(i) by the definitions of Section 7). Set K: = K \ {k″}  
 and sEnd = s.Set v3:= v3 + 1, s3(v3) = s, ne:= ne + 1 and if ne = n – 1 terminate the  
 Inner Loop.

Endwhile

Z = Znext

sLast = sEnd

If v2 = 1 terminate the C(Z) Algorithm

Endwhile

End of C(Z) Algorithm

Routine for Z = Zo

Initialization(A). Set Znext = Large, K = N (= {1, …, n}), and for each k ∈ K let.

L(k) = k, Nk = {k}, Ek = ∅, and MinCostA(k) = MinCostB(k) = MinCostC(k) = Large.

Initialization(B). Let i′ = p(1) and i″ = q(1) and select e(1) (= (i′, i″)).Set k′ = L(i′) and.

k″ = L(i″) and absorb Nk″ into Nk′ to create the cluster Nk′: = Nk′∪ Nk″= {i′, i″} with 
edge set Ek′ = e(1). Set MinCostA(k′) = c(e(1)) and MinCostB(i) = c(e(1)) for i = i′ and 
i″ and set K: = K \ {k″}. Set v2 = v3 = 1; s2(1) = s3(1) = 1 and Z(1) = Large. Set ne = 1 
and s = 1.

Initialization(C): Set nk = 1, k ∈ K \ {k′}, and nk′ = 2; set t(i) = 0 for i∈ N \{i′, i″} and 
set t(i′) = t(i″) = 1. Set nTrack = 0 and set FirstTime(k) = True, k ∈ K.
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Begin Inner Loop

While s < sLast

Set s: = s + 1 and identify edge e(s) = (p(s), q(s)). Let i′ = p(s), i″ = q(s) and let k′ = 
L(i′) and k″ = L(i″). For i = i′ and i″: If i = L(i) then set t(i): = t(i) + 1 and if (now) 
t(i) = tMax(i) then set nTrack: = nTrack +1 and if (now) nTrack = n terminate the 
Inner Loop.

Case (1): If k′ = k″ (i′ and i″ belong to the same cluster), then continue to the next 
iteration of the Inner Loop.

Case (2): Execute the following for k = k′ and k = k″: If FirstTime(k) = True, then 
if c(e(s)) > Z + MinCostC(k): set FirstTime(k) = False, set nTrack: = nTrack + nk, 
compute Znext = Min(Znext, c(e(s)) – MinCostC(k) and if (now) nTrack = n, 
terminate the Inner Loop. After performing the preceding for both k′ and k″: If 
FirstTime(k) = False for k = k′ or k = k″ execute the following (and otherwise pro-
ceed to Case (3)): set v2 = v2 + 1, s2(v2) = s, Z(v2) = Znext.

For added memory case:

Set Copy = True and record a copy of ne, the set K and arrays Nk, Ek, MinCostA(k), 
k ∈K and the arrays L(i), MinCostB(i), MinCostC(i), i∈ N (writing over any previ-
ous copy).

Continue to the next iteration of the Inner Loop.

Case (3): Absorb Nk″ into Nk′ to create the larger cluster Nk′: = Nk′∪ Nk″ with its asso-
ciated edge set Ek″: = Ek′∪ Ek″ ∪{e(s)}. Correspondingly, update L(i) by setting L(i) = k′ 
for all i∈ Nk″, and set MinCostA(k′): = Min(MinCostA(k′),MinCostA(k″), c(e(s)); 
MinCostB(i): = Min(MinCostB(i),c(e(s)) for i = i′ and i″ (thus yielding MinCostC(i) 
by the definitions of Section 7). Set K: = K \ {k″}, nk′: = nk′ + nk″, and sEnd = s. Set v3:= 
v3 + 1, s3(v3) = s, ne:= ne + 1 and if ne = n – 1 terminate the Inner Loop.

Endwhile

Z = Znext

sLast = sEnd

If v2 = 1 then

Terminate the C(Z) Algorithm

Else.

v* = Max(v: s3(v) < s2(v2)); v3 = v* + 1; s3(v3) = s2(v2); v2: = v2–1.

Endif

End of Routine for Z = Zo
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