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Modeling Economic Consequences of Supply Chain Disruptions 

ABSTRACT 

Supply chains often experience significant economic disruptions, as in the case of facility 

breakdowns, transportation mishaps, natural calamities, and terrorist attacks. We collaborated in 

a study of such disruptive events as part of an initiative by Sandia National Laboratories. We 

conducted case studies of three electronics firms and their suppliers to explore underlying 

aspects of the supply chain structure and complexity, type and length of disruptions, and 

mitigation approaches currently in use. We identified three vital metrics (system inventory, 

system expediting, and service level at the final echelon in the supply chain) as drivers of 

performance. Simulation experiments we ran disclosed four key findings: (1) a cost function 

based on these vital metrics can be quite ill-behaved, warranting the use of metaheuristics 

capable of looking beyond local optima, (2) genetic search over inventory system parameters 

yields better solution quality than unimodal search, (3) variability induced by disruptions can 

amplify in a supply chain, and severely affect service levels and system inventory for long 

periods, and (4) order expediting, often used to mitigate disruptions, can also trigger bullwhip 

effects, and hurt rather than help overall performance.  

In sum, while there is merit in the popular notion that increased information and 

flexibility are generally desirable, our study discloses that these factors also have significant 

attendant dangers, making it easy to overreact. 

INTRODUCTION 

Resilience to disruptions is a critical issue in supply chain management. Disruptions can have 

many sources and affect many supply chain activities. The causes range from natural (e.g., 

Hurricane Katrina, SARS pandemic) to accidental (Minneapolis I-35W bridge collapse, 2009 
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credit crisis) to intentional (World Trade Center attacks). While individual disruptions have a 

low probability of occurrence, there is a reasonable chance overall that something big and 

unexpected will happen, and we show that the impact can be substantial unless certain critical 

factors are carefully heeded. The consequences of disruptions in manufacturing, transportation, 

electric power, and telecommunications can be long lasting, with rippling effects felt throughout 

multiple business sectors. An Accenture study (Beverly & Rodysill, 2007), which polled 151 

supply chain executives in large U.S. companies, indicates that 73% of the firms experienced 

disruptions in the past five years. Of those, it took 36% more than one month to recover; and 

another 32% between a week and a month.  

Disruptions often are costly. Hendricks and Singhal (2003) found that following a 

disruption, firms on average experience a 107% decrease in operating income, 7% lower sales 

growth, and 11% higher costs. The firms also suffered 33-40% lower stock returns over a three-

year period, and share-price volatility rose by 13.5% in the year after the disruption. Hendricks 

and Singhal followed with additional evidence on financial performance (2005b), and market 

performance (2005a, 2009). Many others have reported costly consequences of disruptions (e.g., 

Shaw, 1994; Murphy, 1999; Latour, 2001; Chapman, Christopher, Juttner, & Peck, 2002; 

Helferich & Cook, 2002; Martha & Subbakrishna, 2002; Rice & Caniato, 2003; Monahan, 

Laudicina, & Attis, 2003; Peck & Juttner, 2003; Ross, 2003; O’Malley, 2003; Chopra & Sodhi, 

2004; Cavinato, 2004; Sullivan, 2006).  

Many firms lack clear contingency plans and well-defined roles concerning disruptions. 

Mitroff and Alpaslan (2003) analyzed crisis readiness of Fortune 500 companies over the past 

two decades. They found 95% of them not prepared for an unfamiliar disruptive event. Hillman 

and Sirkisoon (2006) and Hillman and Keltz (2007) provide further evidence. 
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Sandia National Laboratories, whose research provides the underpinning of our study, 

has responded to such contemporary concerns by developing a macro-economic simulation 

model of industrial activity. Our role was to guide the modeling of supply chain behavior. The 

paper is organized as follows. We review the state-of-the-art in operations management and 

economics related to our concerns. Then, we pursue a set of key research questions, whose 

answers we glean from case studies and simulation experiments. We propose a four echelon 

assembly structure as a baseline in further research by Sandia and others. The results we report 

as well as subsequent ones by Sandia (Appendix A) focus on issues of response and recovery 

rather than prevention. Our simulation results confirm that disruptions may have long-lasting, 

rippling, costly consequences within a supply chain, and that expediting efforts may hinder 

rather than help system recovery. We also find that a system cost function can be quite ill-

behaved, even in the absence of disruptions and expediting, and that conventional solution 

approaches, which assume convex or unimodal behavior, may be inappropriate for real-world 

supply chains.   

BRIDGING MACROECONOMIC AND OPERATIONAL DECISION-MAKING  

Sandia approached us with an intriguing question: How to model the macroeconomic impact of a 

major disruptive event on industrial behavior in a region? Empirical findings indicate that 

specific high-impact disruptions are improbable with distributions inexorably hard to quantify. 

We also found evidence in the literature and case studies we conducted that firms commonly use 

inventory buffering and expediting to mitigate disruptions. For the interested reader, we offer an 

extensive review in Appendix B, which positions our work in the literature on disruptions, 

expediting, bullwhip effects, and simulation methodology. 
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We consider more complex supply chain structures, order interactions and mitigation 

tactics than we found in the literature, in part because of a different research mission. In addition 

to contributing to theory and practice in operations management, another objective was to guide 

the development of certain aspects of Sandia’s macroeconomic model of regional commerce. 

Rather than present explanatory findings on a tightly defined problem, we explore a series of 

interrelated research questions using controlled experiments. We were more interested in 

exploring elements of reality than tractability. 

With a sense of urgency, a group of economists within Sandia embarked on a project to 

develop a large scale simulation to assess the regional economic impact of disruptions in critical 

infrastructure on U.S. manufacturing firms and their supply chains. They wished to study 

vulnerabilities in complex, realistic operating environments, and gain insights about mitigation 

strategies. The need for managerial relevance implied fresh methodology capable of relaxing 

traditional economic assumptions of aggregation, substitutability, and well behaved performance 

of supply and demand. Aggregation is sometimes inappropriate because it tends to cancel valid 

cascading effects of variability. While resource substitution may be fitting to mitigate natural 

disasters and accidents, it may not be an option in the event of intentional terrorist acts. For 

example, Sheffi (2006) suggested that the U.S. Government may respond to an event, such as 

uncovering a dirty bomb at one seaport of entry, by closing all seaports for a lengthy period. 

Sandia began to develop an agent model capable of simulating the discrete events of 

millions of entwined enterprises within regional supply chains, and using enormous computing 

power, trace the corresponding economic behavior (Appendix A). They chose the Pacific 

Northwest as an initial test site, and we were one of three groups to assist. The others were: 
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Argone National Laboratories to model power generation and distribution, and Lucent 

Technologies to cover telecommunications.  

Our role was to help Sandia span boundaries in this interdisciplinary effort by conducting 

exploratory research into multi-echelon inventory systems. We focused on the ordering systems 

across firms in supply chains, which link the procurement, production, distribution, and 

transportation activities.  

Our field and simulation research summarized here assisted Sandia’s development by 

characterizing agent firm structures and inter-relationships, defining model variables and key 

performance drivers, hypothesizing critical aspects of supply chain behavior, and validating non-

linear search methodology of parameters.  We posited seven interrelated research questions: 

1) What is a reasonable baseline for the supply chain structure? 

2) What baseline inventory logic reflects sufficiently realistic conditions in a supply chain? 

3) Which performance metrics drive the economics in the supply chain? 

4) What happens to supply chain system performance in the presence of a disruption?  

5) How does expediting affect system performance?  

6) How well-behaved is system performance -- should analytics or heuristics be applied in 

system ordering? 

7) How do genetic and line search compare in solution effectiveness and efficiency?  

By addressing these as key modeling issues, we provide insights to Sandia in construction of 

their macro-economic model, and offer guidance for future operations management research on 

supply chain disruptions.  

KEY MODELING ISSUES 

We are interested in a supply chain structure that offers enough complexity to reflect a realistic 

supply chain composition, yet small enough to control the environment in our experiments as 

well as Sandia’s model. To address the key modeling issues, we considered the supply chain 
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literature, conducted case studies in the Pacific Northwest (Sandia’s initial region of interest), 

and performed a series of simulation experiments.  

Key Issue 1) A Reasonable Baseline for the Supply Chain Structure 

Most surveys on disruptions involve large firms. In support of Sandia’s effort, however, we 

targeted small and medium-sized manufacturing firms in the Northwest, related supply and 

demand activities elsewhere in the U.S. and over-seas, and corresponding transportation 

connections. The case firms we selected employ between 250 and 500 workers in a 

predominantly small-firm regional economy. Of manufacturing companies in the Northwest, 

over 98% employ less than 500 employees (U.S. Census Bureau, 2008). While small in size 

individually, these firms drive much of the region’s economic growth in employment, profit, and 

demand for non-durables and services. This manufacturing sector represents 20 percent of 

overall output in the Washington State economy, and is forecast as the fastest growing sector 

over the next decade (REMI, 2007).  

Small firms also tend to be more vulnerable economically to disruptions than their larger 

counterparts.  Because of limited cash reserves and working capital, small firms are more likely 

to fail in the event of disruptions. Many do not have the resources to prepare for prevention, 

response and recovery from major disruptions. For example, the Institute for Business and Home 

Safety (2005) found that after Hurricane Floyd, 30% of impacted small firms never re-opened, 

and another 20% closed after two years. 

Economic behavior in the Northwest covers many industries and activities, but for our 

part, we focused on case studies of electronics companies for three reasons. First, electronics are 

important to the functioning of our society. Logic chips can be found in products ranging from 

automobiles to electric toothbrushes.  



  8

Second, electronics assembly is susceptible to disruption because of the complexity of 

assembly and component supply. We found in three case studies that electronics assembly 

requires from 70 to 700 components to make one product type, and a shortage of any one delays 

the completion and sale of the product. Even under stable conditions, extremely high buffer 

levels are needed to prevent such delays. For example, if a company maintains a 99% service 

level (amount supplied/amount demanded) for each component, the probability of having, say, 

700 components available at any point of time is 700.99 , roughly equal to 0.009%.   

Third, electronics supply chains involve global, multinational interests that broaden the 

exposure to disruption. We found in the case studies that most electronic components are 

internationally sourced. Additionally, some of the electronic assemblies are embedded into larger 

systems made by such customers as Boeing and Honeywell, who in turn, export many products. 

