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We develop a series of theorems about the graph structure of the classical Minimum Linear 
Arrangement (MinLA) problem which disclose properties that can be exploited by Multi-
Neighborhood Search (MNS) algorithms. As a foundation, we differentiate between swaps 
of labels attached to adjacent and non-adjacent nodes to create two new neighborhood 
classes, and show how our theorems yield efficient algorithms for updating key arrays 
used by local search procedures. In addition, we introduce a class of neighborhoods called 
set-based neighborhoods supported by a theorem that identifies solutions (labelings) for 
the MinLA problem in polynomial time that dominate exponential numbers of alternative 
solutions. The component neighborhoods within this new neighborhood class can be 
applied in various sequences in conjunction with the first two new neighborhoods 
introduced. Our results also apply to problems with objectives different than those of 
MinLA. Finally, our results make it possible to exploit the new neighborhoods according to 
the user’s choice of MNS protocols and alternative local search algorithms.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Minimum Linear Arrangement (MinLA) Problem has had a long history as a challenging problem in combinatorial 
optimization. First stated by Harper [8], the MinLA problem has been studied through the years using a wide range of 
solution algorithms. The problem was demonstrated to be NP-hard by Garey and Johnson [2] and subsequently shown to be 
related to two other well-known layout problems, the bandwidth and profile minimization problems. However, as pointed 
out by McAllister [11], an optimal solution for one of these problems is not necessarily optimal for either of the other 
related problems.

One of the attractions of the MinLA problem is the fact that it can be formulated as a problem of labeling nodes 
of a graph, thus giving it an appealing graph theoretic foundation. Owing also to its prominence as a layout problem, 
a significant number of solution algorithms have been proposed for MinLA. Some of the more notable methods introduced 
since 1990 include a Sequential Spectral Sequencing (SSQ) method by Juvan and Mohar [9] based on computing eigenvectors 
of the Laplacian matrix of the graph, a sequential ordering heuristic by McAllister [11] that constructs solutions based 
on choosing nodes to label according to their degree with respect to previously labeled vertices, a graph-based approach 
using the Gomory–Hu tree method by Adolphson and Hu [1], a combined SSQ/simulated annealing algorithm by Petit 
[12], a multilevel algorithm by Safro, Ron and Brandt [14], and an enhanced two stage simulated annealing algorithm by 
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Rodríguez-Tello et al. [13] that has been shown to outperform previous algorithms. Quite recently a new algorithm by Martí 
et al. [10] incorporating scatter search and path relinking [3,6] yields superior outcomes in terms of both execution time 
and the number of best solutions obtained.

The contribution of this paper departs from the orientation underlying previous leading approaches for the MinLA prob-
lem by developing theorems based on the MinLA graph structure that identify new search neighborhoods and ways they 
can be exploited efficiently by Multi-Neighborhood Search (MNS) algorithms.

In contrast to the work of Rodríguez-Tello et al. [13] and Martí et al. [10], our results do not rely on numerical properties 
of the objective function (proximities of labels to medians of the labels of adjacent nodes), which are highly specific to the 
MinLA problem. Hence our theorems are valid for more general classes of problems that include the MinLA problem as a 
special case. Specifically, we take advantage of the adjacency and non-adjacency differentiation of nodes in the problem 
graph structure to give an effective means for exploiting these neighborhoods in a general setting. Then, we introduce a 
class of additional neighborhoods for the MinLA problem called set-based neighborhoods, and show how to identify an 
optimal solution over each of the neighborhoods in this class. Once again, our results do not rely on numerical properties of 
the MinLA objective function and thus can be applied in broader contexts. Finally, we provide a mechanism for transitioning 
among neighborhoods in the set-based class by means of a frequency-based critical event memory. The results justifying 
these neighborhoods provide a foundation for implementations of MNS methods both for MinLA and for variations that 
incorporate other objectives.

The remainder of this paper is organized as follows. Section 2 presents the problem formulation. Sections 3 and 4
present the proposed new neighborhood classes and associated theoretical results, and Sect. 5 presents conclusions and 
opportunities for future research.

