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Abstract. The bipartite Boolean quadratic programming problem (BBQP) is a generalization
of the well-studied NP-hard Boolean quadratic programming problem and can be regarded
as a unified model for many graph theoretic optimization problems, including maximum
weight-induced subgraph problems, maximum weight biclique problems, matrix factor-
ization problems, and maximum cut problems on bipartite graphs. This paper introduces
three main algorithms for solving the BBQP, based on three variants of tabu search, the first
two consisting of strategic oscillation–tabu search (SO-TS) algorithms, which use destructive
and constructive procedures to guide the search into unexplored and promising areas. The
third algorithm,whichDoes also incorporates the SO-TS algorithms as solution improvement
methods, uses a path relinking (PR) algorithm that is capable of further enhancing search
performance. Experimental results demonstrate that all three algorithms perform very ef-
fectively compared with the best methods in the literature, and the PR algorithm joinedwith
tabu search is able to discover new best solutions for two-thirds of the large problem in-
stances and match the previous best known solutions for the other instances. Additional
analysis discloses the contributions of the key ingredients of each of the proposed algorithms.
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1. Introduction
Let Q � (qij) be an m × n matrix, c � (c1, c2, . . . , cm) be
a row vector in Rm, and d � (d1, d2, . . . , dn) be a row
vector in Rn. The bipartite Boolean quadratic pro-
gramming problem (BBQP) is defined as

BBQP : Maximize f (x, y) � xTQy + cx + dy (1)
Subject to x ∈ {0, 1}m, y ∈ {0, 1}n, (2)

where x and y are required to be column vectors.
The BBQP is a generalization of the well-studied

Boolean quadratic programming problem (BQP).

BQP : Maximize f (x) � xTQ′x + c′x (3)
Subject to x ∈ {0, 1}n, (4)

whereQ′ is an n × nmatrix and c′ is a row vector in Rn

(Glover et al. 1998, Lü et al. 2010,Wang et al. 2012). As
demonstrated in Punnen et al. (2015b), the BQP can be
formulated as the BBQP by choosing Q � Q′ + 2MI,
c � 1

2 c
′ −Me, and d � 1

2 c
′ −Me, where I is an n × n

identity matrix, e ∈ Rn is an all-one vector, and M is a
large positive constant.
A graph theoretic interpretation of the BBQP is as

follows (Punnen et al. 2015b). Let G � (I, J,E) be a bi-
partite graph,where I � {1, 2, . . . ,m} and J � {1, 2, . . . , n}
are sets of nodes for the two parts of G, and ci and dj
are associated with the nodes i ∈ I and j ∈ J, respec-
tively. Furthermore, an interaction profit wij is asso-
ciated with each edge (i, j) ∈ E. Then the maximum
weight-induced subgraph problem (MWISP) on G is
to find a subgraphG′ � (I′, J′,E′) tomaximize

∑
i∈I′ ci +∑

j∈J′ dj +∑
(i,j)∈E′ wij, where I′ ⊆ I, J′ ⊆ J, and G′ is in-

duced by I′ ∪ J′.
The BBQP is a unified model that encompasses a

wide range of graph theoretic optimization problems.
By choosing qij � wij if (i, j) ∈ E and qij � 0 if (i, j) /∈ E, the
BBQP gives rise to the MWISP on a bipartite graph. If
the selected subgraph is required to be a clique, then
the resulting problem is called a maximum weight
biclique problem (MWBP) (Ambühl et al. 2011).
In addition, the BBQP model can also be used to
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formulate themaximumweight cutproblem in abipartite
graph (Punnen et al. 2015b), the binary matrix fac-
torization problem (Koyutürk et al. 2006, Shen et al.
2009, Gillis and Glineur 2011), and the cut-norm
approximation of a matrix (Alon and Naor 2006).

Theoretical results for the BBQP include domina-
tion analysis of approximation algorithms, the dem-
onstration that BBQP isNP-hard, and the identification
of polynomially solvable special cases (Punnen et al.
2015a, b). Important applications of BBQP arise in
bioinformatics (Tanay et al. 2002, Chang et al. 2012)
and data mining (Shen et al. 2009). For instance,
discovering a bicluster of genes that exhibit similar
expression patterns is a core step in the analysis of
gene expression data, and mining discrete patterns in
binary data by use of a rank-one binary approxima-
tion matrix is important for subsampling, compres-
sion, and clustering. Because of its NP-hard nature
and the great difficulty of solving it exactly, several
heuristic and meta-heuristic algorithms have been
proposed for the BBQP.

Karapetyan and Punnen (2013) designed multiple
constructive heuristics, local search heuristics, and
their combinations for the BBQP, identifying worst
case performance ratios for the greedy algorithm and
providing a complexity analysis of all algorithms. The
authors generated five classes of benchmarks from
various applications, which have become standard
benchmarks used for performance evaluation in the
BBQP literature. Experimental analysis of these pro-
posed methods shows that no single algorithm domi-
nates the others for all the instances studied.

Glover et al. (2015) developed a tabu search (TS)
approach, a very large-scale neighborhood (VLSN)
search approach and a hybrid method (HM) that in-
tegrates TS and VLSN search. An experimental study on
a set of 85 benchmark instances discloses that the hy-
bridmethod performs better in terms of solution quality
than each component algorithm in isolation.

Duarte et al. (2014) proposed a branch-and-bound
algorithm (B&B) and multiple iterated local search
(ILS) algorithms for solving the BBQP. Different strate-
gies for each search element are developed to obtain
ILS variants, including semigreedy versus greedy con-
structive procedures for initial solution generation,
and local search versus intensification–diversification
search procedures for solution improvement. Compu-
tational results on solving small instances with m � 50
and n � 50 disclose the B&B implementation gener-
ally produces tighter lower bounds but inferior upper
bounds than the general CPLEX solver. For large in-
stances, the best ILS variant is able to significantly out-
perform algorithms in Karapetyan and Punnen (2013)
but presents no significant difference when compared
with HM in Glover et al. (2015).

Karapetyan et al. (2017) go a step farther to present
a high-performance conditional Markov chain search
(CMCS) approach for the BBQP, which significantly
improves the algorithms developed in the prelimi-
nary version. Hill climbing for search intensification
and mutation for search diversification are automati-
cally selected according to a CMCS scheme. Extensive
experimental results reveal the proposed approach yields
excellent results and competes favorably with HM.
In this work, we propose two effective strategic

oscillation guided tabu search (SO-TS) algorithms
and an especially effective path relinking (PR) algo-
rithm that incorporates the SO-TS algorithms within
it for the BBQP. The proposed algorithms integrate
several new and general-purpose search ingredients,
which are not only demonstrated to obtain exceptional
results for the BBQP but can also be applied in other
search approaches to improve their performance. The
main contributions of this paper are summarized as
follows.
First, VLSN search has been recently shown to

be a useful tool for solving combinatorial optimiza-
tion problems (Ahuja et al. 2002, Glover et al. 2015,
Karapetyan et al. 2017). In this work, we investigate
how VLSN can be beneficially integrated into TS. Our
designed VLSN-TSmethod uses a solution-based tabu
strategy to effectively determine tabu status of VLSN
moves. Experimental analysis discloses that incorpo-
rating VLSN in solution-based TS can improve upon
the popular VLSN integration in hill climbing search.
Second, we propose a frequency-driven strategic

oscillation strategy based on ideas from tabu search
to diversify search trajectories, where adaptive fre-
quency memory is introduced to generate starting
solutions in promising search areas. This simple di-
versification mechanism plays an important role in
enhancing the performance of tabu search and can be
used as a general diversification component in vari-
ous heuristic search approaches.
Third, we explore for the first time the usefulness of

multiple solution improvement methods to enhance the
PR algorithm by a procedure that selects a solution im-
provement method adaptively. More importantly, this
strategy can also be useful as an intensification search
component inotherpopulation-basedsearchapproaches,
such as memetic search, genetic algorithms, and scatter
search, among others.
The computational assessment on five classes of

benchmarks with a total of 50 instances discloses that
our proposed algorithms perform well compared
with the best methods in the literature, and our com-
posite PR algorithm finds new best solutions for 17 in-
stances (including 16 out of the 25 larger and more
challenging problem instances), while matching the
previous best known solutions for all other instances.
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The rest of the paper is organized as follows. Section 2
describes the tabu search algorithms guided by stra-
tegic oscillation, and Section 3 describes the tabu
search algorithm guided by path relinking. Section 4
analyzes the influence of key ingredients of our al-
gorithms on their performance. Experimental results
and comparisons with state-of-the-art algorithms in
the literature are presented in Section 5, and con-
cluding remarks are given in Section 6.