Electronics companies in the Northwest make products ranging from consumer 

appliances to devices used by original equipment manufacturers (OEMs). To gain insights into 

supply chain behavior in that industry, we interviewed personnel from three representative 

electronics firms and some of their suppliers. We disguise identities of the three because their 

management considers certain information proprietary and security-sensitive. We label the three 

as firms INT, ABC, and XYZ, and summarize the cases in Table 1 with details in (“Case Studies 

of Electronics Companies,” an enclosed working paper to be cited as an online reference). 

[Table 1 here]  

The supply chains in all three support a minimum of four echelons and component 

assembly. Each echelon requires activity and storage. Figure 1 shows our rudimentary supply 

chain model. At Echelon 1, products are demanded and shipped to a local or out-of-town 

customer, which might be an OEM manufacturer, distributor, or retailer. Echelon 2 represents 

assembly of components A and B into finished goods. In Stages 3A and 3B of Echelon 3, 
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suppliers (internal, local, out-of-town) transport the parts, or fabricate prior to transport. Stages 

4A and 4B represent transportation activities of domestic or overseas distributors. The figure also 

displays lead time parameters in days -- lead times (LTs) under normal operating conditions, and 

expedited lead times (ELTs). These reflect the times of production and delivery, and are based 

on the literature and observations in our case firms. We review the model logic in the next 

section, with details in Appendix C. 

[Figure 1 here]  

We cannot generalize beyond electronics, but this four echelon structure with assembly 

seems reasonable as a baseline for a manufacturing supply chain in our model as well as 

Sandia’s. Among supporters of a minimum of four echelons, Juneja and Rajamani (2003) cite an 

electronics supply chain with assembly that includes Selectron (supplier), Matsushita 

(manufacturer), Panasonic (distributor), and Best Buy (retail customer). Across industries, most 

simulation research on bullwhip effects covers four echelons (Appendix B). Additionally, 

Swaminathan et al. (1997) propose multiple echelons and assembly to motivate the use of agent 

modeling. We felt comfortable as well including assembly of at least two components. Whether 

at home, in an office, in a vehicle, or in a factory, one would likely encounter products 

comprised of two or more components.  

Key Issue 2) Inventory Logic 

We addressed one aspect of Sandia’s simulation model, the supply chain ordering systems, 

which regulate the goods flows and inventories across echelons. Ordering systems serve as a 

fundamental means of linking activities between companies in a supply chain.  

Our interviews revealed that operating managers within the case firms and their suppliers 

seldom share point-of-sale data. Most were familiar with features of the Beer Game, and claimed 

that their processes encountered the full effects of demand amplification. There was strong 
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consensus that the way to model reality across firms is through local forecasting and buffering. 

They also rescheduled frequently (expediting some orders, and postponing others) without the 

benefit of shared data across firms. We recognize however, the existence of progressive supply 

chains that plan more holistically (e.g., Brown, Schmitt, Schonberger, & Dennis, 2004; Ferdows, 

Lewis, & Machuca, 2004; Li, Shaw, Sikora, Tan, & Yang, 2006). 

We assume stationary, autocorrelated demand at Echelon 1. Each echelon/stage observes 

only the demand it receives from its immediate stage customer. Using historical demand 

observed from the immediate customer, we forecast at every stage the mean and variance of 

demand using single exponential smoothing, a method used by many companies (Snyder, 

Koehler, Hyndman & Ord, 2004; Gardner, 1985; Makridakis & Hibon, 2000).  

The demand and variance estimates are applied, along with a service-level parameter, in a 

single-stage order-up-to formula to calculate the replenishment order quantity. Replenishment 

orders at one echelon/stage shown in Figure 1 become the demand at the preceding stage. 

Inventory balance equations link each stage in a periodic (daily) review system. Each stage 

follows the FIFO logic each day: (a) launch a replenishment order if necessary using an order-

up-to system,  (b) withdraw this day’s demand from available inventory to initiate shipment to 

the customer, (c) receive goods from the previous stage into inventory, and (d) update the 

inventory, or backorder quantity where backorders are permitted.  

If demand at the succeeding stage is more than the available inventory, we assume a 

partial shipment. The rest is lost at Echelon 1, and backordered at Echelons 2, 3, and 4. (Other 

approaches to shortages are applied as well in practice -- Sodhi, 2005.) Prior to assembly at 

Echelon 2, inventory of the two component types is maintained, and orders for each are placed if 
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warranted. The quantity of an assembly order cannot exceed the minimum available inventory of 

the two components.  

The parameters we use in demand generation, forecasting and inventory control are 

presented in Appendix C. The order logic assumes periodic review with no setup or order cost, 

infinite production rates, fixed lead times, and i.i.d. demands. While suitability of order-up-to 

policies is by no means assured for our system, this logic is the most robust and applicable of 

those available. Such a policy is common in practice and has been studied extensively in the 

literature. Nahmias (2008) and Axsater (2000) provide details about order-up-to systems, which 

afford optimality for base-stock policies under certain assumptions about the supply chain 

structure, shortages, order cost, and demand distributions. Recent papers have found base-stock 

policies optimal over a variety of unimodal risk-neutral and risk-averse objectives in single-item, 

single stage systems with multi-period finite horizons and no order cost (e.g., Marinez-de-

Albeniz & Simchi-Levi, 2006; Chen et al., 2007; Huh et al., 2009). We recommended to Sandia 

the aforementioned inventory logic for their macroeconomic model. 

Key Issue 3) Performance Metrics 

Three operational metrics drive important economic effects in the case supply chains. The first is 

the service level experienced by customers of electronics firms at the final supply chain echelon. 

At the final echelon, customers such as retailers and OEMs may have choices, and shortages may 

be lost to the firm (as in cases INT and ABC). Others, e.g., some OEMs, may have contractual 

arrangements that might instead specify backorders (INT and XYZ). The opportunity costs of 

shortages from either lost sales or backorders that reach the final echelon can be severe, with loss 

of future business at stake. For example, late delivery of avionics to Boeing Commercial, an 

OEM customer, may in turn cause late delivery of an aircraft. This would result in loss of interest 
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on delayed revenue receipts of hundreds of millions of dollars, diminished revenue arising from 

contractual penalties, and loss of goodwill with the airlines. 

Firms at intermediate echelons typically have long term relationships with customers that 

call for backordering non-commodity items (Sodhi, 2005). Countermeasures such as expediting 

and inventory positioning enable some of this late work to catch up in subsequent stages. 

Nevertheless, system expediting, the second metric, introduces significant premiums for 

transportation and production that drain profit margins throughout the supply chain. 

The third metric, system inventory, also drains profit margins. Well-positioned inventory, 

however, provides a safety net against disruptions, and can decrease shortages and expediting. 

We chose total supply chain inventory as a metric because without accountability, inventory in 

motion or at rest might be shifted elsewhere, and associated costs overlooked. 

To further guide Sandia, we conducted simulation runs using the aforementioned model 

structure and metrics, and adapted the experimental design accordingly to each of the remaining 

Key Issues 4-7. Cost structures varied substantially by firm and item in our case studies. We 

addressed this complication in ways which differ by key issue. With Key Issues 4 and 5, we 

apply MANOVA across performance metrics, and focus on statistical inferences consistent 

among them. With Key Issues 6 and 7, we weight the metrics to represent different cost 

structures. An example that demonstrates ill-behaved cost performance is presented in 6, and this 

phenomenon, which challenges traditional tractability assumptions, is supported in 7 by 

statistical analysis over a variety of cost structures.  

Key Issue 4) System Performance with a Disruption 

Sandia wished to study the effects of a supply chain disruption on regional economics. 

Management within all three case supply chains indicated that “time of a disruption” becomes 
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the critical factor, and expressed concerns about response and recovery. They had encountered 

disruptions of fire, weather disasters, worker strikes, port lockouts, supply shortages, power 

failures, telecommunication failures, transportation breakdowns, and machine breakdowns. Loss 

of a sole-source supplier introduces delays of up to two years to find and procure alternate 

materials (as in the case of INT – Table 1). A disruption in transportation of commodity 

components, with replenishment by sea, might involve as much as a 90-day delay (as with 

Supplier 5 in “Case Studies of Electronics Companies,” an enclosed working paper to be cited as 

an online reference). Loss of electric power or telecommunications would quickly stop activities 

in every firm in the area during the length of the disruption, although essential 

telecommunication transactions might be handled by cellular telephone, if the networks are not 

overloaded. Management of the case firms agreed that traditional preventative measures such as 

fencing, guards and lighting are insufficient, and that contingency planning deserves to be 

elevated in importance within their organizations and across firms. It was expressed that quality 

information is sparse during a crisis, even in the most progressive of supply chains. One would 

not likely know how the other customers and suppliers will behave during a disruption, and when 

the disruption will end. 

Consequently, we chose to introduce a generic shock (time delay) to represent many 

types of disruptions that occur in practice, and to limit information sharing across echelons.  For 

our experiments the review period is one day. After an initialization period of 1000 days, we 

induce a 20-day disruption, and compare performance thereafter with the base case (without 

expediting and disruptions). We explore issues of simulation steady state and statistical 

independence in Appendix C. 
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We consider disruptions at each end of the supply chain: Echelon 1 (shipment to 

customers), and Echelon 4/Stage A (supply by a parts distributor). During each disruption, the 

facility at the affected echelon receives shipments or orders in-route before the start of the 

disruption, but stops all other operations. It cannot place orders, produce orders, or make 

shipments.  

For Key Issue 4, we observe the performance on a day-by-day basis over 100-day time 

blocks, replicate the experiments 100 times, and compare performance between the disrupted and 

base cases. A time block covers five months in a 240-working day year. Our MANOVA design 

has two fixed factors: time block, and location of disruption. We do not mitigate with expediting, 

and observe the service-level and system-inventory metrics as dependent variables.  

We find that values from each metric are drawn from different distributions, according to 

Pillai's Trace, Wilks' Lambda, Hotelling's Trace, and Roy's Largest Root statistics at the .01 level 

(Arbuckle, 2005). Results for the two metrics are summarized in Figure 2. Each point in the 

graphs depicts the mean value over an indicated five-month time block.  

[Figure 2 here] 

Waller-Duncan multiple-range post-hoc tests disclose that regardless of the location of 

disruption, service level is significantly different between the disrupted state and base-case state 

over the first two time blocks (10 months). In the final eight time blocks, there is no significant 

difference among the means and zero. All of these results hold at the .01 and .05 levels. 