2. Problem formulation

Let G = (N, E) denote a graph with node set N = {1, . . . , n} and edge set E consisting of a subset of (unordered) pairs 
(i, j), i, j, ∈ N .

A linear layout or labeling L of G assigns the integers 1, 2, . . . , n to the nodes of G so that each node has a different 
label. Let L(i) be the label of node i, and let N(i) denote the set of nodes that are neighbors of (adjacent to) node i, hence 
N(i) = { j : (i, j) ∈ E}.

The contribution of node i to the objective function under the labeling L, which we call the value of node i, is given by

V al(i) =
∑

k∈N(i)

∣∣L(i) − L(k)
∣∣

The objective function value for the MinLA problem on the graph G , denoted G V al, is then

G V al = 1

2

∑
i∈N

V al(i) (2.1)

or equivalently

G V al =
∑

(i, j)∈E

∣∣L(i) − L( j)
∣∣ (2.2)

The goal of the MinLA problem is to minimize GVal by choosing a “best assignment” of the labels to the nodes. We take the 
labeling L to be implicit in the preceding definitions of V al(i) and G V al, understanding that these terms may be expressed 
more explicitly as V al(L : i) and G V al(L).

3. Foundations for a class of parameter-based neighborhoods

In this section, we identify a series of theorems concerning relationships implied by the graph structure that can be 
exploited by higher level metaheuristic guidance and special updating algorithms. Our results concern a parameter-based 
class of neighborhoods consisting of two types of neighborhoods that swap labels attached to a pair of selected nodes i and 
j depending on whether i and j are adjacent. Complementing this, in the next section we introduce a set-based class of 
neighborhoods consisting of multiple neighborhoods defined by selecting subsets N0 of non-adjacent nodes and identifying 
an optimal re-assignment of their labels in polynomial time by solving an assignment problem, creating a labeling that 
dominates |N0|! alternatives. Our results for exploiting the structure of the graph G are particularly useful for MNS strategies 
that employ adaptive memory.

As a starting point we introduce two key quantities. For any two distinct nodes i and j, let T ransV al(i, j) denote the 
contribution to the objective function G V al if the label for node i is reassigned (“transferred”) to node j, given by

T ransV al(i, j) =
( ∑

k∈N( j)−{i}

∣∣L(i) − L(k)
∣∣) + δi j

∣∣L(i) − L( j)
∣∣ (3.1)

where δi j = 1 if nodes i and j are neighbors, and δi j = 0 otherwise.
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Thus T ransV al(i, j) identifies the quantity V al( j) that would result if nodes i and j in G swap labels, causing V al( j)
to be replaced by T ransV al(i, j) in the definition of the objective function G V al under this swap. Similarly T ransV al( j, i)
identifies the quantity V al(i) that would result if nodes i and j in G swap labels.

Building on (3.1) we define

S wapV al(i, j) = T ransV al(i, j) + T ransV al( j, i) − (
V al(i) + V al( j)

)
. (3.2)

The choice of the name S wapV al(i, j) is intended to suggest that (3.2) identifies the “swap value” embodied in the 
change in G V al that results when the labels of nodes i and j are exchanged. We now show that this assertion is true, in 
spite of the fact that (3.2) contains no reference to the factor 1/2 in the expression (2.1), and also in spite of the fact that 
the swap makes different changes in V al(i) and V al( j) depending on whether i and j are neighbors.

Observation 1. S wapV al(i, j) equals the change in G V al produced by swapping the labels for nodes i and j.

Proof. By reference to the equivalent definition (2.2) of G V al, the combined contribution of V al(i) and V al( j) to the ob-
jective function before the swap can be expressed as V al(i) + V al( j) − δi j |L(i) − L( j)|. This follows from the fact that when 
nodes i and j are neighbors, the edge (i, j) gets counted twice in V al(i) + V al( j), whereas otherwise δi j = 0 and the extra 
term vanishes. By the same token T ransV al(i, j) and T ransV al( j, i) contribute T ransV al(i, j) + T ransV al( j, i) − δi j |L(i) −
L( j)| to G V al after the swap. The quantity in (3.2) results directly by subtracting the former contribution from the latter.