2. Strategic Oscillation–Tabu
Search Algorithms

Approaches based on the general tabu search frame-
work have beendemonstrated to be highly effective for
solving the BBQP (Glover et al. 2015). Strategic os-
cillation is closely linked to tabu search as one of
the earliest proposed strategies for diversifying the
search (Glover 1977, Glover and Laguna 1997, Glover
2000). Motivated by the capacity of strategic oscilla-
tion to play a diversification role in tabu search, we
propose two new strategic oscillation guided tabu
search algorithms to further enhance the basic tabu
search approach for the BBQP. The two algorithms
share the same strategic oscillation scheme but use
different variants of tabu search.

2.1. Main Scheme
Algorithm 1 shows the structure of our SO-TS ap-
proach, which alternates between a tabu search phase
(Section 2.2) to find a locally optimal solution and a
strategic oscillation phase (Section 2.3) to direct the
search into unexplored and promising search areas.
Starting from a given initial solution (x, y), where x �
(x1, x2, . . . , xm) and y � (y1, y2, . . . , yn) are two vectors of
binary (zero–one) variables, the tabu search phase
iteratively selects and executes moves until the so-
lution cannot be further improved for a specified
consecutive number of iterations, identified by the
iteration cutoff value ρ. During this TS phase, two
frequencymemory FreqX and FreqY aremaintained to
record the frequency that each variable receives the
value 1 in preparation for the follow-up strategic
oscillation phase. We save the best solution found
during the tabu search phase as (x′, y′) and the so-
lution obtained in the last iteration as the critical
solution (xc, yc). If the solution (x′, y′) improves the
best solution (x∗, y∗) found so far, then (x∗, y∗) is
updated to be (x′, y′).

Once the TS phase terminates, the strategic oscil-
lation phase begins. A destructive procedure is first
launched to drop a certain number (identified below
by a value �(m + n) × span	, where �(m + n) × span	 is
the integer part of (m + n) × span) of variables in the
critical solution by changing their values from 1 to 0
to produce a partial solution (xp, yp). Afterward, the
constructive procedure adds back the samenumber of

variables by changing their values from 0 to 1 in
(xp, yp) to produce a new trial solution (x, y) for the
next phase of tabu search. Both the selection of the
dropped and added variables depends on the fre-
quency information provided by FreqX and FreqY.
The SO-TS method repeats the tabu search phase
and the strategic oscillation phase until the specified
stopping condition is satisfied.

Algorithm 1 (Outline of the SO-TS Approach)
1. Input: a given solution (x, y)
2. Output: the improved solution (x∗, y∗)
3. Set x∗ � x, y∗ � y
4. repeat
5. (x′, y′, xc, yc) ← TabuSearch(x, y, FreqX, FreqY,

ρ) (see Section 2.2)
6. if f (x′, y′)> f (x∗, y∗) then
7. x∗ � x′, y∗ � y′
8. end if
9. (xp, yp) ← Destructive(xc, yc, FreqX, FreqY,

span) (see Section 2.3.1)
10. (x, y) ← Constructive(xp, yp, FreqX, FreqY,

span) (see Section 2.3.2)
11. until the stopping condition is satisfied

2.2. Tabu Search
Wedesign two tabu search phases, one using a simple
neighborhood along with an attribute-based deter-
mination of tabu status (SN-TS) and the other using
a very large-scale neighborhood accompanied by a
solution-based determination of tabu status (VLSN-
TS). In the following sections, we first describe the
move operators and fast evaluation ofmove gains that
provide the starting point of our search procedures
and then describe the details of our complete SN-TS
and VLSN-TS phases.

2.2.1. Move Operators. Move operators in neighbor-
hood search are used to generate a sequence of so-
lutions by modifying each member of the sequence to
generate the next solution from a collection of neighbor
candidates solutions. Typically the neighbors of a given
solution result by very simple local changes, such as
modifying the value of a single variable or the values of a
small number of variables. For a given solution (x, y),
let I � {1, 2, . . . ,m} and J � {1, 2, . . . ,n} be the index
sets of variables in x and y, respectively. The proposed
two move operators are defined as follows.
One-flip move: the simple move of flipping a vari-

able xi∈I or yj∈J to change its current value to the
complementary value 1 − xi or 1 − yj.
Flip-x-optimize-y/flip-y-optimize-x move: this move

is a very large-scale neighborhood move that flips
multiple variables at the same time. The idea of the flip-x-
optimize-y/flip-y-optimize-x move originates from the
specific problem structure of the BBQP. More precisely,
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given a fixed vector x, we can efficiently compute an
optimal vector y∗(x) using Equation (5). Similarly, we
can easily determine an optimal x∗(y) using Equation
(6) for a fixed y:

y∗j (x) �
1, if dj +

∑m
i�1

qijxi > 0

0, otherwise;

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (5)

x∗i (y) �
1, if ci +

∑n
j�1

qijyj > 0

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (6)

Based on this property, the flip-x-optimize-y move
consists in flipping a variable xi and then replacing y
with the optimized y∗(x). Similarly, the flip-y-optimize-
x move consists in flipping a variable yj and then
replacing x with the optimized x∗(y). Compared with
the simple and cheap one-flipmove, the flip-x-optimize-
y/flip-y-optimize-x move is much more computation-
ally expensive but able to reach a better candidate
solution. Equation (5) and Equation (6) were first
introduced in Punnen et al. (2015b).

2.2.2. Fast Evaluation of Move Gains. To evaluate the
effect of a move on the objective function as fast as
possible, we adopt the use of a move gain analogous
to that calculated in Glover andHao (2010) and Benlic
and Hao (2011). For a given move denoted by mv, the
move gain Δmv indicates the variation in the objec-
tive value when mv is applied to transform the in-
cumbent solution (x, y) into a neighboring solution
(x′, y′); that is, Δmv � f (x′, y′) − f (x, y), where f is the
objective function defined in Equation (1). Specifi-
cally, we use two vectors ρ and γ, where ρi and
γj respectively record the potentials of each variable
xi and yj with respect to the objective function f :

ρi � ci +
∑n
j�1

qijyj, i ∈ I; (7)

γj � dj +
∑m
i�1

qijxi, j ∈ J. (8)

The move gain of flipping a variable xi can be quickly
calculated as ρi if xi is changed from 0 to 1 and −ρi

otherwise. After the variable xi is flipped, γ is ac-
cordingly updated in Equation (9) to propagate the
effect of flipping xi (in Equation (9), we use the con-
vention that xi represents the value of the variable xi
before being flipped):

γj � γj + (1 − 2xi)qij, j ∈ J. (9)

Themove gain offlipping a variable yi can be calculated
in a like fashion. By using ρ and γ, the complexity to
identify the best one-flip move for each tabu search
iteration is reduced from O(mn) to O(m + n).

In this case, the move gain of flipping a variable xi
and reoptimizing y is calculated as

Δmv � (1 − 2xi)ci +
∑n
j�1

max(γj + (1 − 2xi)qij, 0)

−∑n
j�1

γjyj. (10)

Once the flip-x-optimize-ymove is performed, γj, y∗j (x),
and ρi are updated by

γj � γj + (1 − 2xi)qij, j ∈ J; (11)

y∗j (x) �
1, if γj > 0
0, otherwise;

{
(12)

ρi � ρi +
∑n

j�1,y∗j (x)��yj
2qijy∗j (x) − qij, i ∈ I. (13)

The move gain of performing a flip-y-optimize-xmove
can be calculated analogously. Compared with the one-
flipmove, the identification of the best flip-x-optimize-y
or flip-y-optimize-x move is computationally expen-
sive with complexity of O(mn).

