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Abstract 

 

Surrogate Branching (SB) methods in mixed integer optimization provide a staged 

parametric relaxation of customary branching methods used in branch-and-bound and 

branch-and-cut algorithms. SB methods operate by forming surrogate constraints 

composed of non-negative linear combinations of component inequalities of three types: 

(1) ordinary branching inequalities, (2) redundant inequalities involving bounds on 

variables, and (3) the strictly redundant inequality 0 ≤ 1. The usefulness of surrogate 

constraint relaxations and their associated duality theory in mixed integer optimization 

acquires a new scope through these surrogate branching inequalities, by allowing 

branching decisions to be progressively compounded, and parametrically staged in 

strength, as a function of the degree of separation desired. 

 

 

 

1.  Introduction 

 
We write the mixed integer programming (MIP) problem in the form 

  

  MIP :     Maximize   xo = cx 

                subject to           Ax ≤ b 

                                U ≥  x  ≥ 0 and xj integer, j  N 

 

where N is a non-empty subset of the index set for the x vector. As in the case of branch-

and-bound (B&B) and branch-and-cut (B&C) methods generally, we are interested in 

solving a linear programming relaxation of MIP, and employ a strategy of adjoining 

inequalities to partition the solution space or to generally produce a new version of MIP 
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whose LP relaxation is closer to being integer feasible. In customary B&B and B&C 

approaches this is done in a manner that assures an optimal integer solution to the 

original problem will remain accessible at all stages (in at least one of the partitions 

created).  Although the methods we consider can be implemented to provide such 

assurance, they are conceived with the goal of finding very high quality (optimal or near 

optimal) integer solutions with a very efficient expenditure of effort. Thus, the strategies 

we propose, which we call Surrogate Branching (SB) methods, are designed to be 

implemented as metaheuristics as well as exact algorithms. 

  Surrogate Branching methods have their origins in two developments:  surrogate 

constraint relaxations for mixed integer programming and Local Branching (LB) 

strategies for 0-1 integer programming. (See Glover (2002) for a tutorial survey on 

surrogate constraint methods, and see Fischetti and Lodi (2002) for an introduction to 

local branching.) Combining and extending these origins, SB methods provide a useful 

supplement to customary B&B and B&C strategies. They also give a foundation for more 

general forms of LB strategies, and provide a natural framework for creating a 

coordinated SB/LB procedure for MIP problems. 

 This paper is organized as follows. Section 2 gives the general structure of SB 

inequalities and identifies the conditions under which they provide separating inequalities 

of varying degrees of restrictiveness. Section 3 identifies the connection between SB and 

LB inequalities, and the relation between alternative strategies based on these 

inequalities. Section 4 then introduces a series of hypotheses about the nature of methods 

that are likely to prove effective for solving MIPs, accompanied by general strategies for 

testing and exploiting these hypotheses through the application of SB methods.  

 

 

2. Fundamental Surrogate Branching Structures 

 
 The surrogate branching methods derive from the creation of surrogate constraints 

that provide a form of compound branching structure, composed of a union of ordinary 

branching inequalities, bounds on variables, and the strictly redundant inequality 0 ≤ 1. 

Notationally, we represent these components as follows. Let xj = xj', j  N, denote the 

values assigned to the integer variables by a solution to an LP relaxation of MIP (where 

MIP may constitute a sub-problem of the original problem at a current node of a B&B 

tree).  Define dj and uj respectively to be the customary “down” and “up” adjacent integer 

values that bracket xj', i.e., dj ≤ xj' ≤ uj where uj = dj + 1. Then for selected (disjoint) 

subsets UP and DN of N, we may refer to a corresponding collection of branching 

possibilities denoted by 

 

   xj ≤ dj    j  DN        (1) 

  xj ≥ uj    j  UP         (2) 

 

We allow DN and UP to be drawn from chosen subsets N(F) and N(I) of N over which xj' 

is respectively fractional and integer-valued (hence dj < xj' < uj for j  N(F) and xj' = dj or 

xj' = uj for j  N(I)). Although customary B&B methods do not include consideration of 

variables for branching that are integer-valued, situations arise in the creation of 

compound surrogate constraint branching inequalities where it is important to include 



 3 

such variables. The reason is that the enforcement of SB inequalities over fractional 

variables may move a variable from N(I) to N(F)
1
 and yet we wish to impose a new 

revised SB inequality relative to the LP relaxation in which the variable still belonged to 

N(I). This strategy of creating revised branching inequalities is one of the important 

features of SB methods. 

