
ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

European Journal of Operational Research 0 0 0 (2017) 1–14

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Logical and inequality implications for reducing the size and difficulty

of quadratic unconstrained binary optimization problems

Fred Glover a , Mark Lewis b , ∗, Gary Kochenberger c

a School of Engineering & Science, University of Colorado, Boulder, CO 80309, USA
b Missouri Western State University, Saint Joseph, MO 64507, USA
c School of Business, University of Colorado, 1250 14th St., Denver, CO 80202, USA

a r t i c l e i n f o

Article history:

Received 14 March 2017

Accepted 14 August 2017

Available online xxx

Keywords:

Combinatorial optimization

Quadratic unconstrained binary

optimization

Preprocessing

Graph reduction

Quantum annealing

a b s t r a c t

The quadratic unconstrained binary optimization (QUBO) problem arises in diverse optimization applica-

tions ranging from Ising spin problems to classical problems in graph theory and binary discrete opti-

mization. The use of preprocessing to transform the graph representing the QUBO problem into a smaller

equivalent graph is important for improving solution quality and time for both exact and metaheuris-

tic algorithms and is a step towards mapping large scale QUBO to hardware graphs used in quantum

annealing computers. In an earlier paper a set of rules was introduced that achieved significant QUBO

reductions as verified through computational testing. Here this work is extended with additional rules

that provide further reductions that succeed in exactly solving 10% of the benchmark QUBO problems.

An algorithm and associated data structures to efficiently implement the entire set of rules is detailed

and computational experiments are reported that demonstrate their efficacy.

© 2017 Elsevier B.V. All rights reserved.

1

n

� =

j

U

M

s

r

x

w

c

i

m

Q

v

t

e

(

2

K

m

fl

g

i

G

a

a

m

I

h

0

. Introduction

Given a graph G = [N, E] where N = {1, 2, …, i , … n } where

 = |N| is the number of nodes in the graph and E = { (i,j) : i, j ∈ N, i

 j } is the set of ordered pairs of edges (arcs) between nodes i and

 . Denoting the weight of edge (i, j) by c ij , we define the Quadratic

nconstrained Binary Optimization Problem (QUBO) as:

aximize : x o =

∑

i ∈ N c ii x i +

∑

(i, j) ∈ E
c i j x i x j

ubject to x i = { 0 , 1 } where i ∈ N

The equivalent compact definition with the coefficients of (1)

epresented as a Q matrix is:

 o = Max x t Qx : x ∈ { 0 , 1 } n

here Q is an n -by- n square symmetric matrix of constant coeffi-

ients. We have represented the diagonal coefficients c ii of Q by c i
n (1) for convenience, and observe that the term x c x from the
i ii i

∗ Corresponding author.

E-mail addresses: fred.glover@colorado.edu (F. Glover),

lewis14@missouriwestern.edu (M. Lewis), gary.kochenberger@ucdenver.edu

(G. Kochenberger).

1

x

o

e

t

ttp://dx.doi.org/10.1016/j.ejor.2017.08.025

377-2217/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
 matrix representation reduces to c i x i since x i
2 = x i for a binary

ariable. As a clarification of terminology, the Q matrix represents

he graph G with nodes N having weights c i on the Q diagonal (lin-

ar elements) and edges E having weights c ij on the Q off-diagonal

quadratic elements).

. Literature review

QUBO has been extensively studied (see the survey

ochenberger et al. (2014)) and is used to model and solve

any categories of optimization problems including network

ows, scheduling, max-cut, max-clique, vertex cover and other

raph and management science problems A major benefit of QUBO

s that it provides a unified modeling framework (Kochenberger,

lover, Alidaee, & Rego, 2004) such that one QUBO algorithm

pplies to many problem types. NP problems such as graph

nd number partitioning, covering and set packing, satisfiability,

atching, spanning tree as well as others can be converted to

sing form as shown in Lucas (2014) . Ising problems replace x ∈ {0,

} n by x ∈ { −1, 1} n and can be put in the form of (1) by defining

 j’ = (x j + 1)/2 and then redefining x j to be x j ’ . Ising problems are

ften solved with annealing approaches in order to find a lowest

nergy state.

Although QUBO problems are NP-complete, good solutions

o large problems can be found using modern metaheuristics
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:fred.glover@colorado.edu
mailto:mlewis14@missouriwestern.edu
mailto:gary.kochenberger@ucdenver.edu
http://dx.doi.org/10.1016/j.ejor.2017.08.025
http://dx.doi.org/10.1016/j.ejor.2017.08.025

2 F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

3

x

o∑

c

x

x

a
∑

t

e

x

b

x

a

x

x

t

i

i

c

a

d

N

e

c

u

R

h

i

a

l

t

s

x

t
(Glover, Kochenberger, & Alidaee, 1998) . In addition, a new type

of quantum computer based on quantum annealing with an inte-

grated physical network structure of qubits known as a Chimera

graph has also been demonstrated to very quickly find good solu-

tions to QUBO in Boixo et al. (2014) .

Related previous work on reducing the size of the QUBO prob-

lem can be found in the work of Kennington and Lewis (2004) who

report rules for reducing multi-commodity networks based on

the structure of the network. For certain classes of very struc-

tured problems such as vertex cover, max-cut and max-clique, the

work of Boros, Hammer, and Tavares (2006a) shows that com-

plete reduction can be achieved via computation of the roof du-

als of the associated capacitated implication network in associa-

tion with rules involving first and second order derivatives. Simi-

larly, maximum flow and multi-commodity flow networks can be

used to help determine QUBO optimal variable assignments and

lower bounds (Adams & Dearing, 1994; Wang & Kleinberg, 2009).

The paper by Lewis and Glover (2016) presents and tests four rules

based directly on the structure of the coefficients in the Q matrix,

iteratively applying them to reduce the size of the QUBO problem

until no further reductions are possible. This work also explores

transformations to reduce a node’s edge density (with application

to hardware graphs such as the Chimera (Boothby & Roy, 2016))

and discusses applications to sensitivity analysis.

Benchmark QUBO problems are often highly structured, or

have uniform distributions, or are dense, or random but not nec-

essarily connected (Pardalos & Rodgers, 1990) . Classic problems

with wide application such as the maximum cut problem are

highly structured, e.g. all quadratic coefficients are negative and

all linear coefficients are positive, or quadratic coefficients are -

1 s and linear coefficients are positive sums of quadratic coeffi-

cients. The rules presented here for predetermining optimal val-

ues for qualifying variables are applicable to any QUBO problem,

but are most applicable to Q matrices having structural character-

istics associated with real-world graphs (sometimes called com-

plex networks in Kim and Wilhelm (2008) . Rules involving logi-

cal conclusions from linear constraints in a constrained quadratic

binary optimization were reported in Hansen, Jaumard, and

Minoux (1986) .

The remainder of this paper is organized as follows. Section

3 presents the rules for assigning values to single variables and

for generating inequalities and equations involving pairs of vari-

ables, thus reducing Q both by value assignments and by set-

ting variables equal to other variables or to complements of other

variables. Section 4 introduces more complex rules that allow

pairs of variables to receive values simultaneously. Special im-

plementation procedures are also identified in Sections 3 and

4 to permit the associated reductions of Q to be executed ef-

ficiently. A pseudocode for implementing the rules and obser-

vations of the preceding sections is given in Sections 5 , and

6 presents the experimental design factors, test run parameters

and analysis of the test results that compare the outcomes of solv-

ing QUBO problems using CPLEX with and without our prepro-

cessing rules. Finally, our summary and conclusions are given in

Section 7 .

3. Rules for fixing variables and reducing Q

In this section we present an analysis that yields rules for re-

ducing Q that include the rules of Lewis and Glover (2016) as well

as additional rules that allow Q to be reduced more thoroughly. In

the process we also identify relationships that give a foundation

for more complex rules described in Section 4 that yield further

reductions.
h

Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
.1. Assigning values to single variables

Key Observation . The objective function

 o =

∑

(c i x i : i ∈ N) +

∑

(c ij x i x j : i , j ∈ N , i � = j)

r

i ∈ N c ii x i +

∑

(i, j) ∈ E
c i j x i x j (1)

an be written for a complete graph as

 o = c i x i +

∑

(c k x k : k ∈ N \ { i })
+

∑

x k

(∑

(c kj x j : j ∈ N \ { k }) : k ∈ N

)
(2)

The last term in (2) can be written as

 i

(∑

c ij x j : j ∈ N \ { i }
)

+

∑

(x k

(∑

(c kj x j : j ∈ N \ { k }) : k ∈ N \ { i }
)

(2.1)

nd the last term of (2.1) can be written as

(x k (c ki x i +

∑

(c kj x j : j ∈ N \ { k , i }) : k ∈ N \ { i })
= x i (

∑

(c ki x k : k ∈ N \ { i })
+

∑

(x k
∑

(c kj x j : j ∈ N \ { k , i }) : k ∈ N \ { i }) . (3)

Collecting terms from (2), (2.1) and (3) containing x i , writing

he 1st term of (3) as x i �c ji x j : j ∈ N \ {i}), and defining d ij = c ij + c ji ,

nables us to write

 o (x i) = x i (c i +

∑

(d ij x j : j ∈ N \ { i })) (A1)

The residual terms that exclude x i from (2) and (3) can be com-

ined to give

 o (N \{ i }) =

∑

(c k x k : k ∈ N \ { i })
+

∑

(x k
∑

(c kj x j : j ∈ N \ { k , i }) : k ∈ N \ { i }) (B1)

nd hence

 o = x o (x i) + x o (N \{ i }) .
We write (A1) as

 o (x i) = x i V (x i) where V (x i) = c i +

∑

(d ij x j : j ∈ N \ { i }) (A1

o)

Implementation Remark 1 : A value c o is maintained to identify

he amount added to the objective function, where c o is initial-

zed at 0 before making any changes. Then setting x i = 1 results

n c o : = c o + c i , and also causes Q to be updated by setting c j : =
 j + d ij for all j ∈ N \ {i}. This update results from the fact that c ij x i x j
nd c ji x j x i are replaced, respectively, by c ij x j and c ji x j , hence adding

 ij = c ij + c ji to c j . After this update, N itself changes by setting N: =
 \ {i}, and consequently each future update of Q can be limited to

lements of the current N. The set N is similarly updated to be-

ome N: = N \ {i} when x i is assigned a value of 0, though without

pdating either c o or Q.

Note we assume that N is always updated as in Implementation

emark 1 so that N does not contain the index of any variable that

as been assigned a value. Hence the stipulation k ∈ N for some

ndex k implies that x k has not been previously set to 0 or 1 by

ny of the rules given below. More generally, throughout the fol-

owing, any index mentioned will always be assumed to belong to

he current index set N.

For a given value v = 0 or 1, we say x i = v is optimal if x i = v in

ome optimal QUBO solution, and say x i = v is uniquely optimal if

 i = v in all optimal QUBO solutions.

