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Abstract Integer programming models for clustering have applications in diverse
fields addressing many problems such as market segmentation and location of facili-
ties. Integer programming models are flexible in expressing objectives subject to some
special constraints of the clustering problem. They are also important for guiding clus-
tering algorithms that are capable of handling high-dimensional data. Here, we present
a novel mixed integer linear programming model especially for clustering relational
networks, which have important applications in social sciences and bioinformatics.
Our model is applied to several social network data sets to demonstrate its ability to
detect natural network structures.
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1 Introduction

Many industrial, biological, and sociological problems can be represented as networks,
or graphs, including supply chain networks, gene co-expression networks, and ego net-
works. These networks, in turn, are constructed based on the complex relationships
among objects within the massive populations that characterize either an organism
or actors of a community. The use of clustering to understand and identify the most
effective groupswithin a given population and to focus on themost remarkable compo-
nents of a relational network fosters a better understanding of the relationships among
objects.

Clustering approaches are mainly grouped into two categories: hierarchical and
partition-based. In bottom-up hierarchical approaches, members form individual clus-
ters at the beginning that thenmerge based on a certain proximitymeasure, andmerged
members form new clusters. These new clusters likewise merge in an iterative process
that proceeds vertically from one stage to the next, and the construction terminates
when all the members are in one cluster. By contrast, partition-based approaches pro-
ceed horizontally to allocate and reallocate members to groups, typically employing
a pre-defined number of clusters.

Hierarchical and partition-based clustering methods comprise a vast set of clus-
tering algorithms. While these algorithms are typically presented using a statistics or
computer science perspective, it can also be valuable to draw on the perspective of dis-
crete optimization to derive models to complement and improve the solutions obtained
by other approaches. Integer programming (IP) formulations commonly generate clus-
ters based either on maximizing the similarities among objects within clusters or on
minimizing the similarities between clusters [1–3].Maximizing the similarities among
objects within clusters creates compact or homogeneous clusters, while minimizing
the similarities between different clusters generates well-separated clusters.

With no universally accepted definition for “cluster”, the study of clustering net-
works remains an ill-defined problem. Diverse and often ambiguous clustering goals
result in a wide range of cluster definitions and approaches. In an effort to be more
precise and to capture a spectrum of useful clustering goals effectively, we present
a novel and rigorously defined mixed integer linear programming (MILP) model for
graph clustering, utilizing an objective function designed to simultaneously engender
compactness and separation of the clusters. By “compactness” we mean a property
associated with a measure of cluster cohesiveness, and to ensure clusters that exhibit
such a property we utilize an objective function that minimizes the largest diameter
of all the clusters. By “separation” we mean a property associated with a measure of
the distance of a cluster from its neighbors and we undertake to produce clusters with
such a property by introducing constraints that assign a member to a cluster to yield
fewer connections with objects outside the cluster.

Manynetwork clustering algorithmshave beenproposed to identify coherent groups
that exist inside a population represented as a network. However, not as much research
has been devoted to analyzing clusters in a relational network by reference to discrete
optimization models. We view the use of IP formalism to guide clustering algorithms
as a relevant tool which, if managed properly, can fill a major gap in the literature.
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IP formulations for clustering are generally presented with the goal of guiding the
development of clustering algorithms, rather than with the purpose of submitting them
to off-the-shelf IP solution software, since clustering is usually applied to big data sets,
which can offer challenges to general IP software for finding optimal solutions.

A variety of IP formulations have appeared in recent years whose objectives exhibit
varying degrees of relevance for developing new clustering algorithms. A comprehen-
sive review of clustering algorithms designed for analyzing gene expression data is
provided in [4].Wewill briefly summarize some of themore salient contributions. Rao
[5] investigated two clustering models based on integer programming representations.
One was a nonlinear IP model that minimizes groups’ sums of squares and the sums of
the average squared distances among those groups. The second was a linear IP model
that minimizes, respectively, the total and the maximum group distance. Extending
Rao’s work with an analysis of the IP formulations of clustering problems, Kusiak
[6] discussed five different IP formulations for three clustering problems. The first
problem has a traveling salesman formulation, and the second and third, detailed in
[5], consist of anm-median problem that formsm clusters from n objects to minimize
the sum of distances among objects to cluster medians.