 In addition to the branching inequalities represented by (1) and (2), we consider 

the component inequalities identified by reference to upper and lower bounds on the 

problem variables, over chosen subsets of N denoted by NU and N0, respectively, giving 

rise to    

 

  xj ≤ Uj  j  NU       (3) 

 xj ≥ 0  j  N0         (4) 

 

We write each of these inequalities in ≤ form (hence (2) becomes – xj ≤ – uj and (4) 

becomes – xj ≤ 0), and give each a non-negative weight wj, together with giving a non-

negative weight of wo to the strictly redundant inequality 0 ≤ 1, to yield the surrogate 

constraint 

 

∑(wjxj: j  DN) – ∑( wjxj: j  UP) + ∑(wjxj: j  NU) – ∑( wjxj: j  N0) ≤ z (5) 

 

where  

 

z = ∑(wjdj: j  DN) – ∑(wjuj: j  UP) + ∑(wjUj: j  NU) + wo  (6) 

 

The inequality (5) is the one we call the surrogate branching (SB) inequality.  

Within the B&B and B&C contexts we take the sets NU and N0 to be subsets of 

the variables for which xj' = Uj and xj' = 0, respectively, and since the other sets are 

selected rather than arbitrary, we will stipulate that all wj weights are positive, except for 

wo which may be 0. Hence, upon plugging the LP solution x = x' into (5), we see that the 

resulting left hand side, which we denote by zo, is strictly greater than z for wo = 0, and 

hence (5) is a separating inequality in this case. In general, (5) remains a separating 

inequality for all values of wo in the range 

 

  0 ≤ wo < z – zo 

 

and wo thus provides a parameterization of the SB inequality that determines its degree of 

restrictiveness. 

 The motivation for creating the surrogate branching inequality is related to the 

reason for creating surrogate constraints generally: a weighted linear combination of 

constraints can contain information that is not captured by any of the component 

constraints individually. In the case of methods for MIP problems, it can be exceedingly 

important to be able to derive implications from more than a single branching decision at 

a time. The customary B&B and B&C approaches, which only make the “incremental 

changes” of introducing a single branching inequality on any iteration, suffer from an 

                                                 
1
 As here, we often refer to variables and their indexes interchangeably. 
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inability to anticipate consequences of the combined effect of introducing multiple 

inequalities. Yet, except in rare and fortunate cases, the only way the MIP problem can be 

solved is by introducing multiple branches, and a lack of a prior appreciation of their 

mutual interdependencies – a lack of accounting for combined information that may be 

harbored within a surrogate constraint that embodies such branches – imposes a severe 

limitation on the decision process.  

At the same time, the fact that a surrogate constraint offers a relaxation means that 

its implications are not as rigid as those of conjunction of its components. Hence, some of 

the branching inequalities subsumed by the surrogate constraint may be invalid in the 

sense of rendering all optimal MIP solutions infeasible, and yet the surrogate constraint 

relaxation offers a degree of forgiveness by which the SB inequality may nevertheless be 

valid. This degree of forgiveness is magnified by including the strictly redundant 

constraint 0 ≤ 1 as a component of the SB inequality, i.e., by the inclusion of the wo term. 

Finally, the special motivation we emphasize in this paper, of introducing an inequality 

whose implications can be monitored and therefore whose structure can be revised and 

improved, leads to additional strategic possibilities beyond the realm of ordinary B&B 

and B&C methods. The following sections elaborate the reasons for creating the SB 

inequality and detail specific strategies for applying it. 

 

 

3. Connections with Local Branching Inequalities 

 

 As a further foundation for seeing the implications of SB inequalities, we point 

out their connections to the Local Branching (LB) inequalities of Fiscetti and Lodi 

(2002), which are introduced in the context of providing a primal feasible strategy for 0-1 

integer programming problems. In the setting, the LB inequalities have the goal of 

constraining the admissible solutions to lie within a region that is relatively close to a 

known feasible solution x*. Specifically, defining N1 = { j  N: xj* = 1} and N0 = { j  

N: xj* = 0}, then it follows that the 0-1 feasible solutions within a Hamming distance of k 

from the solution x* will satisfy the inequality 

 

∑(xj: j  N0) - ∑(xj: j  N1) ≤ k - |N1|    (7) 

 

which Fiscetti and Lodi call an LB inequality. Thus, the motive is to impose the 

inequality (7) for an appropriately chosen value of k, and then allow a standard IP 

solution procedure (such as a B&B or B&C method, or even a metaheuristic method) to 

explore the region thus produced.
2
  

 Structurally, we see that (7) is in fact a special instance of an SB inequality, i.e., it 

arises by setting UP = N1, DN = N0 and by assigning weights of 1 to each of the 

component branching inequalities xj ≤ 0 and xj ≥ 1. 

