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a b s t r a c t 

The maximum min-sum dispersion problem (Max-Minsum DP) is an important representa- 

tive of a large class of dispersion problems. Having numerous applications in practice, the 

NP-hard Max-Minsum DP is however computationally challenging. This paper introduces 

an effective solution-based tabu search (SBTS) algorithm for solving the Max-Minsum DP 

approximately. SBTS is characterized by the joint use of hash functions to determine the 

tabu status of candidate solutions and a parametric constrained swap neighborhood to en- 

hance computational efficiency. Experimental results on 140 benchmark instances com- 

monly used in the literature demonstrate that the proposed algorithm competes favorably 

with the state-of-the-art algorithms both in terms of solution quality and computational 

efficiency. In particular, SBTS improves the best-known results for 80 out of the 140 in- 

stances, while matching 51 other best-known solutions. We conduct a computational anal- 

ysis to identify the respective roles of the hash functions and the parametric constrained 

swap neighborhood. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Given a set N = { 1 , 2 , . . . , n } of n elements and the distance d ij ≥ 0 ( i < j ) between each pair of elements, a dispersion

problem consists in selecting a set M of elements from N , such that some objective function defined on the selected el-

ements of M is maximized or minimized. In general, according to the objective function, the dispersion problems can be

mainly divided into two categories, i.e., efficiency-based dispersion problems and equity-based dispersion problems [1,24,32] .

Efficiency-based dispersion problems are only concerned with the dispersion quality of the entire set M . This category

of problems mainly includes the maximum diversity problem [2,16,28] and the max–min diversity problem [11,23,25] . The

maximum diversity problem (resp. the max–min diversity problem) aims to select a set M with a fixed cardinality m from

N , such that the sum of distances (resp. the minimum distance) between the selected elements is maximized. Typical ap-

plications of these problems include, for instance, maximally diverse/similar group selection [1] , the densest k -subgraph

identification [5] and the facility location [14] . 
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Equity-based dispersion problems [24] are to maximize the equity among the selected elements. This category of prob-

lems includes the minimum differential dispersion problem (Min-Diff DP) [13,22,32] , the maximum mean dispersion prob-

lem (MaxMean DP) [6,12,19] , and the maximum min-sum dispersion problem (Max-Minsum DP) [1,3,21,24] . The Min-Diff

DP aims to minimize the difference between the maximum sum and the minimum sum of the distances from a selected

element to the other selected elements; the MaxMean DP tries to maximize the average distance between selected ele-

ments, and the Max-Minsum DP requires maximizing the minimum sum of distances between a selected element to the

other selected elements. It is worth noting that for the MaxMean DP, the cardinality of M is allowed to vary from 2 to n ,

while for the other two equity-based dispersion problems, the cardinality of M is fixed to a given positive integer m < n . As

mentioned in previous studies [1,19,26,32] , equity-based dispersion problems have also a number of real-world applications,

including urban public facility location [4] , equity-based measures in network flow problems [7] , selection of homogeneous

groups [8] , web page ranking [20] , community mining [30] , etc. 

In this work, we focus on the Max-Minsum DP, which is known to be strongly NP-hard [24] . Specifically, the problem can

be described as follows. Let N = { 1 , 2 , . . . , n } be a set of n elements, [ d ij ] n × n a distance matrix for the given elements, and

m < n a fixed positive integer, the Max-Minsum DP problem involves selecting a set M ⊂ N of cardinality m , such that the

minimum sum of the distances between a single selected element and the other selected elements is maximized. Formally,

the Max-Minsum DP problem can be stated as follows: 

Maximize Min i ∈ M 

∑ 

j∈ M 

d i j (1) 

Subject to M ⊂ N, | M| = m (2) 

A number of solution approaches exist in the literature for solving the Max-Minsum DP problem. In 2009, Prokopyev

et al. proposed a linear mixed integer programming formulation for the Max-Minsum DP and then solved some small in-

stances with n ≤ 100 using the CPLEX 9.0 solver under a time limit of one hour [24] . At the same time, the authors also

devised a GRASP-based metaheuristic and tested its performance on these instances. In 2015, Aringhieri et al. proposed

a two-stage metaheuristic method [3] . The proposed method first constructs a high-quality initial solution by removing

the less promising components, and then improves the quality of the obtained solution by an attribute-based tabu search

method [15] . The algorithm achieved a high performance on the tested instances. 

In 2017, Martínez-Gavara et al. designed several GRASP variants coupled with strategic oscillation through constructing

the initial solutions by means of a candidate list strategy [21] . The authors also proposed an attribute-based tabu search

algorithm to further improve the initial solution generated by the construction procedure. Also in 2017, Amirgaliyeva et al.

proposed three variable formulation search (VFS) algorithms that can be viewed as variants of variable neighborhood search

(VNS) for solving the Max-Minsum DP, where different but similar optimization objectives are allowed [1] . The computa-

tional results on a large number of instances showed that these VFS algorithms are highly efficient compared to previous

Max-Minsum DP algorithms. Furthermore, the VFS algorithms improved the best-known results for most instances com-

monly used in the literature in a short computing time. Consequently, the VFS algorithms can be considered as state-of-the-

art algorithms for the Max-Minsum DP. 

Compared to the attribute-based tabu search approaches that are very popular [15] , the solution-based tabu search ap-

proaches [9,10,26,29] have attracted much less attention in the literature. Inspired by a recent study of Wang et al. [26] , we

introduce in this paper a solution-based tabu search algorithm for the Max-Minsum DP, which proves to be highly effective.

The main contributions of this work can be identified as follows: 

• We propose the first tabu search algorithm that uses three hash functions to accurately determine the tabu status of

neighbor solutions. Compared to the popular attribute-based tabu search methods in the literature, this solution-based

tabu search algorithm has the advantage of not requiring the use of a tabu tenure, which must be tuned. 
• Based on a candidate list strategy, we propose a parametric constrained swap neighborhood. With such a constrained

neighborhood, the computational efficiency and solution quality of the tabu search algorithm are significantly improved.
• The computational results on six sets of 140 benchmark instances commonly used in the literature show that the pro-

posed algorithm achieves highly competitive performances compared to the state-of-the-art results. Specifically, the pro- 

posed algorithm improves the best-known results in terms of the solution quality for 80 out of 140 instances, and

matches the best-known results for other 51 instances. 

The remainder of the paper is organized as follows. In Section 2 , we provide a detailed description of the proposed

algorithm. Computational assessment and comparisons based on the extensive experiments are reported in Section 3 . In

Section 4 , we analyze two essential components of the proposed algorithm and shed light on how they affect the perfor-

mance of the algorithm. In the last section, we provide concluding remarks and perspectives for future work. 

2. Solution-based tabu search for the max-minsum DP 

Attribute-based tabu search is a popular metaheuristic approach and has been applied to solve a large number of difficult

optimization problems, such as some classic NP-hard combinatorial problems [17,18] . In this approach, one solution attribute

or a combination of solution attributes is recorded in a short term memory (tabu list) to prevent the search from revisiting
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previously encountered solutions. On the other hand, solution-based tabu search is an interesting alternative that records

visited solutions (instead of attributes) to avoid search cycling. Viewed more broadly, we may differentiate between fine-

grained and coarse-grained solution attributes [15] , where customary attribute-based approaches lie toward the coarse-

grained end of the spectrum (since they do not closely differentiate among solutions) while solution-based approaches lie

at the extreme fine-grained end of the spectrum. Compared to the attribute-based approach, solution-based tabu search is

much less studied, mainly due to the high cost of recording whole solutions. In this work, we present an effective solution-

based tabu search algorithm for the Max-Minsum DP, which relies on hash vectors to efficiently determine the tabu status

of candidate solutions and a constrained swap neighborhood to ensure a high computational efficiency of the algorithm.

The use of hash vectors transforms the extreme nature of the solution-based approach into a more moderate version, which

nevertheless lies close to the extreme fine-grained end of the spectrum, and, as we show, is highly compatible with the use

of an effective candidate list strategy. 

2.1. General procedure 

To minimize the error rate of determining the tabu status of a candidate solution, SBTS employs three hash vectors

associated with three hash functions. The pseudo-code of the proposed algorithm is given in Algorithm 1 , where M 

∗ denotes

Algorithm 1: General procedure of the solution-based tabu search algorithm. 