To optimize data mining approaches for customer relations management applica-
tions, such as maximizing customer life-time value, Saglam et al. [7] applied a similar
approach (to that found in [5]) of minimizing the maximum established group dis-
tance through a mixed integer programming (MIP) formulation. Similarly, Mehrotra
and Trick [8] used a combinatorial approach based on graph-partitioning problems, to
solve clique and clustering problems. Approaches included forming subgraphs, such
that the sum of edge weights in every cluster is maximized, and the total edge weight
among clusters is minimized. The authors presented mathematical formulations for
the uncapacitated and capacitated clustering problems, as well as a set partitioning
formulation that captured both of them.

Glover and Kochenberger [2] studied a clique-partitioning formulation based on
associating variables with nodes, not edges. The new node-based formulation differs
from the set partitioning formulation in [8] because it incorporates quadratic terms
that are handled directly, not linearized, while the contrasting edge-based formulation
is also similar to the uncapacitated clustering problem formulation developed in [8].

Xu et al. [9] formulated a mixed integer quadratic program (MIQP) to maximize
themodularity score, a widely employed partitioning quality measure. Themodularity
score is expressed in quadratic terms with linear constraints and binary or continuous
variables. The test networks presented here have 34, 62, 76, and 104 nodes. Similarly,
Cafieri and Hansen [10] developed an MIQP model to refine heuristic solutions in
relation to modularity maximization. Agarwal and Kempe [11] presented a clustering
algorithmbased on the rounding of the optimal solution to the linear programming (LP)
clustering formulation. The objective function of the LP maximizes the modularity
score expressed linearly. The highest network size solved by the LP approach had 235
nodes.

Martins [12] proposed a polynomial size integer LP model for the maximum edge
weight k-plex partitioning problem, where each cluster of the partitioned graph is a
k-plex, in which nodes belonging to each cluster hold a degree of at least n− k, where
n is the number of nodes in the cluster. The model involves capacity constraints for the
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clusters and upper bound constraints for the number of clusters. Other applications of
clustering in networks can be found in [13–16].

The remainder of the paper is organized as follows: Sect. 2 describes our MILP
model. Section 3 presents generalizations of the model, and Sect. 4 discusses and
elaborates on the manipulation of an instrumental fraction f first defined in Sect.
3. Section 5 discusses how a network relaxation can act as a solution strategy, and
example applications of the model are given in Sect. 6 to demonstrate its versatility
and usefulness. Finally, concluding comments are provided in Sect. 7.

2 Our Mixed Integer Linear Programming Model

Our MILP model, presented below, was developed for clustering relational, or binary,
networks. However, the model also applies to weighted networks when a threshold is
applied to convert the weighted network to a binary network. In other words, given a
network with arbitrary edge weights, preprocessing can be performed, which allows
edges with weights less than a given threshold value to be removed from the network.
The remaining edges have a weight of one, which thus results in a binary network.

As stated in Sect. 1, themodel presented here is designed to create compact and sep-
arated clusters. In a binary network, the distance between any two objects is measured
by the fewest number of edges that connect these two objects. To create compact clus-
ters, the maximum of all cluster diameters should be minimized. Similarly, to create
separate clusters, the maximum number of connections an object has with objects in
other clusters should beminimized. Amore detailed explanation is provided following
the model’s introduction. Our model employs a modified strong community structure
defined in [17] as constraints and is formulated as follows:

minimize
dm ,kom ,xil

(dm + kom)

subject to

dm ≥ di j (xil + x jl − 1) ∀i, j, l, (i < j); (1)
c∑

l=1

xil = 1 ∀i; (2)

n∑

i=1

xil ≥ 1 ∀l; (3)

n∑

j=1

(Ai j x jl) ≥
(∑n

j=1 Ai j

2

)
xil ∀i, l; (4)

n∑

j=1

(Ai j x jl) ≥
⎛

⎝
n∑

j=1

Ai j

⎞

⎠ xil − kom ∀i, l; (5)