The foregoing observation can also be inferred from discussions in Martí et al. [10]. It is useful for our purposes to ad-
ditionally note that S wapV al(i, j) is symmetric, that is, S wapV al(i, j) = S wapV al( j, i), whereas in general T ransV al(i, j) �=
T ransV al( j, i). (Swapping L(i) and L( j) is no different from swapping L( j) and L(i), but the new V al( j) = T ransV al(i, j)
will generally differ from the new V al(i) = T ransV al( j, i).)

Among other things we are interested in an effective way of exploiting the graph structure to permit S wapV al(i, j) as 
defined by (3.2) to be identified and updated highly efficiently. We will show how this can be done in the case where 
(i, j) is an edge of the graph, and demonstrate how this can be integrated with a critical event memory defined over edges 
of G to create a higher level search strategy for neighbor swaps. At the same time, we will show how to exploit partial 
information of non-neighboring nodes integrated with critical event memory defined over nodes of G . In this fashion, we 
create two alternating and interacting neighborhood search processes that form the foundation of a multi-neighborhood 
search approach, in one case focusing on neighbor swaps and in the other case focusing on non-neighbor swaps, which 
together drive the overall method to explore the solution space in an effective manner.

For the following results we address the situation where two nodes p and q are selected as a basis for swapping 
their labels, and assume L(p) and L(q) denote the values of these labels before the swap takes place. All other labels 
L(i), i ∈ N − {p, q} are assumed to refer to the corresponding values before changing any labels in the current solution.

We make use of the following definitions:

• V (i) = Value of V al(i) before swapping nodes p and q.
• New V (i) = Value of V al(i) after swapping nodes p and q.
• V (i : j) = T ransV al(i : j), the value of V al(i) when nodes i and j swap labels, but before swapping labels for nodes p

and q.
• New V (i : j) = V (i : j) after swapping labels for nodes p and q.
• S wapV al(i, j) = the change in the objective function by swapping the labels for nodes i and j before swapping the 

labels for nodes p and q.
• New S wapV al(i, j) = the change in the objective function by swapping the labels for nodes i and j after swapping the 

labels for nodes p and q.
• CngV (i) = New V (i) − V (i).
• CngV (i : j) = New V (i : j) − V (i : j).
• Cng S wapV al(i, j) = New S wapV al(i, j) − S wapV al(i, j).

Defining δi j as before, where δi j = 1 if nodes i and j are neighbors, and δi j = 1 otherwise, we may summarize the result of 
the preceding definitions in the following expressions.

V (i) =
∑

k∈N(i)

∣∣L(i) − L(k)
∣∣

V (i : j) =
( ∑

k∈N( j)−{i}

∣∣L(i) − L(k)
∣∣) + δi j

∣∣L(i) − L( j)
∣∣

For convenience we also express the Basic Observation in the form:
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Observation 2.

S wapV al(i, j) = V (i : j) + V ( j : i) − (
V (i) + V ( j)

)
,

and note that the observation implies:

New S wapV al(i, j) = New V (i : j) + New V ( j : i) − (
New V (i) + New V ( j)

)
Cng S wapV al(i, j) = CngV (i : j) + CngV ( j : i) − (

CngV (i) + CngV ( j)
)

The goal is to identify (i : j), CngV ( j : i), CngV (i) and CngV ( j), which will therefore give the updated form of S wapV al(i, j)
after swapping labels for p and q:

New S wapV al(i, j) = S wapV al(i, j) + CngV (i : j) + CngV ( j : i) − (
CngV (i) + CngV ( j)

)
Different outcomes apply to different cases.