Input : Instance I, hash vectors H 1 , H 2 , H 3 with a length of L , hash functions h 1 , h 2 , h 3 , the cutoff time t max 

Output : The best solution M 

∗ found 

1 begin 

/* Initialization of hash vectors, Section 2.5 */ 

2 for i ← 0 to L − 1 do 

3 H 1 [ i ] ← 0 

4 H 2 [ i ] ← 0 

5 H 3 [ i ] ← 0 

6 end 

7 M ← Initial Sol ution (I) /* Sections 2.3 */ 

8 M 

∗ ← M 

/* Main search procedure */ 

9 while Time() ≤ t max do 

10 Find a best neighbor solution M 

′ 
that is not simultaneously forbidden by the hash vectors (i.e., tabu lists) H 1 , 

H 2 , and H 3 from the current neighborhood N 

c 
swap (M) /* Section 2.4,2.5 */ 

11 M ← M 

′ 
/* Update the incumbent solution */ 

12 if f (M) > f (M 

∗) then 

13 M 

∗ ← M 

14 end 

/* Update the hash vectors with M, Section 2.5 */ 

15 H 1 [ h 1 (M)] ← 1 

16 H 2 [ h 2 (M)] ← 1 

17 H 3 [ h 3 (M)] ← 1 

18 end 

19 return M 

∗

20 end 

the best solution found so far, H k ( k = 1 , 2 , 3 ) represents the hash vectors (i.e., tabu lists), and h k ( k = 1 , 2 , 3 ) identifies the

corresponding hash functions. 

SBTS initializes the hash vectors (lines 2–6) and generates an initial solution M (line 7). Then, the algorithm enters a

“while” loop (lines 9–18) to perform a number of iterations to improve the initial solution. At each iteration, the algorithm

first identifies a best non-forbidden neighbor solutions M 

′ 
from the given neighborhood N 

c 
swap (M) , and then uses M 

′ 
to

replace the current solution M . Subsequently, the hash vectors (i.e., tabu lists) are updated according to the new solution M

(lines 15–17). The loop is repeated until the timeout limit ( t max ) is reached. Finally, the best solution M 

∗ found during the

search process is returned as the final result. 

2.2. Search space, evaluation function and solution representation 

Given a Max-Minsum DP instance composed of a set N of n elements, a distance matrix [ d ij ] n × n between elements, and

a fixed integer m representing the number of selected elements, the search space � explored by the SBTS algorithm is

composed of all the subsets M of N with a cardinality m , i.e., � = { M : M ⊂ N, | M| = m } . 
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The quality of any candidate solution M in � is given by the objective function value f ( M ): 

f (M) = Min i ∈ M 

∑ 

j∈ M 

d i j (3) 

In addition, to facilitate neighborhood operations, we employ an m -dimensional vector S to indicate the set of selected

elements and an (n − m ) -dimensional vector NS to indicate the set of unselected elements. Any solution M in the search

space � can be represented by these two vectors, i.e., M = < S, NS > . Equivalently, a solution can also be represented by a

n -dimensional vector x = (x 1 , x 2 , . . . , x n ) in which x i = 1 if the element i ∈ M , and x i = 0 otherwise, i = 1 , 2 , . . . , n . 

2.3. Initial solution 

The SBTS algorithm uses a random feasible solution as its initial solution. Specifically, m distinct elements from N are

randomly selected to form the initial set M , as shown in Algorithm 2 . 

Algorithm 2: Initial solution procedure. 

1 Function InitialSolution() 

Input : N = { 1 , 2 , . . . , n } , m 

Output : A feasible initial solution M 

2 M ← ∅ /* M is the set of selected elements */ 

3 while | M| < m do 

4 i ← random () mod n /* Randomly pick an element i from N */ 

5 if i / ∈ M then 

6 M ← M ∪ { i } 
7 end 

8 end 

9 return M 

2.4. Neighborhood structure, its evaluation and exploration 

Like previous studies [1,3,21] , our SBTS algorithm is based on the popular swap operator. Given a solution M , an el-

ement u ∈ M and an element v ∈ N �M , the swap operator exchanges u and v to generate a new solution. The full neigh-

borhood induced by the swap operator can be described as follows. Let < u, v > designate a swap move and M �< u,

v > be the resulting neighbor solution when applying the move < u, v > to solution M . The full swap neighborhood

N 

f ull 
swap (M) is composed of all possible neighbor solutions that can be obtained by applying the swap move to M , i.e.,

N 

f ull 
swap (M) = { M� < u. v > : u ∈ M, v ∈ N \ M} . Clearly, the size of N 

f ull 
swap (M) is exactly equal to m × (n − m ) , which becomes

very large for relatively large n and m (say several hundreds of elements). 

To speed up the tabu search procedure, we devise a parametric constrained swap neighborhood N 

c 
swap for the Max-

Minsum DP using a candidate list strategy [21,27] . For the parametric constrained swap neighborhood N 

c 
swap , the elements

to be swapped are limited to two high-quality subsets X ⊂ M and Y ⊂ N �M . Specifically, given a solution M and two high-

quality subsets X and Y , the parametric constrained swap neighborhood N 

c 
swap (M) is defined as N 

c 
swap (M) = { M� < u, v > :

u ∈ X ⊂ M, v ∈ Y ⊂ N \ M} . However, to construct the N 

c 
swap neighborhood, a key issue is the identification of the high-quality

subsets X and Y respectively from M and N �M . 

To identify the subsets X and Y , we maintain an n -dimensional vector � = (�1 , �2 , . . . , �n ) , where �i = 

∑ 

j∈ M 

d i j . For

the set M , the elements are first sorted by the quick-sort method according to their � values in a descending order, and then

the first ρ × | M | elements are chosen as the set X , where ρ is a predetermined parameter. For the set N �M , the elements are

first sorted by the quick-sort method according to their � values in an ascending order, then the first ρ × | N �M | elements

are selected as the set Y . The overall computational complexity of building the constrained neighborhood is O (mlogm + (n −
m ) log(n − m )) , which is relatively low. The size of the parametric constrained swap neighborhood is equal to O (ρ2 × m (n −
m )) , which is much smaller than that of the full swap neighborhood when the parameter ρ is set to be smaller than 0.5. 

Given a neighbor solution M and the corresponding vector (�1 , �2 , . . . , �n ) , the objective value f ( M ) can be calculated

as f (M) = Min i ∈ M 

�i in O ( m ). Moreover, if two elements u ∈ M and v ∈ N �M are exchanged, the vector � = (�1 , �2 , . . . , �n )

can be rapidly updated in O ( n ) time as follows: 

�i = 

{ 

�i − d ui , f or i = v ; (4) 
�i + d v i , f or i = u ; (5) 
�i − d ui + d v i , otherwise ; (6) 

The neighborhood N 

c 
swap is explored by the SBTS algorithm as follows. At each iteration, the SBTS algorithm scans the cur-

rent whole neighborhood N 

c 
swap and identifies the best candidate solution M 

′ 
that is not forbidden by the tabu lists from
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Table 1 

Settings of parameters. 

Parameters Section Description Values 

ρ 2.4 Coefficient used in constructing the N c swap neighborhood 0.3 

γ 1 2.5 Parameter used in the first hash function 1.2 

γ 2 2.5 Parameter used in the second hash function 1.6 

γ 3 2.5 Parameter used in the third hash function 2.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the neighborhood, then replaces the incumbent solution M by the identified solution M 

′ 
(i.e., M ← M 

′ 
), as described in

Algorithm 1 . In the case that all the candidate solutions in N 

c 
swap have been forbidden by the tabu lists, a best candidate

solution is selected to replace the incumbent solution, regardless of its tabu status (which is a commonly used aspiration

criterion). 

2.5. Determination of tabu status using hash functions 

The proposed SBTS algorithm relies on three hash functions and their associated hash vectors to effectively determine

the tabu status of candidate solutions. In principle, for a given hash function h and a hash vector H of size of L, h can

be used to map a candidate solution x ∈ � to an index of H ( h : x ∈ �→ { 0 , 1 , 2 , . . . , L − 1 }) such that the binary value of

H [ h ( x )] identifies the tabu status of solution x : H[ h (x )] = 1 indicates that the solution x has been previously visited and is

classified as tabu (thus x is excluded from consideration at the current iteration unless the aspiration criterion is met), while

H[ h (x )] = 0 means that x has not been visited and thus is eligible for consideration at the current iteration. 