System inventory is significantly different over the first five time blocks (25 months) 

with both disrupted locations. In the final five time blocks, there is no significant difference 

among the means and zero. Clearly, the effects of disruptions on the two performance metrics 

last for a long time. There are severe decreases in service level for more than a year. Additional 
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system inventory over the base case exceeds ten weeks of demand for more than two years after 

a disruption at Echelon 1. 

We performed additional analyses comparing disruptions at Echelons 1 and 4 (contrasts 

between means in left and right graphs). The MANOVA contrasts at the .01 level indicate 

significantly worse service levels at Echelon 1 than 4 over the first five months, as well as 

increased system inventory (more than twice the amount) in months six through 25. We observe 

a strong whipping effect across echelons, especially with a disruption at Echelon 1. This is in 

contrast to findings by Wu and Chen (2009) who noted that regardless of source in a two stage 

system, larger fluctuations occur closer to the disruption and dampen when propagating away. 

We attribute this to differences in our model of more than two echelons, our ordering system, our 

forecasting system, the presence of lead times, and the limited information sharing. Recognition 

of a disruption at Echelon 1 is transmitted to other firms as a function of the smoothing 

parameter α, service level parameter, and echelon lead times in our system. Even with small α 

values, the forecasted demand at subsequent echelons drops relatively fast, which reduces the 

order-up-to levels and order quantities. This amplifies as the variability propagates across 

echelons from Echelon 1 in accord with lead time offsets, a finding also observed by Chen et al. 

(2000a). 

By contrast, a disrupted facility at Echelon 4 immediately suspends production and 

shipment to Echelon 3, but the interruption in supply goes unnoticed in our system, i.e., until 

shortages eventually appear as lost sales at Echelon 1. Beforehand, shifts occur from inventories 

to backorders at Echelons 4, 3 and 2, but the pipeline totals remain stable, and so do the order-

up-to levels, demand forecasts and order quantities.  



  16

Our experimentation sheds light on the relevance of Key Issue 4, and highlights the 

importance of studying the effects of disruptions at different stages in the supply chain. This led 

us to recommend that Sandia consider disruptions at various stages and between stages. 

Key Issue 5) System Performance under Expediting 

Firms within all three case supply chains frequently use expediting to avoid shortages. 

Depending on the echelon, the percentage of orders expedited ranges from 5-20%, with a 

premium cost per unit ranging from 10-50%. Bradley (1997) provides additional motivation for 

expediting within the electronics industry. Expediting is typically accomplished with faster 

transportation, or production adjustments such as overtime, additional shifts, part-time help, 

alternate routing and outsourcing.  

Following prior practice and research, we apply two triggers to expedite lead times as 

orders are launched, and experimented with a range of parameters for each type of trigger to 

achieve an expediting frequency we observed in the case studies. The first is activated when the 

quantity throughout the stage pipeline (on-order plus on-hand inventory) falls below the expected 

lead time demand (Fukuda, 1964; Whitmore & Saunders, 1977; Groenevelt & Rudi, 2003; 

Veeraraghavan & Wolf, 2008). The second trigger is activated when the on-hand inventory falls 

below a demand-based target (Appendix C). Beyer and Ward (2002) observed that Hewlett 

Packard’s supply network applies this second type of trigger to expedite via air transport.  

We compare performance results of the base case (without expediting and disruption) 

with expediting (no disruption). If the expediting option is enabled, we permit expediting at all 

echelons, with order crossover a possibility. We replicate 100 times and apply all three 

performance metrics (final-echelon service level, system inventory, and system expediting) as 

dependent variables.  
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Values from the three metrics are drawn from different distributions at the .01 level in the 

MANOVA. We also observe significant performance differences at the .01 level between the 

base and expediting cases for each metric. While significant, however, the relative performance 

differences raise issues about the value of expediting. Shortages improve with expediting by only 

0.18 units per day on average demand of 111 units, while total system inventory increases by an 

average of 787 units per day (almost eight days of average demand). System inventory increases 

so much because expediting increases the variability in order quantity and frequency, and this 

variability is amplified elsewhere in the supply chain.   

According to the personnel we interviewed, expediting offers a first line of defense 

against shortages, but our findings raise questions about the value of this practice as a mitigation 

approach of choice. We are not the first to raise the concern. Even before bullwhip effects were 

recognized, the practice of expediting was challenged because of nervousness it induces in MRP 

systems (e.g., citations in Schmitt, 1984). In addition, expediting, while considered necessary 

(Bradley, 1997; Cohen et al., 2003), is usually expensive (Arslan, Ayhan, & Olsen, 2001; 

Groenevelt & Rudi, 2003). Beyer and Ward (2002) observed that expediting by air in HP’s 

supply chain costs up to five times more than standard shipment by sea. In the case firms, we 

found that expediting was quite expensive as well. 

Regardless of the evidence, however, we do not expect firms to discontinue the practice 

of expediting. For example, it would be difficult to convince managers of an electronics firm not 

to expedite one component, when the remaining 700 needed for assembly and sale of a finished 

product are available. However, practitioner behavior might be influenced by research that finds 

merit in the application of certain types of expediting at specific supply chain stages, or between 
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stages. This future work by Sandia and others should consider collectively the effects of 

expediting and bullwhip. 

Key Issue 6) System Performance and Applicability of Analytics and Heuristics 

Traditionally, researchers offering analytics or heuristics have been careful in claiming utility 

only within their system assumptions. Base-stock policies have been shown optimal for 

stationary stochastic demand in simple supply chains (Axsater, 2000; Porteus, 2002). Without 

claiming optimality, some have used order-up-to and other well known policies in simple supply 

chains in the presence of supply or demand disruptions (Chao, 1987; Gupta, 1996; Arreola-Risa 

& DeCroix, 1998; Snyder et al., 2006; Lewis et al., 2008).   

In this section, we observe non-unimodal total cost behavior within a range of stage 

order-up-to levels under conditions of no expediting and no disruptions. To make a case, we 

choose a holding cost of $1/unit/day, a backorder cost of $2/unit/day (at Echelons 2, 3, and 4), a 

lost-sales cost of $3/unit (at Echelon 1), and a stage production/transportation cost of $1/unit. We 

present here the notable erratic behavior for this case, and in the next section, report summary 

statistics over a variety of costs. 

[Figure 3 here] 

Figure 3 shows plots of the simulation results of total cost over various stage order-up-to 

levels for this example. The two graphs to the left focus solely on behavior at Echelon 1, while 

the ones to the right show interactions between Echelon 1 and Echelon 2.  

The graphs on the left show total cost values for discrete order-up-to levels at Echelon 1, 

while allowing the other three echelons to derive order-up-to levels from stage demand forecasts. 

The top left graph displays total cost performance versus Echelon 1 order-up-to levels over the 

range [1, 2000]. Clearly, the local optima vary considerably in value, e.g., one yields a total cost 

6.95 times larger than the lowest observed total cost value, given the starting point. The bottom 
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left graph depicts a finer grain relationship over the range [1000, 1530]. It highlights the striking 

volatility of the cost function. 

The graphs on the right of Figure 3 show the interactive behavior between the first two 

echelons, depicting total supply chain cost while varying Echelon 1 order-up-to levels for 

prescribed Echelon 2 levels. In this set of experiments, Echelons 3 and 4 derive order-up-to 

levels from stage demand forecasts. The course and fine grain representations at the top and 

bottom right, respectively, generalize the previous observations solely about Echelon 1. Clearly, 

computationally-efficient iterative line searches or analytic searches could derive very poor 

solutions in this operating scenario, depending on the starting point. 

There are multiple ways to confirm concerns about ill-structured performance behavior 

and inappropriateness of exact approaches. These involve violations of Kuhn-Tucker conditions, 

or alternatively, properties of derivatives. We chose another way, the presentation of a counter 

example, one where an exact approach would yield higher total cost. Existence of such a counter 

example, with differences of any magnitude, is sufficient to obviate generality of exact analytical 

approaches that assume unimodality. Nevertheless, we consider in the next section the relative 

efficacy of a unimodal search method over a wide variety of cost structures. 

Key Issue 7) Genetic Search versus Line Search  

With insight from the preceding key issue, we examine the modality of the objective function 

surface across different cost settings. Sandia programmed a general genetic search (GA) function 

to “jump over” local optima. We conducted experiments to evaluate Sandia’s GA approach. We 

restrict the search for cost-effective order-up-to quantities to Echelon 1, while allowing demand 

forecasts to guide decision making at other echelons. The GA utility represents candidate 
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solutions as binary numbers. Crossover and mutation operators are used to overcome local 

minima. For details, see Goldberg (1989). 

We consider line search (LS) as a basis for procedural comparison and modality 

concerns. LS ensures optimality only when the objective function is unimodal. In our problem 

setting, a LS approach that increments upwards from an order quantity of 0 to find a local optima 

typically yields much higher costs than GA. To facilitate a reasonably fair comparison, our 

adaptation of LS begins with an order-up-to quantity equal to the mean lead time demand at 

Echelon 1 and searches each way in the neighborhood (upward first) until we encounter local 

optima. This initialization adaptation resulted in much better LS solutions in pilot experiments.  

[Table 2 here]  

To represent a wide variety of operating conditions, we selected a range of cost 

parameters as presented in Table 2. We considered findings from the literature in the context of 

our research objectives. Relative costs depend on the type of product, industry, and supply chain, 

among other factors. Cohen et al. (2003) observed that with short life cycles and obsolescence in 

the semiconductor industry, the cost of losing a sale is about twice the cost of backlogging. 

Faaland et al. (2004) experimented with lost-sales costs in a single-echelon ranging from 62 to 

500 times the periodic inventory holding cost, shortage values much higher than the ones we 

chose. Their parameters were based on a cross-industry survey by Boer and Jeter (1993). Our 

motivation in the choice of relatively low shortage costs is to compare GA and LS under modest 

conditions. We observed in pilot experiments that larger shortage costs relative to inventory 

carrying costs further exaggerated differences between GA and LS.  

[Table 3 here]  

Table 3 shows the cost savings under various cost scenarios. The percentage 

improvements represent averages over 100 replications for each of the 16 cost combinations.  
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The superiority of GA over LS at Echelon 1 holds at the 0.005 level using student-T tests. GA as 

compared with LS yields overall cost savings greater than 16%, and in one scenario by more 

than 30%. Less effective starting solutions for LS would have enabled greater savings. 