xil ∈ {0, 1} ∀i, l. (6)
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Model parameters include the number of objects (n), the number of clusters (c),
the shortest path distances between objects i and j (di j ), and the adjacency of objects
i and j (Ai j ), where Ai j is 1 if objects i and j are connected directly and 0 otherwise.
The decision variables are xil , dm , and kom defined as follows: xil is 1 if object i is
assigned to cluster l, 0 otherwise; dm is the length of the longest diameter among all
cluster diameters; kom is the out connection number of the object with the maximum
number of connections to objects outside its cluster. Constraint set (1) ensures that dm
is the maximum diameter, i.e., it is greater than the shortest distance between any two
objects in any cluster as long as the two objects are in the same cluster. Constraint
set (2) ensures that each object is assigned to exactly one cluster. Constraint set (3)
ensures that a cluster has at least one object. Note that if c < n, then constraint set
(3) cannot be satisfied. Therefore, a corresponding generalization of this constraint is
discussed in Sect. 3.1. Constraint set (4) ensures that an object has at least as many
connections with objects inside its cluster as outside, i.e., the term on the left is the
number of connections object i has with other objects in the same cluster, and the
term on the right is half the total number of connections for object i . Constraint set
(5) ensures that kom is greater than the number of connections any object has with
other objects outside its own cluster. Constraint set (6) ensures that xil are binary. The
model has cn binary variables, two continuous variables, and ( cn

2

2 + 5cn
2 + n + c)

constraints.

3 Generalizations of the Model

Analternativeway to express theMILP formulation for the network clustering problem
is to represent the network as an undirected graphG = (N , E), where N = {1, . . . , n}
is the set of nodes, or objects to be clustered, and E ⊂ N × N is the set of edges, or
connections between objects.

Let Ni = { j ∈ N : (i, j) ∈ E} (i.e., the set of nodes adjacent to node i) and
ni = |Ni | (i.e., the number of nodes adjacent to node i). Also, let C = {1, . . . , c}
denote the set of clusters. Given that the binary variable xil = 1 if and only if node i
is assigned to cluster l, it follows that

∑
j∈Ni

x jl = the number of nodes in cluster l
adjacent to node i and (ni −∑

j∈Ni
x jl ) = the number of nodes not in cluster l adjacent

to node i . Constraint (4) now becomes

∑

j∈Ni

x jl ≥ 1

2
ni xil i ∈ N , l ∈ C. (7)

As in the original form of constraint set (4), this formulation is intended to model
the requirement that, if node i is in cluster l (xil = 1), the number of nodes in cluster
l adjacent to node i must be at least as large as the number of nodes not in cluster l
adjacent to node i . This requirement may be verified by noting that the final answer
assures that

∑
j∈Ni

x jl ≥ (ni − ∑
j∈Ni

x jl ). Hence,
∑

j∈Ni
x jl ≥ ni/2 given that

xil = 1, which constraint (7) appropriately accomplishes. Also, by rearranging the
terms and letting z denote kom from the previous formulation, constraint (5) can now
be rewritten as
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z ≥ ni xil −
∑

j∈Ni

x jl i ∈ N , l ∈ C. (8)

Although not directly stated in the original formulation, constraint set (8) bounds
z from below using the total number of nodes adjacent to node i minus the number of
nodes in cluster l adjacent to node i , under the condition that node i belongs to cluster
l. Under the minimization objective, the inequalities of constraint set (8) naturally
ensure that only the maximum of the terms listed on the right affect the objective
function. The new model formulation can now be described as follows, which we will
refer to as MILP-C, where “C” stands for clustering.

minimize
dm ,z,xil

(dm + z)

subject to

dm ≥ di j (xil + x jl − 1) (i, j) ∈ E, i < j, l ∈ C; (9)
∑

l∈C
xil = 1 i ∈ N ; (10)

∑

i∈N
xil ≥ 1 l ∈ C; (11)

∑

j∈Ni

x jl ≥ 1

2
ni xil i ∈ N , l ∈ C; (12)

z ≥ ni xil −
∑

j∈Ni

x jl i ∈ N , l ∈ C; (13)

xil ∈ {0, 1} i ∈ N , l ∈ C. (14)