Theorem 1. If i �= p, q

Case 1: CngV (i) = 0 if i ∈ N(p) ∩ N(q)

Case 2: CngV (i) = |L(i) − L(q)| − |L(i) − L( j)|if i ∈ N(p) − N(q)

Case 3: CngV (i) = |L(i) − L(p)| − |L(i) − L(q)|if i ∈ N(q) − N(p)

Case 4: CngV (i) = 0 if i /∈ N(p) ∪ N(q)

Proof. From the definition of V (i) we can write

V (i) =
( ∑

k∈N(i)−{p,q}

∣∣L(i) − L(k)
∣∣) + δip

∣∣L(i) − L(p)
∣∣ + δiq

∣∣L(i) − L(q)
∣∣

After swapping L(p) and L(q) for nodes p and q we have |L(i) − L(p)| → |L(i) − L(q)| and |L(i) − L(q)| → |L(i) − L(p)|, and 
consequently, assuming i �= p, q (so that |L(i) − L(k))| does not change)

New V (i) =
( ∑

k∈N(i)−{p,q}

∣∣L(i) − L(k)
∣∣) + δip

∣∣L(i) − L(q)
∣∣ + δiq

∣∣L(i) − L(p)
∣∣

This yields

CngV (i) = δip
∣∣L(i) − L(q)

∣∣ + δiq
∣∣L(i) − L(p)

∣∣ − (
δip

∣∣L(i) − L(p)
∣∣ + δiq

∣∣L(i) − L(q)
∣∣)

= δip
(∣∣L(i) − L(q)

∣∣ − ∣∣L(i) − L(p)
∣∣) + δiq

(∣∣L(i) − L(p)
∣∣ − ∣∣L(i) − L(q)

∣∣)
An enumeration of cases gives the result of the Theorem, according to the possible values of δip and δiq . �
Theorem 2. When p and q are neighbors

New V (p) =
( ∑

i∈N(p)

∣∣L(q) − L(i)
∣∣) + ∣∣L(q) − L(p)

∣∣

New V (q) =
( ∑

i∈N(q)

∣∣L(p) − L(i)
∣∣) + ∣∣L(p) − L(q)

∣∣

and when p and q are not neighbors

New V (p) =
∑

i∈N(p)

∣∣L(q) − L(i)
∣∣

New V (q) =
∑

i∈N(q)

∣∣L(p) − L(i)
∣∣

Proof. Write V (p) in the form

V (p) =
( ∑

i∈N(p)−{q}

∣∣L(p) − L(i)
∣∣) + δpq

∣∣L(p) − L(q)
∣∣

This implies, after swapping labels for nodes p and q:
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New V (p) =
( ∑

i∈N(p)−{q}

∣∣L(q) − L(i)
∣∣) + δpq

∣∣L(p) − L(q)
∣∣

If p and q are not neighbors, this reduces to

New V (p) =
∑

i∈N(p)

∣∣L(q) − L(i)
∣∣

While if they are neighbors, it reduces to

New V (p) =
( ∑

i∈N(p)

∣∣L(q) − L(i)
∣∣) + ∣∣L(p) − L(q)

∣∣

since allowing i ∈ N(p) in place of i ∈ N(p) − {q} only adds the term L(p, q) = 0. �
Theorem 3. If i �= p, q and j �= p, q, then

Case 1 (i : j): CngV (i : j) = 0 if j ∈ N(p) ∩ N(q)

Case 2 (i : j): CngV (i : j) = |L(i) − L(q)| − |L(i) − L( j)| if j ∈ N(p) − N(q)

Case 3 (i : j): CngV (i : j) = |L(i) − L(p)| − |L(i) − L(q)| if j ∈ N(q) − N(p)

Case 4 (i : j): CngV (i : j) = 0 if j /∈ N(p) ∪ N(q)

Proof. Rewrite V (i : j) in the form

V (i : j) =
( ∑

k∈N( j)−{i,p,q}

∣∣L(i) − L(k)
∣∣) + δi j

∣∣L(i) − L( j)
∣∣ + δip

∣∣L(i) − L(p)
∣∣ + δ jq

∣∣L(i) − L(q)
∣∣

After swapping label L(p) and label L(q) for nodes p and q we have

New V (i : j) =
( ∑

k∈N( j)−{i,p,q}

∣∣L(i) − L(k)
∣∣) + δi j

∣∣L(i) − L( j)
∣∣ + δip

∣∣L(i) − L(q)
∣∣ + δ jq

∣∣L(i) − L(p)
∣∣

Hence

CngV (i : j) = Li j(i, j) + L jp(i,q) + L jq(i, p) − (
Li j(i, j) + L jp(i, p) + L jq(i,q)