In single-stage stationary systems, even with deterministic demand, tractability has not 

been established when shortages are lost (e.g., Karlin & Scarf, 1958; Nahmias, 1979; Donselaar 

et al., 1996; Metters 1997; Ketzenberg et al., 2000; Janakiraman & Roundy, 2004). Others have 

acknowledged, but discounted this phenomenon by asserting that the total cost surface is 

relatively flat in regions around the global minimum. We question this conventional wisdom by 

showing how far off the local optima may be under a broad spectrum of cost parameters. Recent 

papers on disruptions, expediting and bullwhip effects have expressed similar concerns, and we 

summarize in Appendix B some of their arguments as well as relevant simulation results.  

Genetic Search yielded significantly better costs at the expense of computation time in 

our experiments.  On a laptop, the time per run for GA was about 14 hours, and our adaptation of 

LS averaged about 10 minutes.  While the computation time for GA may be acceptable for 

Sandia with its fast complex of computers, we recognize an opportunity in future work to adapt 

standard GA utilities to special properties of this problem setting.  

CONCLUSIONS AND FUTURE DIRECTIONS 

Disruptions can have many sources covering the gamut from natural to accidental to intentional. 

Regardless of cause, disruptions can have long-lasting, widespread, and costly effects on supply 

chains. We describe aspects of a stream of research to assess the economic impact of supply 

chain disruptions. The overarching research mission of our sponsor, Sandia National 

Laboratories, is to develop a simulation model that depicts regional economic behavior after a 

disruptive event. Simulation is intended to augment existing analytical and statistical models 
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whose utility may depend on the validity of inherent simplifying assumptions. Optimization 

models routinely assume aggregation of demand and supply data, substitutability of supply 

options, independent and steady-state behavior of underlying stochastic distributions, 

optimization over well-behaved objective functions, and simple supply chain structures (Chen, 

Sim, Simchi-Levi, & Sun, 2007 and citations). Sandia’s concern was that with such high stakes 

in security matters, entities within the U.S. government and private sectors cannot afford to wait 

for researchers to overcome the substantial challenges of relaxing these simplifying assumptions 

in the optimization models.  

Sandia’s agent simulation has the capability to incorporate supply chain networks with a 

million or more firms and supporting infrastructure. The first project for the system has been to 

address the Pacific Northwest region. We concentrate on one aspect of this effort on how to 

model business activity within supply chains. It is anticipated that these insights will be useful in 

other research as well.  

We conducted case studies of three electronics firms in the region, and drew from the 

cases to offer a fundamental set of design requirements, performance drivers, and research 

questions. Sandia may not need to represent entire supply chains, but if electronics 

manufacturing is representative, their model should include at least: 

• Four echelons per supply chain,  

• An echelon with assembly,  

• Bullwhip effects facilitated by a multi-echelon inventory system with local planning,  

• Shortages along the supply chain in the form of backorders and lost sales,  

• Capability to expedite at all stages,  

• Three metrics as performance drivers (service level at the final echelon, system 

expediting, and system inventory), and 

• Disruptions in the form of time delays at various stages in the supply chain. 
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To guide Sandia’s experimentation, we followed the aforementioned model design issues 

with research questions, whose answers were driven by simulation results. One important finding 

was that the system cost function can be quite ill-behaved in a four-echelon supply chain, even in 

the absence of disruptions and expediting. We reveal a weakness of analytical optimization 

approaches in the present setting by providing a counter example where these methods would be 

unable to obtain satisfactory solutions. This is further supported by statistical evidence over a 

wide range of operating conditions. Analytical methods that assume unimodal behavior may be 

inappropriate for real-world supply chains.  

Another finding confirms that disruptions may have long-lasting, rippling and costly 

consequences within the supply chain structure presently considered. We also observe that 

standard industry practices of setting order parameters locally and using expediting as mitigation 

seem to exacerbate these undesirable effects. In addition, our cases, experimentation and 

subsequent observations by Sandia (Appendix A) support the recommendations by Craighead et 

al. (2007). They propose simulation analysis and field study as means to verify propositions that 

the severity of a disruption is related to time, its location, the structure of the supply chain, and 

types of mitigation. We believe as well that additional field study across industries is warranted. 

We address disruptions at each end of a four echelon supply chain, but we suggest that an 

expanded study may find value in investigating disruptions elsewhere. In support of this, 

Sandia’s model has capabilities to explore more fully disruptions in specific areas of network 

criticality, i.e., at any supply chain stage, between stages, and in infrastructure shared by firms 

within a region (transportation hubs, electric power, and telecommunications). Their model 

offers other flexibilities, e.g., parts distributors may have multiple customers. This may enable 

demand aggregation and dampening of the demand amplification elsewhere in the supply chain. 
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Our experimental results suggest caution and restraint, however, in how information is 

applied. Sharing offers clear advantages in a supply chain, and some authors have addressed this 

issue (e.g., Milgrom & Roberts, 1988; Lee et al., 2000; Chatfield, Kim, Harrison, & Hayya, 

2004; Sodhi, 2005). As a caveat, information must be discounted considerably to control the 

bullwhip effects in our decentralized system. Pilot experimentation indicated a very low 

forecasting weight of 0.01 on the most recent local information for the firms in the last echelon, 

Echelon 4. While we support the notion that increased information and flexibility to react are 

generally desirable, we caution that it is possible to overreact. A disruptive event creates a 

critical watershed. The issues are how much weight to place on the news and what to do about it.  

Furthermore, with the irregular cost objective surface documented by our results, we 

believe future efforts should be directed towards developing efficient and effective search 

methods to find local optima close to global cost values. Research is needed to explore the 

efficacy of hybrid GA approaches as well as other metaheuristics (Holland, 1992; Corne et al., 

1999; Gen & Cheng, 2000; Kimbrough et al., 2002; Glover & Kochenberger, 2003; Rego, 2005).  

Instead of increasing the generation count to further improve solution quality, a better alternative 

might be to assign the lead time demand as one starting solution for a GA approach. This might 

help solution effectiveness and efficiency as it did with LS in our experiments.  

Our findings suggest that consideration of lost sales, multiple echelons and assembly 

perturb the stationary behavior that has otherwise been documented in less complex systems, 

and that disruptions and expediting exacerbate the situation. Further research is warranted on 

dynamic order-up-to policies, with parameters updated periodically, whether the adjustments 

are made using adaptive search over demand history, or cost-based search over order-up-to 

parameters. This premise is further supported by simulation experiments conducted by Ross et 
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al. (2008) who found instances where a time-varying order-up-to policy is more effective than a 

static policy in terms of the total costs of holding, ordering and lost sales. From a practical 

perspective, case firms such as those we studied, which employ periodic-review time-phased 

order point systems, may be able to incorporate dynamic ordering policies. 

Additional insights may also result from research that relaxes some of our simplifying 

assumptions. Sandia has already extended our model to include price/demand elasticity 

functions, and a diverse customer base for agent firms. Our experiments embraced both normal 

and expedited activity lead times, but did not consider capacity interactions that might result 

from finite replenishment, setups, and specific capacity adjustments such as overtime, additional 

shifts, part-time help, alternate routing and sub-contracting. Non-stationary demand, stochastic 

lead times, stochastic failure times, and lead time/demand elasticity represent other realistic 

extensions.  

However, prior work as well as ours suggests that variability in quantity and timing, 

whether from normal operations, disruptions, or expediting, tends to be amplified in supply 

chains. It is possible, although unlikely, that extensions, such as those we suggest for future 

work, would resolve the tractability issues we observed in a less complex problem setting. The 

practical value of our contribution is affirmed in the following feedback from Sandia (2007): 

“[This work] demonstrated the importance of careful design in modeling the realities of supply 

chain behavior, and provided strong motivation for further simulation development and 

experimentation.” 



  26

REFERENCES 

Arbuckle, J. L. (2005). Amos 6.0 User's Guide. Chicago, IL: SPSS Inc. 

Arreola-Risa, A., & DeCroix, G. A. (1998). Inventory management under random supply 
disruptions and partial backorders. Naval Research Logistics, 45(7), 687-703. 

Arslan, H., Ayhan, H., & Olsen, T. L. (2001). Analytic models for when and how to expedite in 
make-to-order systems. IIE Transactions, 33(11), 1019-1030. 

Axsater, S. (2000). Inventory Control. Norwell, MA: Kluwer Academic Publishers. 

Baganha, M. P., & Cohen, M. A. (1998). The stabilizing effect of inventory in supply chains. 
Operations Research, 46 (3), 572–583. 

Baldor, L. C. (2007). State Bank on 9/11 terrorists’ hit list. The Associated Press, Seattle Post-
Intelligencer, March 15. 

Berk, E., & Arreola-Risa, A. (1994). Note on future supply uncertainty in EOQ models. Naval 
Research Logistics, 41(1), 129-132. 

Berman, O., Krass, D., & Menezes, M. B. C. (2007).  Facility reliability issues in network p 
median problems: strategic centralization and co-location effects. Operations Research, 
55(2), 332-350. 

Beverly, R., & Rodysill, J. (2007). Risky business. Outlook Journal, accessed August 14, 2007, 
http://www.accenture.com/Global/Research_and_Insights/Outlook/By_Issue/Y2007/Risk
yBusiness.htm. 

Beyer, D., & Ward, J. (2002). Network server supply chain at HP: A case study. In J. Song, & 
and D. Yao (Eds.), Supply Chain Structures: Coordination, Information and 
Optimization, Chapter 8, Norwell, MA: Kluwer Academic Publishers. 

Boer, G., & Jeter, D. (1993). What’s new about modern manufacturing? Empirical evidence on 
manufacturing cost changes. Journal of Management Accounting Research, 5, 61-83. 

Bowersox, D. J., & Closs, D. J. (1996). Logistics Management: The Integrated Supply Chain 
Process, New York, NY: McGraw-Hill. 

Bradley, J. R. (1997). Managing Assets and Subcontracting Policies. PhD. Dissertation, Stanford 
University, Stanford, CA. 

Brown, K. A., Schmitt, T. G., Schonberger, R. J., & Dennis, S. (2004). QUADRANT homes 
applies lean/JIT concepts in a project environment. Interfaces, 34(6), 442-450. 



  27

Brown, R. B. (1963). Smoothing, Forecasting and Prediction. Englewood Cliffs, NJ: Prentice-
Hall. 

 Cavinato, J. L. (2004). Supply chain logistics risks: From the back room to the board room. 
International Journal of Physical Distribution & Logistics Management, 34(5), 383-387. 

Chao, H. P. (1987). Inventory policy in the presence of market disruptions. Operations Research, 
35(2), 274-281. 

Chapman, P., Christopher, M., Juttner, U., & Peck, H. (2002). Identifying and managing supply 
chain vulnerability. Logistics and Transport Focus, 4(4), 1-5. 