However, it is well known that collisions may occur with a hash function. That is, two solutions x 1 and x 2 can possibly be

mapped to the same position in H , i.e., h (x 1 ) = h (x 2 ) , leading to a collision. This collision can unfortunately lead to a wrong

identification of the tabu status for the concerned candidate solutions (a non-visited solution can be wrongly forbidden

to be considered). In order to alleviate this problem, we increase the number of hash vectors as well as the associated

hash functions based on two considerations. First, the tabu status of a candidate solution can be conveniently determined

by a consolidated rule that simultaneously considers the status of the three hash vectors (as elaborated subsequently in this

section). So long as collisions do not simultaneously occur in all three hash vectors, there is no misclassification of tabu status

in the candidate solutions. Second, the probability that collisions simultaneously occur for K > 1 hash vectors significantly

decreases as K increases, where K represents the number of hash vectors used. As such, by using three hash functions and

hash vectors, we can significantly reduce the probability of misclassifying the tabu status of candidate solutions. 

Following the studies in [9,26,29] , we adopt the following three hash functions whose hash values can be calculated

easily. Let x = (x 1 , x 2 , . . . , x n ) be a candidate solution where x i = 1 if element i ∈ M , x i = 0 otherwise. The three hash functions

h k ( k = 1 , 2 , 3 ) are defined by: 

h k (x ) = ( 
n ∑ 

i =1 

� i γk 
 × x i ) mod L (7)

where γ k is a parameter which takes different values for the three hash functions (see Table 1 , Section 3.2 ) and L is the

length of the hash vectors, which is set to 10 8 in this work. 

Now, for a candidate solution x , each hash value h k ( x ) ( k = 1 , 2 , 3 ) indicates the index of x in the associated hash vector

H k . The hash vectors H k ( k = 1 , 2 , 3 ) are initialized and updated as follows. At the beginning of the search, the hash vectors

H k ( k = 1 , 2 , 3 ) are initialized to 0, implying that no solution is forbidden by the tabu list. Then, as the search progresses,

the hash vectors H k ( k = 1 , 2 , 3 ) are dynamically updated: the values at the indexes h k ( x ) of hash vectors H k ( k = 1 , 2 , 3 ) are

set to 1 once the current solution is replaced by one of its neighbor solutions x , i.e., H k [ h k ( x )] ← 1 ( k = 1 , 2 , 3 ). 

Finally, a key issue is how to determine the tabu status of a candidate solution using these hash vectors and the asso-

ciated hash functions. At each iteration of our algorithm, for each solution x in the neighborhood (see Section 2.4 ), we first

check the values of H k [ h k ( x )] ( k = 1 , 2 , 3 ). If they all take the value of 1, the solution x is considered to have been visited

previously, and thus is forbidden to be considered again. Otherwise, the solution x is determined as a non-tabu solution.

As an illustrative example, Fig. 1 shows a previously visited solution x that is forbidden by the tabu list (because H 1 [ h 1 ( x )],

H 2 [ h 2 ( x )], and H 3 [ h 3 ( x )] all take the value of 1). On the other hand, any solution with at least one H k ( k = 1 , 2 , 3) value

equaling 0 is an eligible solution for the current iteration. It is worth mentioning that contrary to the attribute-based tabu

strategy, such a tabu strategy makes the notion of tabu tenure irrelevant, thus simplifying the design of the algorithm and

reducing the number of required parameters. 

Now we consider the computational complexity of calculating the hash values. For a neighbor solution x � < u, v > of the

incumbent solution x , where u ∈ M and v ∈ N �M , the value of h k ( x �< u, v > ) can be trivially calculated as h k (x � < u, v > ) ←
h k (x ) + (� v γk 
 − � u γk 
 ) in O (1), which means that the tabu status of a given neighbor solution can be determined in O (1).

Nevertheless, for the initial solution x o , we need to calculate the corresponding hash values h k ( x 
o ) ( k = 1 , 2 , 3 ) from scratch

with a complexity of O ( n ). 
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Fig. 1. An illustrative example for determining the tabu status of a given candidate solution x using three hash functions as well as the associated hash 

vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6. Related studies 

There exist few studies about hash-based tabu search in the literature. In 1993, Woodruff et al. proposed for the first

time to use four types of hash functions to record the solutions encountered during recent iterations of the search in a long

list [29] . In 1996, Carlton and Barnes made an analysis of these hash functions [9] , and devised the first solution-based tabu

search approach for the traveling salesman problem with time windows [10] . Recently, Wang et al. proposed a solution-

based tabu search approach for the minimum differential dispersion problem using two hash functions [26] , which showed

an excellent performance on the tested instances. 

The SBTS algorithm proposed in this work has a close relation with the above studies. On the one hand, like [9,26] , the

hash functions used in our SBTS algorithm belong to the classic category of hash functions proposed by Woodruff et al. [29] .

On the other hand, there exist some important differences between SBTS and the previous studies. First, our SBTS algorithm

is the first solution-based tabu search algorithm designed to exploit the structure of the Max-Minsum DP. Second, SBTS

uses three hash vectors and thus has a higher probability of accurately identifying the tabu status of candidate solutions.

Third, the SBTS algorithm introduces a new parametric constrained swap neighborhood which plays a key role in the high

performance of the proposed algorithm. 

3. Experimental results and comparisons 

In this section, we assess the performance of the proposed algorithm by showing computational results on the commonly

used benchmark instances in the literature and by making a comparison with state-of-the-art algorithms. 

3.1. Benchmark instances 

The proposed SBTS algorithm was assessed on six sets of 140 benchmark instances 1 . These instances were originally

proposed for the maximum diversity problem and subsequently adapted to the Max-Minsum DP in [1,3] . The main charac-

teristics of these instances are as follows. 

• APOM set: This set is composed of 40 instances with n ∈ [50, 250] and m ∈ {0.2 n , 0.4 n }. For the first 10 instances, the dis-

tances d ij between elements are Euclidean, and for the remaining 30 instances the distances d ij are a randomly generated

integer number in the interval [0, 10 0 0 0]. 
• SOM-b set: This set is composed of 20 instances with n ∈ {10 0, 20 0, 30 0, 40 0, 50 0} and m ∈ {0.1 n , 0.2 n , 0.3 n , 0.4 n }, where

the distances between the elements are a randomly generated integer in the interval [0, 9]. 
• GDK-c set: This set is also composed of 20 instances with n = 500 and m = 50 , where the distances d ij between the

elements are Euclidean. 
• DM1a set: This set contains 20 instances with n = 500 and m = 200 , where the distances between the elements are a

random real number in the interval [0, 10]. 
• DM1c set: Like DM1a, this set contains 20 instances with n = 500 and m = 50 , and the distances between the elements

are a random real number in the interval [0, 10]. 
• DM2 set: This set contains 20 instances with n = 500 and m = 50 , and the distances between the elements are a random
real number in the interval [0, 10 0 0]. 

1 These instances are available at http://www.di.unito.it/ ∼aringhie/benchmarks.html and http://www.optsicom.es/mdp/ . 

http://www.di.unito.it/~aringhie/benchmarks.html
http://www.optsicom.es/mdp/
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3.2. Parameter settings and experimental protocol 

The proposed SBTS algorithm uses four parameters, whose values were set empirically (see Table 1 ). The parameter ρ
that is used to control the neighborhood size was set to 0.3. The parameters γ 1 , γ 2 , γ 3 that are used to define the three

hash functions, were set to 1.2,1.6, and 2.0, respectively. In Section 4 , we provide a justification for these choices. 

Our SBTS algorithm was programmed in C++ 2 and compiled using the g++ compiler with the -O3 option. All experiments

were carried out on a computer with an Intel E5-2670 processor (2.5 GHz and 2G RAM), running the Linux operating system.

Following the DIMACS machine benchmark procedure, our machine requires respectively 0.19, 1.17, and 4.54 seconds to solve

the graphs r300.5, r400.5, r500.5 3 . 