Define Min(V(x i)) (Max(V(x i))) to be a lower (upper) bound on

he value of V(x i) that will maximize x o (x i). Since x i ≥ 0, we also

ave x o (x) ≥ x Min(V(x)) and x o (x) ≤ x Max(V(x))
i i i i i i

ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14 3

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

L

M

P

M

o

L

M

P

M

o

v

b

D

o

P

t

<

L

o

P

N

x

c

0

t

p

b

p

m

D

d

3

a

V

u

L

s

s

P

s

p

i

L

m

a

P

i

x

s

p

V

n

o

t

s

a

b

s

i

P

f

N

<

L

s

1

x

P

f

N

>

L

a

2

i

s

x

1

x

R

d

3

b

1

v

a

V

t

c

n

x

V

In the following, we make repeated use of the following results:

emma 1.0. If Min(V(x i)) ≥ 0, then x i = 1 is optimal, and if

in(V(x i)) > 0, then x i = 1 is uniquely optimal.

roof. By (A1 o), for x i = 0, x o (x i) = 0 and for x i = 1, x o (x i) = V(x i) ≥
in(V(x i)). Hence x i = 1 is optimal if Min(V(x i)) ≥ 0 and uniquely

ptimal if Min(V(x i)) > 0.

emma 2.0. If Max(V(x i)) ≤ 0, then x i = 0 is optimal, and if

ax(V(x i)) < 0 then x i = 0 is uniquely optimal.

roof. Again by (A1 o), for x i = 0, x o (x i) = 0 and for x i = 1, x o (x i) ≤
ax(V(x i)). Hence x i = 0 is optimal if Max(V(x i)) ≤ 0 and uniquely

ptimal if Max(V(x i)) < 0.

Let D i
– and D i

+ , respectively, denote the sum of the negative d ij

alues and the positive d ij values over j ∈ N \ {i}, which we express

y

 i
− =

∑

(d ij : d ij < 0 , j ∈ N \ { i }) and D i
+

=

∑

(d ij : d ij > 0 , j ∈ N \ { i }) .
Rule 1.0 : If c i + D i

– ≥ 0 (> 0), then x i = 1 is optimal (uniquely

ptimal).

roof. From the definition V(x i) = c i + �(d ij x j : j ∈ N \ {i}), by set-

ing each x j , j ∈ N \ {i}) so that x j = 0 for d ij > 0 and x j = 1 for d ij

 0, it follows that c i + D i
– = Min(V(x i)). Then Rule 1.0 follows from

emma 1.0 .

Rule 2.0 : If c i + D i
+ ≤ 0 (< 0), then x i = 0 is optimal (uniquely

ptimal).

roof. Again drawing on the definition V(x i) = c i + �(d ij x j : j ∈
 \ {i}), by setting each x j , j ∈ N \ {i}), so that x j = 1 for d ij > 0 and

 j = 0 for d ij < 0, it follows that c i + D i
+ = Max(V(x i)), and the con-

lusion of Rule 2.0 follows from Lemma 2.0 .

Note that the inequality c i + D i
– ≥ 0 in Rule 1.0 implies c i ≥

, and the inequality c i + D i
+ ≤ 0 in Rule 2.0 implies c i ≤ 0 (and

hese implications also hold by replacing “≥” with “> ” and by re-

lacing “≤” with “< ”).

Implementation Remark 2 : Once the values D i
– and D i

+ have

een computed, they can be updated as follows to avoid recom-

uting them. At the same time the updates of Implementation Re-

ark 1 are performed, when x i is assigned a value of 0 or 1 then

 j
– and D j

+ are updated for j ∈ N \ {i} by setting D j
–: = D j

– – d ij for

 ij < 0 and D j
+ : = D j

+ – d ij for d ij > 0.

.1.1. Basic rules from combining implications from two variables x i
nd x h

For convenience, we write V(x i) in the form

 (x i) = c i + d ih x h +

∑

(d ij x j : j ∈ N \ { i , h }) (A1:h)

Throughout the following, we write d hi as d ih , since these val-

es are the same.

emma 1.1. If Min(V(x i : x h) ≥ 0, then x i ≥ x h in some optimal QUBO

olution and if Min(V(x i : x h) > 0, then x i ≥ x h in all optimal QUBO

olutions.

roof. If x h = 0 is optimal, then x i ≥ x h for any value of x i . If in-

tead x h = 1, then the inequality Min(V(x i): x h = 1) ≥ 0 (> 0 im-

lies x i = 1 is (uniquely) optimal by Lemma 1.0 , and hence x i ≥ x h
n some (all) optimal QUBO solution(s).

emma 2.1. If Max(V(x i): x h = 1) ≤ 0, then x i + x h ≤ 1 in some opti-

al QUBO solution and if Max(V(x i): x h = 1) < 0, then x i + x h ≤ 1 in

ll optimal QUBO solutions.
Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
roof. If x h = 0 is optimal, then x i + x h ≤ 1 for any value of x i . If

nstead x h = 1, the inequality Max(V(x i : x h = 1) ≤ 0 (< 0) implies

 i = 0 is (uniquely) optimal by Lemma 2.0 and hence x i + x h ≤ 1 in

ome (all) optimal QUBO solution(s).

To apply these results, we note that when x h = 1, (A1:h) im-

lies

 (x i : x h = 1) = c i + d ih +

∑

(d ij x j : j ∈ N \ { i , h }) (A1 : x h = 1)

For all of the rules that follow, we assume Rules 1.0 and 2.0 do

ot assign a value to either x i or x h (when the latter takes the role

f x i). We will first state these rules separately, in order to justify

heir respective conclusions. Afterward, in the next subsection we

ummarize all of the results that yield the same conclusion and

lso indicate how to enforce the inequalities implied by these rules

y weighting certain coefficients appropriately.

Rule 1.1 . Assume d ih > 0. If c i + d ih + D i
– ≥ 0, then x i ≥ x h in

ome optimal QUBO solution and if c i + d ih + D i
– > 0, then x i ≥ x h

n all optimal QUBO solutions.

roof. From (A1:x h = 1) it follows that a legitimate value

or Min(V(x i): x h = 1)is c i + d ih + �(d ij : d ij < 0, j ∈
 \ {i,h}) = c i + d ih + D i

– since d ih > 0 implies D i
– = �(d ij : d ij

 0: j ∈ N \ {i,h}). Then Rule 1.1 is a direct consequence of

emma 1.1 .

Rule 1.1 is also valid for d ih = 0, but this is an uninteresting case

ince then Rule 1.1 is dominated by Rule 1.0, which yields x i = 1.

Rule 2.1 . Assume d ih < 0. If c i + d ih + D i
+ ≤ 0, then x i + x h ≤

 in some optimal QUBO solution and if c i + d ih + D i
+ < 0 then

 i + x h ≤ 1 in all optimal QUBO solutions.

roof. From (A1:x h = 1) it follows that a legitimate value

or Max(V(x i): x h = 1)is ci + dih + �(dij: dij > 0, j ∈
 \ {i,h}) = ci + dih + Di + since dih < 0 implies Di + = �(dij: dij

 0: j ∈ N \ {i,h}). Then Rule 2.1 is a direct consequence of

emma 2.1 .

As in the case of Rule 1.1, Rule 2.1 is also valid for d ih = 0, but

gain this is uninteresting since then Rule 2.1 is dominated by Rule

.0 which implies x i = 0.

Rules 1.1 and 2.1 can give different rules by interchanging the

ndexes i and h as follows:

Rule 1.1 ′ . Assume d ih > 0. If c h + d ih + D h
– ≥ 0, then x h ≥ x i in

ome optimal QUBO solution and if c h + d ih + D h
– > 0, then x h ≥

 i in all optimal QUBO solutions.

Rule 2.1 ′ . Assume d ih < 0. If c h + d ih + D h
+ ≤ 0, then x i + x h ≤

 in some optimal QUBO solution and if c h + d ih + D h
+ < 0 then

 i + x h ≤ 1 in all optimal QUBO solutions.

It is interesting that Rule 1.1 ′ yields a different conclusion from

ule 1.1, but Rule 2.1 ′ yields the same conclusion as Rule 2.1 under

ifferent assumptions.

.1.2. Rules obtained by complementing variables

The foregoing rules can be extended to produce additional rules

y complementing one or both of x i and x h , i.e., replacing x i by

 – y i and/or replacing x h by 1 – y h , for the complementary 0-1

ariables y i and y h .

These rules rest on identifying the form of V(x i : x h = 1) that

rises in each of these cases. In particular, we use the notation

(x i : y h) to correspond to the case of complementing x h , V(y i : x h)

o correspond to the case of complementing x i , and V(y i : y h) to

orrespond to the case of complementing both x i and x h. . By this

otation, V(x i : x h) would therefore be the same as V(x i).

We start from:

 o (x i) = x i V (x i) , where

 (x i) = c i + d ih x h +

∑

(d ij x j : j ∈ N \ { i , h }) .
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

4 F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

i

M

1

M

i

M

1

M

f

h

s

M

s

M

s

M

s

M

t

≤

s

0

c

w

r

t

g

i

p

r

t

4

c

t

w

p
Hereafter, for simplicity, we will only state the rules for the case

where an inequality holds in some optimal QUBO solution, since

the case where the inequality holds in all optimal QUBO solutions

is evident.

Case 1: For Complementing x h x o (x i) = x i V(x i ,y h), where V(x i :

y h) = c i + d ih (1 – y h) + �(d ij x j : j ∈ N \ {i,h}). Hence we obtain

V(x i : y h = 1) = c i + �(d ij x j : j ∈ N \ {i,h}) and we can legitimately

take

Min (V (x i : y h = 1)) = c i +

∑

(d ij : d ij < 0 : j ∈ N \ { i , h })
= c i − d ih + D i

−if d ih < 0

Max (V (x i : y h = 1)) = c i +

∑

(d ij : d ij > 0 : j ∈ N \ { i , h })
= c i − d ih + D i

+ if d ih > 0

Employing the form of Lemmas 1.1 and 2.1 that apply to V(x i :

y h = 1), we therefore obtain the following results, noting that x i ≥
y h is the same as x i + x h ≥ 1, and x i + y h ≤ 1 is the same as x i ≤
x h .

Rule 1.2 . Assume d ih < 0. If c i – d ih + D i
– ≥ 0, then x i + x h ≥ 1

in some optimal QUBO solution.

Rule 2.2 . Assume d ih > 0. If c i – d ih + D i
+ ≤ 0, then x i ≤ x h in

some optimal QUBO solution.

The corresponding rules by interchanging the indexes i and h

are:

Rule 1.2 ′ . Assume d ih < 0. If c h – d ih + D h
– ≥ 0, then x i + x h ≥

1 in some optimal QUBO solution.

Rule 2.2 ′ . Assume d ih > 0. If c h – d ih + D h
+ ≤ 0, then x h ≤ x i

in some optimal QUBO solution.

3.1.3. Implementing the inequalities implied by the rules

We now observe how the inequalities generated by the fore-

going rules can be implemented. If a general 0-1 optimization

method is used to solve the QUBO problem, each of the inequal-

ities implied by the foregoing rules can be recorded to be added

later to the problem constraints. However, for our present pur-

poses, and for the case where a specialized algorithm is used to

solve the QUBO problem, these inequalities can be exploited by

identifying an appropriately large value of M and weighting one of

the terms x i x h or y i x h or x i y h or y i y h by – M to compel the asso-

ciated product to be 0. In particular, as observed in Kochenberger

et al. (2004) , the inequalities can be handled as follows.

For x i + x h ≤ 1 : replace d ih and d hi by – M.

For x i ≥ x h : replace c h by – M and d ih and d hi by M. (This

results by noting x i ≥ x h is the same as y i + x h ≤ 1 and hence

equivalent to y i x h = 0. Finally, y i x h = (1 – x i)x h = x h – x i x h ,)

For x h ≥ x i : replace c i by – M and d ih and d hi by M. (Inter-

change the indexes i and h in the prescription for x i ≥ x h .)

For x i + x h ≥ 1 : replace both c i and c h by M and replace d ih by

– M. (This results by noting x i + x h ≥ 1 is the same as y i + y h ≤ 1

and hence equivalent to y i y h = 0. Finally y i y h = (1 – x i)(1 – x h) = 1

– x i – x h + x i x h . Note this adds the constant M to the expression

for x o .)