)
CngV (i : j)

= δi j
∣∣L(i) − L( j)

∣∣ + δ jp
∣∣L(i) − L(q)

∣∣ + δ jq
∣∣L(i) − L(p)

∣∣
− (

δi j
∣∣L(i) − L( j)

∣∣ + δ jp
∣∣L(i) − L(p)

∣∣ + δ jq
∣∣L(i) − L(q)

∣∣)
= δ jp

∣∣L(i) − L(q)
∣∣ + δ jq

∣∣L(i) − L(p)
∣∣ − (

δ jp
∣∣L(i) − L(p)

∣∣ + δ jq
∣∣L(i) − L(q)

∣∣)
= δ jp

(∣∣L(i) − L(q)
∣∣ − ∣∣L(i) − L(p)

∣∣) + δ jq
(∣∣L(i) − L(p)

∣∣ − ∣∣L(i) − L(q)
∣∣)

An enumeration of cases gives the result of the Theorem, according to the four possible combinations of values for δ jp
and δ jq . �
Theorem 4. If i �= p, q and i ∈ N(p):

CngV (p : i) =
( ∑

j∈N(i)−{p,q}

(∣∣L(q) − L( j)
∣∣ − ∣∣L(p) − L( j)

∣∣)) + ∣∣L(i) − L(q)
∣∣ − ∣∣L(i) − L(p)

∣∣

Moreover, if L(p) is temporarily reset by L(p) = L(i), restricted to encountering p in the set of nodes j ∈ N(i) then

CngV (p : i) =
( ∑

j∈N(i)

(∣∣L(q) − L( j)
∣∣ − ∣∣L(p) − L( j)

∣∣)) + δiq
∣∣L(p) − L(q)

∣∣

Proof. Write V (p : i) in the form:

V (p : i) =
( ∑ ∣∣L(p) − L( j)

∣∣) + δip
∣∣L(i) − L(p)

∣∣ + δiq
∣∣L(p) − L(q)

∣∣

j∈N(i)−{p,q}
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Since i and p are neighbors, we have:

V (p : i) =
( ∑

j∈N(i)−{p,q}

∣∣L(p) − L( j)
∣∣) + ∣∣L(i) − L(p)

∣∣ + δiq
∣∣L(p) − L(q)

∣∣

After swapping labels for p and q this gives

New V (p : i) =
( ∑

j∈N(i)−{p,q}

∣∣L(q) − L( j)
∣∣) + ∣∣L(i) − L(q)

∣∣ + δiq
∣∣L(p) − L(q)

∣∣

Consequently

CngV (p : i) =
( ∑

j∈N(i)−{p,q}

(∣∣L(q) − L( j)
∣∣ − ∣∣L(p) − L( j)

∣∣)) + ∣∣L(i) − L(q)
∣∣ − ∣∣L(i) − L(p)

∣∣

which is the first result identified in the theorem. Now if we set L(p) = L(i), restricted to accessing p as one of the elements 
j ∈ N(i), then the expression∑

j∈N(i)−{q}

(∣∣L(q) − L( j)
∣∣ − ∣∣L(p) − L( j)

∣∣) (3.3)

can be written( ∑
j∈N(i)−{p,q}

(∣∣L(q) − L( j)
∣∣ − ∣∣L(p) − L( j)

∣∣)) + ∣∣L(q) − L(i)
∣∣ − ∣∣L(p) − L(i)

∣∣

and the latter is identical to the value derived for CngV (p : i). Moreover, expression (3.3) is the same as( ∑
j∈N(i)

(∣∣L(q) − L( j)
∣∣ − ∣∣L(p) − L( j)

∣∣)) − δiq
(∣∣L(q) − L(q)

∣∣ − ∣∣L(p) − L(q)
∣∣)

and upon dropping the 0 term |L(q) − L(q)|, we obtain the second expression identified in the theorem. �
Theorem 5. New S wapV al(p, q) = −S wapV al(p, q).