2.2.3. Simple Neighborhood–Based Tabu Search
(SN-TS). Based on the neighborhood induced by the
one-flip move, our proposed SN-TS phase works as
follows. Starting from an initial solution, each SN-TS
iteration performs the best admissible move (which
is non-tabu or satisfies the aspiration rule) that yields
the largest move gain value to generate the next so-
lution. This process is repeated until no improved
solution is found for ρ1 consecutive iterations. To
prevent the search from short-term cycling, SN-TS
applies a popular attribute-based tabu strategy to
stipulate that if a variable is flipped at the current it-
eration, it is prohibited to be flipped during the fol-
lowing tl iterations, where tl is called the tabu tenure.
A classic aspiration rule is used to allow a tabu var-
iable to be flipped if this leads to a better solution
than the best solution found so far.

2.2.4. Very Large-Scale Neighborhood–Based Tabu
Search (VLSN-TS). Incorporating neighborhoods based
on VLSN in the hill climbing search framework has
recently shown impressive results for solving the
BBQP (Glover et al. 2015, Karapetyan et al. 2017).
However, hill climbing search is confronted with
prematurely getting trapped in a local optimum. To
overcome this problem, we integrate VLSN in the
tabu search framework to develop a VLSN-based
tabu search phase. VLSN-TS uses flip-x-optimize-y/
flip-y-optimize-x moves to generate its neighborhood
and a solution-based tabu strategy to determine tabu
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status of moves. The solution-based tabu strategy
records all solutions encountered during the search
and judges a move as tabu only if the solution in-
duced by this move is marked as previously visited.

We are motivated to use the solution-based tabu
strategy that undertakes to identify an entire visited
solution as tabu, rather than just one of its attributes,
because of the following two reasons. First, it is very
likely that a flip-x-optimize-y/flip-y-optimize-x move
requires some variables lying in the tabu status to
be flipped to achieve an optimized x or y vector,
therefore making it counterproductive to refer to
the attribute-based tabu settings of these variables.
Second (and closely related to the first reason), an
attribute-based tabu strategy will set a flip-x-opti-
mize-y/flip-y-optimize-x move to be tabu if one of the
variables involved in this move would receive a tabu
status, which will exclude numerous such moves from
consideration and thus adversely restrict the search.

To efficiently judge whether a solution was already
visited, we use a hash function to map each visited so-
lution into a 32-bit unsigned integer and store the integer
in abinaryhashingvector as suggested inWoodruff and
Zemel (1993) and Carlton and Barnes (1996). The hash
function we employ has the following form:

h(x, y) �
[∑m
i�1

wi × xi +
∑n
j�1

wj+m × yj
]
mod 232, (14)

where w is an array containing integers drawn from
the discrete uniform distribution on the interval
[0, 232 − 1].

The method to determine whether a solution was
previously visited operates as follows. First, we as-
sociate the hash function h(x, y)with a binary hashing
vectorH of length 232 bits. Initially, all components of
the hashing vector H are filled with 0′s. We record
each visited solution (x, y) in the hashing vector by
setting Hi � 1, where i � h(x, y). Then to determine
whether a solution (x0, y0)was previously visited, we
test its presence in the hashing vector by checking the
ith component in H, where i � h(x0, y0). If (x0, y0) is
absent in the hashing vector (i.e., Hi � 0), we con-
firm that the candidate solution has not been visited.
Otherwise, we assume that the candidate solution
was previously visited.

Starting from an initial solution, the VLSN-TS phase
first repeatedly performs the best flip-x-optimize-ymove
(yielding the maximum move gain) excluding moves
that are tabu. When the best solution cannot be im-
proved using the flip-x-optimize-y moves, VLSN-TS
then tries to improve it by performing flip-y-optimize-x
moves in a similar manner. If neither of these types of
moves can create an improvement, we select the best
admissible move from them. The above procedure is
repeated until the best solution cannot be improved
for ρ2 consecutive iterations. Experimental analysis in

Section 4.2 reveals that VLSN-TS can improve upon
the popular VLSN integration in hill climbing search.

2.3. Strategic Oscillation
Strategic oscillation is a tabu search strategy that
orients moves in relation to a critical event as a means
to create diversified trial solutions (Glover 2000,
Gallego et al. 2013). We define the critical event of a
BBQP instance to occur when the tabu search phase
gets trapped in local “tabu optimum” (i.e., when the
best solution obtained by the tabu search phase is not
improved for a specified consecutive number of it-
erations) and call the solution obtained in the last
iteration the critical solution.
The strategic oscillation scheme is achieved by

applying a destructive procedure to drop variables
(changing their values from 1 to 0) and a constructive
procedure to add variables (changing their values
from 0 to 1) with respect to the critical solutions. To
achieve better search diversification, we propose to
use frequency information collected during the search
history to guide the selection of variables to be
dropped and to be added. Specifically, we maintain
frequency memories FreqXi, i ∈ I and FreqYj, j ∈ J to
record the number of iterations that each variable xi
and yj receives the value 1 during the tabu search
phase. Our proposed destructive and constructive
procedures are described as follows.

2.3.1. Destructive Procedure. Let (xc, yc) be the critical
solution. The destructive procedure repeats steps that
drop a variable xi with the highest frequency FreqXi

from (xc, yc) until �m × span	 variables xi are dropped.
In the same manner, �n × span	 variables yj are dropped
from (xc, yc). In this way, the critical solution (xc, yc) is
transformed to a partial solution (xp, yp). The destruc-
tive procedure terminates by returning the partial solu-
tion (xp, yp).
2.3.2. Constructive Procedure. The selection of added
variables in the constructive procedure depends on
a combined measure of frequency and a “potential
value” derived from the objective function. The pro-
cedure first calculates the average frequency afx of
all variables xi by afx�∑m

i�1 FreqXi/m. Then, it adds a
variable xi with the maximum potential to the partial
solution (xp, yp), subject to requiring its frequency
FreqXi to be less than the average frequency afx. This
process is repeated until �m × span	 variables xi are
added. Finally, �n × span	 variables yj are added in the
same manner. The constructive procedure completes by
returning the resulting trial solution (x, y) � (xp, yp).
By combining the strategic oscillation phase with

the simple neighborhood–based tabu search phase
described in Section 2.2.3 and the very large-scale
neighborhood–based tabu search phase described
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in Section 2.2.4, we obtain the two SO-TS algorithms,
denoted by SO-SN-TS and SO-VLSN-TS. The critical
role of the strategic oscillation scheme to the overall
performance of the SO-TS algorithms is discussed in
Section 4.3.

3. Path Relinking Algorithm
Path relinking is a population-based metaheuristic
search approach whose underlying ideas share a
significant intersection with TS (Glover et al. 2004).
This approach generates new solutions by exploring
trajectories that connect elite solutions and has been
shown to provide a good balance between intensifi-
cation and diversification (Laguna and Martı́ 1999,
Yagiura et al. 2006, Wang et al. 2012, Chen et al. 2015,
Peng et al. 2015). As thefirst adaptation of a population-
based method tailored to the BBQP, our proposed
algorithm follows the general PR framework and ad-
ditionally integrates a set of original features respon-
sible for its effectiveness, including a greedy relinking
procedure to build high-quality solution paths, an adap-
tive selection of a solution improvement method, a
quality-and-distance–based reference set updating
strategy, and a distance based solution selection rule.