Chatfield, D., Kim, J., Harrison, T., & Hayya, J. (2004). The bullwhip effect – Impact of 
stochastic lead times, information quality, and information sharing: A simulation study. 
Production and Operations Management, 13(4), 340-353. 

Chen, Y. F., Ryan, J. K., & Simchi-Levi, D. (2000a). The impact of exponential smoothing 
forecasts on the bullwhip effect. Naval Research Logistics, 47(4), 271-286. 

Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000b). Quantifying the bullwhip effect 
in a simple supply chain: The impact of forecasting, lead times and information. 
Management Science, 46(3), 269-286.  

Chen, Li., & Lee, H. L. (2009). Information sharing and order variability control under a 
generalized demand model. Management Science, 55(5), 781–797. 

Chen, X., Sim, M., Simchi-Levi, D., & Sun, P. (2007). Risk aversion in inventory management. 
Operations Research, 55(5), 828-842. 

Chopra, S., & Sodhi, M. S. (2004). Managing risk to avoid supply chain breakdown. Sloan 
Management Review, 46(1), 63-61. 

Closs, D. J., Roath, A. S., Goldsby, T. J., Eckert, J. A., & Swartz, S. M. (1998). An empirical 
comparision and response-based supply chain strategies. International Journal of 
Logistics Management, 9(2), 21-34. 

Church, R. L., & Scaparra, M. P. (2007). Protecting critical assets: The r-interdiction median 
problem with fortification, Geographical Analysis, 39(2), 129-146. 

Cohen, M., Ho, T., Ren, J., & Terwiesch, C. (2003). Measuring imputed cost in the 
semiconductor equipment supply chain. Management Science, 49(12), 1653-1670. 

Corne, D., Dorigo, M., & Glover, F. (1999). New Ideas in Optimization. New York, NY: 
McGraw-Hill. 



  28

Craighead, C. W., Blackhurst, J., Rungtusanatham, J. M., & Handfield, R. B. (2007). The 
severity of supply chain disruptions: Design characteristics and mitigation capabilities. 
Decision Sciences, 38(1), 131-156. 

Croson, R., & Donohue, K. (2006). Behavioral causes of the bullwhip effect and the observed 
value of inventory information. Management Science, 52(3), 323-336. 

Donselaar, K., Kok, T., & Rutten, W. (1996). Two replenishment strategies for the lost sales 
inventory model: A comparison. International Journal of Production Economics, 46–
47(1), 285–295. 

Downes, P. S., Ehlen, M. A., Loose, V. W., Scholand, A. J., & Belasich, D. K. (2005a). 
Estimating the economic impacts of infrastructure disruptions to the U.S. chlorine supply 
chain: Simulations using the NISAC agent-based laboratory for economics (N-ABLE™), 
SAND2005-2031, Sandia National Laboratories. 

Downes, P. S., Ehlen, M. A., Loose, V. W., Scholand, A. J., & Belasich, D. K. (2005b). An agent 
model of agricultural commodity trade: Developing financial market capability within the 
NISAC agent-based laboratory for economics (N-ABLE™), Sandia National 
Laboratories. 

Downes, P. S., Ehlen, M. A., Loose, V. W., Scholand, A. J., & Belasich, D. K. (2006). Modeling 
in N-ABLE™, National Infrastructure Simulation & Analysis Center, SAND2006-6586, 
Sandia National Laboratories. 

Eidson, E. D., & Ehlen, M. A. (2005). NISAC Agent-Based Laboratory for Economics (N-
ABLE™): Overview of agent and simulation architectures, SAND2005-0263, Sandia 
National Laboratories. 

Faaland, B. H., Schmitt, T. G., & Arreola-Risa, A. (2004). Economic lot scheduling with lost 
sales and setup times. IIE Transactions, 36(7), 629-640. 

Fukuda, Y. (1964). Optimal policy for the inventory problem with negotiable leadtime. 
Management Science, 10(4), 690-708. 

Ferdows, K., Lewis, M. A., & Machuca, A. D. (2004). Rapid-fire fulfillment. Harvard Business 
Review, 82(11), 104-110. 

Gardner, E. S. (1985). Exponential smoothing: The state of the art, Journal of Forecasting, 4, 1-
28. 

Gen, M., & Cheng, R. (2000). Genetic Algorithms and Engineering Optimization, New York, 
NY: John Wiley & Sons. 



  29

Glover, F., & Kochenberger, G. (2003). Handbook of Metaheuristics. Boston, MA: Kluwer 
Academic Publishers. 

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, 
Reading, MA: Addison-Wesley. 

Gupta, D. (1996). The (Q, r) inventory system with an unreliable supplier. INFOR, 34(2), 59-76. 

Groenevelt, H., & Rudi, N. (2003). A base stock inventory model with possibility of rushing part 
of order. Working paper, Simon School of Business, University of Rochester, Rochester, 
NY. 

Hadley, G., & Whitin, T. M. (1963). Analysis of Inventory Systems. Engelwood Cliffs, NJ: 
Prentice Hall. 

Helferich, O. K., & Cook, R. L. (2002). Securing the Supply Chain. Lombard, IL: Council of 
Logistics Management. 

Hendricks, K. B., & Singhal, V. R. (2003). The effect of supply chain glitches on shareholder 
value. Journal of Operations Management, 21(5), 501-522. 

Hendricks, K. B., & Singhal, V. R. (2005a). An empirical analysis of the effect of supply chain 
disruptions on long-run stock price performance and equity risk of the firm. Production 
and Operations Management, 14(1), 35-52. 

Hendricks, K. B., & Singhal, V. R. (2005b). Association between supply chain glitches and 
operating performance. Management Science, 51(5), 695-711. 

Hendricks, K. B., & Singhal, V. R. (2009). Demand-supply mismatches and stock market 
reaction: evidence from excess inventory announcements. Forthcoming in Manufacturing 
and Service Operations Management. 

Hillman, M., & Keltz, H. (2007). Managing risk in the supply chain—A quantitative study, 
accessed May 2009, available at 
http://www.amrresearch.com/Content/DisplayPDF.aspx?compURI=tcm:7-13798.  

Hillman, M., & Sirkisoon, F. (2006). Pandemic readiness study. Report, AMR Research, 
http://www.amrresearch.com/research/reports/images/2006/0605AMR-A-19413.pdf. 

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press. 

Huggins, E. L., & Olsen, T. L. (2005). Inventory control with generalized expediting. Working 
paper, School of Business Administration, Fort Lewis College. 



  30

Huh, W. T., Janakiraman, G., Muckstadt, J. A., & Rusmevichientong, P. (2009). Asymptotic 
optimality of order-up-to policies in lost sales inventory systems. Management Science, 
55(3), 404-420.   

Institute for Business & Home Safety. (2005). accessed September 14, 2005, 
http://www.ibhs.org/publications/.   

Janakiraman, G., & Roundy, R. O. (2004). Lost-sales problems with stochastic lead times: 
Convexity results for base-stock policies. Operations Research, 52(5), 795-803. 

Juneja, M., & Rajamani, D. (2003). Lecture series: Consumer electronics supply chain 
management. accessed December 2004, available at https://som.utdallas.edu/c4isn. 

Kahn, J. A. (1987). Inventories and volatility of production. American Economic Review, 77(4), 
667-679.  

Karlin, S., & Scarf., H. (1958). Inventory models of the Arrow-Harris-Marschak type with time 
lag. In K. J. Arrow, S. Karlin, & H. E. Scarf (Eds.), Studies in the mathematical theory of 
inventory and production. Stanford, CA: Stanford University Press, 155–178. 

Kelleher, K. (October 2003). Why FedEx is gaining ground. Business 2.0, 56-57. 

Ketzenberg, M., Metters, R., & Vargas, V. (2000). Inventory policy retail outlets. Journal of 
Operations Management, 18(3), 303–316. 

Kimbrough, S. O., Wu, D., & Zhong, F. (2002). Computers play the beer game: Can artificial 
agents manage supply chains? Decision Support Systems, 33(3), 323-333. 

Kleindorfer, P., & Saad, G. (2005). Managing disruption risks in supply chains. Production and 
Operations Management, 14(1), 53–68. 

Latour, A. (2001). Trial by fire: A blaze in Albuquerque sets off major crisis for cell-phone 
giants. Wall Street Journal, January 29, 2001. 

Law, A. M., & Kelton, W. D. (2000). Simulation Modeling and Analysis. McGraw-Hill, New 
York, NY. 

Lawson, D., & Porteus, E. (2000). Multi-stage inventory management with expediting, 
Operations Research, 48(6), 878-893. 

Lee, H. L., Padmanabhan, V., & Whang, S. (1997). Information distortion in a supply chain: The 
bullwhip effect. Management Science, 43(4), 546-558. 



  31

Lee, H. L., So, K. C., & Tang, C. S. (2000). The value of information sharing in a two-level 
supply chain. Management Science, 46(5), 626-643. 

Lewis, B. M., Erera, A. L., & White, C. C. (2008). An inventory control model with possible 
border disruptions. Working paper, School of Industrial and Systems Engineering, 
Georgia Institute of Technology, Atlanta, GA. 

Li, J., Sikora, R., Shaw, M., & Tan, G.W. (2006). A strategic analysis of inter-organizational 
information sharing. Decision Support Systems, 42(1), 251-266. 

Makridakis, S., & Hibon, M. (2000). The M3 competition: Results, conclusions and implications. 
International Journal of Forecasting, 16(4), 451-476  

Marinez-de-Albeniz, V., & Simchi-Levi, D. (2006). Mean-variance trade-offs in supply 
contracts. Naval Research Logistics, 53(7), 603-616. 

Martha, J., & Subbakrishna, S. (2002). Targeting a just-in-case supply chain for the inevitable 
next disaster. Supply Chain Management Review, 5, 18-24. 

Metters, R. (1997). Production planning with stochastic seasonal demand and capacitated 
production. IIE Transactions. 29(11), 1017–1029.  

Milgrom, P., & Roberts, J. (1988). Communication and inventory as substitutes in organizing 
production. Scandinavian Journal of Economics, 90(3), 275-289. 

Mitroff, I. I., & Alpaslan, M. C. (2003). Preparing for evil. Harvard Business Review, 81(4), 
109-115. 

Monahan, S., Laudicina, P., & Attis, D. (2003). Supply chains in a vulnerable, volatile world. 
Executive Agenda, 6(3), 5-16. 