3.1 Generalization 1

As discussed above, the inequalities of constraint set (11) cannot be satisfied if c < n.
However, note that for almost all realistic scenarios, cwill be less than n, because c = n
implies each object will be in its own cluster by itself. Thus, to generatemoremeaning-
ful clusters, we generalize constraint set (11) by replacing it with

∑
i∈N xil ≥ Ll . This

generalization, which may have important practical implications for various applica-
tions, leads to different lower bounds on the number of objects in each cluster. Another
reason to consider different Ll values is that constraints (10) and (11), together with
(14), define a network, and a network-based optimization strategy can be introduced
for solving MILP-C. Such a strategy, which includes additional elaborations of the
network structure and its objective function, is discussed in Sect. 5.

3.2 Generalization 2

Another generalization can be achieved by replacing the coefficient of ni in constraint
set (12) by some fraction f . Note that when the coefficient is 1/2, as it currently
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is, each object is forced to have at least half of its total connections with objects in
its own cluster. Depending on the specific application, 1/2 may not be a desired ratio.
Thus, using a different ratio f makes the model more flexible. Incorporating a selected
fraction f has additional implications discussed in Sect. 3.3.

3.3 Generalization 3

Let αi j be a measure of attractiveness or affinity between nodes i and j , for (i, j) ∈
E , to select pairs of objects with higher attractiveness values and group them in a
common cluster. In such a case, if node i is assigned to a cluster l, then the sum of
the attractiveness values for all nodes adjacent to i in cluster l should exceed the total
attractiveness value for all nodes adjacent to i but not in cluster l. This value can be
determined by introducing the following set of constraints, where αi = ∑

j∈Ni
αi j

∑

j∈Ni

(αi j x jl) ≥ 1

2
αi xil i ∈ N , l ∈ C. (15)

Note that this formulation is a direct generalization of constraint (12). The expres-
sion on the left identifies the total attractiveness value for cluster l from the perspective
of node i . In other words, this part of the formulation is the sum of the attractiveness
values for all nodes adjacent to i in cluster l. On the other hand, the total attrac-
tiveness value for all nodes adjacent to i but not in cluster l can be calculated by∑

j∈Ni
αi j (1 − x jl). If node i is in cluster l, then the goal is for the following to hold∑

j∈Ni
(αi j x jl) ≥ ∑

j∈Ni
αi j (1 − x jl). This can be rewritten as

∑
j∈Ni

(αi j x jl) ≥∑
j∈Ni

αi j − ∑
j∈Ni

(αi j x jl) which then leads to
∑

j∈Ni
(αi j x jl) ≥ αi/2. The right

side of the formulation is multiplied by xil to ensure that the constraint is binding
when xil = 1, and leads to Eq. (15).

As discussed in Sect. 3.2, the coefficient 1/2 may be replaced by a different fraction
f . However, rather than replacing formulation (12) with (15), both constraints may
be included in the MILP formulation (perhaps for different fractions f ), or Eq. (15)
can embody a multi-objective theme by introducing constraints for different sets of
attractiveness values αi j . This type of multi-objective theme is amplified in Sect. 3.5.

3.4 Generalization 4

Analogous to Generalization 3, constraint (13) can be generalized to become

z ≥ αi xil −
∑

j∈Ni

(αi j x jl) i ∈ N , l ∈ C (16)

bounding z from below by the total sum of attractiveness values for all nodes adjacent
to node i minus the corresponding sum of attractiveness values restricted to nodes
in cluster l, under the condition that xil = 1. Under the minimization objective, the
maximumof the terms on the right side of (16) affects the objective function.Constraint
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(16) can then be modified in a manner analogous to introducing the fraction f in
Generalization 1 by multiplying the term

∑
j∈Ni

(αi j x jl) by a chosen fraction f .