3.1.4. Comparisons of basic rules in combination to yield additional

implications

We must exclude all combinations where d ih > 0 in one rule

and d ih < 0 in the other. Hence the rules for x i + x h ≥ 1 and x i + x h
≤ 1 cannot be combined with the rules for x i ≤ x h and x h ≤ x i .

All other combinations work, to give either x i + x h = 1 or x i = x h ,

as shown next. In all cases we assume neither Rule 1.0 nor Rule

2.0 assigns a value to a variable. Rules that work in combination

to give implications:

Combining rules for d ih < 0 that imply x i + x h ≥ 1 and x i + x h
≤ 1: hence x i + x h = 1

Rules that imply x + x ≥ 1
i h

Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
Rule 1.2 . Assume d ih < 0. If c i – d ih + D i
– ≥ 0, then x i + x h ≥ 1

n some optimal QUBO solution.

 > Min (0 , −(c i + D i
−)) .

Rule 1.2 ′ . Assume d ih < 0. If c h – d ih + D h
– ≥ 0 then x i + x h ≥

 in some optimal QUBO solution.

 > Min

(
0 , −

(
c h + D h

−))
.

Rules that imply x i + x h ≤ 1

Rule 2.1 . Assume d ih < 0. If c i + d ih + D i
+ ≤ 0, then x i + x h ≤ 1

n some optimal QUBO solution.

 > Min

(
0 , c i + D i

+)

Rule 2.1 ′ . Assume d ih < 0. If c h + d ih + D h
+ ≤ 0, then x i + x h ≤

 in some optimal QUBO solution.

 > Min

(
0 , c h + D h

+)

Similarly, we can identify implications for combining the rules

or which d ih > 0.

Combining rules for d ih > 0 that imply x i ≤ x h and x i ≥ x h :

ence x i = x h
Rules that imply x i ≤ x h
Rule 1.1 ′ . Assume d ih > 0. If c h + d ih + D h

– ≥ 0, then x i ≤ x h in

ome optimal QUBO solution.

 > Min

(
0 , −

(
c h + D h

−))
.

Rule 2.2 . Assume d ih > 0. If c i – d ih + D i
+ ≤ 0, then x i ≤ x h in

ome optimal QUBO solution.

 > Min

(
0 , c i + D i

+)
.

Rules that imply x i ≥ x h
Rule 1.1 . Assume d ih > 0. If c i + d ih + D i

– ≥ 0, then x h ≤ x i in

ome optimal QUBO solution.

 > Min

(
0 , −

(
c i + D i

−))
.

Rule 2.2 ′ . Assume d ih > 0. If c h – d ih + D h
+ ≤ 0, then x h ≤ x i in

ome optimal QUBO solution.

 > Min

(
0 , c h + D h

+)
.

From these combinations we respectively obtain the following

wo substitution rules:

Rule 2.5 : Assume d ih < 0.

If c i – d ih + D i
– ≥ 0 or c h – d ih + D h

– ≥ 0 and if c i + d ih + D i
+

0 or c h + d ih + D h
+ ≤ 0then x i + x h = 1 in some optimal QUBO

olution.

Rule 2.6 : Assume d ih > 0.

If c i – d ih + D i
+ ≤ 0 or c h + d ih + D h

– ≥ 0 and if c i + d ih + D i
– ≥

 or c h – d ih + D h
+ ≤ 0then x i = x h in some optimal QUBO solution.

These rules have the novel property that they yield the same

onclusions and embody the same conditions (in a different order)

hen the indexes i and h are interchanged. In other words, if these

ules are checked for a given index i and index h, they do not have

o be checked again with the indexes i and h interchanged. To-

ether with the use of Implementation Remarks 3 and 4 presented

n Appendix C , this property saves additional computation in ap-

lying Rules 2.5 and 2.6. However, it is possible to exploit these

ules in a even more efficient manners as described by implemen-

ation remarks 5 – 7 in the Appendix C .

. Rules for assigning values to pairs of variables

The rules for assigning values to pairs of variables are more

omplex than the preceding rules and require more elaborate logic

o justify. We again specify the associated lower bounds on M that

ill yield the outcome specified by each rule, according to the re-

lacements specified in Section 3.1.4 , without the need to justify
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14 5

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

t

i

c

x

e

a

r

p

b

p

a

c

t

l

M

t

≤

t

h

o

b

x

x

c

y

s

n

o

c

t

g

s

w

0

o

g

t

c

e

w

s

x

m

d

i

u

t

r

d

c

x

s

o

Q

M

P

i

−
a

c

c

N

j

w

i

x

x

W

V

2

x

i

c

d

j

–

N

j

–

N

D

i

c

d

1

U

t

a

x

v

w

c

c

a

c

k

l

y

t

x

b

t

n

p

3 i h
hese bounds. In this case, it is sufficient to bound M only accord-

ng to the inequality associated with the rule, and the stronger out-

ome that dominates the inequality by assigning specific values to

 i and x h will hold automatically. We emphasize that making ref-

rence to M in these cases is not relevant in typical preprocessing

pplications, since the assignment of specific values to x i and x h ,

emoves these variables from further consideration. However, for

urposes of sensitivity analysis, it may be useful to know admissi-

le values for M that can produce the outcomes of these rules.

We assume in each case that Rules 1.0 and 2.0 have been ap-

lied first, and neither provides the conclusion that x i or x h can be

ssigned a value of 0 or 1.

Rule 3.1: Assume d ih ≥ 0. If

 i + c h − d ih + D i
+ + D h

+ ≤ 0

hen x i + x h ≤ 1 and moreover x i = x h = 0 in an optimal QUBO so-

ution.

 > Min

(
0 , c i + c h + D i

+ + D h
+)

Proof : First we show x i + x h ≤ 1. Suppose on the contrary

hat x i = x h = 1. For any values of x i and x h we have x o (x i , x h)

x o (x i) + x o (x h) = x i V(x i) + x h V(x h), where x o (x i , x h) = the con-

ribution to x o produced by x i and x h together. But the right

and side double counts d ih x i x h because x o only contains d ih x i x h
nce (since d ih = c ih + c hi). Removing one instance of the dou-

le counted term gives x o (i,h) ≤ x i V(x i) + x h V(x h) – d ih x i x h ≤
 i Max(V(x i)) + x h Max(V(x h)) – d ih x i x h . Setting x i = x h = 1 gives

 o (i,h) ≤ c i + c h + D i
+ + D h

+ – d ih . Since this quantity is ≤ 0, we

onclude it is impossible for both x i = x h = 1, and the contradiction

ields x i + x h ≤ 1.

Next, c i + c h – d ih + D i
+ + D h

+ ≤ 0 implies c h – d ih + D h
+ ≤ 0

ince c i + D i
+ ≥ 0 must hold due to the fact that Rule 2.0 does

ot yield x i = 0. However, the result x i + x h ≤ 1 means either x i = 0

r x h = 0. Suppose x i = 0. Then this removes d ih from D h
+ which

auses the new value D h
∗+ of D h

+ to be D h
∗+ = D h

+ – d ih . Thus

he implication that c h – d ih + D h
+ ≤ 0 yields c h + D h

+ ∗ ≤ 0, which

ives x h = 0 by Rule 2.0, and hence both x i and x h = 0. If instead we

uppose x h = 0, then we obtain x i = 0 by the same logic, so again

e conclude both x i and x h = 0, completing the proof.

The preceding analysis discloses that if either x i or x h is set to

 when the conditions of Rule 3.1 hold, then Rule 2.0 will set the

ther variable to 0. This has the important implication that for any

iven variable x i , we only need to identify a single variable x h such

hat Rule 3.1 will yield x i = x h = 0, that is, any index h which yields

 i + c h – d ih + D i
+ + D h

+ ≤ 0. Then all other variables x h (for differ-

nt indexes h) that would be paired by the rule to yield x i = x h = 0,

ill appropriately be set to 0 using Rule 2.0. Hence effort can be

aved by not examining additional variables x h for a given variable

 i once it is discovered that the rule will set x i = 0.

It is also possible to do more than this by saving the mini-

um value MinV(i) of V(i) = c h – d ih + D h
+ (and the associated in-

ex h such that MinV(i) = c h – d ih + D h
+), which is done for each

ndex i in the process of checking Rule 3.1. Then MinV(i) can be

pdated with a streamlined calculation analogous to the calcula-

ion of Remark 4 when other variables are assigned values or are

eplaced using Rules 2.5 and 2.6. The minimum value of c i + c h –

 ih + D i
+ + D h

+ for applying Rule 3.1 is then obtained by adding

 i + D i
+ to MinV(i), making it unnecessary to examine all variables

 h for each x i on subsequent passes. This more elaborate way of

aving computation can also be used in connection with related

bservations for pairing variables below.

Rule 3.2: Assume d ih < 0. If – c i + c h + d ih – D i
– + D h

+ ≤ 0

Then x i ≥ x h and moreover x i = 1 and x h = 0 in an optimal

UBO solution.

 > Min

(
0 , −c i + c h − D i

− + D h
+)
Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
roof. Assume d ih < 0 and write the inequality of Rule 3.2 both in

ts original form

c i + c h + d ih − D i
− + D h

+ ≤ 0 (B)

nd also in the two forms:

 h + D h
+ ≤ c i − d ih + D i

− (B1)

 h + d ih + D h
+ ≤ c i + D i

− (B2)

Note that x o (x i) = x o (1 – y i) = (1 – y i)(c i + �(d ij x j : j ∈
 \ {i})) = C(i) + y i V(y i) for

C(i) = c i + �(d ij x j : j ∈ N \ {i})) and V(y i) = – c i + �(– d ij x j :

 ∈ N \ {i}). Hence Max(x o (1 – y i)) = C(i) + Max(y i V(y i)). First

e show (B) implies y i + x h ≤ 1. Deny this by suppos-

ng y i = x h = 1. For any values of y i and x h we have x o (x i ,

 h) ≤ x o (x i) + x o (x h) = C(i) + y i V(y i) + x h V(x h), where x o (x i ,

 h) = the contribution to x o produced by x i and x h together.

rite V(y i) = – c i + (– d ih x h + �(– d ij x j : j ∈ N \ {i,h}) and

(x h) = c h + d ih x i + �(d hj x j : j ∈ N \ {i,h})).

Hence y i V(y i) + x h V(x h) = y i (– d ih x h) + x h d ih (1 – y i) = y i x h (–

d ih) + x h d ih + . But y i x h (– 2d ih) double counts –d ih y i x h because

 o only contains d ih y i x h once (since d ih = c ih + c hi). Removing one

nstance of the double counted term gives y i V(y i) + x h V(x h) = y i (–

 i + �(– d ij x j : j ∈ N \ {i,h}) + x h (c h + �(d hj x j : j ∈ N \ {i,h}))) –

 ih y i x h + x h d ih and setting y i = x h = 1 gives – c i + c h + �(– d ij x j :

 ∈ N \ {i,h}) + �(d hj x j : j ∈ N \ {i,h})). A maximum value of this is

c i + c h + �(– d ij x: – d ij > 0: j ∈ N \ {i,h}) + �(d hj :d hj > 0: j ∈
 \ {i,h})) = – c i + c h – �(d ij x: d ij < 0: j ∈ N \ {i,h}) + �(d hj :d hj > 0:

 ∈ N \ {i,h})) The assumption d ih < 0 allows this to be rewritten as

�(d ij x: d ij < 0: j ∈ N \ {i,h}) = – (D i
– – d ih) and �(d hj :d hj > 0: j ∈

 \ {i,h})) = D h
+ , hence giving a maximum value of – c i + c h + d ih –

 i
– + D h

+ . Consequently, assuming (B) true implies that y i = x h = 1

s impossible, giving y i + x h ≤ 1.