Algorithm 2 describes the general scheme of the PR
algorithm used in this study. At the beginning, a refer-
ence set RefSet of elite solutions is constructed, where
each solution in RefSet is generated by a randomized
initialization procedure and further improved by
a solution improvement method (see Sections 3.1
and 3.2). At the same time, PairSet is initialized to
contain all the pairs of distinct solutions in RefSet,
identified by their indexes. Both the pairs in PairSet
and the two indexes in each pair are unordered. Then,
an index pair is randomly selected from PairSet to get
an initiating solution and a guiding solution, sub-
mitting to a relinking method to generate a path that
connects the initiating solution where the path starts
and the guiding solution where the path ends (see
Section 3.3). For the created sequence of intermedi-
ate solutions on the path, a solution selection method
is applied to select one or more solutions for fur-
ther quality improvement (see Section 3.4). Each time
a selected solution is refined by the solution im-
provement method, the RefSet update method is
triggered and the set PairSet is updated (see Sec-
tion 3.5). When PairSet becomes empty, the algorithm
reinitializes RefSet to repeat the above-mentioned
procedure until the elapsed time surpasses the given
time limit.

Algorithm 2 (Outline of the PR Algorithm for the BBQP)
1. Input: an instance of the BBQP
2. Output: the best solution (x∗, y∗) found so far
3. repeat

4. InitializeRefSet � {(x1, y1), (x2, y2), . . . , (xr, yr)}
(see Sections 3.1 and 3.2)

5. Initialize PairSet� {(p,q)|p �� q,(xp,yp),(xq,yq) ∈
RefSet}

6. Record the best solution (x∗, y∗) in RefSet and
the objective value f (x∗, y∗)

7. while (PairSet �� ∅) do
8. Pick randomly an index pair (p, q) ∈ PairSet

to get solutions (xp, yp) and (xq, yq) from
RefSet

9. Set xinit � xp, yinit � yp, xguid � xq, yguid � yq

10. PSS � {(x1, y1), (x2, y2), . . . , (xt, yt)} ← Path
Relinking(xinit, yinit, xguid, yguid) (see Section3.3)

11. (xs, ys) ← SolutionSelection(PSS)
(see Section 3.4)

12. (xs′ , ys′ ) ← SolutionImprovement(xs, ys)
(see Section 3.2)

13. if f (xs′ , ys′ )> f (x∗, y∗) then
14. x∗ � xs

′
, y∗ � ys

′

15. end if
16. Update RefSet and PairSet (see Section 3.5)
17. end while
18. until the given time limit is reached

3.1. RefSet Initialization
The reference set RefSet consists of a set of diversified
solutions with good solution quality, each of which is
initially generated by the following two steps. The
first step applies a randomized initialization pro-
cedure to obtain a diversified solution, which enables
each variable in x and y to have an equal probability to
receive the value 0 or 1. The second step applies the
solution improvement method to improve the quality
of the initial solution. The improved solution is added
to RefSet if it is distinct from any solution in RefSet;
otherwise, it is discarded. The above procedure re-
peats until RefSet reaches the reference set size r.

3.2. Adaptive Selection of Solution
Improvement Methods

In contrast to traditional population-based algo-
rithms, which typically rely on a single solution im-
provement method, our PR algorithm jointly applies
the two solution improvement methods SO-SN-TS
and SO-VLSN-TS to take advantage of useful fea-
tures of each component method. Motivation for this
approach comes from experimental observations that
SO-SN-TS and SO-VLSN-TS exhibit complementary
strengths in solving different classes of problem in-
stances. We design an adaptive selection strategy
inspired by Martı́ et al. (2009) to favor the use of the
particular component method that produces solu-
tions of better quality. Two counters σ1 and σ2 re-
spectively record the number of times SO-SN-TS and
SO-VLSN-TS find improved best solutions. At the
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beginning of the search, the probability σ1/(σ1 + σ2)
of selecting SO-SN-TS and the probability σ2/(σ1 + σ2)
of selecting SO-VLSN-TS are made equal by setting
σ1 � 1 and σ2 � 1. As long as a component method
obtains an updated best solution, the probability
values are updated by increasing the corresponding
σ1 or σ2 value by 1. In this way, the chance to use the
component improvement method that produces better
solution quality is increased during the search pro-
cess. The stopping conditions of the SO-SN-TS and
SO-VLSN-TS components in the PR algorithm are
respectively set equal to the search depths λ1 and λ2,
representing the maximum number of iterations of
the corresponding approach. The merit of the adap-
tive selection of solution improvement methods is
verified in Section 4.4.

3.3. Relinking Method
The relinkingmethod is used to generate newpromising
solutions by creating a solution path connecting an ini-
tiating solution and a guiding solution selected from
RefSet. The “combination effect” results from the fact
that each intermediate solution on the path incorporates
additional attributes from the guiding solution until
finally reaching the guiding solution (Glover 1997).
Algorithm 3 shows the pseudo-code of our relinking
method. We first construct the difference set DS to
include variables whose value assignments are dif-
ferent in the initiating solution and the guiding so-
lution. Then a sequence of intermediate solutions
(x1, y1), (x2, y2), . . . , (x|DS|−1, y|DS|−1)) is generated step by
step to build the path starting with (x0, y0) � (xinit, yinit)
and ending at (x|DS|, y|DS|) � (xguid, yguid). More pre-
cisely, we evaluate the move gain of flipping each
variable in DS and identify the variable xbst or ybst
yielding the maximum move gain. The first solution
(x1, y1) built on the path is obtained from (x0, y0) by
changing the value of xbst or ybst (according to whether
an x variable or a y variable is the winner) from its
current value assignment in (x0, y0) to its comple-
mentary value. Meantime, the variable xbst or ybst is
removed from the set DS. For each follow-up path
construction step, a path solution (xt, yt) is generated
from its predecessor (xt−1, yt−1) in the sameway.When
the set DS becomes empty, the relinking method ar-
rives at the guiding solution.

Algorithm 3 (Outline of the Relinking Method)
1. Input: an initiating solution (xinit, yinit) and a

guiding solution (xguid, yguid)
2. Output: path solutions (x1, y1), (x2, y2), . . ., (x|DS|−1,

y|DS|−1)
3. DS� {xi|xiniti �� x guid

i , i∈ I}∪{yj|yinitj �� y guid
j , j∈ J}

4. Set x0 � xinit, y0 � yinit, t � 1
5. while |DS|> 0 do

6. Set xt � xt−1 and yt � yt−1
7. Evaluate the move gain of flipping each

variable in DS
8. if xbst gets the best move gain then
9. xtbst � 1 − xt−1bst , DS � DS \ {xbst}

10. end if
11. if ybst gets the best move gain then
12. ytbst � 1 − yt−1bst , DS � DS \ {ybst}
13. end if
14. t � t + 1
15. end while

3.4. Path Solution Selection
The solution selection method is used to select so-
lutions from the sequence of intermediate solutions
produced by the relinking method for further im-
provement by the solution improvement method.
Several popular path solution selection rules can be
found in the literature, which typically select several
solutions on the path for improvement. For our PR
algorithm, the path solutions are generated in the
neighborhood space where two consecutive solu-
tions differ in the value assigned to a single variable.
Hence, it is not fruitful to apply the improvement
method to each solution on the path because many of
these solutions would produce the same local opti-
mum. In addition, the solution improvement method
is the most time-consuming part of the PR algorithm,
and the relinking method already guarantees to some
extent the quality of path solutions by performing the
best move at each path construction step. For these
reasons, we decided to select a solution on the path for
improvement that is midway between the initiating
solution and the guiding solution, picking the second
such solution if two solutions tie for “midway.”