3.5 Generalization 5

Themulti-objective theme discussed inGeneralization 3 can be handled in anotherway
as follows: Denote the different sets of coefficients αi j by αk

i j for k ∈ K = {1, . . . , ko},
and let αk

i = ∑
j∈Ni

αk
i j . Then constraint (16) can be expanded to become

zk ≥ αk
i xil −

∑

j∈Ni

(αk
i j x jl) i ∈ N , l ∈ C, k ∈ K . (17)

Each zk is stipulated to be a nonnegative continuous variable; likewise, z is replaced
in the objective function by

∑
k∈K zk . Alternatively, we may insert the maximum of

the zk values in the objective function by replacing zk in constraint (17) with z, and
keep z in the objective, as in the original formulation. Note that the αi j values, and
hence theαk

i j values, should be normalized to ensure they aremeaningful in the context
of the problem solved, so that z implicitly receives a desired weight in the objective
function relative to dm .

3.6 Generalization 6

The treatment of Generalization 5 leads to a natural extension of the model by sim-
ilarly forming different cases for inequality (9) that bound dm . For example, these
might include minimizing the maximum shortest path distance di j over nodes i and j
that belong to a common cluster, and determining the sums of the di j distances over
different clusters. We introduce a distance variable dl applicable to cluster l, where
dl is continuous and bounded by dl ≥ 0, and the model replaces constraint set (9)
by

dl ≥ di j (xil + x jl − 1) (i, j) ∈ E, i < j, l ∈ C. (18)

Thendm in the objective canbe replacedby
∑

l∈C wldl for different selectedweights
wl . The effect of such weighting can also be implicitly accomplished by normalizing
the di j coefficients, in which case the weights wl can be disregarded. Finally, an
extreme application might be to minimize the sum of all the effective di j values by
introducing nonnegative continuous variables dei j (the “e” stands for effective):

dei j ≥ di j (xil + x jl − 1) (i, j) ∈ E, i < j, l ∈ C. (19)

Then the variable dm in the objective can be replaced by
∑

(i, j)∈E,i< j d
e
i j .
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4 Interpreting and Manipulating the Fraction f

The fraction f , discussed in Generalization 2 as a replacement for the coefficient 1/2
of ni in constraint (12), can be experimentally manipulated to determine good values
in various contexts. As a basis for this manipulation, interpreting the meaning of f
helps identify which values may reasonably be assigned to it. Specifically, if constraint
(12) is replaced by the constraint

∑

j∈Ni

x jl ≥ f ni xil i ∈ N , l ∈ C (20)

then f can be interpreted as receiving the value v/(v+1), where v is chosen so that the
number of nodes in cluster l adjacent to node i , when node i itself belongs to cluster
l, must be at least v times as great as the number of nodes not in cluster l adjacent
to node i . This follows by simple extension of the logic that justifies constraint (12).
Note that the stated goal for selecting v can be formulated as requiring

∑
j∈Ni

x jl ≥
v(ni − ∑

j∈Ni
x jl) when xil = 1, which yields

∑
j∈Ni

x jl ≥ (v/(v + 1))ni . Hence to
make the inequality depend on xil = 1 we have

∑

j∈Ni

x jl ≥ v

v + 1
ni xil i ∈ N , l ∈ C. (21)

For example, if f = 2/3, inequality (20) implies that the number of nodes adjacent
to node i in cluster l must be at least twice the number of such nodes outside of l.
Thus, selecting f = 2/3 is already close to the boundary of the largest value of f
that may be desirable to investigate, and selecting f as large as 3/4 is exceedingly
ambitious. Nevertheless, with this interpretation as a guideline, experiments may be
performed with different values of f as a way to generate different sets of clusters,
and the outcomes can be compared to determine which sets of clusters (and hence
which values of f ) have the most desirable features in a given application.

We can also go a step further, however, and allow f to be a variable, bounded, for
example, by f ≥ f ≥ f . Term −p f must be added to handle the objective function,
in which p is a positive penalty to induce f to exceed f . For p large enough, f will

be driven to be as close to f as feasible. (If p = 0, then the optimum value for f will
be f = f , assuming that f is small enough to admit a feasible solution.

Allowing f to be variable in this manner causes our model to become a quadratic
mixed integer formulation. A linear mixed integer formulation may be obtained by
replacing f xil with a continuous variable fil , which is assured to receive the correct
value by adding the constraints f ≥ fil ≥ f − f (1 − xil) and f xil ≥ fil ≥ 0.