Now we observe that (B1) implies c i – d ih + D i
– ≥ 0 since

 h + D h
+ ≥ (>) 0 must hold due to the fact that Rule 2.0

oes not yield x h = 0. But then by Rule 1.2 we have x i + x h ≥
. Since both x h ≤ x i and x i ≥ 1 – x h , we conclude x i = 1.

pon making this assignment, we update the problem represen-

ation by identifying the new value c h
∗ of c h to be c h

∗ = c h + d ih

nd setting N: = N \ {i}. Hence the updated form of x o (x h) is

 o (x h) = (c h + d ih)x h + �(d hj x h x j : j ∈ N \ {i,h}. Denoting the new

alue of D h
+ after this update by D h

+ ∗, and noting that d ih < 0,

e have

∗
h + D h

+ ∗ = c ∗h +

∑

(d hj : d hj > 0 : j ∈ N \ { i , h })
= c h + d ih + D h

+

By (B2) we then obtain

 h + d ih + D h
+ ≤ c i + D i

−

nd hence

 h
∗ + D h

+ ∗ ≤ c i + D i
−

Since we assume Rule 1.0 did not give x i = 1 previously, we

now c i + D i
– ≤ 0, and thus c h

∗ + D h
+ ∗ ≤ 0. Rule 2.0 now estab-

ishes x h = 0 is optimal and the proof is complete.

Here, similarly to the case of Rule 3.1, our proof of Rule 3.2

ields the conclusion that given x i , if any variable x h is identified

hat Rule 3.2 results in setting x i = 1 and x h = 0, the assignment

 i = 1 by itself will assure that all additional variables x h that can

e paired with x i to satisfy the conditions of Rule 3.2 will receive

he assignment x h = 0 by Rule 2.0. Consequently, Rule 3.2 does not

eed to be checked for additional variables x h that may be cou-

led with x i once the first such variable is found for which Rule

.2 yields x = 1 and x = 0.
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

6 F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

o

t

n

N

c

w

n

a

t

w

r

v

n

t

G

t

i

G

G

p

t

h

3

a

G

c

t

i

v

s

t

b

G

d

c

I

t

N

h

b

n

w

n

n

o

r

s

a

5

e

r

i
Rule 3.3: Assume d ih < 0. If

c i − c h + d ih + D i
+ − D h

− ≤ 0

then x h ≥ x i and moreover x i = 0 and x h = 1 in an optimal QUBO

solution.

M > Min

(
0 , c i − c h + D i

+ − D h
−)

This rule is the same as Rule 3.2 upon interchanging the in-

dexes i and h. This brings us to our final rule of this section.

Rule 3.4 : Assume d ih ≥ 0 . If

−c i − c h − d −ih − D

−
i

− D

−
h

≤ 0

then x i + x h ≥ 1 and moreover x i = x h = 1 in an optimal QUBO so-

lution.

M > Min

(
0 , −c i − c h − D i

− − D h
−)

Proof : We establish this rule by the device of replacing x i by 1

– y i and x h by 1 – y h as in Case 3 in Section 3 . This allows Rule

3.4 to be treated as an instance of Rule 3.1, where the conclusion

y i = y h = 0 of this instance of Rule 3.1 thus yields x i = x h = 1. Specif-

ically, let c i (y), c h (y), d ih (y), D i
+ (y) and D h

+ (y) denote the values

that result for c i , c h , d ih , D i
+ and D h

+ as a result of the substitution

x i = 1 – y i and x h = 1 – y h . The previous derivation in Case 3 shows

that c i (y) = (– c i – d ih), c h (y) = (– c h – d ih), d ih (y) = d ih , D i
+ (y) = d ih

– D i
– and D h

+ (y) = d ih – D h
–. Writing Rule 3.1 in terms of these

values and combining terms gives the statement:

If d ih ≥ 0 and – c i – c h – d ih – D i
– – D h

– ≤ 0 then y i = y h = 0

in an optimal QUBO solution.

This corresponds to the statement of Rule 3.4 and hence the

proof is complete.

Given the connection between Rule 3.1 and 3.4, we can apply

the earlier observation concerning Rule 3.1 to conclude that, given

x i , we can discontinue examining variables x h by Rule 3.4 as soon

as the first x h is found that yields x h = x i = 1. In this case the re-

maining variables x h that qualify to be set to 1 with x i will be

identified by Rule 1.0. A summary of all the rules according to their

conclusions as well as associated bounding values M and imple-

mentation remarks is provided in Appendix C .

5. Algorithm for implementing the preprocessing rules

We describe an approach for implementing the rules of the pre-

ceding sections that has several attractive features. Using the graph

orientation, we refer to the elements of N as nodes.

5.1. Data structures

The nodes in N are maintained as an ordered list NList, which

begins the same as N by setting NList(i) = i, for i = 1, …, n. As the

preprocessing rules subsequently drop nodes i from N as a result

of setting x i = 0 or 1, or setting x i = x h or 1 – x h , or simultane-

ously setting both x i and x h to specified binary values, we remove

i and/or h from its position on NList in such a way that we can

continue to identify all nodes on the current updated N by an or-

ganization that is highly efficient. We note that the order in which

nodes are examined does not affect the final assignment of val-

ues to variables, but can affect the sequence in which such assign-

ments are made and also affect which rule determines a given as-

signment. For example, one ordering of NList will set an x i = 1 via

Rule 1 while another ordering will yield the same result but via

another rule.

For this, the nodes i on NList are accessed by a location in-

dex iLoc, where i = NList(iLoc) for iLoc = iLoc1 to iLocEnd. NList is

initialized by setting NList(iLoc) = iLoc for iLoc = 1 to n (yielding

i = NList(iLoc) for i = 1 to n). As nodes are dropped from NList,

the positions of remaining nodes may shift because we write
Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
ver some of the positions where nodes are dropped (to record

he identity of nodes that are not dropped). For example, when

ode 7 is dropped we may replace it by node 1 (where initially

List(iLoc1) = 1), so that the current assignment NList(7) = 7 is

hanged to become NList(7) = 1. Simultaneously, iLoc1 = iLoc1 + 1

hich in the future avoids accessing the old iLoc1 location where

ode 1 used to be.

We repeat this process to drop nodes from various positions in

 way that makes it possible to apply the rules for assigning values

o two variables x i and x h efficiently, without the duplication that

ould result by examining both instances of two nodes i and h

epresented by the pair (i,h) and the pair (h,i).

In particular, if no nodes are dropped, the process may be

iewed as simply looking at each node i in succession from i = 1 to

 and examining the nodes h for h < i as partners. To generalize

his, NList is divided into two parts, the first consisting of an h-

roup for the nodes h = NList(hLoc), hLoc = hLoc1 to hLocEnd, and

he second consisting of an i-Group for the nodes i = NList(iLoc),

Loc = iLoc1 to iLocEnd. An outer loop examines the nodes of the i-

roup in succession, and for each such node i, the nodes of the h-

roup are examined in succession to create the relevant (i,h) pairs.

The examination of a given node i = NList(iLoc) first involves ap-

lying Rules 1.0 and 2.0 to see if x i can be set to 1 or 0, and if not,

hen the nodes in the h-Group (h = NList(hLoc), hLoc = hLoc1 to

LocEnd) are examined to apply the Rules, 2.5 and 2.6, and Rules

.1 to 3.4, that result in dropping x i and/or x h .

After this process is complete, assuming x i still is not assigned

 value, then node i is moved from the first position in the i-

roup to become the last node in the h-Group, by setting hLo-

End = hLocEnd + 1 and NList(hLocEnd) = i. This is followed by set-

ing iLoc = iLoc + 1 to access the next node i = NList(iLoc). Accord-

ngly, the new node i will also be able to be paired with the pre-

ious node i which is now a member of the h-Group.

By exploiting this two-group structure properly, we can be as-

ured of always examining all relevant pairs (i,h) without duplica-

ion, while still dropping nodes from the i-Group or the h-Group

y an assignment that drops x i or x h .

Specifically, the updating rules for dropping a node from the i-

roup or the h-Group are as follows. As can be seen, the rule for

ropping node i is extremely simple.

Dropping node i: Set iLoc = iLoc + 1. (There is no need in this

ase to transfer node i to become the last node in the h-Group.

mplicitly this operation results in setting iLoc1 = iLoc1 + 1. In fact,

hroughout this process iLoc1 will be the same as iLoc.)

Dropping node h : Let h1 = NList(hLoc1), followed by

List(hLoc) = h1 (writing h over by h1) and then set

Loc1 = hLoc1 + 1.

The step of dropping node h does not have to be followed

y setting hLoc = hLoc + 1, as would be done when examining all

odes in the h-group for a given node i. The reason for this is that

hen node h is dropped, it is always accompanied by dropping

ode i. Hence upon examining the next node i, the examination of

odes in the h-Group starts over, beginning with h = NList(hLoc1).

Special case : There may be only one node in the h-Group, as

ccurs when hLoc1 = hLocEnd. Then, setting hLoc1 = hLoc1 + 1 will

esult in hLoc1 = hLocEnd + 1, producing hLoc1 > hLocEnd. This

ignals an empty h-Group and hence the method automatically

voids examining the h-Group when hLoc1 > hLocEnd.

.2. Basic algorithm: first pass

With these preliminaries, we now describe the initial pass of all

lements in the i-Group. Afterward, we describe the minor change

equired in order to carry out subsequent passes of elements in the

-Group when such passes are warranted. We enter the first pass
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14 7

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

While iLoc ≤ iLocEnd //Go through nodes in the i-Group
i = NList(iLoc) // get next node in the list
Apply Rules 1.0 and 2.0 to xi

If xi = 0 or 1 then
Perform the Q and D updates of Implementation Remarks 1 and 2
Update NList

Else //Examine elements in the h-Group
While hLoc ≤ hLocEnd

h = NList(hLoc)
If xh requires re-examination (hLoc < LastExam) then

Apply Rules 1.0 and 2.0 to xh

If xh = 0 or 1 then
Perform the Q and D updates
Update NList

If h has not been dropped from NList then
Apply the Rules 3.1 to 3.4 for assigning values to xi and xh

If xi and xh are assigned values:
Perform the updates to Q and D

Else
Apply the Rules 2.5 and 2.6 for replacing xh

If xh is replaced by 1 – xi or xi then
Perform Q and D updates
Update NList

Exit the hLoc loop // stop checking pairs of variables
Else //Increment hLoc to prepare to examine the next h in the h-Group

hLoc = hLoc + 1// Exit the hLoc Loop if hLoc > hLocEnd
Endwhile //end of the hLoc loop

Update NList
If iLoc > EndLoc then Stop: the Preprocessing is complete

Endwhile
End of First Pass

Fig. 1. Basic Algorithm: First Pass to examine all nodes in the i-Group.

w

a

5

t

b

t

v

u

e

h

G

n

i

e

t

b

G

d

d

n

a

e

t

b

p

G

G

a

t

t

p

i

t

a

a

t

t

t

L

i

c

e

l

t

a
ith the NList initialized and the sets D i
– and D i

+ calculated for

ll i in Q (see Fig. 1)

.3. Passes of the algorithm after the first pass

Subsequent passes are exactly the same as the First Pass except

hat they (a) do not incorporate the Initialization step and (b) em-

ed the Main Routine within an outer loop. The outer loop repeats

he execution of the Main Routine until verifying that no further

ariables can be assigned values. This verification relies on making

se of EndLoc and NextEndLoc.