Murphy, T. (1999). JIT when ASAP isn’t good enough. Wards Auto World, 35(5), 67-73. 

Nahmias, S. (1979). Simple approximations for a variety of dynamic lead time lost-sales 
inventory models. Operations Research, 27(5), 904–924. 

Nahmias, S. (2008). Production and Operations Analysis (8th ed.). Burr Ridge, IL: Irwin. 

O’Malley, S. (2003). SARS could cost economy $1bn. The Australian, July 12, 2003. 

Parlar, M., & Perry. D. (1995). Analysis of a (Q; r; T) inventory policy with deterministic and 
random yeilds when future supply is uncertain. European Journal of Operational 
Research, 84(2), 431-443. 



  32

Peck, H., & Juttner, U. (2003). Risk management in the supply-chain. Centre for Logistics and 
Supply Chain Management, Cranfield School of Management, Cranfield, UK. 

Porteus, E. L. (2002). Foundations of Stochastic Inventory Theory. Stanford, CA: Stanford 
University Press. 

Qi, L., & Shen, Z. M. (2007). A supply chain design model with unreliable supply. Naval 
Research Logistics 54(8), 829-844. 

Rao, U., Scheller-Wolf, A., & Tayur, S. (2000). Development of a rapid-response supply chain at 
Caterpillar. Operations Research, 48(2), 189-204. 

REMI model (Regional Economic Modeling, Inc.) (2007). Amherst, MA. 

Rego, C. (2005).  RAMP: A new metaheuristic framework for combinatorial optimization. In: 
Metaheuristic Optimization via Memory and Evolution: Tabu Search and Scatter Search, 
C. Rego and B. Alidaee (Eds.), Kluwer Academic Publishers, 441-460. 

Rice, J. B., & Caniato, F. (2003). Building a secure and resilient supply network. Supply Chain 
Management Review, 4, 22-30. 

Robinson, L. W., Bradley, J. R., & Thomas, L. J. (2001). Consequences of order crossover under 
order-up-to inventory policies. Manufacturing and Service Operations Management, 
3(3), 175-188. 

Ross, T. (2003). Billion dollar U.S. weather disasters 1980-2003. National Climate Data Center, 
Asheville, NC. 

Ross, A. M., Rong, Y., & Snyder, L. V., (2008). Supply disruptions with time-dependent 
parameters. Computers and Operations Research, 35(11), 3504-3529. 

Sandia National Laboratories (2007). Private conversation with N-ABLE Project Leader. 

Scaparra, M. P., & Church, R. L. (2008). A bilevel mixed-integer program for critical 
infrastructure protection planning Source. Computers and Operations Research, 35(6), 
1905-1923. 

Schmitt, T. (1984). Resolving uncertainty in manufacturing systems. Journal of Operations 
Management, 4(4), 331-345. 

Seattle DOT (Department of Transportation). (2005). Freight mobility strategic action plan, 
SDOT, Seattle Municipal Tower, Seattle, WA, p. 22. 



  33

Shaw, H. (1994). Major Tokyo quake world cost 1.2 trillion, study says, New York Times, 
September 20. 

Sheffi, Y., & Rice, J. (2005). A supply chain view of the resilient enterprise. MIT Sloan 
Management Review, 47(1), 41-48. 

Sheffi, Y., (2006). The Resilient Enterprise. Presented at the Conference on National Security, 
Natural Disasters, Logistics & Transportation: Assessing the Risks & the Responses, 
University of Rhode Island, RI, September 25-26. 

Sheffi, Y., (2007). The Resilient Enterprise: Overcoming Vulnerability for Competitive 
Advantage, Cambridge, MA: MIT Press. 

Snyder, L. V., & Daskin. M. S. (2005). Reliability models for facility location: The expected 
failure cost case.  Transportation Science, 39(3), 400-416. 

Snyder, L. V., Scaparra, M. P., Daskin, M. S., & Church. R. L., (2006). Planning for disruptions 
in supply chain networks.  In TutORials in Operations Research, Johnson, M. P., B. 
Norman, and N. Secomandi (eds.), Chapter 9, Baltimore: INFORMS, 234-257. 

Snyder , L. V. & Shen, Z. J. M. (2009). Supply and demand uncertainty in multi-echelon supply 
chains. Working paper, Lehigh University.  

Snyder, R. D., Koehler, A. B., & Ord, J. K. (1999). Lead time demand for simple exponential 
smoothing: An adjustment factor for the standard deviation. Journal of Operations 
Research Society, 50(10), 1079-1082. 

Snyder, R. D., Koehler, A. B., Hyndman, R. J., & Ord, J. K. (2004). Exponential smoothing 
models: Means and variances for lead-time demand. European Journal of Operational 
Research. 158(2), 444-455.  

Sodhi, M. S. (2005). Managing demand risk in tactical supply chain planning for a global 
consumer electronics company. Production and Operations Management, 14(1), 69-79. 

Souder, E. (January 14, 2004). Retailers rely more on fast deliveries. The Wall Street Journal. 

Stecke, K. E., & Kumar, S., (2009). Sources of supply chain disruptions, factors that breed 
vulnerability, and mitigating strategies. Journal of Marketing Channels, 16(3), 193-226. 

Sterman, J. (1989).  Modelling managerial behaviour: Misperceptions of feedback in a dynamic 
decision making experiment. Management Science, 35 (3), 321-339. 



  34

Sullivan, L. (2006). Most companies fail to plan for supply-chain disruption: Study. AMR 
Research, Accessed August 14, 2007, available at 
http://www.intelligententerprise.com/%20showArticle.jhtml?articleID=187002838%20. 

Svensson, G. (2000). A conceptual framework for the analysis of vulnerability in supply chains. 
International Journal of Physical Distribution & Logistics Management, 30(9), 731-749. 

Swaminathan, J. M., Smith, S. F., & Sadeh, N. M. (1997). Modeling the dynamics of supply 
chains: A multi-agent approach. Decision Sciences, 29(3), 607-632. 

Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing supply 
chain disruption risks. Management Science, 52(5), 639–657. 

Tomlin, B. T., & Snyder, L. V. (2009). On the value of a threat advisory system for managing 
supply chain disruptions. Working paper. University of North Carolina at Chapel Hill. 

Tomlin, B. T., & Wang, Y. (2005). On the value of mix flexibility and dual sourcing in 
unreliable newsvendor networks. M&SOM, 7(1), 37-57 

Towill, D. R. (1991). Supply chain dynamics. International Journal of Computer Integrated 
Manufacturing, 4(4), 197-208. 

U.S. Census Bureau. (2008). County business patterns. Washington, D.C., accessed on May, 
2009, available at www.census.gov/. 

Veeraraghavan, S., & Scheller-Wolf, A. (2008). Now or later: A simple policy for effective dual 
sourcing in capacitated systems. Operations Research, 56(4), 850-864. 

Whitmore, A. S., & Saunders, A. (1977). Optimal inventory under stochastic demand with two 
supply options, SIAM Journal of Applied Mathematics, 32(2), 293-305. 

Wikner, J., Towill, D. R., & Naim, M. (1991). Smoothing supply chain dynamics. International 
Journal of Production Economics, 22(3), 231-248. 

Wu, O. Q., & Chen, H. (2009). Optimal control and equilibrium behavior of production-
inventory systems. Working paper, University of British Columbia. 

Zipkin, P. (1986). Stochastic lead times in continuous-time inventory models. Naval Research 
Logistics Quarterly, 33, 763–774. 

Zsidisin, G. A., Ragatz, G. L., & Melnyk, S. A. (2005). Supply continuity planning: Taking 
control of risk. Inside Supply Management, 16(1), 21-26. 



  35

APPENDIX A – THE SANDIA AGENT MODEL {could be online} 

In 2002 the U.S. Department of Homeland Security (DHS) formed the National Infrastructure 

Simulation and Analysis Center (NISAC), a partnership of Sandia and Los Alamos National 

Laboratories, to assist in the nation's preparations for possible attacks on critical infrastructure 

and improve the effectiveness of responses should such attacks occur. NISAC has undertaken a 

number of projects in support of this DHS charter. One of these, conducted by Sandia, involved 

simulating the effects of supply chain disruptions. A group of economists within Sandia 

envisioned simulation as a complementary approach to analytical models. Their model, Agent-

Based Laboratory for Economics™ (N-ABLE™), can incorporate agent firms within supply 

chain networks, simulate discrete events of these entwined enterprises, and trace corresponding 

regional economic behavior. This appendix explains why the Northwest U.S. was chosen as an 

initial test site, and offers details of the model and some preliminary results.  

Why the Northwest? 

NISAC targeted the Northwest because it represents a significant microcosm within the U.S. 

economy. Rough terrain in the Cascade Mountains in Washington and Idaho makes it attractive 

for individuals to cross illegally from Canada. The long seacoast in the Puget Sound is 

vulnerable as well. The San Juan Islands provide good cover in a sparsely patrolled environment 

with multiple entry routes into the United States. One pre-9/11 attack was thwarted by an alert 

U.S. Customs Agent -- Ahmed Ressam was apprehended with explosive detonators on December 

14, 1999 after taking a ferry from Victoria British Columbia to Port Angeles, Washington.  

Northwest culture and tradition also play a role in security issues.  Residents in the region 

have been traditionally sympathetic to various causes. The large metropolitan areas of Seattle 
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and Tacoma, with their large, diverse population, provide an environment that enables illegal 

elements to blend.  

Finally, the manufacturing, logistics, technology and financial bases in the region are 

representative of many other metro areas in the United States. Targets abound in the Northwest, 

ranging from structures offering symbolic targets (the Seattle Space Needle) to facilities and 

infrastructure critical to the operation of the economy. Kalid Mohamed, admitted mastermind of 

9/11, planned to follow by attacking a “Plaza Bank” in Seattle (likely the Columbia Tower), 

along with targets in LA, Chicago and NY (eventually reported by Baldor, 2007). 

Two targets, the ports of Seattle and Tacoma, comprise the third largest load center in the 

U.S. Approximately 3.5 million TEUs move through these ports annually, as well as oil and 

other bulk commodities. In addition to supplying Washington, these ports provide a gateway for 

cargo destined for Oregon, Northern California, Idaho, Montana, Nevada, and other western 

states. Seattle and Tacoma ports also serve as the primary transshipment points for the majority 

of cargo supplying Alaska. Furthermore, 75% of all imports pass via rail to Chicago and the East 

Coast. Some have even referred to these Northwest ports as the “Port of Chicago” because of the 

volume of shipments destined for Chicago (Seattle DOT, 2005). 