To avoid the expense of exploring the effects of this transformation, by using differ-
ent penalty values p, using the variable f formulation just once with large p is easier.
Using the variable f formulation with large p will allow us to identify the largest fea-
sible value f ∗ for f . Then, the constant f formulation can be used to explore different
constant values for f satisfying f ≤ f ∗. The computational time when solving for
f ∗ can be reduced by temporarily dropping constraints (9) and (13), since they do not
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limit feasibility and will not affect the maximum value of f . By significantly reducing
the number of constraining inequalities in the MILP formulation, the problem will
likely be solved more quickly and with less computational effort.

5 Network Relaxation as a Solution Strategy

A network optimization problem can typically be solved significantly faster than most
other classes of LP problems, and if a specialized network solution routine is used
in place of a general LP solution routine, then the speedup is appreciably increased.
Considering also that the solution values of the network problem’s variables are auto-
matically integers, using network relaxation as a strategy for solving MILP-C should
be considered.

As noted in Generalization 1, constraints (10), (11) and (14) by themselves provide
a network structure. Such a structure can more generally be produced by a further
generalization that replaces constraint (11) with

∑

i∈N
xil + ul − vl = Ll l ∈ C, (22)

where ul is a nonnegative slack variable and vl is a nonnegative surplus variable. The
variable vl is implicit in constraint (11), though not normally identified. In a network
setting, ul is a slack arc and vl is a surplus arc. Here, Ll can be considered as a target
value for

∑
i∈N xil , and ul and vl , respectively, allow the target to be under or over

satisfied. Placing upper bounds on ul and vl can limit the amount by which
∑

i∈N xil
deviates from the target. For example, setting ul ≤ 0, compelling ul = 0, causes
constraint (22) to correspond to constraint (11) with a right side of Ll .

These slack and surplus variables ul and vl can then be given nonnegative, typically
positive, coefficients pl and ql in the objective function, where pl penalizes the amount
by which

∑
i∈N xil falls short of Ll and ql penalizes the amount by which

∑
i∈N xil

exceeds Ll . This approach, for example, can act as a special case where all clusters
are targeted to contain roughly the same number of elements (e.g., Ll can be set,
approximately, to equal to the “average” value n/c). Another special case could target
different clusters to contain different numbers of elements, with varying penalties for
deviations. In short, constraint (22) introduces a goal programming component into
the networkmodel. This approachmay be accompanied by assigning nonnegative cost
coefficients ail to variables xil to produce a network objective function of

minimize
ul ,vl ,xil

⎛

⎝
∑

l∈C
plul + qlvl −

∑

i∈N ,l∈C
ail xil

⎞

⎠ .

Selecting large ail values increase the inducement for xil = 1. In this way, to induce
two elements i and j to belong to the same cluster l, larger values can be assigned
to both ail and a jl . These inducements can be manipulated by locally evaluating a
given cluster assignment and adjusting coefficients according to the attractiveness,
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by reference to the more complex objective for MILP-C, of shifting elements from
their current clusters to other clusters. Because such a network relaxation strategy can
likewise be employed for a variety of other clustering formulations, we are presenting
our investigation into such a strategy in a sequel to this paper.

6 Application of the Model

The model was applied to small binary networks, several real social networks cited in
[18], and a relatively large processed human gene co-expression network cited in [19].
Small size data sets were chosen since finding an optimal solution for larger data sets
is hard. Once a model demonstrates that it performs well, heuristic algorithms may be
used to solve the model. CPLEX [20] was utilized to solve the model using the data
sets referenced above. The R [21] igraph library [22] was used to run the community
structure-finding algorithm and calculate the modularity values. The Cluster package
[23] was used to calculate Silhouette values. The clValid package [24] was used to
calculate Dunn index values.

Figure 1 shows a complete network with six nodes and a tree with three nodes. The
model does not have a feasible solution for these networks if c > 1. Since any division
will leave at least one isolated object, the nodes for both networks in Fig. 1 should be
in a single cluster.