Proof. The theorem results from expanding the terms that arise upon applying the definition of S wapV al(p, q) to express 
New S wapV al(p, q). The theorem is also justified by the following simple argument. When the labels for p and q that have 
been swapped to produce S wapV al(p, q) are swapped back to produce New S wapV al(p, q), the net change in the objective 
function must be 0 since we have returned to the starting point. Consequently, New S wapV al(p, q) must be the negative of 
S wapV al(p, q). �

The foregoing theorems that give expressions for the quantities CngV (i : j) and CngV (p : i), etc., also similarly give 
expressions for the quantities CngV ( j : i) and CngV (q : i), etc., simply by interchanging the roles of i and j and of p and q. 
In this fashion, on the assumption that a move is first made that swaps the labels for nodes p and q, the foregoing results 
cover all possible cases for identifying outcomes of moves that swap labels L(i) and L( j) for additional pairs of nodes i
and j.

Evidently, by applying the foregoing results to determine Cng S wapV al(i, j) = CngV (i : j) + CngV ( j : i) − (CngV (i) +
CngV ( j)), the amount of computation to determine New S wapV al(i, j) = S wapV al(i, j) + CngV al(i, j), is exceedingly small 
compared to the amount required to determine New S wapV al(i, j) from its original definition. We identify the effort in-
volved in this updating computation more precisely as follows.

Theorem 6 (Computational effort). Define the following two sets of nodes for which the quantities V al(i) and S wapV al(i, j), change 
as a result of swapping the labels for nodes p and q:

V alCng Set = {
i : New V al(i) �= V al(i)

}
S wapCng Set = {

(i, j) : New S wapV al(i, j) �= S wapV al(i, j)
}

Then

V alCng Set = {p,q} ∪ (
N(p) − N(q)

) ∪ (
N(q) − N(p)

)
S wapCng Set = {

(p,q)
} ∪ {

(i, j) : i ∈ V alCng Set, j ∈ N(i)
}
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Begin with N0 = ∅ and N1 = N .
While N1 �= ∅

Select a node i ∈ N1 and update N0 and N1 as follows:
N0 := N0 ∪ {i}
N1 := N1\(N(i) ∪ {i})

End While

Fig. 1. Algorithm for Generating N0.

Moreover, the amount of computational effort to perform the updates identified in Theorems 1–5 is given by the size of V alCng Set and 
S wapCng Set, and hence are given respectively by O (v0) and O (v1) where

v0 = ∣∣N(p)
∣∣ + ∣∣N(q)

∣∣
v1 = ∣∣N(p)

∣∣ + ∣∣N(q)
∣∣ +

∑
i∈N(p)∪N(q)

∣∣N(i)
∣∣.

Proof. The identification of V alCng Set and S wapCng Set results follows from Theorems 1 and 3 for the cases where i �= p, q
and j �= p, q and follows from Theorems 2 and 4 for the cases where one of i and j is the same as p or q. The determination 
of v follows from the fact that O (|N(p)| + |N(q)|) effort is required to determine New V al(i) for i ∈ N(p) ∪ N(q) (hence for 
i ∈ V alCng Set) by Theorem 2 and also to determine NewCngV al(p : i) and NewCngV al(q : i) by Theorem 4. The component ∑

i∈N(p)∪N(q) |N(i)| in the definition of v is a bound on |S wapCng Set|, and each of the computations for elements of this 
set, as given in Theorem 3, is of order O (1). Likewise, the update of Theorem 5 is O (1). �
Complexity analysis. Because of Theorem 6, we see that the time complexity of performing a swap operation that exchanges 
the labels for nodes p and q in accordance with the stipulations of Theorems 1 to 5 is precisely O (v0) + O (v1), for v0 and 
v1 as defined above. This quantity, which is composed of simple sums over the sets N(p) and N(q), and over the sets 
N(i) for i in the union of N(p) and N(q), can examine each edge in these sets at most twice (once for each of the edge’s 
endpoints) and hence is bounded above by twice the number of edges in E .

