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Abstract.  The unconstrained binary quadratic optimization problem (QUBO) has become a 

unifying model for representing a wide range of combinatorial optimization problems, and for 

linking a variety of disciplines that face these problems. A new class of quantum annealing 

computers that map QUBO onto a physical qubit network structure with specific size and edge 

density restrictions are increasingly interested in ways to transform the underlying QUBO 

structure into an equivalent graph having fewer nodes and edges.  In this paper we present rules 

for reducing the size of the QUBO matrix by identifying variables whose value at optimality can 

be predetermined and verify that the reductions improve both solution time and, in the case of 

metaheuristic methods where optimal solutions cannot be guaranteed, the quality of solutions 

obtained within reasonable time limits. 

We discuss the general QUBO structural characteristics that can take advantage of these 

reduction techniques and perform careful experimental design and analysis to identify and 

quantify the specific characteristics most affecting reduction.  The rules make it possible to 

dramatically improve solution times on a new set of problems using both the exact Cplex solver 

and a tabu search metaheuristic. 

 

Keywords:  QUBO, Binary quadratic optimization, Preprocessing, Network reduction, Ising 

Model, Quantum Annealing. 

 

1.  INTRODUCTION 
 

Given a graph G = [N, E] where N = {1, 2, …, i, … n} where n = |N| is the number of nodes in 

the graph and E = {(i,j): i, j  N } is the set of ordered pairs of edges between nodes i and j.  

Denoting the weight of an edge (i, j) by cij, we define the Quadratic Unconstrained Binary 

Optimization Problem (QUBO) as: 

 

Maximize: ∑ 𝑐𝑖𝑖𝑥𝑖𝑖∈𝑁 +  ∑ 𝑐𝑖𝑗𝑥𝑖(𝑖,𝑗)∈𝐸 𝑥𝑗    subject to 𝑥𝑖= {0,1} where i  N (1) 

 

The equivalent compact definition with the coefficients of (1) represented as a 𝑄 matrix is: 
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Max 𝑥𝑡𝑄𝑥:  𝑥 ∈ {0, 1}
n
 

 

where 𝑄 is an n-by-n square symmetric matrix of coefficients.  

 

2.  LITERATURE  
 

QUBO has been extensively studied [12] and is used to model and solve numerous categories of 

optimization problems including important instances of network flows, scheduling, max-cut, 

max-clique, vertex cover and other graph and management science problems, integrating them 

into a unified modeling framework [11].  Many NP problems such as graph and number 

partitioning, covering and set packing, satisfiability, matching, spanning tree as well as others 

can converted into the Ising form as shown in [14].  Ising problems replace x ∈ {0, 1}
n
  by x ∈ 

{−1, 1}
 n

 and can be put in the form of (1) by defining xj' = (xj + 1)/2 and then redefining xj to be 

xj'.
1
  Ising problems are often solved with annealing approaches in order to find a lowest energy 

state.     

 

Although QUBO problems are NP-complete, good solutions to large problems can be found 

using modern metaheuristics [8].   In addition, a new type of quantum computer based on 

quantum annealing with an integrated physical network structure of qubits known as a Chimera 

graph has also been demonstrated to very quickly find good solutions to QUBO [4].   The 

Chimera structure is a connected network of qubits with groups of densely connected nodes 

sparsely connected to other groups of densely connected nodes, similar to social network 

visualizations or densely connected cities sparsely linked to other cities via fiber optic 

backbones.    Transforming a given problem graph by mapping it onto all or part of the Chimera 

hardware graph requires minor-embedding and is described in [7]. 

 

A set of rules for reducing multi-commodity networks based on the structure of the network [9] 

has generated interest in investigating whether similar rules could be found for QUBO.   For 

certain classes of very structured problems such as vertex cover, max-cut and max-clique, the 

work of [6] shows that complete reduction can be achieved via computation of the roof duals of 

the associated capacitated implication network in association with rules involving first and 

second order derivatives.   Similarly, maximum flow and multi-commodity flow networks can be 

used to help determine QUBO optimal variable assignments and lower bounds [19] [1].  In 

comparison, we present and test four basic rules, iteratively applying them to reduce the size of 

the Q matrix until no further reductions are possible.  We also explore transformations to reduce 

a node’s edge density (with application to hardware graphs such as the Chimera) and discuss 

applications to sensitivity analysis. 