Figure 2 illustrates the clusters found by the model on two different networks.
The first is divided into 2, 3, . . . , 8 clusters, and the second is divided into 2, 3, . . . , 9
clusters. The first network has only one feasible solution with two clusters. The second
network has feasible solutions with two and three clusters. The feasible solution with
two clusters for the second network is obtained by merging any two of the three
clusters.

The model was also applied on the real social network of 62 bottle nose dolphins
in Doubtful Sound, New Zealand. The network is compiled by Lusseau [25] and its
natural split into two is described in [26]. Our model detects the natural split of the
dolphins into two groups as illustrated in Fig. 3.

1

2

3

4
5

6

1

2

3

(a) (b)

Fig. 1 Two different network structures for which our model has no feasible solution
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5

6
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8

1

2

3

4

5

6

7

8

9

(a) (b)

Fig. 2 Model solutions for a cluster size two and b cluster size three

Fig. 3 The dolphins network:
the network illustrates the two
clusters having members with
square and rectangular nodes
found by the proposed model.
However, the compared model
assigns shaded nodes to the
cluster with rectangular node
members

Square nodes and rectangular nodes represent members of different groups. Our
optimal solution is compared with a commonly used clustering model applied in
[13]. This commonly used model inaccurately assigns shaded nodes to the cluster
of rectangular nodes. Moreover, our proposed model found the optimal solution in
seconds, while the commonly used clustering model ran for almost one day to find
an optimal solution for its formulation, which produced a partition that deviated from
the actual partition. Figures 4 and 5 illustrate the partitions of the data sets “books”,
“football”, and “karate” by our model.

Computational experiments were run on a workstation with 4GB ram, Core i5
2.5 Ghz processor, and 32 bit Windows 7 operating system. Although this study’s
main focus is to develop a mathematical model for clustering relational networks and
detecting their natural splits, modularity values were calculated because maximizing
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Fig. 4 Partitions of books (on the left) and football networks by the proposed model

Fig. 5 Partition of the karate
network into three clusters by
the proposed model
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modularity is a commonly used objective function for algorithms in network research.
Modularity is defined as improvement on random connectivity. The higher the value of
modularity, the better the partition is, so forming clusters, or communities, that max-
imize the modularity is desirable. Table 1 summarizes the modularity values found
by our MILP model, compared to a popular community structure-finding algorithm
based on the betweenness results reported in [26]. Modularity values found by our
proposed model are represented by the column Modularity M . Not surprisingly, the
model does not produce better modularity values than Newman’s method [26], shown
as Modularity N in Table 1, since Newman’s method is designed to maximize mod-
ularity. However, without being designed to maximize modularity, our model finds
competitive modularity values.

Althoughmodularity is used in community structure-finding algorithms, other inter-
nal validation indices are more commonly used. A recent review on cluster validation
indices can be found in [27], employing 30 different indices and reporting three ranked
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Table 1 Modularity values

Data set Nodes Edges Clusters Modularity M Modularity N

Karate 34 78 3 0.335 0.401

Dolphins 62 159 5 0.450 0.519

Books 105 441 4 0.511 0.517

Football 115 613 5 0.460 0.601

Human 349 1418 3 0.271 0.651

Table 2 Silhouette values

Data set Nodes Edges Clusters Silhouette M Silhouette N

Karate 34 78 3 0.222 0.166

Dolphins 62 159 3 0.302 0.288

Books 105 441 3 0.288 0.257

Football 115 613 6 0.141 0.301

Human 349 1418 3 0.523 0.302

Table 3 Dunn values Data set Nodes Edges Clusters Dunn M Dunn N

Karate 34 78 3 0.111 0.330

Dolphins 62 159 5 0.250 0.200

Books 105 441 3 0.250 0.250

Football 115 613 6 0.250 0.330

Human 349 1418 3 0.077 0.125

groups of validation indices. Both the Silhouette index [28] and the Dunn index [29]
are in the first ranked group. Moreover, the Silhouette index is the first index in the
first ranked group. These indices were used for the data sets above, and the results,
obtained by our model and with Newman’s community structure-finding algorithm,
were compared based on betweenness [26]. The results are summarized in Tables 2
and 3. The Silhouette M and Dunn M columns list the Silhouette and Dunn index
values determined by our model.