According to the computational results reported in one of the latest papers on the Max-Minsum DP [1] (2017), the

attribute-based tabu search method [3] and three variable formulation search (VFS) methods [1] can be considered to be

the state-of-the-art algorithms for the Max-Minsum DP. In particular, the VFS methods significantly outperform the GRASP

variants proposed in [21] . Moreover, detailed computational results were reported in [1] , enabling us to make a direct com-

parison between our algorithm and these state-of-the-art algorithms. Consequently, in this work we used these four algo-

rithms as our main references to assess the proposed SBTS algorithm. 

Due to the stochastic feature of the proposed algorithm, we ran the algorithm 40 times to solve each instance, each run

being limited to t max = n seconds, where n is the number of elements in the instance. Note that this time limit was used as

the stopping condition in [1] . 

3.3. Computational results and comparison 

The computational results of SBTS on the six sets of benchmark instances are summarized in Tables 2–7 , together with

the results of the four state-of-the-art algorithms, i.e., the tabu search (TS) algorithm [3] and three variable formulation

search (VFS) algorithms [1] denoted by VFS2, LS2+VFS1, VFS2+VFS1. Column 1 of each Table gives the instance name (In-

stance). Column 2 shows the best-known objective values reported in the literature (Best known) that are compiled from

the best results of the reference algorithms. Columns 3–6 list respectively the best results ( f best ) obtained by the reference

algorithms (TS, VFS2, LS2+VFS1, VFS2+VFS1). Specifically, the results of TS in [3] were produced by performing a long run of

50,0 0 0 iterations, and the results of three VFS algorithms were obtained by running the associated algorithms 10 times on

each instance based on a computer with an Intel Core i7 2600 CPU (3.4 GHz and 8 G RAM), where the stopping condition is

set to a time limit of n seconds. The computational results of our SBTS algorithm are summarized in columns 7–11, including

the best objective values ( f best ) found over 40 runs, the average objective values ( f avg ), and the worst objective values ( f worst ),

the standard deviation ( σ ) of objective values, and the average computing times ( t avg ) in seconds to reach its final objective

value. The improved results in terms of the best objective value ( f best ) are indicated in bold. 

Additionally, in Tables 2 to 7 , the rows # best, # equal and # worse indicate respectively the numbers of instances for which

the associated algorithm obtains better, equal, or worse objective values in terms of f best compared to the best-known results

reported in the literature (Best Known), and the row avg denotes the average value over all instances in the set. Finally, to

verify whether there exists a significant difference between our SBTS algorithm and the reference algorithms in terms of

f best , the p-values from the non-parametric Friedman tests are provided in the last row of each table, and a p-value smaller

than 0.05 implies a significant difference between two compared results. 

For this comparative study, we mainly focus on solution quality in terms of the objective values rather than on the

computational times. This is because it is difficult to make a fair comparison of computational times due to the differ-

ences between the computing platforms, the programming languages, the data structures, and the compilers used by the

algorithms. Consequently, although our solution times are quite good, the timing information is given only for indicative

purposes. 

Table 2 shows that for the APOM instances, our SBTS algorithm outperforms significantly the four reference algorithms.

Specifically, SBTS improves the best-known results for 9 out of 40 instances, and matches the best-known results for the

remaining 31 instances. Moreover, even the average results of SBTS are better than or match the best-known results for

most instances. On the other hand, the computing time to reach the best objective values does not exceed one minute for

each instance, and the non-parametric Friedman tests ( p-values < 0.05) confirms the significance of these differences. These

outcomes indicate that SBTS has a strong search ability and a high computational efficiency on this set of benchmarks.

Nevertheless, it should be pointed out that for 4 instances marked by the symbol “∗”, SBTS with the constrained swap

neighborhood of ρ = 0 . 3 failed to find the best-known results and the results in the table were obtained with the full swap

neighborhood. 

Table 3 shows that for all instances in the set GKD-c, our SBTS algorithm achieves the best results ( f best ) in a short

computing time ( ≤ 10 seconds) with a success rate of 100%. SBTS matches or improves the best results ( f best ) of three VFS

algorithms for all 20 instances. Nevertheless, compared to the tabu search algorithm of [3] , SBTS obtains a worse result for 9

out of 20 instances. However, considering the very small differences between our results f best and those reported in [3] , it is
2 The source code of our SBTS algorithm will be available at: http://www.info.univ-angers.fr/ ∼hao/MaxMinsumdp.html . 
3 dmclique, ftp://dimacs.rutgers.edu/pub/dsj/clique " > ftp://dimacs.rutgers.edu/pub/dsj/clique. 

http://www.info.univ-angers.fr/~hao/MaxMinsumdp.html
ftp://dimacs.rutgers.edu/pub/dsj/clique
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Table 2 

Computational results and comparison on APOM instances. 

TS VFS2 LS2 + VFS1 VFS2 + VFS1 SBTS (this work) 

Instance Best known f best f best f best f best f best f avg f worst σ t avg ( s ) 

01a050m10 95.071 95.071 94.426 95.071 95.071 95.071 95.07 95.071 0.00 0.00 

02a050m20 184.495 184.495 184.495 184.495 184.495 184.495 184.50 184.495 0.00 0.00 

03a100m20 195.300 195.300 195.300 195.300 195.300 195.300 195.30 195.300 0.00 0.00 

04a100m40 370.508 370.508 370.508 370.508 370.508 370.508 370.51 370.508 0.00 0.00 

05a150m30 294.565 294.565 294.146 294.565 294.565 294.565 294.57 294.565 0.00 0.02 

06a150m60 556.147 556.147 556.147 556.147 556.147 556.147 556.15 556.147 0.00 0.01 

07a200m40 392.625 392.625 392.625 392.625 392.625 392.625 392.63 392.625 0.00 0.01 

08a200m80 738.100 738.100 737.635 738.100 738.100 738.100 738.10 738.100 0.00 0.03 

09a250m50 489.318 489.318 489.310 489.318 489.318 489.318 489.32 489.318 0.00 0.04 

10a250m100 921.230 921.230 920.611 921.230 921.230 921.230 921.23 921.230 0.00 0.07 

11b050m10 61,831 61,831 61,831 61,831 61,831 61,831 61831.00 61,831 0.00 0.00 

12b050m20 108,715 108,248 108,715 108,715 108,715 108,715 108715.00 108,715 0.00 0.00 

13b100m20 118,880 118,380 118,880 118,880 118,880 118,880 118467.50 118,380 189.98 0.10 

14b100m40 215,920 214,671 214,772 214,876 215,920 216,176 216176.00 216,176 0.00 0.20 

15b150m30 173,158 171,973 173,048 172,694 173,158 173,400 173335.60 173,178 94.69 0.35 

16b150m60 316,754 315,019 316,173 316,754 316,173 317,541 317178.98 316,865 161.22 2.70 

17b200m40 227,220 224,560 227,220 226,276 227,184 228,451 228121.63 227,924 255.13 3.16 

18b200m80 419,895 416,971 419,377 419,325 419,895 421,092 420844.13 420,299 246.87 6.32 

19b250m50 280,906 278,178 280,906 280,122 280,538 282,850 282471.95 281,929 237.53 10.62 

20b250m100 523,621 519,758 523,621 522,565 523,621 524,752 524208.48 523,768 294.67 52.24 

21c050m10 58,994 58,994 58,994 58,994 58,994 58,994 58994.00 58,994 0.00 0.00 

22c050m20 91,338 91,338 90,568 91,338 91,338 91,338 91338.00 91,338 0.00 0.00 

23c100m20 112,002 112,002 112,002 112,002 112,002 112,002 1120 02.0 0 112,002 0.00 0.00 

24c100m40 194,357 194,357 193,326 194,357 194,357 194,357 194357.00 194,357 0.00 0.00 

25c150m30 164,357 164,357 163,479 164,357 164,357 164,357 164357.00 164,357 0.00 0.35 

26c150m60 290,121 290,121 287,972 290,121 290,121 290 , 121 ∗ 290121.00 290,121 0.00 0.44 

27c200m40 218,548 217,583 218,222 218,548 218,313 218 , 548 ∗ 218,548 218,548 0.00 1.30 

28c200m80 391,851 391,587 390,322 391,851 391,851 391,851 391851.00 391,851 0.00 0.11 

29c250m50 272,706 270,932 271,512 272,706 271,734 272,706 272598.03 271,847 263.28 4.33 