3.5. RefSet and PairSet Updating
The RefSet updating procedure is invoked after a
path solution is refined by the solution improvement
method. Some common RefSet updating approaches
have been proposed, which for example may accept
any solution that is better than the worst solution but
then replaces the solution in RefSet that is closest to
thenewsolution (Glover 1997), orwhichmaymaintain
a two-piece RefSet consisting of high-quality and
diversified solutions (Resende et al. 2010, Aringhieri
and Cordone 2011).
In this work, we use a simple but effective RefSet

updatingmethod, which takes both quality and diversity
criteria into consideration when deciding whether a
new solution should be inserted into RefSet and, if so,
which solution should be replaced. The diversity of
a solution is measured as the minimum Hamming
distance between this solution and each solution in
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RefSet, where the Hamming distance between any
two solutions is defined as the number of variables
whose value assignments are different in the two
solutions. If theminimumHammingdistance d between
the new solution and each solution in RefSet satisfies
d> η × (m + n) (η is called the distance threshold co-
efficient), we consider this solution sufficiently di-
verse, and then examine whether its solution quality
is better than the worst solution quality in RefSet. If
both the diversity and quality criteria are satisfied,
this solution is inserted into RefSet to replace the
worst solution.

When relinking occurs, the index pair for the ini-
tiating and guiding solutions is removed fromPairSet,
and the size of PairSet decreases. When RefSet is
updated, all the index pairs associated with the
replaced solution in RefSet are removed from PairSet.
Meanwhile, new index pairs composed of the newly
inserted solution and each other solution in RefSet are
added to PairSet. This use of PairSet avoids duplica-
tions in examining pairs in RefSet that are sometimes
permitted in other procedures.

4. Analysis of Important
Search Components

Our experimental analysis to verify the effectiveness
of each component in our proposed algorithms first
determines parameter settings and performs parame-
ter sensitivity analysis. Then we analyze the important
ingredients of the proposed algorithms, including the
VLSN integration in the solution-based tabu search
framework, the strategic oscillation scheme, and the
adaptive selection of solution improvement methods.
All the experiments use the five classes of problem in-
stances (Random, Max Biclique, Max Induced Graph,
Max-Cut, and Matrix Factorization instances), which
were first generated in Karapetyan and Punnen (2013)
and have become the standard BBQP benchmarks in
the literature (Duarte et al. 2014, Glover et al. 2015,
Karapetyan et al. 2017). Each class includes five
medium instances with n � 1000, m � 200, 400, 600,
800, 1000 and five large instances with n � 5000,
m � 1000, 2000, 3000, 4000, 5000.

4.1. Parameter Settings and Sensitivity Analysis
Table 1 gives the descriptions and settings of the
parameters used in our proposed algorithms. We set
r � 10 as recommended in many population-based
search algorithms (Wang et al. 2012, Chen et al.
2015) and tune the other parameters using the gen-
eral IRACE automatic parameter configuration tool
(López-Ibánez et al. 2011). The tuning was performed
on a sample of 20 representative instances of varying
sizes, selected from each of the five classes. For each
parameter, IRACE requires a limited set of values as
input to choose from the column “Considered values”
in Table 1. Given that PR is the capstone algorithm of
our paper and includes all the parameters, we use the
PR algorithm in this parameter-tuning experiment
and specify the total time budget for IRACE to be
2,000 PR executions. Each execution is set to be 100
seconds for a medium instance and 1,000 seconds
for a large instance. The recommended parameter
values from this calibration experiment are shown in
the fifth column of Table 1.
Furthermore, we analyze the parameter sensitivity

by conducting Friedman statistical tests to determine
whether there is a significant difference in PR perfor-
mance. To evaluate the sensitivity of each parameter, we
test the considered values for each parameter while
fixing the other parameters to their final value. For each
instance and each parameter value, we run the PR al-
gorithm and record the best objective value. The results
of the Friedman tests shown in the last columnof Table 1
indicate that varying parameters do not present sig-
nificant differences with all p-values no less than 0.05.
Hence, we conclude that the parameters in the PR
algorithm present no particular sensitivity.

4.2. Impact of Integrating VLSN in the Solution-
Based Tabu Search Framework

We assess the impact of integrating VLSN with TS
by comparing our VLSN-TS with a VLSN-based hill
climbing search VLSN-HC (the same as the Flip-float
coordinate method in Glover et al. 2015). In VLSN-
HC, we restart the algorithm each time the search is
judged to be trapped in a local optimum.

Table 1. Parameter Settings of the PR Algorithm

Parameter Section Description Considered values Final value p-value

tt 2.2.3 Tabu tenure {0.01n, 0.02n, 0.03n, 0.04n, 0.05n} 0.04n 0.143
ρ1 2.2.3 Iteration cutoff for SN-TS {500, 1000, 1500, 2000, 2500} 1,500 0.328
ρ2 2.2.4 Iteration cutoff for VLSN-TS {50, 100, 150, 200, 250} 150 0.133
span 2.3 Oscillation amplitude {0.01, 0.02, 0.03, 0.04, 0.05} 0.03 0.263
λ1 3.2 Search depth of SO-SN-TS {250000, 500000, 750000, 1000000, 1250000} 500,000 0.687
λ2 3.2 Search depth of SO-VLSN-TS {500, 1000, 1500, 2000, 2500} 1,000 0.300
η 3.5 Distance threshold coefficient {0.01, 0.02, 0.03, 0.04, 0.05} 0.04 0.401
r 3.1 RefSet size — 10 —
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Figure 1 summarizes the comparative results be-
tween VLSN-TS and VLSN-HC. Each of the first five
subfigures shows the behavior of VLSN-HC relative
to VLSN-TS on a specific class of problem instances. The
horizontal axis indicates the instances in each class,

which appear in the increasing order of the problem
size. The vertical axis indicates the percentage gap
of VLSN-HC relative to the solution of VLSN-TS. The
last subfigure summarizes the average objective
values of VLSN-TS and VLSN-HC over the 50 instances

Figure 1. (Color online) Impact of Integrating VLSN in the Solution-Based Tabu Search Framework
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and the number of instances on which VLSN-HC ob-
tains better, equal, and worse objective values than
VLSN-TS.

From Figure 1, we observe that the percentage gap
of VLSN-HC to VLSN-TS is nonpositive for each

instance, which means that VLSN-HC cannot find
better objective values than VLSN-TS. To be specific,
VLSN-HC finds worse and equal objective values com-
pared with VLSN-TS for 39 instances and 11 instances,
respectively. Hence, this experiment discloses that our

Figure 2. (Color online) Effectiveness of the SO Mechanism in the SO-SN-TS Algorithm
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proposed tabu search framework is superior to the
common hill climbing frameworkwhen the very large-
scale neighborhood is used in local search.

4.3. Effectiveness of the Strategic
Oscillation Mechanism

Our SO-TS algorithms include an informed strategic
oscillation mechanism to escape from local tabu optima
and locate promising regions. To verify its effective-
ness, we remove the strategic oscillation component
from the SO-SN-TS algorithm while keeping other
components unchanged to produce the variant SN-
TS-NOSO. We run experiments for SN-TS-NOSO and
SO-SN-TS under the same experimental settings and
show the results in Figure 2.

As can be seen from Figure 2, SO-SN-TS performs
much better than the variant SN-TS-NOSO by finding
better solutions for 32 instances and worse solutions
for 2 instances. Moreover, the average objective value
obtained by SO-SN-TS is 13,595,704.6, which is an
improvement of 5.94% over the average objective
value 12,832,975.5 obtained by SN-TS-NOSO. We
also perform this experiment for the SO-VLSN-TS
algorithm and obtain similar outcomes. Hence,
we conclude that strategic oscillation plays an es-
sential role to ensure high-quality solutions in our
algorithms.

4.4. Effectiveness of the Adaptive Selection of
Solution Improvement Methods

To illustrate the merit of adaptively selecting SO-SN-
TS or SO-VLSN-TS to refine solutions, we test three
additional PR versions of using different solution
improvement methods. The first two us only SO-SN-
TS (denoted by PR-SN) or SO-VLSN-TS (denoted by
PR-VLSN), and the third one (denoted by PR-EqSel)
selects SO-SN-TS and SO-VLSN-TS with an equal
probability of 0.5.