To see how this occurs, notice that the h-Group always starts

mpty at the beginning of the iLoc loop, and the only way the

-Group gains elements is by transferring nodes to it from the i-

roup, which happens when a current node i completes its exami-

ation without being dropped. Consequently, once all nodes in the

-Group have been examined by the iLoc loop, they will all have

ither been dropped or transferred to the h-Group. At this point

he h-Group is the set of all surviving nodes, and therefore can

ecome the new i-Group for a new pass that goes through the i-

roup elements to see if any additional nodes now qualify to be

ropped.

Such an additional pass is warranted only if some node was

ropped on the current pass, since if no node was dropped then

othing will have changed and a new pass will not uncover

ny further changes. On the other hand, the new pass need not
Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
xamine all the surviving nodes, because any node examined in

he i-Group after the last node was dropped will not have a new

asis for being dropped unless some node is dropped on a new

ass before reaching this node.

The key therefore is to keep track of the last node in the i-

roup that is dropped on a given pass, since no node in the i-

roup examined after this point needs to be reexamined unless

 new node is dropped before reaching it on the next pass. When

his node is dropped, the current last element of the h-Group iden-

ifies the cutoff point, such that if no node is dropped on the next

ass by the time this element is examined, then there is no value

n to continuing to look farther.

The variable NextEndLoc identifies the location on NList where

his current last element of the h-Goup is found. Consequently,

fter the pass of the elements in the i-Group is complete, and

ll surviving elements are in the h-Group, and the h-Group in

urn becomes the new i-Group, the location NextEndLoc discloses

he position of the last element of the new i-Group that needs

o be examined and this location is recorded by setting End-

oc = NextEndLoc, so that the next pass can stop after examining

 = NList(EndLoc) (unless some node is dropped first). The pseudo-

ode for the Main Routine captures this fact in two ways. When-

ver a node is dropped (a) NextEndLoc records the last h-Group

ocation and (b) EndLoc is set Large. The outcome of (b) assures

hat the current pass will not terminate prematurely but will ex-

mine all nodes of the i-Group. The outcome of (a) assures that the
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

8 F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

Table 1

Test results from ORLIB BQPGKA benchmark.

Problem Size Density percent QPro + loops QPro + reductions Cplex reductions

1a 50 10 2 50 18

2a 60 10 3 60 34

3a 70 10 1 12 8

4a 80 10 2 14 5

5a 50 20 1 6 3

8a 100 6.25 4 100 52

3b 40 100 1 1 –

4b 50 100 1 1 –

8b 90 100 1 1 –

9b 100 100 1 1 –

10b 125 10 1 3 –

6c 90 10 5 27 8

7c 100 10 1 25 20

1d 100 10 1 6 4

Table 2

Q factors and their low / high settings.

Factor ID Description Low High

1 -Upper Bound < c i j < Upper Bound 10 100

2 Linear Multipliers 5 10

3 Quadratic Multipliers 10 20

4 % Quadratic Multiplied 5 15

5 % Linear Multiplied 10 20

6 % non-zero Linear elements 5 25

Table 3

Problem characteristics.

Problem Set ID Q size Edges Density %

10 0 0L 10 0 0 50 0 0 1

10 0 0H 10 0 0 10,0 0 0 2

50 0 0L 50 0 0 25,0 0 0 0.2

50 0 0H 50 0 0 50,0 0 0 0.4

10 0 0 0L 10,0 0 0 10 0,0 0 0 0.2

10 0 0 0H 10,0 0 0 50 0,0 0 0 1

s

s

l

d

y

a

fi

l

t

b

O

C

w

n

e

p

t

i

c

o

t

m

d

p

t

information for the final node dropped will be used to determine

the final value of NextEndLoc, as desired.

We conclude this section by observing that the updating of the

D j
– and D j

+ values as in Implementation Remark 2 (which occurs

simultaneously with the update of Q in Implementation Remark 1),

can most easily be accomplished by a preliminary examination of

the indexes j ∈ N to initialize D i
– and D i

+ . Then, whenever a vari-

able x i is assigned a value, the values D j
– and D j

+ for j ∈ N \ {i} are

updated by Implementation Remark 2 by setting D j
–: = D j

– – d ij

for d ij < 0 and D j
+ : = D j

+ – d ij for d ij > 0 (and the analogous

update occurs when x h is assigned a value). We note that the cur-

rent elements j ∈ N for carrying out this update are identified by

setting

j = NList(jLoc), jLoc = hLoc1 to hLocEnd for nodes j in the h-

Group

j = NList(jLoc), jLoc = iLoc to iLocEnd for nodes j in the i-Group

where we refer to iLoc rather than iLoc1 in the i-Group case since

iLoc is in fact the current value of iLoc1 which we do not bother

to update.

The foregoing algorithm can be terminated before its normal

termination rule applies, either by limiting the number of passes

or by stopping when the number of changes (of assigning a value

to a variable) on a given pass becomes small, on the supposition

that few additional changes will be made by executing additional

passes.

6. Experimental design and computational tests

These rules were incorporated into a preprocessor we named

QPRO + and tested on three QUBO benchmarks. First are the QUBO

problem sets found in OR-Library Beasley (1990) with results us-

ing a column generation approach recently reported by Mauri and

Lorena (2012) . These benchmark problems have Q matrices with

elements connected randomly and with random magnitudes drawn

from a uniform distribution. These characteristics reduce the effi-

cacy of the rules for large and/or dense problems because most of

the rules are comparing a single coefficient to the sum of multi-

ple coefficients (D i
– and D i

+). Thus problems with uniformly and

randomly distributed coefficients that are more dense will tend to

have larger D i
– and D i

+ than those that are less dense. The prob-

lems used in Billionet and Elloumi (2007) were not available for

testing but are described as having uniform distributions in the

range [−100, 100] for the linear coefficients and [−50, 50] for the

off-diagonals with edge densities from 20 to 100% with up to 200

variable. Consequently, we anticipate that there would be few re-

ductions for problems with these characteristics.

Table 1 shows the results from the ORLIB BQPGKA test set for

fourteen that yielded reductions out of the 45 problems in the
Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
et. QPRO + always found more reductions than Cplex and Qpro +
olved three of the problems exactly. QPRO + is very fast and took

ess than 5 ms for each problem. The problems that are ≤10%

ense had the most reductions although five 100% dense problems

ielded a few reductions. The ten ORLIB 2500 variable problems

re also unformly distributed and 10% dense, but QPRO + did not

nd any reductions because the size and uniformity of the prob-

ems create D i
– and D i

+ quantities with relatively large magni-

udes.

We next turned our attention to graphs that are non-uniform

oth in the connections and the relative magnitudes of coefficients.

f particular interest here was to test the rules on problems with a

himera type structure having groups of densely connected nodes

hich are sparsely connected to other groups of densely connected

odes, motivated by the fact that the Chimera structure is a central

lement of quantum computing architecture. Accordingly, our test

roblems described in the following tables were generated with

hese features in mind, using an experimental design approach to

dentify the effects of various Q characteristics. Six Q factors, or

haracteristics, were considered for their effect on three outputs

f interest: percent Q reduction, objective value quality and time

o best solution. The factors and their settings used in the experi-

ental design are described in Table 1 .

In Table 2 , we show the settings for a 2 6-2 fractional factorial

esign resulting in 16 tests for each of the 3 problem sizes and 2

roblem densities (see Table 3 Problem Characteristics), creating a

otal of 96 tests with detailed results provided in the Appendices.
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14 9

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

Table 4

Experimental design factors for the 16 problem types.

ID Upper limit Linear Multiplier Quadratic Multiplier % large Quadratic % large Linear % non-zero Linear

1 10 10 20 5% 10% 25%

2 100 10 20 15% 20% 25%

3 10 5 20 15% 10% 5%

4 100 5 20 5% 20% 5%

5 10 10 10 5% 20% 5%

6 100 10 10 15% 10% 5%

7 10 5 10 15% 20% 25%

8 100 5 10 5% 10% 25%

9 100 5 10 15% 20% 5%

10 10 5 10 5% 10% 5%

11 100 10 10 5% 20% 25%

12 10 10 10 15% 10% 25%

13 100 5 20 15% 10% 25%

14 10 5 20 5% 20% 25%

15 100 10 20 5% 10% 5%

16 10 10 20 15% 20% 5%

a

f

e

t

f

i

a

a

t

a

w

m

i

h

t

t

i

w

9

l

f

1

w

1

t

n

a

o

1

c

d

1

s

g

c

s

q

p

6

a

r

S

Q

a

T

i

t

l

b

r

T

g

m

d

i

f

C

p

c

i

i

p

s

M

e

s

a

v

t

b

4

o

a

v

f

t

p

c

a

o

p

l

h
To create test problems with the desired features, the Q gener-

tor was programmed so that a majority of Q elements are drawn

rom a bounded uniform distribution. A certain percentage of these

lements are subsequently increased so that they may fall outside

he limits of uniformity, hence creating outliers. The factors used

or the Q characteristics are defined in Table 2 . The first Factor 1

n the table sets the range of the uniform random number gener-

tor, for example a setting of 10 indicates that the coefficients c i j

re uniformly distributed between −10 and + 10. The second and

hird factors are multipliers used to increase randomly chosen di-

gonal (linear) and off-diagonal (quadratic) elements. These factors

ork together such that setting factors 2 and 5 to their low setting

eans that 10% of the linear elements are multiplied by 5, creat-

ng fewer and closer outliers than when those same factors are set

igh. In a like manner, factors 3 and 4 determine the outliers for

he off-diagonal elements.

The problem sizes, number of edges specified for the Q genera-

or and average edge density for the six problem sets are provided

n Table 3 . For each of the 6 problems in Table 3 , sixteen problems

ere generated using the characteristics given in Table 2 , yielding

6 problems in the test set. In the first row in Table 4 , the Upper

imit of 10 means the elements of Q are initially drawn from a uni-

orm distribution between -10 and 10 and the Linear multiplier of

0 and the % Large Linear of 10% indicate that 10% of the elements

ill be multiplied by 10, creating elements that can range from -

00 to 100 depending on the value of the initial c ij . Factor 6 set

o 25% indicates that about a fourth of the diagonal of Q will have

on-zero values.

An additional feature of the problem generator is that it cre-

tes edges E to yield a graph that is similar to a Chimera graph; in

ther words, the edges are uniformly distributed except for about

% of the nodes which are densely connected. All 96 Q matri-

es have this feature, thus the 10 0 0 variable problems have 10

ensely connected nodes and the 10,0 0 0 variable problems have

00 densely connected nodes. While the average densities may

eem small, they represent up to 50 edges per node. All problems

enerated are connected graphs. During preprocessing the graph

an become disconnected, which creates multiple independently

olvable smaller problems and future research will explore how to

uickly check for connectedness and leverage it by partitioning the

roblem.

.1. Test results using CPLEX and QPRO +

The rules developed in Section 3 that predetermine variables

re R1, R2, F2.5, R2.6, R3.1, R3.2, R3.3 and R3.4. These eight

ules were implemented based on the framework described in
Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
ection 5 and tested using the benchmark test set. The percent

 reduction, total number of reductions, reductions per rule, time

nd solution improvements, and the effects of the parameters in

ables 2 –4 are reported along with the count of implicit inequal-

ties detected by the logical inequality rules of Section 3.1.4 . Al-

hough we examined these implicit inequalities, no inequality re-

ationships were included in the QUBOs during testing.

As a baseline for comparison, the 96 problems were first solved

y CPLEX using default settings (with the quadratic-to-linear pa-

ameter turned off so that the problems were not linearized).

he CPLEX optimizer includes a sophisticated pre-processing ag-

regator tightly integrated with the optimizer’s linear program-

ing framework. A head to head comparison of the CPLEX proce-

ure and QPRO + on the problems tested here shows the superior-

ty of QPRO + . In this testing QPRO + is first applied to a problem,

ollowed by solving the reduced problem using the same default

PLEX settings. Thus the optimizer is constant but the reduced

roblems solved by CPLEX differ according to the reductions dis-

overed.