30c250m100 487,152 485,728 483,446 487,152 487,152 487 , 152 ∗ 487152.00 487,152 0.00 11.67 

31d050m10 74,113 74,113 74,113 74,113 74,113 74,113 74113.00 74,113 0.00 0.00 

32d050m20 145,411 145,411 145,024 145,411 145,411 145,411 145411.00 145,411 0.00 0.00 

33d100m20 152,236 152,236 152,190 152,236 152,236 152,236 152236.00 152,236 0.00 0.02 

34d100m40 295,065 294,991 295,065 295,065 295,065 295,065 295065.00 295,065 0.00 0.01 

35d150m30 228,708 228,316 228,589 228,708 228,708 228,708 228708.00 228,708 0.00 0.02 

36d150m60 443,707 443,413 443,277 443,707 443,707 443,707 443650.50 443,594 56.50 1.70 

37d200m40 304,294 303,932 304,294 304,184 304,184 304,294 304288.50 304,184 23.97 1.17 

38d200m80 591,163 590,671 589,514 591,163 590,702 591,163 ∗ 591,163 591,163 0.00 8.87 

39d250m50 380,445 379,314 380,445 380,285 380,445 380,770 380770.00 380,770 0.00 1.71 

40d250m100 742,019 741,573 741,196 742,019 741,935 742,429 742429.00 742,429 0.00 1.70 

avg 202243.11 201619.88 201808.21 202114.81 202171.93 202431.18 20236 8.4 9 202288.56 45.60 2.73 

#better - 0 0 0 0 9 

#equal - 20 17 32 32 31 

#worse - 20 23 8 8 0 

p-value 2.7e-3 7.74e-6 2.34e-7 1.57e-3 3.12e-4 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

likely that the differences are caused by round-off errors. Taking the instance GKD-c_17_n500_m50 as an example, the best

objective value of the SBTS algorithm is 756.72, and the best result reported in [3] is 756.73. In addition, as in Table 2 , for

four instances marked by the symbol “∗”, the results of the SBTS algorithm were obtained with the full swap neighborhood.

From Table 4 , which reports the SOM-b instances, our SBTS algorithm improves the best-known results for 13 out of 20

instances, and matches the best-known results for the remaining instances. Furthermore, the worst results ( f worst ) of the SBTS

algorithm are superior to the best-known results for 11 instances, indicating that the SBTS algorithm has a stronger search

ability compared to the reference algorithms on this set of benchmarks. In addition, the standard deviations of objective

values obtained by the SBTS algorithm are less than 1.0 for all instances, which discloses that SBTS is highly robust. All

p-values are less than 0.05, indicating there exists a significant difference between the results of the SBTS algorithm and

that of each reference algorithm. 

Table 5 indicates that for the DM1c instances, the SBTS algorithm improves the best-known results for 18 out of 20

instances, while matching the best-known results for the remaining 2 instances. Furthermore, the average results of SBTS

are superior to the best-known results except for 2 instances. The standard deviations of the objective values ( σ ) do not

exceed 0.33 for all instances, again showing that the performance of the SBTS algorithm is strongly robust. 

Tables 6 and 7 shows that for the 40 instances in the sets DM1a and DM2, our SBTS algorithm significantly outperforms

four reference algorithms. Specifically, SBTS improves the best-known results for all instances without exception. Further-

more, the average results f avg of the SBTS algorithm are also superior to the best-known results for all instances. In addition,
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Table 3 

Computational results and comparison on GKD-c instances. 

TS VFS2 LS2 + VFS1 VFS2 + VFS1 SBTS (this work) 

Instance Best known f best f best f best f best f best f avg f worst σ t avg ( s ) 

GKD-c_1_n500_m50 762.02 761.98 762.02 762.02 762.02 762.02 762.02 762.02 0.00 3.46 

GKD-c_2_n500_m50 771.15 771.15 771.14 771.15 771.14 771.15 771.15 771.15 0.00 0.32 

GKD-c_3_n500_m50 764.02 764.02 763.35 764.02 764.02 764.02 764.02 764.02 0.00 9.22 

GKD-c_4_n500_m50 763.82 763.81 763.62 763.82 763.82 763.82 763.82 763.82 0.00 0.08 

GKD-c_5_n500_m50 765.83 765.63 765.20 765.83 765.60 765.83 765.83 765.83 0.00 1.01 

GKD-c_6_n500_m50 761.40 761.34 760.24 761.40 761.40 761.40 761.40 761.40 0.00 0.36 

GKD-c_7_n500_m50 764.69 764.68 764.69 764.69 764.69 764.69 764.69 764.69 0.00 0.51 

GKD-c_8_n500_m50 766.07 766.07 765.67 766.03 766.03 766.03 ∗ 766.03 766.03 0.00 0.45 

GKD-c_9_n500_m50 755.16 755.15 755.16 755.16 755.16 755.16 755.16 755.16 0.00 0.06 

GKD-c_10_n500_m50 769.00 769.00 768.82 768.96 768.96 768.96 768.96 768.96 0.00 0.84 

GKD-c_11_n500_m50 765.74 765.74 764.95 765.71 765.71 765.71 765.71 765.71 0.00 1.29 

GKD-c_12_n500_m50 754.50 754.50 754.47 754.47 754.47 754.47 754.47 754.47 0.00 0.06 

GKD-c_13_n500_m50 755.97 755.97 755.51 755.94 755.94 755.94 ∗ 755.94 755.94 0.00 0.50 

GKD-c_14_n500_m50 760.16 760.16 760.16 760.16 760.16 760.16 ∗ 760.16 760.16 0.00 0.07 

GKD-c_15_n500_m50 757.41 757.41 757.22 757.40 757.40 757.40 ∗ 757.40 757.40 0.00 0.12 

GKD-c_16_n500_m50 769.81 769.81 769.05 769.80 769.80 769.80 769.80 769.80 0.00 0.77 

GKD-c_17_n500_m50 756.73 756.73 756.09 756.72 756.72 756.72 756.72 756.72 0.00 0.89 

GKD-c_18_n500_m50 759.67 759.64 759.37 759.67 759.67 759.67 759.67 759.67 0.00 0.93 

GKD-c_19_n500_m50 761.52 761.52 760.91 761.52 761.52 761.52 761.52 761.52 0.00 0.64 

GKD-c_20_n500_m50 763.97 763.97 763.04 763.94 763.94 763.94 763.94 763.94 0.00 0.46 

avg. 762.43 762.41 762.03 762.42 762.41 762.42 762.42 762.42 0.00 1.10 

#better – 0 0 0 0 0 

#equal – 13 4 11 9 11 

#worse – 7 16 9 11 9 

p-value 2.7e-3 6.17e-1 1.08e-4 1.0 1.57e-1 –

Table 4 

Computational results and comparison on SOM-b instances. 

TS VFS2 LS2 + VFS1 VFS2 + VFS1 SBTS (this work) 

Instance Best known f best f best f best f best f best f avg f worst σ t avg ( s ) 

SOM-b_1_n100_m10 62 62 62 62 62 62 62.00 62 0.00 0.01 

SOM-b_2_n100_m20 111 110 111 111 111 111 111.00 111 0.00 0.02 

SOM-b_3_n100_m30 151 150 151 151 151 151 151.00 151 0.00 0.04 

SOM-b_4_n100_m40 194 193 194 194 194 195 194.78 194 0.42 0.27 

SOM-b_5_n200_m20 117 115 117 117 117 117 117.00 117 0.00 0.10 

SOM-b_6_n200_m40 211 207 211 210 211 212 211.43 211 0.49 1.93 

SOM-b_7_n200_m60 298 293 298 297 298 298 298.00 298 0.00 1.10 

SOM-b_8_n200_m80 386 381 386 385 386 387 387.00 387 0.00 5.12 

SOM-b_9_n300_m30 170 165 170 168 170 170 170.00 170 0.00 2.53 

SOM-b_10_n300_m60 308 301 308 306 308 309 309.00 309 0.00 9.29 

SOM-b_11_n300_m90 440 433 440 439 440 442 441.73 441 0.45 41.78 

SOM-b_12_n300_m120 571 565 571 571 571 574 573.45 573 0.50 36.26 

SOM-b_13_n400_m40 222 215 222 219 222 222 222.00 222 0.00 6.90 

SOM-b_14_n400_m80 403 396 403 403 403 407 406.58 406 0.49 86.16 

SOM-b_15_n400_m120 578 570 578 577 578 583 582.58 582 0.49 123.21 

SOM-b_16_n400_m160 752 743 752 750 750 757 756.10 755 0.44 124.11 

SOM-b_17_n500_m50 272 262 272 268 271 273 273.00 273 0.00 22.07 

SOM-b_18_n50 0_m10 0 503 492 503 500 502 505 504.85 504 0.36 89.14 

SOM-b_19_n500_m150 725 713 725 724 725 729 728.28 728 0.45 108.12 

SOM-b_20_n50 0_m20 0 937 926 937 933 936 942 940.80 940 0.68 219.34 

Avg. 370.55 364.60 370.55 369.25 370.30 372.30 372.03 371.70 0.24 43.87 

#better – 0 0 0 0 13 

#equal – 1 20 8 16 7 

#worse – 19 0 12 2 0 

p-value 3.12e-4 1.31e-5 3.12e-4 6.33e-5 3.12e-4 –

 

 

the small p − v alues ( ≤ 0.05) indicate that there exists a significant difference between the SBTS algorithm and the reference

algorithms in terms of f best values on this set of instances. 