Figure 3 shows experimental statistics of the four
different PRversions.As shown inFigure 3, the average
objective value over the 50 instances obtained by our
PR algorithm is 14,667,587.52, which is the best com-
pared with 14,666,442.94 of PR-EqSel, 14,659,385.8 of
PR-VLSN, and 14,332,660.78 of PR-SN. Furthermore,
PR finds better and worse objective values than PR-
EqSel, PR-VLSN, and PR-SN for 11 against 2 instances,
14 against 2 instances, and 12 against 8 instances, re-
spectively. These findings highlight the benefits of the
proposed adaptive selection of solution improvement
methods.

5. Experimental Results
In this section, we evaluate our proposed SO-SN-TS, SO-
VLSN-TS, and PR algorithms and provide detailed
comparisons between our best algorithm and state-of-

the-art algorithms in the literature using different
running time.

5.1. Comparisons AmongOur Proposed Algorithms
We first test our SN-TS, VLSN-TS, and PR algorithms
using a long running time (LT), which is set to be 1,000
seconds for each medium instance and 10,000 sec-
onds for each large instance. These stopping criteria are
adopted in the reference algorithms HM (Glover et al.
2015) and CMCS (Karapetyan et al. 2017). Table 10 in
the online supplement shows the computational re-
sults of our proposed algorithms, where columns 1
and 2, respectively, give the instance names and the
previous best known results BKR (Karapetyan and
Punnen 2013, Duarte et al. 2014, Glover et al. 2015,
Karapetyan et al. 2017). The consecutive three col-
umns under the headings SO-SN-TS, SO-VLSN-TS,
and PR list the best solution value Bst found by each
algorithm, the gap between Bst and BKR, and the time
(in seconds) to reachBst. To observe differences among
the algorithms, we summarize in Table 2 the statistics
over the medium set of benchmarks and the large set
of benchmarks, respectively, including the number of
instances for which each algorithm gets results that
are better than, equal to, and worse than BKR, the
average objective value favg, and the average time.
For the medium set of benchmarks, we observe

that our PR algorithm is able to discover a new best
solution for the instance BMaxCut 1,000 × 1,000
and matches the previous best known results for
the other instances. In contrast to PR, which suc-
cessfully reaches the best solutions for all the in-
stances, SO-SN-TS and SO-VLSN-TS fail to reach
the previous best known results for 9 instances and
5 instances, respectively. In addition, PR obtains the
best average objective value of 1,782,132.52 and is
slightly faster than SO-SN-TS and SO-VLSN-TS.
For the large set of benchmarks, PR once again

performs better than SO-SN-TS and SO-VLSN-TS, in
this case dramatically so. PR obtains new best solu-
tions for 16 of the 25 large instances and matches the
previous best for all the remaining 9 instances. SO-
SN-TS finds new best solutions for 6 instances, al-
though its new best results are not as good as those
obtained by PR. SO-VLSN-TS performs particularly
well for solving the Max Biclique instances. Finally,
PR consumes the roughly same computational time as
SO-SN-TS and SO-VLSN-TS to obtain the best aver-
age objective value of 27553042.52.
We also test the SO-SN-TS, SO-VLSN-TS, and PR

algorithms using a shorter running time and present
results in Table 11 in the online supplement. These ex-
perimental results reveal the effectiveness of our pro-
posed algorithms in finding high-quality solutions and
disclose in particular the efficacy of our PR algorithm.
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5.2. Comparisons Between Our PR Algorithm and
State-of-the-Art Algorithms Using the Long
Running Time

In this section, we compare our PR algorithmwith the
best performing algorithms in the literature, including

the hybrid method (HM) in Glover et al. (2015), con-
ditional Markov chain search (CMCS) in Karapetyan
et al. (2017), and the best iterated local search (ILS)
variant in Duarte et al. (2014). Our PR algorithm is
coded in C++ and run on a Xeon E5440 (2.83-GHz

Figure 3. (Color online) Effectiveness of the Adaptive Selection of Solution Improvement Methods
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central processing unit [CPU] and 8 GB random ac-
cess memory [RAM]), whereas HM is coded in C++
and run on a Xeon E5-2687W (3.1-GHz CPU and 128
GB RAM), CMCS is coded in C# and run on a Xeon E5-
2630 v2 (2.6-GHz CPU and 32 GB RAM), and ILS is
coded in Java and run on an Intel Core i7 2600 (3.4-GHz
CPU and 4 GB RAM). To make fair comparisons between
our PR algorithm and each reference algorithm, we
account for the differences of programming languages
and computing platforms.

We use the source code of HM and have rerun HM
for the long running time (LT) on our computing plat-
form. We summarize the results in Table 3 and show
detailed results in Table 10 in the online supplement.
The results disclose that PR surpasses or matches the
previous best known results for all the 25 medium in-
stances, performingbetter than,HMwhich fails tomatch
the previous best results for 8 instances. Moreover, PR
yields better results than HM for all the 25 large in-
stances. Statistical testing indicates that PR performs
significantly better than HM by obtaining a p-value of

5.645e-07. Finally, the computational time taken by PR
to reach better solutions is slightly shorter than HM.
We have reimplemented our PR algorithm in C#

and compared it with CMCS1 by running both for the
long running time (LT) on our computing platform.
We summarize the comparative results in Table 4 and
list detailed results in Table 12 in the online supple-
ment. We observe that PR performs better than CMCS
with respect to the best objective value. For the me-
dium set of benchmarks, PR fails to reach the previous
best known results for 1 instance but CMCS fails for
9 instances. For the large set of benchmarks, PR fails
to reach the previous best known results for 4 in-
stances, much better than CMCS, which fails for 24
instances. Statistical testing indicates that PR is sig-
nificantly better than CMCS by obtaining a p-value of
5.645e-07. Finally, the computational time consumed
by PR to reach better results is shorter than CMCS for

Table 2. Comparisons Among SO-SN-TS, SO-VLSN-TS, and PR Using a Long Running
Time

Measures

Medium benchmarks Large benchmarks

SO-SN-TS SO-VLSN-TS PR SO-SN-TS SO-VLSN-TS PR

Better 0 0 1 6 0 16
Equal 16 20 24 0 6 9
Worse 9 5 0 19 19 0
favg 1,716,226.56 1,779,421.20 1,782,132.52 25,475,182.68 27,468,587.88 27,553,042.52
Time 194.57 189.08 145.15 4,446.55 4,588.84 4,645.31

Table 3. Comparions Between PR and HM Using a Long
Running Time

Measures

Medium benchmarks Large benchmarks

PR HM PR HM

Better 1 0 16 1
Equal 24 17 9 0
Worse 0 8 0 24
favg 1,782,132.52 1,775,815.08 27,553,042.52 27,278,641.68
Time 145.15 198.57 4,645.31 5,868.19

Table 4. Comparions Between PR and CMCS Using a Long
Running Time

Measures

Medium benchmarks Large benchmarks

PR CMCS PR CMCS

Better 0 0 11 0
Equal 24 16 10 1
Worse 1 9 4 24
favg 1,782,080.44 1,765,401.36 27,550,708.72 26,515,447.76
Time 116.89 312.51 4,902.96 4,479.24

Table 5. Comparisons Between PR and ILS Using a
Running Time of 1,000 Seconds

Measures

Medium benchmarks Large benchmarks

PR ILS PR ILS

Better 1 0 6 0
Equal 24 0 4 0
Worse 0 25 15 25
favg 1,782,132.52 1,755,263.32 27,531,287.88 26,919,959.04
Time 113.11 9.60 725.04 310.44

Table 6. Comparisons Between PR and HM Using a Short
Running Time: Number of Instances Where the Algorithm
Yields Matched or Better Results Than the Best Known
Results

Benchmarks

PR HM

U-ST ST MT LT U-ST ST MT LT

Rand 1 5 7 10 1 0 2 5
Biclique 0 0 5 10 0 0 0 2
MaxInduced 2 4 6 10 0 4 4 5
BMaxCut 0 0 1 10 0 0 0 1
MatrixFactor 3 5 7 10 0 3 4 5
Total 6 14 26 50 1 7 10 18
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medium instances and comparable to CMCS for large
instances.