All tests were performed using 64 bit Windows 7 on an 8-core

7 3.4 gigahertz processor with 16 gigabytes RAM. All CPLEX test-

ng used all 8 cores in parallel and the following time limits were

laced according to the sizes of the problems: 10 0 0 nodes / 100

econds; 50 0 0 nodes / 300 seconds; 10,0 0 0 nodes / 600 seconds.

any of these problems were challenging for CPLEX to solve. As an

xample, problem # 15, a 50 0 0 variable, low density problem was

olved by CPLEX in 3.5 hours. The combined approach of QPRO +
nd CPLEX found the optimal solution in 200 seconds.

Overall, our preprocessing rules, embedded in QPRO + , were

ery successful in assigning values to variables and thus reducing

he size of the Q matrix and the modified problem instance left to

e solved. Across all 96 problems, QPRO + produced more than a

5% reduction in size for more than half of the problems. For 10

f the problems (six with 10 0 0 variables, two with 50 0 0 variables,

nd two with 10,0 0 0 variables), QPRO + was able to set 100% of the

ariables, completely solving the problems.

With the exception of two of the 96 problems, QPRO + outper-

ormed the CPLEX aggregator preprocessor by a wide margin in

erms of the number of reductions found. In no case did the CPLEX

reprocessor produce a 100% reduction. Table 5 summarizes the

omparison of the average number of reductions found by QPRO +
nd the commercial preprocessor embedded in CPLEX.

Fig. 2 drills down in Table 5 to show the relative magnitude

f individual reduction improvements of QPRO + over the CPLEX

reprocessor for each of the 96 problems. The vertical scale is

ogarithmic and the horizontal axis has been sorted from low to

igh QPRO + reductions to highlight that the increase in number of
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

10 F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

Table 5

Comparing CPLEX preprocessor and QPRO + number of reductions.

Problem Category Average Number of

CPLEX Reductions

Average Number of

QPRO + Reductions

10 0 0L 108 564

10 0 0H 36 422

50 0 0L 561 2493

50 0 0H 137 1774

10 0 0 0L 313 3690

10 0 0 0H 36 2582

Grand Average 198 1920

Fig. 2. The number of QPRO + reductions dominate those found by default CPLEX.

Fig. 3. Comparing reductions vs. density for CPLEX and QPRO + .

Table 6

Comparison of aggregate solution performance.

Row labels Sum of time improvement Sum of solution improvement

10 0 0L 337 0

10 0 0H 252 0

50 0 0L 1555 8905

50 0 0H −579 54,819

10 0 0 0L 4910 2,561,040

10 0 0 0H 8355 457,555

Totals 14,830 3,082,319

Table 7

Average percent reductions based on the design factors in Table 1 .

Low Setting High Setting Difference

−Upper Bound < c i j < Upper Bound 44% 31% −13%

Linear Multipliers 51% 24% −27%

Quadratic Multipliers 36% 38% 2%

% Quadratic Multiplied 30% 45% 15%

% Linear Multiplied 32% 42% 10%

% non-zero Linear elements 42% 32% −10%

Fig. 4. Performance and time vs. problem size.

Q

t

i

1

a

i

o

t

t

d

f

2

q

e

f

g

s

D

l

a
reductions is often an order of magnitude. The figure illustrates

that on all but 2 problems, QPRO + found dramatically more re-

ductions. On two 10,0 0 0 node high density problems CPLEX found

a total of 36 reductions versus 12 found by QPRO + , indicating that

neither approach was able to find a significant number of reduc-

tions on these problems.

The relationship between problem size, density and average

percent reduction is further highlighted in Fig. 3 which provides

an average percent reduction comparison between QPRO + and

CPLEX’s preprocessing procedure, where percent reduction refers

to the number of variables eliminated as a percent of the original

number. Thus QPRO + reduced the 10 0 0 variable 2% dense prob-

lems by an average of about 45% versus 3% for CPLEX.

QPRO + coupled with the CPLEX optimizer was much faster and

found better solutions than default CPLEX as summarized in Table

6 . For these 96 problems QPRO + saved about 15,0 0 0 seconds and

found a total improvement of 3,082,319 in the objective values. The

−579 sum of time improvement for the 50 0 0H problems is due to
Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
PRO + consistently finding better solutions, but not in less time

han CPLEX found their best solution.

The largest improvements in both time to solution and solution

mprovement occurred in the larger, denser 10 0 0 0H problems. For

4 of these 16 problems the combination of QPRO + and CPLEX was

ble to find the best solution as its starting incumbent solution and

n 2 of these problems QPRO + found a 100% reduction to yield the

ptimal solution.

Table 7 summarizes the average percent reductions based on

he design factors in Table 1 . The table shows that the size of

he linear multiplier had the most significant effect on percent re-

uction because as the multiplier of the linear elements increased

rom 5x to 10x, the number of reductions on average dropped

7%. Conversely, the effect of multiplying a small percent of the

uadratic elements in order to create quadratic outliers, had little

ffect. This suggests that knowing the structure of Q could be use-

ul in setting expectations for the effectiveness of the progress in a

iven case.

Fig. 4 shows the decrease in percent reduction as the problem

ize increases and an exponential increase in preprocessing time.

espite the increase in preprocessing time, note that even for the

argest test problems, these times were less than 3.5 seconds. We

re currently exploring opportunities to further increase the speed
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14 11

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

Table 8

Percent reductions by rule.

Rules 10 0 0H 10 0 0L 50 0 0H 50 0 0L 10 0 0 0H 10 0 0 0L Averages

R1 16.9% 15.5% 18.0% 17.9% 16.0% 13.5% 16.3%

R2 5.2% 5.7% 3.7% 1.7% 1.4% 2.7% 3.4%

R2.5 5.1% 4.3% 4.4% 4.4% 1.4% 0.2% 3.3%

R2.6 1.8% 1.9% 1.5% 0.2% 2.2% 3.7% 1.9%

R3.1 0.3% 0.2% 0.1% 0.0% 0.5% 16.2% 2.9%

R3.2 0.6% 0.6% 0.4% 0.1% 0.1% 0.0% 0.3%

R3.3 0.6% 0.5% 0.4% 0.1% 0.1% 0.2% 0.3%

R3.4 14.9% 14.5% 6.1% 9.6% 7.0% 0.0% 8.7%

Total % avg reduction 45.5% 43.2% 34.6% 34.2% 28.5% 36.5%

0%

10%

20%

30%

40%

1 2 3 4 5 6 7 8Av
er

ag
e

Pe
rc

en
t R

ed
uc

�o
n

Loop Number

1% density

0.2% density

Fig. 5. Average percent reduction Per Pass for the 10,0 0 0 variable problems.

o

m

p

m

w

m

s

R

y

i

t

t

t

t

r

r

r

0

10000

20000

30000

40000

50000

60000

70000

1000H 1000L 5000H 5000L 10000H 10000L
To

ta
l R

ed
uc

�o
ns

Sum of QPro reduc�ons Sum of QPRO+ reduc�ons

Fig. 6. Improvement in number of reductions.

1

d

m

(

p

a

f

1

a

a

o

d

i

i

i
f the preprocessor via more efficient data structures for sparse

atrices.

The various rules contribute differing amounts to the overall

ercent reduction (see Table 8). Of the eight rules tested, the two

ost successful were R1 and R3.4, both of which are concerned

ith setting variables equal to 1. These two rules accounted for

ore than 25% of the reductions while. R2 and R3.1, which both

et variables equal to 0 together, provided about a 6% reduction.

2.5 and 2.6 based on setting pairs of variables to 0 or 1 together

ield about a 5% reduction. However, these rules are not applied

ndependently and when one rule fires it can allow other reduc-

ions based on other rules.

The majority of reductions found are in the first few passes of

he algorithm with subsequent passes finding fewer reductions un-

il none are found and the process terminates. Fig. 5 presents the

ypical percent reductions encountered versus passes of the algo-

ithm. This figure is for the 32,10,0 0 0 variable problems, but is

epresentative of the other problems tested. The data points rep-

esent average percent reductions for 16 problems, hence for the
0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 2 3 4 5 6 7 8Av
er

ag
e

re
du

c�
on

s a
nd

 in
eq

ua
li�

es

16 Pro

Average QPro+ reduc�ons

Fig. 7. Average number of inequalities genera

Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
% edge dense 10,0 0 0 variable problems about 600 variables were

etermined in the first pass (6%) and 2500 on average were deter-

ined in the second pass.

In comparison to our earlier work in Lewis and Glover

2016) using only 3 basic rules (R1, R2 and R3.4) embedded in a

rocedure called QPro, we find here that the additional rules yield

bout a 22% improvement in reduction overall and positively af-

ect every problem. Most importantly the additional rules yield ten

00% reductions in contrast to 0 reductions using only rules 1, 2

nd 3.4. The additional rules take slightly longer to run, with the

verage time for QPRO + being 1.4 seconds as compared to 0.5 sec-

nds for QPro. A comparison showing the value added in total re-

uctions by the enhanced set of rules over the six sets of problems

s summarized in Fig. 6 .

Rules 1.1 through 2.2 ′ , are combined into rules 2.5 and 2.6 but

ndividually do not directly set variables, however they can be used

ndividually to discover implicit inequality relationships between
9 10 11 12 13 14 15 16
blem Types

Average number inequali�es

ted compared to number of reductions.

ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

12 F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

i }) .

i

t

s

B

B

h

A

s

R

d

d

o

i

o

f

i

M

u

m

o

i

T

i

i

w

b

A

o

s

b

t

i

i

h

o

a

pairs of variables. Fig. 7 shows that these rules are effective in

discovering a large number of these important inequality relation-

ships. The problem types that generated many more inequalities

than predeterminations were the ones with the lower percentage

of quadratic outliers (5% vs. 15%) while the problems with the

higher percentage of quadratic outliers produced significantly more

reductions. Exploring and leveraging these relationships is another

part of our work in progress.

7. Summary and conclusions

Our findings demonstrate the value of our preprocessing rules

for QUBO problems having structures and densities likely to arise

in complex applications. It is noteworthy that the highly refined

preprocessing procedure embodied in CPLEX generates an order of

magnitude fewer variable settings than our approach

Across the test bed of 96 problems, our rules were successful

in setting many variables a priori, leading to significantly smaller

problems. In about half of the problems in the test bed QPRO +
achieved a 45% reduction in size and exactly solved 10 problems.

The rules also identified many significant implied relationships be-

tween pairs of variables resulting in many simple logical inequali-

ties.

Our computational testing based on an implementation of the

algorithm detailed herein and using an experimentally designed 96

problem test bed disclosed that (1) sparser problems were more

amenable to reduction than denser problems, (2) larger problems

required more time to process, (3) a smaller number of linear out-

liers produced more reductions while changing the magnitude and

number of quadratic outliers had little effect, (4) rules 1 and 3.4

accounted for 25% of reductions, and (5) a majority of reductions

were made in the first few passes. Investigating the number of in-

equality relationships between pairs of variables showed that an

increase in the number reductions was accompanied by a decrease

in the number of inequalities generated.

As part of our on-going research, we are exploring the effects

on problem difficulty when inequality relationships are included

with equality relationships, and how our results can be specialized

to give greater preprocessing reductions in the presence of certain

types of additional constraints, including cardinality constraints of

the form �(x j : j ∈ N) = m, and multiple choice (GUB) constraints of

the form �(x j : j ∈ N r) = 1, for disjoint subsets N r of N. We intend

to report on these and related advances in future papers.