In summary, the above results show clearly that the proposed SBTS algorithm is very competitive compared to the state-

of-the-art algorithms in the literature both in terms of solution quality and computational efficiency. 
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Table 5 

Computational results and comparison on DM1c instances. 

TS VFS2 LS2 + VFS1 VFS2 + VFS1 SBTS (this work) 

Instance Best known f best f best f best f best f best f avg f worst σ t avg ( s ) 

01Type1_52.1_n500m50 298.31 291.04 298.31 295.26 298.01 298.31 298.30 298.01 0.07 34.16 

02Type1_52.2_n500m50 296.83 289.92 296.83 292.44 295.11 297.12 296.98 296.83 0.14 97.64 

03Type1_52.3_n500m50 295.70 292.31 295.70 292.80 294.47 297.37 296.92 296.56 0.15 65.89 

04Type1_52.4_n500m50 295.52 289.66 295.52 291.56 295.52 296.60 296.36 296.05 0.09 205.67 

05Type1_52.5_n500m50 295.27 289.60 295.27 291.86 295.27 296.89 296.89 296.88 0.00 70.74 

06Type1_52.6_n500m50 297.69 292.67 297.69 293.39 294.75 298.26 298.24 297.33 0.15 183.52 

07Type1_52.7_n500m50 295.68 290.15 295.68 294.07 295.11 296.88 296.87 296.80 0.02 284.09 

08Type1_52.8_n500m50 296.36 290.69 296.36 293.89 296.36 296.87 296.71 296.70 0.03 136.88 

09Type1_52.9_n500m50 296.52 292.64 296.52 294.09 295.83 297.87 297.60 297.40 0.17 91.58 

10Type1_52.10_n500m50 298.00 291.78 298.00 294.31 298.00 298.20 298.14 297.67 0.13 232.46 

11Type1_52.11_n500m50 296.33 291.63 296.33 291.90 295.63 298.10 298.10 298.10 0.00 78.41 

12Type1_52.12_n500m50 295.13 290.05 295.13 294.23 294.65 296.44 296.36 296.35 0.02 100.27 

13Type1_52.13_n500m50 296.62 292.82 296.62 294.65 296.42 299.09 299.07 298.13 0.15 53.46 

14Type1_52.14_n500m50 298.02 291.98 298.02 293.74 296.31 298.02 298.02 298.02 0.00 47.32 

15Type1_52.15_n500m50 295.16 291.62 295.16 291.81 294.36 297.33 296.37 296.02 0.33 93.69 

16Type1_52.16_n500m50 296.95 290.69 296.95 292.81 295.87 297.99 297.65 297.60 0.13 67.41 

17Type1_52.17_n500m50 294.86 290.90 294.86 293.00 294.86 297.39 297.36 297.31 0.04 33.79 

18Type1_52.18_n500m50 294.82 289.63 294.82 293.00 294.73 296.85 296.78 296.32 0.12 76.79 

19Type1_52.19_n500m50 294.14 290.17 294.14 293.85 294.04 297.17 296.49 296.47 0.11 181.61 

20Type1_52.20_n500m50 295.65 289.86 295.65 290.80 294.96 296.56 296.54 296.41 0.05 83.51 

avg 296.18 290.99 296.18 293.17 295.51 297.47 297.29 297.05 0.09 110.94 

#better – 0 0 0 0 18 

#equal – 0 20 0 5 2 

#worse – 20 0 20 15 0 

p-value 2.21e-5 7.74e-6 2.21e-5 7.74e-6 7.74e-6 –

Table 6 

Computational results and comparison on DM1a instances. 

TS VFS2 LS2 + VFS1 VFS2 + VFS1 SBTS (this work) 

Instance Best known f best f best f best f best f best f avg f worst σ t avg ( s ) 

01Type1_52.1_n50 0m20 0 1037.24 1034.08 1037.24 1035.98 1036.91 1043.34 1042.47 1041.84 0.33 294.48 

02Type1_52.2_n50 0m20 0 1037.41 1031.22 1037.41 1035.10 1035.63 1043.15 1041.75 1040.37 0.67 276.88 

03Type1_52.3_n50 0m20 0 1034.42 1031.47 1034.21 1033.66 1034.42 1040.70 1039.69 1038.60 0.48 295.30 

04Type1_52.4_n50 0m20 0 1033.59 1029.77 1033.59 1033.43 1033.17 1041.45 1039.67 1038.33 0.69 313.38 

05Type1_52.5_n50 0m20 0 1035.09 1028.80 1035.09 1031.80 1033.73 1040.46 1039.33 1037.34 0.72 314.52 

06Type1_52.6_n50 0m20 0 1035.14 1031.37 1033.91 1034.14 1035.14 1040.89 1039.97 1038.54 0.50 277.26 

07Type1_52.7_n50 0m20 0 1033.43 1029.56 1033.43 1030.83 1033.41 1039.93 1038.63 1037.23 0.64 267.42 

08Type1_52.8_n50 0m20 0 1039.25 1028.46 1039.25 1032.32 1032.19 1040.35 1038.99 1037.35 0.82 308.78 

09Type1_52.9_n50 0m20 0 1034.39 1032.64 1034.39 1034.17 1033.79 1041.16 1040.13 1039.12 0.54 262.05 

10Type1_52.10_n50 0m20 0 1035.56 1030.37 1035.56 1033.75 1034.29 1040.70 1039.57 1038.16 0.58 288.89 

11Type1_52.11_n50 0m20 0 1035.36 1030.54 1035.36 1032.80 1035.16 1040.27 1039.15 1037.90 0.54 263.19 

12Type1_52.12_n50 0m20 0 1033.63 1028.18 1033.63 1031.24 1033.57 1039.55 1037.98 1037.08 0.48 315.58 

13Type1_52.13_n50 0m20 0 1041.66 1036.35 1041.66 1039.58 1040.15 1047.37 1046.37 1045.45 0.39 269.24 

14Type1_52.14_n50 0m20 0 1039.00 1032.48 1037.83 1036.72 1039.00 1042.70 1041.91 1040.76 0.44 313.96 

15Type1_52.15_n50 0m20 0 1037.27 1029.48 1037.27 1033.95 1034.43 1041.01 1040.00 1039.18 0.52 318.32 

16Type1_52.16_n50 0m20 0 1039.92 1033.87 1039.92 1037.37 1039.26 1045.24 1044.01 1042.86 0.47 302.91 

17Type1_52.17_n50 0m20 0 1036.14 1032.40 1036.14 1035.88 1035.89 1042.97 1041.88 1040.59 0.52 276.84 

18Type1_52.18_n50 0m20 0 1035.80 1028.28 1035.80 1031.58 1035.80 1039.70 1038.27 1036.62 0.59 297.78 

19Type1_52.19_n50 0m20 0 1035.07 1030.34 1035.07 1034.24 1033.94 1040.32 1039.49 1038.56 0.40 251.92 

20Type1_52.20_n50 0m20 0 1033.81 1030.55 1033.81 1032.42 1031.59 1039.61 1038.03 1036.26 0.67 294.72 

avg 1036.16 1031.01 1036.03 1034.05 1035.07 1041.54 1040.36 1039.11 0.55 290.17 

#better – 0 0 0 0 20 

#equal – 0 18 0 4 0 

#worse – 20 2 20 16 0 

p-value 7.74e-6 7.74e-6 7.74e-6 7.74e-6 7.74e-6 –

 

 

4. Analysis and discussions 

The proposed SBTS algorithm includes two essential components, namely the hash functions for determining the tabu

status of neighbor solutions and the constrained swap neighborhood. In this section, we turn our attention to an analysis

and discussion of these two components. 
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Table 7 

Computational results and comparison on DM2 instances. 