 The SB framework enlarges the scope of the LB inequalities strategically as well 

as structurally, in the following important ways: 

 

                                                 
2
 In this respect, the LB strategy is an instance of a referent domain strategy as described in Glover and 

Laguna (1997). 
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(i) SB inequalities give a foundation for starting from integer-infeasible 

solutions and introducing exploratory separating inequalities
3
 which 

progressively restrict the feasible space. 

(ii) The solution of the LP and MIP sub-problems generated by the 

exploratory SB inequalities provides information for modifying and 

improving these inequalities. Such information derives from solution 

values to the sub-problems that violate component branches of the SB 

inequality and from reduced cost and penalty information that discloses 

the attractiveness of alternatives to the component branches. 

(iii) The process of solving the indicated sub-problems generated by the SB 

inequalities simultaneously yields trial solutions that are candidates for the 

best solution to the original MIP problem, as in the application of 

surrogate constraint processes generally. 

 

Candidate solutions are also generated with LB inequalities, but based on sub-

problems derived by reference to previously identified feasible MIP solutions. The 

approaches of basing SB inequalities on feasible MIP solutions and of applying them to 

yield progressively refined exploratory inequalities are usefully complementary, and 

provide the basis for interweaving the two approaches in a mutually reinforcing pattern.
4
 

Implications and specific strategies for taking advantage of these features of the 

SB framework are examined in the next section. 

 

 

4. Hypotheses and Associated Strategies. 

 

 We begin by observing that an SB inequality can be progressively strengthened as 

follows: 

 

(1) removing a redundant component branch, 

(2) adding a binding component branch, 

(3) increasing the weight wj on a binding component branch, 

(4) modifying a redundant branch (by reversal or changing the constant term) to 

make it binding, 

(5) decreasing the value of wo. 

 

In this paper we focus on processes that make use of such progressive strengthening, 

together with associated processes that modify component branches by taking advantage 

of sub-problem information. (By extension of this focus, it is also possible to alternate 

strengthening steps with weakening steps using strategic oscillation procedures, or by the 

application of tabu search procedures more generally.) 

 

                                                 
3
 Such inequalities can also be conceived as instances of pseudo-cuts, as proposed in conjunction with tabu 

search. Likewise, the memory mechanisms of tabu search can be used to implement strategies for SB 

inequalities, as discussed in Section 4. 
4
 We explore such “interwoven approaches” in a sequel. 
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Hypothesis 1.  (Motivation for Progressive Strengthening) A process that starts 

by enforcing a weak partial branching inequality and then enforces progressively stronger 

instances of the inequality discloses patterns that can be exploited to yield better 

decisions. 

 

 It is important to note that progressive strengthening of an SB inequality can be 

conveniently carried out by LP post-optimization, thereby giving added weight to the 

motivation suggested by Hypothesis 1. We next examine two main ways to identify 

useful patterns of the type alluded to in this hypothesis. 

 

4.1 Persistent and Emergent Attractiveness. 

 

 The present context motivates an adaptation of the persistent attractiveness and 

emergent attractiveness notions as introduced in connection with Tabu Search (TS). The 

following definitions will first be stated very loosely and then will be made more precise. 

 

Persistent Attractiveness: A certain branching direction for a variable xj is attractive 

throughout a critical region of solution alternatives as the MIP problem is progressively 

modified. 

 

Emergent Attractiveness: A certain branching direction for a variable xj becomes 

increasingly more attractive while moving through a critical region of solution 

alternatives as the MIP problem is progressively modified. (Initially, the branching 

direction can be unattractive, and then gradually alter its status.) 

 

A brief discussion may help to bring these comments into focus. The “critical 

region of solution alternatives” in the present context refers to the progressively changed 

solution space that results by the five operations previously mentioned for strengthening 

an SB inequality, together with the operation of reversing a component branch direction 

based on solution information that discloses this to be preferable. We recall two classical 

definitions. 