The region also hosts major U.S. companies participating in and supporting worldwide 

commerce. Boeing’s main base of commercial operations is in the Puget Sound, with many 

suppliers nearby. Microsoft, Amazon, and other IT companies are headquartered in the region. 

This is also the home of Weyerhaeuser and many of its lumber and construction companies. 

Additionally, there are thousands of small and mid-sized manufacturing firms in the Northwest, 

and a significant military presence with Army, Air Force and Navy bases.  
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The N-ABLE™ Model 

N-ABLE™ is capable of simulating the impact of facility disruptions, transportation disruptions, 

pandemics and hurricanes on manufacturing and distribution activities. Analysis of these 

simulations have brought new insights to DHS regarding the ability of manufacturing sectors to 

respond in the short run to national-level disasters, as well as the efficacy of policies used by 

private industry and homeland security. 

[Figure 4 here] 

Figure 4 depicts an economic agent, the fundamental modeling unit in N-ABLE. Each N-

ABLE agent is an enterprise of: buyers who input materials, producers of finished products that 

use components, labor, capital equipment and infrastructure, on-site inventories, and sellers of 

the finished products into segmented markets. Output 1 involves the assembly of two materials, 

and Output 2 (e.g., a spare part) follows a serial process. An agent can also represent distribution 

or transportation hub activity, e.g., where a distributor assembles, packs, and ships an order to a 

customer. The agent accounting logic captures revenues as well as variable costs of materials, 

storage, labor and overhead. Physical infrastructure may include electric power, 

telecommunications, and transportation (Downes, Ehlen, Loose, Scholand, & Belasich, 2006).  

N-ABLE’s architecture is agent based and object-oriented for efficiency, portability, 

scalability and repeatability across types of computers and operating systems (Eidson & Ehlen, 

2005). This has enabled development on individual laptops, and large-scale testing on Sandia’s 

Thunderbird supercomputer. Because of the enormous computing capability and model 

architecture, the system can handle hour-by-hour discrete events for upwards of one million U.S. 

manufacturing firms. 

The first large-scale application of N-ABLE was to model approximately 14,500 firms 

(with SIC codes) in the Pacific Northwest and their corresponding supply chains. The network of 
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agent nodes and arcs that connected agent inputs and outputs followed the baselines of at least 

four agents per industry, one assembly stage per agent, and order-up-to inventory systems. The 

network representation was substantially enhanced through macroeconomic analysis of regional 

product flows between SIC codes. Insights from the analysis included:  

• As production and shipments are disrupted in a region, shortages that buyers 

experience in local markets can quickly “flash over” nationally along complex paths. 

This phenomenon seems to be driven by supply chain network characteristics, 

markets, and transportation modes in the supply chain. 

• A disruption in a transportation hub drains supply in certain areas, and causes firms to 

substitute costly transport alternatives and longer routes. This increases ordering, 

expediting, and in-transit inventory.  

Since undertaking the Pacific Northwest project, Sandia has expanded the fundamental 

enterprise structure of N-ABLE to embed more detailed transportation networks, pricing 

functions, and cost considerations. Sandia is also expanding N-ABLE’s infrastructure to more 

realistically characterize behavior and to test policies within and across manufacturing sectors. 

Examples include: integrating Oak Ridge National Laboratory’s inter-modal transportation 

system into N-ABLE to observe transportation vulnerabilities in manufactured foods (Downes et 

al., 2005b), and integrating pipeline infrastructure in chemicals (Downes et al., 2005a). 

[Figure 5 here] 

To illustrate the size, scope, and capability of analysis, Figure 5 shows output from one of 

the N-ABLE simulations currently being applied to manufactured-food supply chains. This 

application has 200,000 agents covering domestic manufacturing firms, domestic distributors, 

domestic retail establishments, foreign suppliers, and consumers of 50 food commodities. 

Shipping occurs via highway, rail, and water-based transportation networks. The figure shows 
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Hurricane Katrina’s effects on the U.S. food distribution system with concentrations of shortages 

depicted by dots. The simulation results validated how the disruption caused shortages in 

complex ways and over vast regions.  

Sandia modelers believe that N-ABLE offers an important tool in characterizing how 

supply systems can adapt to a myriad of man-made and natural disruptions. For N-ABLE to be 

effective in advocating policies and practices in prevention, response and recovery, the modelers 

will need to establish protocols to replicate and statistically analyze the effects of disruptions and 

associated countermeasures. 

APPENDIX B – LITERATURE REVIEW {could be online} 

There is a rich and growing body of empirical and analytical work on disruption management. 

Craighead, Blackhurst, Rungtusanatham, and Handfield (2007) and Snyder and Shen (2009) 

provide thoughtful literature reviews. Craighead et al. (2007) cite as examples, recent work on 

supply chain risks (Chopra & Sodhi, 2004), vulnerability (Svensson, 2000), resilience (Sheffi & 

Rice, 2005), and business continuity (Zsidisin, Ragatz, & Melnyk, 2005). They also address a 

related issue, supply chain severity. Kleindorfer and Saad (2005) and Stecke and Kumar (2009) 

provide qualitative frameworks for vulnerabilities and mitigation methods. Sheffi (2007) covers 

managerial implications of disruptions, and approaches such as buffering, redundancy and agility 

as important means to achieve resilience.  

Disruptions: Most analytical work on disruptions relies on single-echelon models, with 

exponential or geometric failure times, and inventory buffering as mitigation. For example, Berk 

and Arreola-Risa (1994) considered an inventory system governed by an EOQ policy, Parlor and 

Perry (1995), a (q, r) policy, and Arreola-Risa and DeCroix (1998), an (s,S) policy.  
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More recent literature assumes stochastically recurrent disruptions, an order-up-to policy 

(with a single echelon that maintains inventory), and in most cases, shortages backordered, not 

lost. These papers address lead time disruptions due to border closures (Lewis et al., 2008), 

threat level information and evolving risk (Tomlin & Snyder, 2009), supplier selection and 

reliability (Tomlin, 2006), product mix and supply diversification (Tomlin & Wang, 2005), and 

facility location (Berman et al., 2007; Church & Scaparra, 2007; Scaparra & Church, 2008; 

Snyder & Daskin, 2005; Snyder et al., 2006; Qi & Shen 2007). 

Snyder and Shen (2009) observe in a review of earlier work that “Disruption models are 

generally much less tractable than their deterministic-supply counterparts and require numerical 

optimization since closed-form solutions are rarely available.” They also offer simulation as an 

alternative to analytical study “to gain insights using realistic models rather than to find optimal 

solutions to exact but vastly simplified models.” They study questions of order size, order 

frequency and inventory placement in the presence of disruptions. They conducted experiments 

entailing various supply chain configurations using a single inventory echelon and a periodic 

review (s,S) policy. They found that total costs of inventory, order and backorder are fairly well 

behaved. They employed line search to find effective inventory parameters in which to make 

comparisons. 

Wu and Chen (2009) apply a two-echelon optimal control system to model oil industry 

behavior. One echelon represents an individual firm, and the other, an aggregation of the 

industry. Their model has echelon decision variables of price and quantity, and assumes no lead 

times, unimodal total cost of inventory and operation, and unlimited production capacity. 

Shortages are precluded since equilibrium prices clear the markets. They consider two types of 

disruptions to supply and demand – a single shock, and random Brownian shocks. Among other 
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conclusions, they find that price and inventory peak after a single shock and dissipate slowly, 

with delayed propagation to the other echelon.   

Expediting: Disruptions represent exogenous shocks to a system, while expediting offers an 

endogenous means to cover shortages, which may arise from disruptions or normal operating 

conditions. In an HP supply chain, Beyer and Ward (2002) reported over 65% of orders 

expedited. Other examples from diverse industries include Amazon (Kelleher, 2003), Caterpillar 

(Rao, Scheller-Wolf, & Tayur, 2000), and Nintendo (Souder, 2004). Our case studies also 

indicate that shortages of relatively inexpensive electronic parts motivate the frequent use of 

expediting to avoid cancelation or delay of relatively high revenue for value added assembly.  

While expediting appears rational, the effects of expediting across a supply chain are not 

well understood. Research on expediting has focused on finding optimal ordering policies at a 

single inventory echelon (Fukuda, 1964; Whittmore & Saunders, 1977; Groenevelt & Rudi, 

2003; Huggins & Olsen, 2005; and references therein). Progress has been hampered, in part, 

because of difficulties in analyzing crossover orders not arriving in the sequence they were 

placed (Robinson et al., 2001; Hadley & Whitin, 1963; Nahmias, 1979; Zipkin, 1986). For 

analytical tractability, researchers avoid crossovers by either restricting regular and expedited 

lead times to differ by one time unit, or assuming instantaneous expedited delivery (Fukuda, 

1964; Lawson & Porteus, 2000; Huggins & Olsen, 2005). Others apply heuristic policies that 

approximate optimality under generalized lead times (Veeraraghavan & Wolf, 2008). 

Bullwhip Effects: A worthy contribution to the disruption and expediting literature would be 

consideration of bullwhip effects. With dependencies in material, finance and information, any 

variations in demand or supply may amplify within and among firms, and disrupt the whole 

chain (Lee et al., 1997). Bullwhip effects have been attributed to both erratic human behavior 
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(Sterman, 1989; Croson & Donohue, 2006) and rational decision making (Lee et. al., 1997). 

Chen et al. (2000b) and Chen and Lee (2009) provide analytical treatment of rational bullwhip 

effects.  

Some research on bullwhip effects has been experimental in nature. There is work on 

undisrupted single or serial two echelon supply chains without expediting (e.g., Towill 1991). 

Wikner et al. (1991) studies the impact of various parameters related to structure, information 

and lead time on a three-echelon supply chain. Sterman (1989) presents experimental findings 

using the beer game (four echelon system). The game is replicated 48 times, with averages 

compared using t-tests. Croson and Donohue (2006) replicate a four echelon system eleven 

times, with averages presented. Regression with p-tests shows that participants undervalue 

supply as compared with on hand inventory and demand.  