Owing to the unavailability of the ILS source codes,
we reimplemented our PR algorithm in Java and have
run it on our computing platform using the same time
limit of 1,000 seconds used by ILS for all the instances.
Although Duarte et al. (2014) did not report the best
objective value and computational time for each in-
stance, the authors sent us these results via email for
computational comparisons. We report the summary
of the results in Table 5 and report detailed results in
Table 13 in the online supplement. From the com-
parisons, we find that ILS fails on all 50 instances to
match the previous best known results. In contrast,
PR finds better results for 1 medium instance and
6 large instances, andmatches previous best results for 24
medium instances and 4 large instances. Statistical testing
indicates that PR is significantly better than ILS by
obtaining a p-value of 7.789e-10. However, the com-
putational time required by PR to reach the high-
quality solutions is longer than ILS formost instances.

5.3. Comparisons Between Our PR Algorithm and
State-of-the-Art Algorithms Using a Short
Running Time

To evaluate the performance of different algorithms
under the imposition of shorter running time,we test PR,
HM, and CMCS in an ultra-short running time (U-ST), a
short running time (ST), and a medium running time
(MT), which are set to be 1 second, 10 seconds, and 100
seconds for each medium instance and 10 seconds, 100
seconds, and 1,000 seconds for each large instance. We
also extracted the results of the long running time (LT)
from Tables 10 and 12 for comparison.Wewere not able
to run ILS because the source code is unavailable. To
avoid an excess of tabulated results, we summarize in
Tables 6–9 the following two measures in terms of
each problem class (1) the number of instances where
the algorithm yields results that match or are superior
to the best known results and (2) the average objective
values over the 10 instances.

Tables 6 and 7 show the comparisons between PR
andHM inU-ST, ST,MT, and LT.Wefirst observe that

the performances of both algorithms gradually drop
as the running time becomes shorter. Over the 50 tested
instances from five problem classes, PR matches or
surpasses the best known results for 50 against 18 in-
stances in LT, 26 against 10 instances in MT, 14 against
7 instances in ST, and 6 against 1 instances in U-ST
compared with HM. The average objective values
obtained by PR and HM are 16,447,587.2 against
14,607,020.80 in LT, 14,651,796.74 against 14,592,895.76
in MT, 14,595,617.82 against 14,549,252.44 in ST, and
11,812,697.54 against 11,809,803.06 in U-ST. Although
PR is generally superior toHMunder varying running
time limits, HM performs better than PR for the Biclique
problem instances in the ultra-short running time in
terms of the average objective values.
Tables 8 and 9 show the comparisons between PR

and CMCS in U-ST, ST, MT, and LT. Similar obser-
vations can be found from the two tables, which show
that the performances of both PR and CMCS grad-
ually drop as the running time becomes shorter. For
example, CMCSmatches or surpasses the best known
results for 17 instances, 14 instances, 10 instances, and
3 instances, whereas PR obtains the average objective
values of 14,666,394.58, 14,654,283.92, 14,566,786.72,
and 11,809,683.98 in LT, MT, ST, and U-ST, respectively.
Moreover, PR is superior to CMCS in ST, MT, and
LT and is as good as CMCS in U-ST in terms of the
first measure. In terms of the second measure, PR

Table 7. Comparisons Between PR and HM Using a Short Running Time: Average Objective Values over the 10 Instances in
Each Problem Class

Benchmarks

PR HM

U-ST ST MT LT U-ST ST MT LT

Rand 7,804,316.5 7,812,095.0 7,812,698.5 7,813,423.7 7,799,257.2 7,807,912.2 7,809,313.8 7,810,808.6
Biclique 38,027,456.4 51,789,799.4 52,031,395.8 52,067,255.4 38,054,121.6 51,618,874.9 51,787,468.8 51,834,157.3
MaxInduced 5,914,618.8 5,919,908.2 5,921,822.8 592,2592.2 5,909,782.4 5,919,478.1 5,920,654.0 5,921,820.2
BMaxCut 7,239,406.0 7,378,535.6 7,415,300.8 7,456,896.4 7,208,208.4 7,322,279.2 7,369,307.4 7,390,571.0
MatrixFactor 77,690.0 77,750.9 77,765.8 77,769.9 77,645.7 77,717.8 77,734.8 77,746.9
Average 11,812,697.54 14,595,617.82 14,651,796.74 14,667,587.52 11,809,803.06 14,549,252.44 14,592,895.76 14,607,020.80

Table 8. Comparisons Between PR and CMCS Using a
Short Running Time: Number of Instances Where the
Algorithm Yields Matched or Better Results than the Best
Known Results

PR CMCS

Benchmarks U-ST ST MT LT U-ST ST MT LT

Rand 1 4 6 10 1 3 3 6
Biclique 0 2 3 10 0 1 1 1
MaxInduced 0 4 6 9 0 3 5 3
BMaxCut 0 0 1 7 0 0 1 2
MatrixFactor 2 4 6 9 2 3 4 5
Total 3 14 22 45 3 10 14 17
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dominates CMCS except for the Biclique problem in-
stances in the ultra-short running time.

To conclude, when short running time limits are
permitted, our PR algorithm remains competitive and
outperforms the reference algorithmsHMandCMCS.

6. Conclusions
We introduce and test several new strategies that
integrate strategic oscillation and path relinking
under the guidance of tabu search for solving the
bipartite Boolean quadratic programming problem.
First, the strategic oscillation mechanism based on
the combination of frequency and problem-specific
knowledge is demonstrated to be highly effective to
improve performance of the proposed algorithms.
Second, the solution-based tabu strategy is able to
identify the tabu status of very-large scale neigh-
borhoodmoves to improve the outcomes obtained by
integrating these moves in the common hill climbing
search. Third, an adaptive selection mechanism
designed to favor the use of a solution improvement
method enhances the quality of solutions produced.

Comprehensive experimental studies on five classes
of benchmarks with a total of 50 instances disclose that
our proposed PR algorithm dominates the recent state-
of-the-art algorithms in the literature by discovering
improved best solutions for 17 instances and matching
the previous best solutions for all other instances.

Our findings invite future studies that investi-
gate the benefits of using tabu search algorithms in-
corporating analogous strategic oscillation and path
relinking components for solving other combinatorial
optimization problems. Open questions include the
automatic determination of specific parameter values
and the timing for examining points in the relinked
paths other than the midway point. Other areas for
future exploration to augment our current approach
include strategic oscillation procedures that inter-
rupt the constructive or destructive phases at various
junctures to seek improved solutions by using fewer
iterations than devoted to modifying the final solution
of the current oscillation process, where improvement
at these junctures may be defined by a diversification
objective as well as by the original objective function.

Acknowledgments
The authors thank the editors and reviewers, whose com-
ments have helped to improve their paper.

Endnote
1 See http://csee.essex.ac.uk/staff/dkarap/?page=publications&key=CMCS
-BBQP.

References
Ahuja RK, Ergun O, Orlin JB, Punnen AP (2002) A survey of very

large-scale neighborhood search techniques. Discrete Appl. Math.
123(1–3):75–102.

Alon N, Naor A (2006) Approximating the cut-norm via Gro-
thendieck’s inequality. SIAM J. Comput. 35(4):787–803.

Ambühl C, Mastrolilli M, Svensson O (2011) Inapproximability re-
sults for maximum edge biclique, minimum linear arrangement,
and sparsest cut. SIAM J. Comput. 40(2):567–596.

Aringhieri R, Cordone R (2011) Comparing local search meta-
heuristics for the maximum diversity problem. J. Oper. Res. Soc.
62(2):266–280.

Benlic U, Hao J (2011) An effective multilevel tabu search approach for
balanced graph partitioning. Comput. Oper. Res. 38(7):123–137.

Carlton WB, Barnes JW (1996) A note on hashing functions and tabu
search algorithms. Eur. J. Oper. Res. 95(1):237–239.