 

Shadow Prices: The shadow prices for a Linear Programming problem are the solutions 

to its dual. The ith shadow price is the change in the objective function resulting from a 

one unit increase in the ith coordinate of b. A shadow price is also the amount that an 

investor would have to pay for one unit of a resource in order to buy out the 

manufacturer.  

 

Penalty Costs: Penalty Costs are the amounts the optimal value of the objective function 

would change for each unit increase in the non-basic variables. They are the negatives of 

the non-basic bottom row entries in the final tableau.  

 

A natural means to measure the relative attractiveness of alternative branches on a 

given iteration, in order to provide a foundation for measuring persistent and emergent 

attractiveness, is provided by a standard penalty cost evaluation (or a “pseudo-cost” 

evaluation) as applied in B&B. As a simple example, if a particular branch direction 
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originally evaluated as attractive continues to receive a favorable evaluation as wo is 

progressively increased, then this direction of change qualifies as persistently attractive. 

(If the variable eventually receives a value in the solution to the relaxed LP problem that 

satisfies a particular branching direction, then this can be considered as an evaluation in 

favor of that direction.)  

On the other hand, the case where a component branching direction is 

inappropriately selected, and therefore should be modified, can be identified by the 

emergent attractiveness of the counter branching direction.  For example, as wo is 

progressively decreased toward 0,  if the counter branching direction for a variable xj that 

originally was unattractive begins to look attractive (as evidenced either by customary 

branching penalties or by a situation where xj receives a value that satisfies the counter 

direction), then this is a signal that the current branch direction may be unsuitably chosen. 

Thus the emergent attractiveness of a counter branching direction provides a way to 

amend the SB inequality.  

 

Illustrative Measures. 

 

 We amplify the foregoing comments and make them more specific as follows. 

Assume a standard measure of branching attractiveness (e.g., as derived from a penalty 

cost) is applied for a selected subset of wo values, which we denote by wo  R.  We then 

can define a “preference value” PrefValue(wo,j) that discloses the relative desirability of 

an UP branch compared to a DN branch for each xj and for each wo  R. By convention, 

suppose 

 

        + if UP is preferred to DN 

  PrefValue(wo,j)  =     0 if there is no preference 

        - if DN is preferred to UP 

 

where the magnitude of PrefValue(wo,j) identifies the degree of attractiveness of the 

preferred branch. It is also useful to consider a related “preference frequency” 

PrefFrequency(wo,j), which starts at 0 and is incremented by an amount ∆(wo,j) where 

 

          1 if UP is preferred to DN 

      ∆(wo,j) =           0 if there is no preference 

         -1 if DN is preferred to UP. 

 

Then we can specify that a persistent attractiveness measure PA(j) for a variable xj is a 

function of the two quantities 

 

∑(PrefValue(wo,j): wo  R) 

and 

  ∑(PrefFrequency(wo,j): wo  R) 

 

while an emergent attractiveness measure EA(j) for xj is a function of the two quantities  
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∑(F(u)PrefValue(wo,j): wo  R) 

and 

  ∑(F(u)PrefFrequency(wo,j): wo  R) 

 

where F is a strictly monotone increasing function, i.e., F(u") > F(u') for u" > u'  R. (For 

example, F can implicitly be determined by an exponential smoothing operation.) The 

underlying functions for determining PA(j) and EA(j) can differ from each other and can 

be based on thresholds. 

 

 Define 

 

δ(j) =     1  if j  UP 

-1  if j  DN 

 

and let 

PA*(j) = δ(j)PA(j) 

EA*(j) = δ(j)EA(j) 

 

Then we may hypothesize that as PA*(j) and EA*(j) become larger, the likelihood 

increases that the presumptive branch for xj is appropriate. In particular, for a given 

variable xp, if the value EA*(p) is negative, or small relative to other EA*(j) values, then 

xp may be considered a candidate to reverse direction, i.e., to change its presumptive 

branching direction. This leads to the following speculation.  

 

Hypothesis 2.  The SB inequality proves to be increasingly effective as an aid to 

solving the MIP problem as the number of variables that are candidates to reverse 

direction is reduced. 

 

This hypothesis evidently depends on the specific rules used to define PA(j) and EA(j).  