TS VFS2 LS2 + VFS1 VFS2 + VFS1 SBTS (this work) 

Instance Best known f best f best f best f best f best f avg f worst σ t avg ( s ) 

01Type2.1_n500m50 29763.09 29158.15 29763.09 29413.43 29632.54 29798.64 29787.19 29777.98 5.27 182.62 

02Type2.2_n500m50 29614.05 29073.30 29603.62 29288.74 29614.05 29773.03 29773.03 29773.03 0.00 37.51 

03Type2.3_n500m50 29656.55 29086.14 29656.55 29639.80 29639.80 29745.69 29736.32 29720.14 6.93 187.55 

04Type2.4_n500m50 29664.68 29093.40 29664.68 29299.59 29515.35 29708.41 29705.71 29659.97 10.12 127.56 

05Type2.5_n500m50 29542.69 28924.19 29542.69 29300.63 29495.18 29683.16 29677.29 29645.03 8.48 222.82 

06Type2.6_n500m50 29554.12 29093.21 29554.12 29321.28 29554.12 29702.89 29700.36 29647.56 11.06 124.66 

07Type2.7_n500m50 29662.73 29185.38 29662.73 29373.72 29635.87 29836.19 29792.80 29750.35 30.31 189.31 

08Type2.8_n500m50 29687.32 29156.69 29687.32 29490.62 29631.96 29828.23 29772.61 29768.34 10.68 176.92 

09Type2.9_n500m50 29563.79 28967.58 29563.79 29235.21 29563.79 29767.14 29690.20 29642.92 46.47 226.37 

10Type2.10_n500m50 29682.90 28971.87 29682.90 29379.64 29534.88 29701.99 29689.10 29638.67 16.63 216.75 

11Type2.11_n500m50 29600.94 28984.71 29600.94 29156.46 29600.94 29697.27 29675.66 29664.02 15.27 107.77 

12Type2.12_n500m50 29644.88 28919.71 29644.88 29193.08 29493.57 29644.88 29620.07 29562.82 23.69 82.71 

13Type2.13_n500m50 29725.25 29083.33 29725.25 29480.00 29725.25 29827.41 29769.41 29751.90 18.67 89.27 

14Type2.14_n500m50 29706.63 29218.03 29706.63 29515.23 29677.92 29920.33 29898.45 29891.22 5.11 38.36 

15Type2.15_n500m50 29746.23 29343.22 29746.23 29507.21 29746.23 29842.94 29823.97 29822.43 5.40 43.47 

16Type2.16_n500m50 29532.81 29135.51 29523.27 29330.74 29532.81 29715.71 29712.97 29688.32 8.22 127.29 

17Type2.17_n500m50 29517.15 28993.85 29517.15 29280.40 29517.15 29789.49 29712.85 29624.71 58.80 161.73 

18Type2.18_n500m50 29584.31 29015.67 29584.31 29133.16 29536.45 29723.84 29705.05 29660.17 20.34 162.54 

19Type2.19_n500m50 29712.79 29189.34 29688.51 29301.65 29712.79 29782.17 29757.19 29736.68 13.68 80.45 

20Type2.20_n500m50 29535.90 29132.29 29527.16 29428.72 29535.90 29726.11 29690.58 29650.44 13.47 64.91 

avg. 29634.94 29086.28 29632.29 29353.47 29594.83 29760.78 29734.54 29703.84 16.43 132.53 

#better – 0 0 0 0 20 

#equal – 0 15 0 10 0 

#worse – 20 5 20 10 0 

p-value 1.31e-5 7.74e-6 1.31e-5 7.74e-6 7.74e-6 –
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4.1. Sensitivity analysis of hash functions 

To check whether the hash functions used by the SBTS algorithm has a significant influence on the performance of algo-

rithm, we carried out an additional experiment based on the first 10 instances of the DM2 set. For the sake of presentation,

these instances are renamed as P 1 to P 10 . Recall that the dimensions of these instances are given by n = 500 and m = 50 . It

is relevant to note that, according to the results in Table 7 , the results of SBTS have relatively large standard deviations σ in

comparison with most instances of other benchmark sets, which implies that these instances are more difficult to solve for

the proposed algorithm. 

As described in Section 2.5 , each parameter γ k ( k = 1 , 2 , 3 ) corresponds to a hash function h k . In this experiment, the

values of each γ k are taken from the set { 1 . 1 , 1 . 2 , . . . , 2 . 0 } , and 15 representative combinations ( γ 1 , γ 2 , γ 3 ) of parameters

are tested. For each combination of ( γ 1 , γ 2 , γ 3 ) and instance, the proposed algorithm was run 40 times, and the best

objective values ( f best ) and the average objective values ( f avg ) are reported in Tables 8 and 9 . Column 1 and row 1 of the

tables respectively indicate the settings of ( γ 1 , γ 2 , γ 3 ) and the names of instances, and the computational results are

reported in columns 2 to 11. The last column shows the average results over the instances tested. 

Table 8 indicates that the search ability of SBTS is not very sensitive to the setting of ( γ 1 , γ 2 , γ 3 ), since the different

combinations of parameters led to very similar results in terms of f best . In particular, the table shows that all parameter

combinations yield the same best objective value ( f best ) for 4 out of 10 instances. Moreover, the parameter combinations

containing a large value for at least one parameter γ k are desirable. For example, the combinations (1.2, 1.6, 2.0), (1.6,

1.8, 2.0) and (1.8, 1.9, 2.0) produced the best objective value for 9 out of 10 instances. Furthermore, a similar conclusion

can be obtained from Table 9 , which shows that in terms of f avg the differences between the results obtained by different

parameter combinations are small, and the parameter combinations containing a large value for at least one parameter γ k 

yield relatively desirable results in the general case. 

4.2. Importance of the parametric constrained swap neighborhood 

The parametric constrained swap neighborhood is another key component of the proposed algorithm, thus in this section

we make a detailed analysis of its effect on the algorithm’s performance. To this end, we carried out another experiment

on two representative instances, namely 01Type2.1_n500m50 and SOM-b_20_n500_m200. For each instance and each value 

of parameter ρ in the set {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}, the proposed SBTS algorithm was independently performed 40 times,

each run being given a maximum number of iterations of 10 4 . The average results are respectively recorded in terms of the

computational times and the gap ( f (M 

∗) − f bks ) between the best objective value ( f ( M 

∗)) found so far in the current run

(see Algorithm 1 ) and the best result obtained in this work ( f bks ). The evolution of computational times and ( f (M 

∗) − f bks )

as the number of iterations are respectively plotted in Fig. 2 . It is worth noting that as illustrated in Section 2.4 , the value

of parameter ρ directly impacts the size of the constrained swap neighborhood, i.e., | N 

c 
swap (M) | = � ρ2 × m × (n − m ) 
 , thus

a larger value of ρ corresponds to a larger size of neighborhood, and vice-versa. 

Fig. 2 ((b) and (d)) shows that the computational time increases linearly as the number of iterations, which is consistent

with the hypothesis that the computational time of each iteration is proportional to the size of the neighborhood for any

value of ρ in (0,1). Moreover, a smaller value of ρ corresponds to a shorter computational time, implying a faster compu-

tational speed for each iteration of the SBTS algorithm. On the other hand, the graphs of (a) and (c) of Fig. 2 disclose that

the algorithm performs better with a smaller value of ρ than with a larger value of ρ , especially at the beginning stage of

the algorithm. As the search progresses, the algorithm with a medium sized ρ ( ρ = 0 . 3 ) performs the best. Moreover, the

algorithm with a full swap neighborhood (i.e., ρ = 1 . 0 ) performs the worst during the whole search process. 