Appendix A. Efficient implementation of preprocessing Rules

2.5 and 2.6

We first consider how to efficiently implement Rule 2.5 by it-

self, and then observe how to integrate a corresponding efficient

implementation of Rule 2.6 with Rule 2.5.

Write the substitution Rule 2.5 as follows.

Rule 2.5 : Assume d ih < 0.

(A1) If c i −d ih + D i
− ≥ 0 or (A2) if c h −d ih + D h

− ≥ 0

and

(B1) if c i + d ih + D i
+ ≤ 0 or (B2) if c h + d ih + D h

+ ≤ 0

then x i + x h = 1 in some optimal QUBO solution.

Recall the definitions:

Max D i = Max (d ij > 0 : j ∈ N \ { i }) and Min D i = Min(d ij < 0 : j ∈ N \ {
We say the condition (A1) or (B1) (respectively, (A2) or (B2))

strongly holds if it holds when MinD i (respectively, MinD h) replaces

d ih in the statement of Rule 2.5. By our previous observations, if a

condition (A1) or (B1) strongly holds then it holds for at least the

value d such that d = MinD , and if it fails to strongly hold, then
ih ih i

Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
t also fails to hold for all d ih . The corresponding statement applies

o (A2) and (B2) in the case where d ih = MinD h .

When examining each index i in N, define A(i) = True if (A1)

trongly holds and A(i) = False otherwise; and similarly define

(i) = True if (B1) strongly holds and B(i) = False otherwise.

We obtain the following useful result. If both A(i) = True and

(i) = True, then we conclude x i + x h = 1, because (A1) and (B1)

old for the same d ih (= MinD i). On the other hand, if both

(i) = False and B(i) = False (hence both (A1) and (B1) fail to

trongly hold) then the only possible way to yield x i + x h = 1 by

ule 2.5 is if (A2) and (B2) both strongly hold, and this will be

iscovered by testing whether (A1) and (A2) strongly hold for a

ifferent index i that corresponds to the index h.

Consequently, we first apply a reduced version of Rule 2.5 by

nly testing whether (A1) and (B1) strongly hold for each index

. By this approach, we do not have to examine any combinations

f indexes i and h, and hence expend no more computational ef-

ort than by applying the simple Rules 1.0 and 2.0 for each index

. (Some minor additional effort is required to update MinD i and

inD h if an assignment or substitution is made.)

Thus we assume we only apply the reduced version of Rule 2.5

ntil a complete pass of all indexes i in N yields no more assign-

ents or substitutions. Call this outcome the early termination .

Once early termination occurs, we can apply a residual version

f Rule 2.5 that takes care of all combinations not yet examined

n a way that likewise avoids a great deal of computational effort.

his residual version exploits the fact that if (A1) strongly holds for

 = i1, then (A2) strongly holds for h = i1 when i > i1, and similarly,

f (B1) strongly holds for i = i1, then (B2) strongly holds for h = i1

hen i > i1. The only cases of interest are when (A1) and (B2)

oth hold and when (B1) and (A2) both hold.

Save two lists, AList = {i: A(i) = True} and BList = {i: A(i) = True}.

 given index i can only be on one of these two lists (since if it is

n both, we will have found x i + x h = 1). Moreover, unless a sub-

titution results following an early termination, no rules need to

e tested other than the substitution rules. It is also convenient

o keep a list ABList = {i: A(i) = True or B(i) = True} (hence ABList

s the union of AList and BList). The only possible combinations of

ndexes i and h that are relevant to examine are those for i and

 both on ABList, where one of these indexes is on AList and the

ther is on BList. Hence we execute the residual version of Rule 2.5

s follows.

Residual Version of Rule 2.5

For each index i on ABList.

If A(i) = True, then // (A1) holds for at least d ih = MinD i and we want to

check whether

(A1) holds in combination with some index h such that (B2) also

holds.

For each index h on BList.

If (A1) and (B2) of Rule 2.5 hold then Rule 2.5 yields x i + x h = 1 (hence

the

substitution is executed and the early termination is cancelled, to

return to

applying the rules with the reduced version of Rule 2.5)

Endfor

Remove i from ABList and from AList.

Else // B(i) = True, and (B1) holds for at least d ih = MinD i and we want to check

whether

(A2) holds in combination with some index h such that (B1) also holds.

For each index h on BList.

If (B1) and (A2) of Rule 2.5 hold then Rule 2.5 yields x i + x h = 1 (hence

the

substitution is executed and the early termination is cancelled, to

return to

applying the rules with the reduced version of Rule 2.5)

Endfor

Remove i from ABList and from BList.

Endif

Endfor
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14 13

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

n

c

a

a

t

a

B

s

t

p

b

r

t

A

t

x

p

t

N

w

x

M

=
M

=

t

1

i

s

a

1

s

x

p

t

j

w

y

M

=
M

=

t

y

s

i

a

s

1

A

c

t

I

o

t

l

f

o

b

i

M

1

M

A

s

M

s

M

s

M

s

M

Clearly this method only examines a subset of the index combi-

ations for i and h, which is likely to be a relatively small number

ompared to all i and h in N.

Now we observe how integrate this treatment of Rule 2.5 with

 corresponding treatment of Rule 2.6.

We write Rule 2.6 in the form:

Rule 2.6 : Assume d ih > 0.

(C1) if c i −d ih + D i
+ ≤ 0 or (C2) If c h + d ih + D h

− ≤ 0or

nd

(D1) if c i + d ih + D i
− ≤ 0 or (D2) c h −d ih + D h

+ ≤ 0

hen x i = x h in some optimal QUBO solution.

Now we define C(i) and D(i) analogously to A(i) and B(i),

nd the lists CList(i), DList(i) and CDList(i) analogously to AList(i),

List(i) and ABList(i).

The reduced version of Rule 2.6 only tests for each i in N to

ee whether (C1) and (D1) both strongly hold (which also covers

he case where (C2) and (D2) both strongly hold). Once the full

reprocessing method terminates with using reduced versions of

oth Rules 2.5 and 2.6, we apply residual versions of both of these

ules. The residual version of Rule 2.6 is then exactly analogous to

he residual version of Rule 2.5.

ppendix B. Alternative derivations for logical inequality rules

We demonstrate below that the following two cases yield rules

hat duplicate the rules previously obtained.

Case 2: For Complementing x i

 o (x i) = (1 −y i) V (x i , y h) , hence x o (x i)
= (1 −y i) (c i + d ih x h +

∑

(d ij x j : j ∈ N \ { i , h }))
= (c i + d ih x h +

∑

(d ij x j : j ∈ N \ { i , h }))
+ y i (−(c i + d ih x h +

∑

(d ij x j : j ∈ N \ { i , h }))) .
Regardless of the values received by other variables, the only

ortion of this expression affected by assigning a value to x i , hence

o y i , is y i V

o (y i : x h) where V

o (y i : x h) = − (c i + d ih x h +

∑

(d ij x j : j ∈
 \ { i , h })) . Hence for the analysis of Lemmas 1.1 and 2.1 to apply,

e are interested in identifying legitimate values for Min(V

o (y i :

 h = 1)) and Max(V

o (y i : x h = 1)), which are respectively given by

in (V

o (y i : x h = 1)) = −(c i + d ih +

∑

(d ij : d ij > 0 : j ∈ N \ { i , h })))
 −

(
c i + d ih + D i

+) if d ih < 0

ax (V

o (y i : x h = 1)) = −(c i + d ih +

∑

(d ij : d ij < 0 : j ∈ N \ { i , h })))
 −

(
c i + d ih + D i

−)
if d ih > 0

From this, employing the form of Lemmas 1.1 and 2.1 that apply

o V

o (y i : x h = 1), and noting that y i ≥ x h is the same as x i + x h ≤
, and y i + x h ≤ 1 is the same as x h ≤ x i , we obtain

Rule 1.3 . Assume d ih < 0. If c i + d ih + D i
+ ≤ 0, then x i + x h ≤ 1

n some optimal QUBO solution.

Rule 2.3 . Assume d ih > 0. If c i + d ih + D i
– ≥ 0, then x h ≤ x i in

ome optimal QUBO solution.

The corresponding rules by interchanging the indexes i and h

re:

Rule 1.3 ′ . Assume d ih < 0. If c h + d ih + D h
+ ≤ 0, then x i + x h ≤

 in some optimal QUBO solution.

Rule 2.3 ′ . Assume d ih > 0. If c h + d ih + D h
– ≥ 0, then x i ≤ x h in

ome optimal QUBO solution.

Case 3: For Complementing x i and x h

 o (x i) = (1 −y i) V (y i , y h) , hence x o (x i)
= (1 −y i) (c i + d ih (1 −y h) +

∑

(d ij x j : j ∈ N \ { i , h }))
= (c i + d ih (1 −y h) +

∑

(d ij x j : j ∈ N \ { i , h }))
+ y i (−(c i + d ih (1 −y h) +

∑

(d ij x j : j ∈ N \ { i , h }))) .
Regardless of the values received by other variables, the only

ortion of this expression affected by assigning a value to x , hence
i

Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
o y i , is y i V

o (y i : y h) where V

o (y i : y h) = – (c i + d ih (1 – y h) + �(d ij x j :

 ∈ N \ {i,h})). Hence for the analysis of Lemmas 2.1 and 2.2 to apply,

e are interested in identifying legitimate values for Min(V

o (y i :

 h = 1)) and Max(V

o (y i : y h = 1)), which are respectively given by

in (V

o (y i : y h = 1)) = −(c i +

∑

(d ij : d ij > 0 : j ∈ N \ { i , h })))
 −

(
c i −d ih + D i

+) if d ih > 0

ax (V

o (y i : y h = 1)) = −(c i +

∑

(d ij : d ij < 0 : j ∈ N \ { i , h })))
 −

(
c i −d ih + D i

−)
if d ih < 0

From this, employing the form of Lemmas 1.1 and 2.1 that apply

o V

o (y i : y h = 1), and noting that y i ≥ y h is the same as x h ≥ x i and

 i + y h ≤ 1 is the same as x i + x h ≥ 1 we obtain

Rule 1.4 . Assume d ih > 0. If c i – d ih + D i
+ ≤ 0, then x h ≥ x i in

ome optimal QUBO solution.

Rule 2.4 . Assume d ih < 0. If c i – d ih + D i
– ≥ 0, then x i + x h ≥ 1

n some optimal QUBO solution.

The corresponding rules by interchanging the indexes i and h

re:

Rule 1.4 ′ . Assume d ih > 0. If c h – d ih + D h
+ ≤ 0, then x i ≥ x h in

ome optimal QUBO solution.

Rule 2.4 ′ . Assume d ih < 0. If c h – d ih + D h
– ≥ 0, then x i + x h ≥

 in some optimal QUBO solution.

ppendix C. Summarizing the rules according to their

onclusions and implementation remarks

To facilitate comparisons, we now group the rules according to

heir conclusions. We see that there are a number of duplications.

n particular, each of the rules for Cases 2 and 3 above duplicates

ne of the rules that precede it. Nevertheless, the analysis used in

hese cases, and particularly in Case 3, proves valuable in estab-

ishing later rules for assigning values to pairs of variables. In the

ollowing summary, we also indicate a lower bound on the value

f M that will insure each rule will imply its associated inequality

y the replacement indicated in Section 3.1.4 , preceding.

Rules that imply x i + x h ≤ 1

Rule 2.1 . Assume d ih < 0. If c i + d ih + D i
+ ≤ 0, then x i + x h ≤ 1

n some optimal QUBO solution.