The Silhouette index measures both cohesion and separateness, features incorpo-
rated into our model’s objective function. This index can take values between -1 and
1, and being closer to 1 indicates a better clustering. The Dunn index is the ratio of
the minimum distance among objects of different clusters to the maximum distance
between objects in the same cluster. The index can take values between zero and
infinity.

Our model finds better Silhouette values than the community structure-finding
algorithm, except for the Football data set. One reason is the increased difficulty
of solving the model for greater numbers of divisions. In other words, the model may
find better values for greater numbers of divisions, but it requires disproportionately
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more effort to do so. The proposed model finds similar Dunn index values compared
to values found by the community structure-finding algorithm.

The approach of using the fraction f , elaborated in Sect. 4, was applied to the trivial
network shown in Fig. 2b. The optimum values of f correspond to different numbers
of clusters. The model to find the optimum f value is formulated as

minimize
dm ,kom , f, fil ,xil

(dm + kom − p f )

subject to

c∑

l=1

xil = 1 ∀i; (23)

n∑

i=1

xil ≥ 1 ∀l; (24)

n∑

j=1

Ai j x jl ≥
n∑

j=1

Ai j fil ∀i, l; (25)

f ≥ fil ∀i, l; (26)

fil ≥ f − f (1 − xil) ∀i, l; (27)

f xil ≥ fil ∀i, l; (28)

xil ∈ {0, 1} ∀i, l; (29)

fil , dm, kom ≥ 0 ∀i, l. (30)

The optimal solution for the nine-node network present in Fig. 2b is f = 0.5 when
the number of clusters is specified to be three. The optimal f value decreases to 0.25
and 0 when the number of clusters is specified to be four and five, respectively. The
optimal f values for the Karate data set are 0.66, 0.5, 0.5, 0.41, and 0.33 with number
of clusters 2, 3, 4, 5, and 6, respectively. The optimal f value for the Dolphins data
set with two clusters is 0.57. The optimal f value for the Books data set with three
clusters is 0.53.

7 Conclusions

We have introduced a novel mixed integer linear programming (MILP) model for
clustering relational networks that detects natural partitions in the data defining a
social network. Our model additionally encompasses numerous generalizations to
handle an exceedingly broad range of clustering goals. Some of these goals do not
have to be explicitly identified in the model. For example, a benchmark test shows that
our method yields a competitive set of modularity values without making reference
to a goal of maximizing modularity. Moreover, except for a single data set, the model
also determined better Silhouette index values than the community structure-finding
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algorithm designed to yield such values. These outcomes suggest the utility of our
model as a guide for creating novel heuristic clustering algorithms for larger data sets.

Similarly, in tests conducted on the Dolphins data set, our model was demonstrated
to yield outcomes superior to those obtained by the widely used Newman clustering
model used as a reference for comparison. The optimum solution of our proposed
modelmatched the actual partition exactly, while the optimum solution of theNewman
model deviated from the actual partition. Unlike the Newman model, which required
hours to determine an optimum solution by its criterion, our model determined the
optimum solution in mere seconds. Hence, we conclude our model is a more suitable
guide to developing heuristic algorithms for larger data sets.

It can be worthwhile to incorporate additional elements within our model. The
proposed MILP formulation uses the number of clusters as a parameter. However,
Silhouette plots, based on different numbers of clusters, provides a useful method for
identifying a desired number of clusters by choosing the partition that gives the highest
Silhouette value. Different network topologies will affect the objective function value
of the model, since the objective function assumes a binary network. For example, if
the network is dense, clusters will have small diameters enclosing the objects within
them and will possess a large number of connections with other clusters. Furthermore,
a dense binary network means that kom will dominate the dm term in the objective.
Therefore, this phenomenon should be the subject of future parametric optimization
studies involving the use of different coefficients for both dm and kom . The proposed
model is especially appropriate when the binary network is sparse.

The main focus and the contribution of our study has been to determine the efficacy
of the proposed model to derive important structures with small- to medium-sized
networks, broadening the focus of earlier studies. Our model generalizations and our
associated network relaxation strategy provide additional foundation for future studies
involving networks of even greater complexity.
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