In summary, for the proposed SBTS algorithm, a small value of ρ that corresponds to a small neighborhood is desir-

able both in terms of the computational speed and solution quality. Nevertheless, according to the computational results in

Section 3.3 , the SBTS algorithm with a small neighborhood can occasionally miss the best solutions for some instances, as

indicated by the symbol “∗” in Tables 2 and 3 . For these instances, an adaptive mechanism to adjust the sizes of neighbor-

hood is desirable for reaching a good tradeoff between the computing speed and the search ability. 

5. Conclusions and future work 

In this paper, we proposed an effective solution-based tabu search algorithm for the NP-hard maximum min-sum dis-

persion problem. The key features of the proposed algorithm include a parametric constrained swap neighborhood and a

dedicated tabu mechanism based on three hash functions. The constrained swap neighborhood reduces the number of can-

didate solutions that need to be considered at each search iteration and allows the search procedure to focus on a restricted

number of promising candidate solutions. On the other hand, the hash-based tabu mechanism provides the search process

with an effective means to avoid cycling and enables the search to continually explore new solutions. 

The computational results on six sets of 140 instances commonly used in literature showed that the proposed algorithm

is highly effective both in terms of solution speed and solution quality. It is worth noting that the proposed algorithm

improves the best-known results for 80 out of 140 instances, while matching the best-known results for other 51 instances.

The improved best results (new lower bounds) constitute useful references for evaluating new algorithms for the maximum

min-sum dispersion problem. 
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Table 8 

Influence of the hash functions on the best objective values ( f best ). Each instance was independently solved 40 times using the SBTS algorithm for each parameter 

combination in the table, and the best objective values ( f best ) over 40 runs are respectively reported. 

( γ 1 , γ 2 , γ 3 )/ Instance P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 avg 

(1.1,1.3,1.5) 29798.64 29773.03 29730.45 29708.41 29681.02 29702.89 29836.19 29807.72 29652.99 29682.90 29737.42 

(1.1,1.3,1.7) 29790.64 29773.03 29740.76 29708.41 29681.02 29702.89 29772.73 29807.72 29767.14 29701.99 29744.63 

(1.1,1.3,1.9) 29798.64 29773.03 29740.76 29708.41 29683.16 29702.89 29836.19 29828.23 29767.14 29701.99 29754.04 

(1.2,1.4,1.6) 29798.64 29773.03 29740.76 29708.41 29683.16 29702.89 29772.73 29807.72 29767.14 29701.99 29745.65 

(1.2,1.6,1.8) 29798.64 29773.03 29740.76 29708.41 29683.16 29702.89 29842.85 29828.23 29767.14 29701.99 29754.71 

(1.2,1.6,2.0) 29798.64 29773.03 29745.69 29708.41 29683.16 29702.89 29836.19 29828.23 29767.14 29701.99 29754.54 

(1.3,1.5,1.7) 29798.64 29773.03 29740.76 29708.41 29683.16 29702.89 29836.19 29770.44 29767.14 29701.99 29748.27 

(1.3,1.7,1.9) 29798.64 29773.03 29740.76 29708.41 29683.16 29702.89 29842.85 29807.72 29767.14 29701.99 29752.66 

(1.4,1.6,1.8) 29798.64 29773.03 29745.69 29708.41 29683.16 29702.89 29836.19 29828.23 29767.14 29701.99 29754.54 

(1.4,1.8,2.0) 29798.64 29773.03 29740.76 29708.41 29683.16 29702.89 29842.85 29770.44 29767.14 29701.99 29748.93 

(1.5,1.7,1.9) 29798.64 29773.03 29740.76 29708.41 29683.16 29702.89 29842.85 29807.72 29767.14 29701.99 29752.66 

(1.5,1.7,2.0) 29798.64 29773.03 29745.69 29708.41 29683.16 29702.89 29842.85 29807.72 29767.14 29701.99 29753.15 

(1.6,1.8,2.0) 29798.64 29773.03 29740.76 29708.41 29683.16 29702.89 29842.85 29828.23 29767.14 29701.99 29754.71 

(1.7,1.8,1.9) 29798.64 29773.03 29740.76 29708.41 29683.16 29702.89 29836.19 29807.72 29767.14 29701.99 29751.99 

(1.8,1.9,2.0) 29798.64 29773.03 29740.76 29708.41 29683.16 29702.89 29842.85 29828.23 29767.14 29701.99 29754.71 
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Table 9 

Influence of the hash functions on the average objective values ( f avg ). Each instance was independently solved 40 times using the SBTS algorithm for each parameter 

combination in the table, and the average objective values ( f avg ) over 40 runs are respectively reported. 

( γ 1 , γ 2 , γ 3 )/ Instance P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 avg 

(1.1,1.3,1.5) 29745.35 29744.52 29708.37 29653.78 29628.73 29615.01 29745.11 29759.54 29640.88 29650.54 29689.18 

(1.1,1.3,1.7) 29764.58 29771.63 29736.41 29677.68 29653.43 29656.69 29759.42 29771.06 29657.02 29680.83 29712.87 

(1.1,1.3,1.9) 29784.82 29773.03 29731.13 29700.69 29665.46 29691.54 29775.34 29772.77 29677.58 29689.55 29726.19 

(1.2,1.4,1.6) 29769.19 29767.45 29719.47 29705.13 29645.21 29657.51 29744.31 29762.30 29641.13 29660.95 29707.27 

(1.2,1.6,1.8) 29784.34 29773.03 29731.51 29695.05 29665.32 29682.66 29772.15 29771.54 29668.50 29687.66 29723.18 

(1.2,1.6,2.0) 29787.19 29773.03 29736.32 29705.71 29677.29 29700.36 29792.80 29772.61 29690.20 29689.10 29732.46 

(1.3,1.5,1.7) 29767.44 29771.28 29724.19 29697.81 29661.46 29661.48 29773.76 29768.59 29648.73 29680.71 29715.54 

(1.3,1.7,1.9) 29783.78 29773.03 29731.64 29707.96 29671.28 29688.95 29784.08 29772.21 29659.86 29692.16 29726.50 

(1.4,1.6,1.8) 29779.95 29772.77 29733.66 29699.71 29669.08 29686.98 29774.13 29772.12 29655.63 29697.46 29724.15 

(1.4,1.8,2.0) 29788.20 29773.03 29736.82 29708.41 29675.76 29697.49 29781.46 29770.28 29669.78 29692.39 29729.36 

(1.5,1.7,1.9) 29789.92 29773.03 29733.64 29708.41 29671.96 29694.62 29786.03 29770.99 29682.91 29691.21 29730.27 

(1.5,1.7,2.0) 29789.30 29773.03 29735.09 29707.45 29673.90 29694.83 29787.18 29770.27 29692.47 29695.29 29731.88 

(1.6,1.8,2.0) 29789.69 29773.03 29737.10 29707.96 29669.79 29698.64 29783.52 29771.04 29690.96 29693.40 29731.51 

(1.7,1.8,1.9) 29795.17 29773.03 29740.26 29705.99 29675.50 29701.75 29780.57 29771.41 29700.26 29693.67 29733.76 

(1.8,1.9,2.0) 29789.97 29773.03 29737.89 29708.41 29672.36 29701.16 29782.58 29774.62 29693.33 29684.30 29731.77 
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Fig. 2. Comparison between different sizes of the neighborhood. 

 

 

 

 

 

 

 

 

 

 

 

 

We also analyzed the impact of the hash functions and the constrained neighborhood on the performance of the al-

gorithm and observed that the algorithm is not sensitive to the hash functions used, but the neighborhood size critically

affects the behavior of the algorithm. 

Several areas of research invite further investigation. First, our experiments show that the size of the neighborhood has

a strong impact on the search efficiency of the algorithm for certain instances. Consequently, it would be interesting to

investigate adaptive mechanisms to adjust the neighborhood size during the search process. Second, the proposed algorithm

can be further reinforced by exploring additional diversification strategies. To this end, opposition-based search that proved

to be successful for the maximum diversity problem [31] is worthy of investigation in the context of the maximum min-sum

dispersion problem. Finally, the ideas of solution-based tabu search and constrained neighborhood are rather general and

can be advantageously adapted to solve other dispersion problems as well as similar binary optimization problems. 
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