Chang WC, Vakati S, Krause R, Eulenstein O (2012) Exploring bi-
ological interaction networks with tailored weighted quasi-
bicliques. BMC Bioinformatics 13(Suppl 10):S16.

Chen Y, Hao JK, Glover F (2015) An evolutionary path relinking
approach for the quadratic multiple knapsack problem.
Knowledge-Based Systems 92:23–34.

Duarte A, Laguna M, Martı́ R, Sánchez-Oro J (2014) Optimization
procedures for the bipartite unconstrained 0-1 quadratic pro-
gramming problem. Comput. Oper. Res. 51:123–129.

Gallego M, Laguna M, Martı́ R, Duarte A (2013) Tabu search with
strategic oscillation for themaximally diverse grouping problem.
J. Oper. Res. Soc. 64(5):724–734.

Gillis N, Glineur F (2011) Low-rank matrix approximation with
weights or missing data is np-hard. SIAM J. Matrix Anal. Appl.
32(4):1149–1165.

Glover F (1977) Heuristics for integer programming using surrogate
constraints. Decision Sci. 8(1):156–166.

Glover F (1997) A template for scatter search and path relinking. Hao
JK, Lutton E, Ronald E, Schoenauer M, Snyers D, eds. Artifi-
cial Evolution, Lecture Notes in Computer Science, vol. 1363
(Springer, Berlin, Heidelberg), 1–51.

Glover F (2000)Multi-start and strategic oscillationmethods—Principles
to exploit adaptivememory.Comput. ToolsModel. Optim. Simulation
12:1–23.

Glover F, Hao J (2010) Efficient evaluations for solving large 0-1
unconstrained quadratic optimization problems. Internat. J.
Metaheuristics 1(1):3–10.

Table 9. Comparisons Between PR and CMCS Using a Short Running Time: Average Objective Values Over the 10 Instances
in Each Problem Class

Benchmarks

PR CMCS

U-ST ST MT LT U-ST ST MT LT

Rand 7,806,438.1 7,810,631.8 7,812,630.3 7,813,430.3 7,798,750.1 7,804,786.4 7,807,020.0 7,810,346.1
Biclique 38,025,553.9 51,668,898.5 52,051,500.7 52,067,255.4 46,276,097.1 47,784,151.9 49,450,561.1 49,589,917.3
MaxInduced 5,913,109.2 5,917,949.7 5,921,745.5 5,922,542.8 5,908,356.9 5,913,803.5 5,920,271.8 5,919,725.4
BMaxCut 7,225,645.8 7,358,705.8 7,407,783.6 7,450,975.2 7,101,788.4 7,238,968.0 7,248,887.2 7,304,404.8
MatrixFactor 77,672.9 77,747.8 77,759.5 77,769.2 77,566.6 77,672.3 77,718.4 77,729.2
Average 11,809,683.98 14,566,786.72 14,654,283.92 14,666,394.58 13,432,511.82 13,763,876.42 14,100,891.70 14,140,424.56

Wu, Wang, and Glover: Advanced Tabu Search Algorithms for BBQP
88 INFORMS Journal on Computing, 2020, vol. 32, no. 1, pp. 74–89, © 2019 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

13
8.

64
.1

46
] 

on
 1

9 
Se

pt
em

be
r 

20
24

, a
t 1

4:
42

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

http://csee.essex.ac.uk/staff/dkarap/?page=publications&key=CMCS-BBQP
http://csee.essex.ac.uk/staff/dkarap/?page=publications&key=CMCS-BBQP


Glover F, Laguna M (1997) Tabu Search (Kluwer, Alphen aan den
Rign, Netherlands).

Glover F, Kochenberger G, Alidaee B (1998) Adaptive memory tabu
search for binary quadratic programs. Management Sci. 44(3):
336–345.

Glover F, LagunaM,Martı́ R (2004) Scatter search and path relinking:
Foundations and advanced designs. Onwubolu GC, Babu BV,
eds. New Optimization Techniques in Engineering, Studies in
Fuzziness and Soft Computing, vol. 141, (Springer, Berlin,
Heidelberg), 87–99.

Glover F, Ye T, Punnen AP, Kochenberger G (2015) Integrating tabu
search and vlsn search to develop enhanced algorithms: A case
study using bipartite boolean quadratic programs. Eur. J. Oper.
Res. 241(3):697–707.

Karapetyan D, Punnen AP (2013) Heuristic algorithms for the
bipartite unconstrained 0-1 quadratic programming problem.
Working paper, University of Essex, Colchester, UK.

Karapetyan D, Punnen AP, Parkes AJ (2017) Markov chain methods
for the bipartite boolean quadratic programming problem.
Eur. J. Oper. Res. 260(2):494–506.

Koyutürk M, Grama A, Ramakrishnan N (2006) Nonorthogonal
decomposition of binary matrices for bounded-error data com-
pression and analysis. ACM Trans. Math. Software 32(1):33–69.

Laguna M, Martı́ R (1999) Grasp and path relinking for 2-layer
straight line crossing minimization. INFORMS J. Comput. 11(1):
44–52.

López-Ibánez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The
irace package: Iterated racing for automatic algorithm con-
figuration. Technical Report, TR/IRIDIA/2011-004, Université
Libre de Bruxelles, IRIDIA, Bruxelles, Belgium.

Lü Z, Glover F, Hao JK (2010) A hybrid metaheuristic approach to
solving the ubqp problem. Eur. J. Oper. Res. 207(3):1254–1262.

Martı́ R, Duarte A, Laguna M (2009) Advanced scatter search for
the max-cut problem. INFORMS J. Comput. 21(1):26–38.

Peng B, Lü Z, Cheng T (2015) A tabu search/path pelinking algo-
rithm to solve the job shop scheduling problem. Comput. Oper.
Res. 53:154–164.

Punnen AP, Sripratak P, Karapetyan D (2015a) Average value of
solutions for the bipartite boolean quadratic programs and
rounding algorithms. Theoret. Comput. Sci. 565:77–89.

Punnen AP, Sripratak P, Karapetyan D (2015b) The bipartite un-
constrained 0-1 quadratic programming problem: Polynomially
solvable cases. Discrete Appl. Math. 193:1–10.

Resende MGC, Ribeiro CC, Glover F, Martı́ R (2010) Scatter search
and path relinking: Fundamentals, advances and applications.
Internat. Ser. Oper. Res. Management Sci. 146:87–107.

Shen BH, Ji S, Ye J (2009) Mining discrete patterns via binary matrix
factorization. Proc. 15th ACM SIGKDD Internat. Conf. Knowledge
Discovery Data Mining (ACM, New York), 757–766.

Tanay A, Sharan R, Shamir R (2002) Discovering statistically signif-
icant biclusters in gene expression data. Bioinformatics 18(Suppl 1):
S136–S144.

Wang Y, Lü Z, Glover F, Hao JK (2012) Path relinking for un-
constrained binary quadratic programming. Eur. J. Oper. Res.
223(3):595–604.

Woodruff D, Zemel E (1993) Hashing vectors for tabu search. Ann.
Oper. Res. 41(2):123–137.

Yagiura M, Toshihide I, Glover F (2006) A path relinking approach
with ejection chains for the generalized assignment problem.
Eur. J. Oper. Res. 169(2):548–569.

Wu, Wang, and Glover: Advanced Tabu Search Algorithms for BBQP
INFORMS Journal on Computing, 2020, vol. 32, no. 1, pp. 74–89, © 2019 INFORMS 89

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

13
8.

64
.1

46
] 

on
 1

9 
Se

pt
em

be
r 

20
24

, a
t 1

4:
42

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 


	Advanced Tabu Search Algorithms for Bipartite Boolean Quadratic Programs Guided by Strategic Oscillation and Path Relinking
	Introduction
	Strategic Oscillation–Tabu Search Algorithms
	Path Relinking Algorithm
	Analysis of Important Search Components
	Experimental Results
	Conclusions