As demonstrated by the preceding computational analysis, Theorems 1–5 yield exceedingly efficient updates as the foun-
dation of an algorithm that employs the quantities V al(i) and S wapV al(i, j) for evaluating potential swap moves. The fact 
that V alCng Set is somewhat smaller than S wapCng Set (v0 versus v1) gives rise to a variation of our method described 
below.

4. A class of set-based neighborhoods

We now introduce a class of set-based neighborhoods for the MinLA problem and identify rules for transitioning ef-
ficiently from one neighborhood to another. Set-based neighborhoods may be contrasted with the commonly employed 
parameter-based neighborhoods, such as k-flip neighborhoods for binary optimization problems and k-opt neighborhoods 
for traveling salesman problems where a value of the parameter k is selected (typically a small one such as 1, 2, 3, etc.) and 
then the neighborhood consists of all (non-overlapping) legitimate moves that can be generated for this value of k. In such 
k-flip neighborhoods, not all choices of k may be legitimate or need to be generated when k is successively incremented 
to overcome local optimality. For example, there are no 1-opt moves for traveling salesman problems and it is well-known 
that a number of k-opt moves can be generated by sequences of more elementary 2-opt moves, but the standard approach 
for any selected k is to systematically enumerate the available move configurations as a means to select one of them and 
obtain the next solution in the neighborhood.

A set-based neighborhood, by contrast, consists of selecting some set S of elements that are used to define a solution, 
and to generate new solutions that can be obtained by restricting attention to operations on the set S . Thus the choice 
of S replaces the choice of k as the object of interest, and as in the case of k, some choices of S may be excluded from 
consideration. Likewise, some structures generated relative to a given S may be excluded (just as in the case for a given k).

Our interest in set-based neighborhoods in the present context is motivated by the fact that we are able to identify a 
particular class of such neighborhoods, i.e., a particular characterization of the admissible sets S , for which it is unnecessary 
to enumerate configurations over S to obtain one that may be selected to give the next solution. Instead, we can identify 
the best configuration in a single step by means of a polynomial-time algorithm, even though the number of these configu-
rations is exponentially large. To do this we once again draw on the adjacent versus non-adjacent differentiation underlying 
the analyses of the preceding section, but do so in a different manner.

Generating sets for MinLA and determining best solutions over them. Consider a current labeling L = {L(i) : i ∈ N} and 
generate a node set N0 ⊂ N by the procedure in Fig. 1.

To identify a best solution relative to N0, let L0 = {L(i) : i ∈ N0}. We now create a bipartite network assignment problem 
P0 on the graph G0 = (N, L0, E0) where E0 = {(p, q) : p ∈ N0, q ∈ L0}, and the cost c(p, q) for edge (p, q) ∈ E0 is given by ∑

k∈N(p) |q − L(k)|. We identify an assignment solution by (p, q(p)), p ∈ N0, where q = q(p) ∈ L0.
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Theorem 7. An optimal min cost solution to P0 consisting of edges (p, q(p)), p ∈ N0, q(p) ∈ L0 , identifies a feasible labeling of 
G that retains the labels of N\N0 unchanged, and assigns the label q(p) to each node p ∈ N0 . Moreover, this labeling is an optimal 
labeling of G subject to the labeling over N\N0, and is the best among n0! labelings of G for n0 = |N0|.

Proof. The Algorithm for Generating N0 evidently yields N0 as a maximal independent (stable) set of nodes in G , such that 
no edge ( j, j) exists in E such that i, j ∈ N0. By the structure of G0 determined by the non-adjacency of nodes in N0, any 
relabeling of G using the labels of L0 over N0, while retaining the labels of N\N0 unchanged, must be feasible labeling of G . 
The cost c(p, q) equals the quantity V al(p) if the label q is assigned to node p ∈ N0, (in place of its current label L(p)). 
Consequently, the redefinition of the V al(p) quantities determined by an assignment (p, q(p)) is clearly valid, and verifies 
the optimality of the min cost solution (p, q(p)) to P0 for relabeling the nodes of N0. This solution evidently is best among 
n0! labelings of G . �

We note that the exponential value n0! can be exceedingly large even for relatively small values of n0. (For example 
n0! = 1,307,674,368,000 for n0 = 15, and n0! is more than 106 larger for n0 = 20.) The combinatorial leverage that results 
from the ability to obtain solutions that dominate exponential numbers of alternatives by the polynomial effort of solving a 
network assignment problem is an attractive feature of our present class of set-based neighborhoods.1

Rules for transitioning between the set-based neighborhoods. We now address the challenge of identifying useful rules 
for transitioning from one of the N0-based neighborhoods to another. In the case of parameter-based neighborhoods, the 
possible transition rules are based on simple protocols such as round-robin (token ring) selection, repeated reversion to the 
simplest neighborhood when improvement occurs, randomized selection, and so on. Here, a biased randomized protocol 
is a viable option, but we are additionally motivated to account for the composition of the sets N0 as a foundation for 
transitioning from one to another. Specifically, we seek to generate new sets N0 whose composition differs significantly 
from those previously generated, or from those generated over a recent time span (when labeling changes may make it 
relevant to re-visit previous N0 sets).

To generate N0 sets that are diverse, we employ a type of frequency-based memory called critical event memory, also 
called tabu memory for strategic oscillation [5], where the critical events correspond here to establishing a complete labeling 
over a current N0. Hence we are interested in the frequencies that a given node has participated in one of these relabeling 
events. For this purpose, we maintain a count Ci = the number of times node i ∈ N has been selected to belong to one 
of the r most recent node sets N0, where r can vary to become smaller when an improved labeling has been found. To 
manage this memory we maintain a record of the increments C(h) for the h = 1 to r most recent sets N0 generated, where 
Ci(h) = 1 if i ∈ N0 for the h most recent of these sets and 0 otherwise. Then, as long as r is unchanged, the appropriate 
update is given by Ci := Ci − Ci(r) + Ci(1), where Ci(r) refers to the increment for the rth (oldest) N0 before examining the 
new N0 and Ci(1) refers to the increment determined by the new N0. (Here, we implicitly renumber the increment vectors 
so they always range from 1 to r, though this can be handled by having a shifting pointer to the vector that is first.)

Using the count vector C in this way, we now generate new node sets N0 by referring to C in the choice of node i at 
each execution of the Algorithm for Generating N0. In particular, the choice step that says “Select a node i ∈ N1” becomes

Select a node i ∈ N1 such that i = arg min{C j : j ∈ N1}, breaking ties randomly.

A MNS algorithm for MinLA can then alternate between selecting the set-based N0 neighborhoods and the coordinated 
neighborhoods of the preceding sections, as by transferring from one class of neighborhoods to the other when improve-
ments via the given class become difficult to find.

5. Conclusions

We have introduced theorems for exploiting the structure of the graph G of the MinLA problem by identifying properties 
of complementary neighborhoods that can be incorporated into multi-neighborhood search algorithms. We have further 
introduced a class of set-based neighborhoods that provide an opportunity to generate labelings for the MinLA problem in 
polynomial time that dominate exponential numbers of other labelings.

Our results are independent of the numerical properties of the MinLA objective function, which relate to identifying the 
medians of labels assigned to neighbors of a given label, and thus can be used as a foundation for MNS approaches for other 
more general problems. A variety of implementations of our results are possible depending on the protocol of the specific 
form of MNS employed, inviting future research to explore such alternatives to determine which ones prove most effective 
for particular problem classes.

1 A different but related class of set-based neighborhoods arises for the TSP problem by segregating odd and even nodes in a TSP tour. Then an assignment 
problem that re-assigns the positions of either the odd or even nodes produces an optimal tour subject to the restriction that the other nodes retain their 
odd-even position. In this case the transition between neighborhoods is trivial, progressing from odd to even and back, and the search terminates when 
neither option yields and improvement. Variations arise by treating node sequences as single nodes [4,7].
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