The precise forms of these rules is a topic for research, which over time may be 

anticipated to provide successive generations of improved methods, beginning with a 

“first generation” method that uses very simple rules. 

 The following procedure has the goal of creating an SB inequality that minimizes 

the number of candidates to reverse direction. Let J denote the union of the sets UP and 

DN. 

 

Procedure to Exploit Hypothesis 2 

 

Step 0:  Identify an initial choice of component branching directions to determine the SB 

inequality.  Solve the LP problems over wo in R by post-optimization to generate the 

measures to produce PA*(j) and EA*(j), j  J. 

 

Step 1: Choose one or more xj variables that are candidates to reverse direction.  If none 

exist, stop.  Otherwise, implement the change of direction for these variables (by 

redefining UP and DN.) 
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Step 2: Again apply the LP post-optimization process to determine new values of PA*(j) 

and EA*(j), for j  J. If the number of candidates to reverse direction does not decrease, 

stop.  Otherwise, return to Step 1. 

 

The preceding approach is a simple “hill climbing” procedure, which takes advantage of 

information produced by the progressive post-optimization process and the concepts 

embodied in the definitions of PA(j) and EA(j). It may be observed that the process of 

progressively increasing wo may result in a situation where no feasible LP solution exists, 

which thereby also provides information about the identity of inappropriately selected 

branching directions. Such an outcome yields a limiting value for wo applicable to the 

current iteration of the procedure, and in general, a situation where the relative 

attractiveness of several branches abruptly changes may be taken to indicate that further 

decreases in wo are unwarranted – until the composition of UP and DN is modified. (The 

number of candidates simultaneously permitted to reverse direction on each execution of 

Step 1 will have a bearing on the outcome.) 

The following provides a possible extension of the process. 

 

Extended Procedure 

 

Step 1: When the foregoing procedure stops, if any candidates to reverse direction 

remain, remove all of these from J.   

 

Step 2: Re-apply the procedure relative to this smaller J, while keeping track of 

attractiveness measures for variables xj for j not in J.  If any of these variables now has a 

branching direction that is strongly supported by the successive post-optimization steps, 

add this variable back to J and repeat until the addition of such a variable creates a 

candidate to reverse direction.  

 

The outcomes resulting from the foregoing procedures may additionally be used 

to design branching rules for B&B. 

 

4.2 Sequence Independent Decisions. 

 

 An important alternative to the foregoing development is provided by the 

perspective that underlies tabu branching. The key idea can be expressed as follows. 

 

Hypothesis 3. The choices of a sequential decision process that creates an 

implicit tree construction can be improved by replacing the sequential order with the less 

restrictive conditions that result from using tabu search memory and aspiration criteria. 

 

The hypothesis derives in part from the observation that the B&B type of sequential 

decision process, as considered in previous sections, is based on incomplete information, 

which is limited to the implications of branching decisions that precede a branch 

currently under consideration. Although the generation of new sequences in the 

exploitation of Hypothesis 2 takes advantage of broader implications, the process still 

retains a degree of “sequential myopia.”  
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 The approach of tabu branching, by contrast, suggests the usefulness of changing 

branching decisions by drawing on the implications available from a more complete set 

of branches.  Thus, an earlier branching decision can be re-evaluated independently of the 

order in which it was made, by taking account of subsequent branching decisions. In this 

expanded system of interdependencies, the implications of the earlier decisions are 

established in the context of additional decisions that followed. The enlarged context is 

the one in which tabu branching operates. Such an approach can be implemented by 

changing branches until a selected evaluation criterion signals a local optimum is 

reached, and then by activating memory mechanisms of tabu search to go beyond local 

optimality. Alternately, the process can be applied without TS memory and merged with 

the approach for exploiting Hypothesis 2 to give a multi-start variant. 

 In applying a non-sequential approach to a set of branches that were first 

generated sequentially, it is appropriate to note that certain branches made in the initial 

construction may compel the inclusion of certain other branches that followed them.  This 

knowledge can be used to focus on critical choices in subsequent exploitation of 

Hypothesis 3. In particular, there is no merit in changing a forced branch until an 

unforced branch that preceded it is changed. At that point, all forced branches that came 

later in the sequence lose their forced status. (There can be ‘ripple effects,’ as manifested 

in a situation where the change of a given branch induces a change of several others.) 

 Alternative implementations of such processes provide a rich source of empirical 

explorations. 
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