Chatfield et al. (2004) analyze results of a four echelon system over 30 replications. The 

system is simulated for 700 periods, with the first 200 for warm up. Analysis of variance is used 

to test the impact of information sharing on demand amplification. They offer the following 

rationale for their methodology, “Simulation modeling of supply chains can provide both realism 

and utility … by accounting for the natural variations that occur in the various processes within 

the supply chain, and that could not be captured analytically.” Simulation has also been used as a 

powerful alternative to analytics in describing complicated supply chain effects in other real 

word settings (e.g., Bowersox & Closs, 1996). Closs et al. (1998) applied a four echelon 

assembly structure in simulation experiments to demonstrate that information sharing contributes 

to better customer service. 
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APPENDIX C – MODEL PARAMETERS {could be online} 

This appendix covers modeling details in our application of forecasting, buffering, order sizes, 

lead times, and statistical analysis.  

Forecasting and Buffering: we apply an autoregressive process AR(1) to model customer 

demand at Echelon 1. The customer demand as observed in period t at Echelon 1 is of the 

form: t t 1 tD D −= µ +ρ + ε , with 100µ = , .1ρ = , and independent and identically distributed 

random variables t ε with distribution N(0, 15)σ = . In this process, the expected demand is 

( )/ 1 111µ −ρ = . Such demand functions have been used in many studies, including Kahn (1987), 

Lee et al. (1997), and Chen et al. (2000a). The electronics industry frequently experiences auto-

correlated demand (Lee, So, and Tang, 2000).   

Most products consist of many components, but we considered assembly of only two. 

With local planning, a convenient way to address this is to increase the z value of each of the two 

components to reflect the joint probabilities of having more in assembly.  

These parameters in demand generation and inventory control play important roles in 

controlling these bullwhip effects (Baganha and Cohen, 1998). Order variability induces demand 

amplification, even when the only source of uncertainty is with final customer demand (Kahn, 

1987; Lee et al., 1997; Chen et al., 2000b). We chose to keep the system in-control by 

collectively searching α and z values in pilot experiments as a means to achieve a reasonable 

service level at Echelon 1, as benchmarked in our cases. We focused the pilots on base case 

conditions (no expediting or disruption). Across echelons, we tried three z values {2, 2.5, 3} and 

α values in increments of 0.05 over the range [0.01, 0.51]. A value of z=2 under i.i.d demand 

theoretically ensures a 95% service level at a single echelon (Nahmias 2008). Yet with z=2 at 

each stage in our system, no values of α could achieve a service level of 95% at the final echelon. 
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Chen et al. (2000a and 2000b) found in a less complex system that demand amplification 

increases with higher values of z and α. We observed similar behavior in the pilots.  With z=2.5, 

α values below 0.01 were needed at all stages to attain a service level of at least 95%. 

Consequently, we held the z values fixed at our highest experimental levels (3.0) at all echelons 

and stages in subsequent experimentation to allow more practical α values (Brown, 1963; 

Snyder, Koehler, & Ord, 1999; and Snyder, Koehler, Hyndman, & Ord, 2004). We achieved a 

service level of 95% at Echelon 1 with α values of 0.21, 0.11, 0.06, and 0.01, respectively, for 

Echelons 1 through 4. We applied these parameters in subsequent experiments. 

Lot Sizes: We restrict order sizes to cover accumulated requirements between review periods. In 

practice, batching can be applied at every echelon as well to address order, setup and minimum-

shipment elements, but we dispense with these issues in the experiments. We are interested in 

exploring a minimum set of conditions (stationary demand, no order cost, no setup cost, no setup 

time, no returns, an infinite production rate, and static lead times) to support future research on 

the Key Issues under more robust operating conditions.  

Lead Times: Lead time logic and parameters are also noteworthy. When expediting is activated, 

we experimented in pilots with a range of parameters for each order trigger to achieve expediting 

of about 10-15% of the orders, a frequency observed in the case studies. One trigger corresponds 

to lead time demand. The other occurs when on-hand inventory falls below a demand-based 

target. We found reasonable parameters for this second trigger of: average demand at Echelon 1, 

two times average demand at Echelon 2, three times at Echelon 3, and four times at Echelon 4.       

Our use of point estimates for lead times enables us to examine behavior in a relatively 

complicated supply system as variability is introduced solely through disruptions, expediting, 

and Echelon 1 demand. We considered the case studies and the literature to select regular, 
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expedited, and disrupted times. Our lead times depicted in Figure 1 fall roughly midway between 

ranges observed in our cases. However, we found little justification for lead time choices in the 

literature on disruptions, expediting, and bullwhip effects. Many assume fixed or no regular lead 

times without rationale. We also noted substantial differences across studies in the times used for 

regular, disrupted and expedited states, as well as for demand during the various lead times, and 

relative lead-time demands (regular versus disrupted and expedited states). The parameters in our 

experiments fell well within these ranges.   

Statistical Issues: It was important in the simulation experiments that our initiation period was 

long enough to remove transient effects. The run length was sufficient to facilitate the interesting 

statistical results that we have observed. Each simulation was run for 2000 days. The first 1000 

established steady state conditions, and we observed performance over the remaining time. We 

found that across 100 pilot replications, a fifty-period moving average of order-up-to quantities 

showed convergence after about 600 periods at all echelons and stages (see Welch’s warm-up 

procedure in Law and Kelton,  2000, Chapter 9). A fifty period base was long enough to enable a 

few order placements.  

Finally, we distinguish issues of independence of a performance measure within and 

across replications. We do not claim or expect independence within replications, either in 

demand or supply. Demand is by definition autocorrelated over time, and inventory levels and 

replenishment orders are clearly linked from one period to the next. Indeed, we wish to induce 

bullwhip effects over time within each replication to reflect practical behavior. Across 

replications, however, we applied terminating sampling, and chose independent random number 

seeds to initiate each sample replication. Antithetic random numbers were used to reduce the 

variability (Law and Kelton, 2000, Chapter 9).   
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INT ABC XYZ

Model

Supply chain span

Electronic Co. 
Finished Product

60 models with over 2500 
configurations

200 different finished 
product types

Three product groups, each 
that includes a lot of 
customization

Electronic Co. 
Primary 
customers

Manufacturers, distributors, 
and retailers

Automotive, utility, military, 
and aerospace industries

Aerospace OEMs

Electronic Co. 
Sole Sourced 
Components

Approx. 10% Approx. 20% Approx. 20%

Operation Type Assemble‐to‐order Make‐to‐order Primarily make‐to‐order

Electronic Co. 
Operations Model

Lean JIT system using visual 
controls and Kanban for 
internal processes. MRP 
ordering for externally 
sourced components.

Toyota style JIT for internal 
processes. MRP ordering for 
externally sourced 
components.

MRP ordering internally 
and externally.

Management 
issues

High product variety, high 
inventory and overhead 
costs, and delivery problems

Expectations for high 
customer service

Product cost and delivery 
performance

Concerns

Recent 
disruptions

Power failure, 
transportation accident, 
sole source disruption

West coast port lockout
Texas port closure, Land‐
line  service failure

Notable 
consequences of 
disruptions

Electric power vulnerability. 
Loss of sole‐source supplier 
may introduce delays of up 
to two years.

Better equipped than the 
other two because of lesser 
number of SKUs.  No telecom 
backups or contingency 
plans. 

Vulnerable to power and 
telecommunications 
failure. No backup 
generator or contingency 
plans

Mitigation 
planning

Buffering. Expediting. Basic 
preventive measures such 
as fencing, guards, and 
lighting.

Buffering. Expediting. 
Alternate sources and 
routing. Backup generators.

Buffering. Expediting. 
Alternate sources for most 
components. 
Geographically dispersed 
locations.

Telecommunication/power failure, transportation accidents, and sole sourcing

Ri
sk
 m

an
ag
em

en
t

O
pe

ra
tin

g 
Po

lic
ie
s

Global spread with overseas transport, and distribution centers located elsewhere in 
the US, some local suppliers, customers ranging from local to overseas.

A 4‐echelon supply chain with assembly is sufficiently representative.

Su
pp

ly
 C
ha

in

 

Table 1: Case summaries 
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Table 2: Various costs at two levels each 

  
Back Ordering 

Cost 
Cost of 

Lost Sales 
Carrying 
Cost  

Expediting 
Cost 

Low  4  6  2  3 
High  8  12  4  5 

 

Table 3: Results for Line and Genetic Search under various cost combinations 

Back 
Ordering 
Cost 

Cost of 
Lost 
Sales 

Carrying 
Cost  

Expediting 
Cost    

Line 
Search 
LS 

Genetic 
Search 
GA    

Mean 
Percentage 

Cost 
Savings  

Low  Low  Low  Low     551.01  472.38     14.27 
Low  Low  Low  High     606.78  493.61     18.65 
Low  Low  High  Low     808.55  685.79     15.18 
Low  High  Low  Low     621.22  496.91     20.01 
High  Low  Low  Low     690.61  516.98     25.14 
High  High  Low  Low     764.22  544.26     28.78 
High  Low  High  Low     996.62  922.66     7.42 
High  Low  Low  High     742.80  524.13     29.44 
High  High  High  Low     1028.71  927.69     9.82 
High  High  Low  High     797.62  551.08     30.91 
High  Low  High  High     994.61  922.56     7.24 
Low  High  High  High     974.21  896.36     7.99 
Low  High  High  Low     873.29  812.41     6.97 
Low  High  Low  High     668.32  510.28     23.65 
Low  Low  High  High     852.02  833.00     2.23 
High  High  High  High     1071.11  941.23     12.13 
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Figure 1: Prototypical supply chain 
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 a. Each point represents a mean value over a time block. Waller‐Duncan multiple range tests indicate that points 
not circled are significantly different from one another; those circled indicate no significant difference between one 
another and zero. These results hold at the .01 and .05 levels.

Figure 2: Performance effects of a disruptiona 
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b. Total Supply Chain Cost while Varying Echelon 1 
Order‐up‐to Level; Three Other Echelons Derive Order‐
up‐to Levels using Demand Forecasts 
 

c. Total Supply Chain Cost while Varying Echelon 1 Order‐
up‐to Level at prescribed Order‐up‐to Levels at Echelon 
2; Other Two Echelons Derive Order‐up‐to Levels using 
Demand Forecasts 

Total Supply Chain Cost vs Echelon 1 Order-up-to level 
over the Quantity Range [1, 2000]
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Total Supply Chain Cost vs Echelon 1 Order-up-to level
over the Quantity Range [1000, 1530]
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Figure 3: Shape of total cost functionb,c 

Total Supply Chain Cost vs Echelon 1 Order-up-to level over the Quantity 
Range [1, 3000], at various Echleon 2 Order-up-to Levels
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Figure 4: The N-ABLE enterprise agent 

Figure 5: Example of regional shortages (in green) caused by N-ABLE 
simulation of hurricane Katrina. 