 > Max
(
0 , c i + D i

+)

Rule 2.1 ′ . Assume d ih < 0. If c h + d ih + D h
+ ≤ 0, then x i + x h ≤

 in some optimal QUBO solution.

 > Max
(
0 , c h + D h

+)

Duplicates of these rules: Rule 1.3 and Rule 1.3 ′ (See

ppendix B)

Rules that imply x i ≥ x h
Rule 1.1 . Assume d ih > 0. If c i + d ih + D i

– ≥ 0, then x h ≤ x i in

ome optimal QUBO solution.

 > Max
(
0 , −

(
c i + D i

−))
.

Rule 2.2 ′ . Assume d ih > 0. If c h – d ih + D h
+ ≤ 0, then x h ≤ x i in

ome optimal QUBO solution.

 > Max
(
0 , c h + D h

+)
.

Duplicates of these: Rule 2.3 .and Rule 1.4 ′ (See Appendix B)

Rules that imply x i ≤ x h
Rule 1.1 ′ . Assume d ih > 0. If c h + d ih + D h

– ≥ 0, then x i ≤ x h in

ome optimal QUBO solution.

 > Max
(
0 , −

(
c h + D h

−))
.

Rule 2.2 . Assume d ih > 0. If c i – d ih + D i
+ ≤ 0, then x i ≤ x h in

ome optimal QUBO solution.

 > Max
(
0 , c i + D i

+)
.
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://dx.doi.org/10.1016/j.ejor.2017.08.025

14 F. Glover et al. / European Journal of Operational Research 0 0 0 (2017) 1–14

ARTICLE IN PRESS

JID: EOR [m5G; September 1, 2017;15:33]

a

R

b

N
c
d

m

a

d

t

d

d

u

s

o

a

a

R

A

B

B

B

G

H

K

K

K

L

L

M

W

Duplicates of these rules: Rule 2.3 ′ and Rule 1.4 . (See

Appendix B)

Rules that imply x i + x h ≥ 1

Rule 1.2 . Assume d ih < 0. If c i – d ih + D i
– ≥ 0, then x i + x h ≥ 1

in some optimal QUBO solution.

M > Max
(
0 , −

(
c i + D i

−))
.

Rule 1.2 ′ . Assume d ih < 0. If c h – d ih + D h
– ≥ 0 then x i + x h ≥

1 in some optimal QUBO solution.

M > Max
(
0 , −

(
c h + D h

−))
.

Duplicates of these rules: Rule 2.4 and Rule 2.4 ′ . (See

Appendix B)

Implementation Remark 3 : To efficiently implement the forego-

ing basic rules, it is valuable to initially identify and subsequently

update two values associated with each i ∈ N: MaxD i = Max(d ij

> 0: j ∈ N \ {i}) and MinD i = Min(d ij < 0: j ∈ N \ {i}), along with

their associated indexes max(i) = arg max (d ij > 0: j ∈ N \ {i})

and min(i) = arg min (d ij < 0: j ∈ N \ {i}). (We set MaxD i = 0 and

max(i) = 0, or MinD i = 0 and min(i) = 0, respectively, if max(i) or

min(i) is undefined.) Then each of the foregoing rules can be im-

plemented efficiently from the knowledge of MaxD i , MinD i , MaxD h

or MinD h depending on the case. Specifically, Rules 2.1 and 2.1 ′
(where d ih < 0) only need to be tested, respectively, for d ih = MinD i

(hence h = min(i)) and for d ih = MinD h (hence for i = min(h)). The

same is true for Rules 1.2 and 1.2 ′ . On the other hand, Rules 1.1

and 2.2 ′ (where d ih > 0) only need to be tested, respectively, for

d ih = MaxD i (hence for h = max(i)) and for d ih = MaxD h (hence for

i = max(h)). The Rules 1.1 ′ and 2.2 reverse the indexes i and h of

Rules 1.1 and 2.2 ′ , respectively. These restrictions save a great deal

of computation.

Implementation Remark 4 : When a variable x i is set to 0 or 1,

the values MaxD j and MinD j and the associated indexes max(j) and

min(j) can be updated for j ∈ N \ {i} (once they have been deter-

mined initially) at the same time D j
– and D j

+ are updated by Im-

plementation Remark 2. Specifically, if d ij > 0: then if i � = max(j)

the value MaxD j and the index max(j) are unchanged and other-

wise MaxD j and max(j) must be identified from their definitions,

MaxD j = Max(d jk > 0: k ∈ N \ {j,i}) and max(j) = arg max (d jk > 0: k

∈ N \ {j,i}). (Here the index i is excluded from N in N \ {j,i}) because

x i will be dropped. Alternatively, after dropping x i and removing i

from N, we can refer to k ∈ N \ {j} instead of k ∈ N \ {j,i}.) Similarly,

If d ij < 0: then if i � = min(j) the value MinD j and the index min(j)

are unchanged and otherwise must be identified from their defi-

nitions, MinD j = Min(d jk < 0: k ∈ N \ {j,i}) and min(j) = arg min (d jk

< 0: k ∈ N \ {j,i}). We note that Implementation Remarks 3 and 4

can be implemented by storing only the indexes max(i) and min(i)

for each i ∈ N.

Now we identify the updates of problem coefficients when Rule

2.5 or 2.6 performs the substitution of replacing x h by 1 – x i or x i .

Implementation Remark 5 : If x i + x h = 1, the updates to replace

x h by 1 – x i are

N := N \ { h }
c i := c i −c h
d ij := d ij −d hj for all j ∈ N \ { i , h } (forj ∈ N \ { i } after setting

N := N \ { h })
c o := c o + c h

The foregoing updates are evidently not the same as those that

occur by the substitution that replaces x i by 1 – x, whose updates
Please cite this article as: F. Glover et al., Logical and inequality impl

strained binary optimization problems, European Journal of Operationa
re given by interchanging the indexes i and h in Implementation

emark 5.

Implementation Remark 6 : If x i = x h , the updates to replace x h
y x i are:

 := N \ { h }
 i := c h + c i + d ih .

 ij := d hj + d ij for all j ∈ N \ { i , h } (for j ∈ N \ { i } after setting
N := N \ { h })
In contrast to Implementation Remark 5, the updates for Imple-

entation Remark 6 are indistinguishable if the indexes i and h

re interchanged, except for setting N: = N \ {i} instead of N: = N \ {h}.

Implementation Remark 7 : The values D j
– and D j

+ can be up-

ated for j ∈ N \ {i} at the same time the updates of Implementa-

ion Remark 5 or Implementation Remark 6 are performed. Let d ij ,

enote the value of d ij after the update of Remark 5 or 6, and let

 ij ’ denote the value of d ij before executing this update. Then the

pdated values D j
– and D j

+ are as follows, for each j ∈ N \ {i} (after

etting N: = N \ {h}): First, if d ij ’ < 0 then set D j
–: = D j

– – d ij ’ and

therwise set D j
+ : = D j

+ – d ij ’. Then, if d ij < 0 set D j
–: = D j

– + d ij

nd otherwise set D j
+ : = D j

+ + d ij . In sum, two “if checks” and one

ddition and one subtraction are required for each j ∈ N \ {i}.

eferences

dams, W. P. , & Dearing, P. M. (1994). On the equivalence between roof duality and

Lagrangian duality for unconstrained 0–1 quadratic programming problems. Dis-
crete Applied Mathematics, 48 (1), 1–20 .

Beasley, J. E. (1990). OR-Library: Distributing test problems via electronic mail. Jour-
nal of the Operational Research Society, 41 (11), 1069–1072 .

illionet, A. , & Elloumi, S. (2007). Using a mixed integer quadratic programming

solver for the unconstrained quadratic 0-1 problem. Mathematical Programming,
109 , 55–68 .

oixo, S. , Ronnow, T. , Isakov, S. , Wang, Z. , Wecker, D. , Lidar, D. , et al. (2014). Evidence
for quantum annealing with more than one hundred qubits. Nature Physics, 10 ,

218–224 .
oothby, T. K. A. D. , & Roy, A. (2016). Fast clique minor generation in Chimera qubit

connectivity graphs. Quantum Information Processing, 15 (1), 495–508 .

Boros, E. , Hammer, P. , & Tavares, G. (2006). Preprocessing of unconstrained quadratic
binary optimization, Rutcor Research Report RRR 10-2006, 1–54 .

lover, F. , Kochenberger, G. , & Alidaee, B. (1998). Adaptive memory tabu search for
binary quadratic programs. Management Science, 44 (3), 336–345 .

ansen, P. , Jaumard, B. , & Minoux, M. (1986). A linear expected-time algorithm for
deriving all logical conclusions implied by a set of boolean inequalities. Mathe-

matical Programming, 34 (2), 223–231 .

Kennington, J. , & Lewis, K. (2004). Generalized networks: the theory of prepro-
cessing and an empirical analysis. INFORMS Journal on Computing, 16 (2), 0162–

0173 .
im, J. , & Wilhelm, T. (2008). What is a Complex Graph? Physica A: Statistical Me-

chanics and its Applications, 387 (11), 2637–2652 .
ochenberger, G. , Glover, F. , Alidaee, B. , & Rego, C. (2004). A unified modeling

and solution framework for combinatorial optimization problems. OR Spectrum,

26 (3), 237–250 .
ochenberger, G. , Hao, J. , Glover, F. , Lewis, M. , Lu, Z. , Wang, H. , et al. (2014). The

unconstrained binary quadratic: A survey. Journal of Combinatorial Optimization,
28 (1), 55–81 .

ewis, M., & Glover, F. (2016). Binary quadratic network preprocessing: theory and
empirical analysis. Networks . doi: 10.1002/net.21751 .

ucas, A. (2014). Ising Formulations of Many NP Problems. Frontiers in Physics,

5 (arXiv:1302.5843), 2 .
auri, G. R. , & Lorena, L. A. N. (2012). A column generation approach for the uncon-

strained binary quadratic programming problem. European Journal of Operational
Research, 217 , 69–74 .

Pardalos, P. M. , & Rodgers, G. P. (1990). Computational aspects of a branch
and bound algorithm for quadratic zero-one programming. Computing, 45 (2),

131–144 .

ang, D. , & Kleinberg, R. (2009). Analyzing quadratic unconstrained binary op-
timization problems via multicommodity flows. Discrete Applied Mathematics,

157 (18), 3746–3753 .
ications for reducing the size and difficulty of quadratic uncon-

l Research (2017), http://dx.doi.org/10.1016/j.ejor.2017.08.025

http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0024
http://dx.doi.org/10.1002/net.21751
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0034
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0034
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0035
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0035
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0035
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0035
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0039
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0039
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0039
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0039
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0044
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0044
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0044
http://refhub.elsevier.com/S0377-2217(17)30756-7/sbref0044
http://dx.doi.org/10.1016/j.ejor.2017.08.025

	Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems
	1 Introduction
	2 Literature review
	3 Rules for fixing variables and reducing Q
	3.1 Assigning values to single variables
	3.1.1 Basic rules from combining implications from two variables xi and xh
	3.1.2 Rules obtained by complementing variables
	3.1.3 Implementing the inequalities implied by the rules
	3.1.4 Comparisons of basic rules in combination to yield additional implications

	4 Rules for assigning values to pairs of variables
	5 Algorithm for implementing the preprocessing rules
	5.1 Data structures
	5.2 Basic algorithm: first pass
	5.3 Passes of the algorithm after the first pass

	6 Experimental design and computational tests
	6.1 Test results using CPLEX and QPRO+

	7 Summary and conclusions
	Appendix A Efficient implementation of preprocessing Rules 2.5 and 2.6
	Appendix B Alternative derivations for logical inequality rules
	 Appendix C. Summarizing the rules according to their conclusions and implementation remarks
	 References