                                                           
1
 This adds a constant to (1), which is irrelevant for optimization. 
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Figure1.  Example Chimera Network Structure 

 

 

 

Benchmark QUBO problems are often highly structured, or have uniform distributions, or are 

dense, or random but not necessarily connected [2] [16].   Classic problems with wide 

application such as the maximum cut problem are highly structured, e.g. all quadratic 

coefficients are negative and all linear coefficients are positive, or quadratic coefficients are -1s 

and linear coefficients are positive sums of quadratic coefficients.   The rules presented here for 

predetermining the optimal assignment of variables are applicable to any QUBO, but in this 

paper we apply them to Q matrices having structural characteristics associated with real-world 

graphs (sometimes called complex networks [10]) grounded on assumptions from experimental 

design [18], namely that there are random elements with a small percentage of variables having 

strong effects.   This is known as the “sparsity of variable effects” [15] and states that, in general, 

when many factors are examined for their effect on a performance parameter (i.e. objective 

function), a relatively small percent have large effects.  The Pareto Principle is similar, stating 

that a small percent of causes account for the majority of effects.  

 

Thus, we investigate problems in which Q is connected, generally sparse but with some densely 

connected nodes, mostly uniform in distribution but containing a small percent of linear and 

quadratic elements falling outside the limits of the majority uniformly distributed elements.   A 

logarithmic histogram of a typical distribution based on 1000 nodes and 5000 edges is shown as 
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the columns in Figure 2.   The original Q has most elements uniformly distributed between -10 

and 10, with a small percentage of outliers.  The reduced Q distribution (solid line) has removed 

many of the original outliers and has reduced node and edge counts.   This is the first time 

problems of this type have been studied in the literature and the Q generator code and the 

experimentally designed test set and network generator has been made publically available..  

 

 

 
Figure 2.  Distribution of Q with Outliers Before and After Reduction. 

 

 

The remainder of this paper is organized as follows.   Section 3 presents the rules for reducing Q 

followed by discussion of increasing Q size when there are edge upper limit restrictions on 

nodes.  Section 4 discusses network transformations when nodes have edge constraints. 

Modifications of the rules to define the range over which coefficients can change is presented in 

Section 4.2.  Section 5 provides the pseudocode used to implement the rules into our 

preprocessor, named QPro, and Section 6 presents the experimental design factors, test run 

parameters and analysis of the test results based on Cplex and a path relinking metaheuristic.  

 

3.  RULES FOR REDUCING Q TO SHRINK QUBO 
 

The major rules for Q reduction are provided below.  After stating the rules, we provide an 

efficient implementation followed by testing.  Future research will investigate further 

enhancements and implementation trade-offs.  We employ the following notation.  
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Let Ni
+
 = {j  N: cij > 0, i≠j}, Ci

+
 = ∑(cij: j  Ni

+
}, Ni

–
 = {j  N: cij < 0, i≠j } and Ci

–
 = ∑(cij: j  

Ni
–
}. By convention, a summation over an empty set equals 0. Hence Ci

+
 = 0 or Ci

–
 = 0, 

respectively, if Ni
+
 or Ni

–
 is empty. 

 

Rule 1: (For cii  0.) If cii + Ci
–
  0, then xi = 1 in an optimal QUBO solution.  

 

Rule 1 is based on the simple observation that if xi = 1, the least possible contribution to the 

objective function is created by setting xj = 0 for all j  Ni
+
 and xj = 1 for all j  Ni

–
, yielding cii 

+ Ci
–
. If this quantity is  0 then evidently there is no loss in setting xi = 1 and the conclusion of 

Rule 1 holds. (The condition cii  0 is implied by cii + Ci
–
  0.)  When Rule 1 is satisfied  𝑐𝑖𝑖 is 

added to the objective function, the 𝑐𝑖𝑗 coefficients are added to the corresponding diagonal 

coefficients 𝑐𝑗𝑗 and row i and column i are removed from the Q matrix.   

 

Rule 2: (For cii ≤ 0.) If cii + Ci
+
 ≤ 0, then xi = 0 in an optimal QUBO solution. 

 

Similarly, Rule 2 is based on the observation that if xi = 1, the greatest possible contribution to 

the objective function occurs by setting xj = 1 for all j  Ni
+
 and xj = 0 for all j  Ni

–
, yielding cii 

+ Ci
+
. If this quantity is ≤ 0 then there can be no gain by setting xi = 1 and hence the conclusion 

of Rule 2 holds. (The condition cii ≤ 0 is implied by cii + Ci
+
  ≤ 0.)  When Rule 2 is satisfied row 

and column i can be removed from the Q matrix to create a reduced Q.   There is no adjustment 

to the objective function. 

 

We observe in the extreme case, where cii = 0 yields xi = 0 in Rule 1 or xi = 0 in Rule 2, then Ni
–
 

or Ni
+
 is empty, respectively.  We assume the indexes i and h in all subsequent rules are distinct.  

 

Rule 3: Assume Rule 1 does not yield either xi = 1 or xh = 1. If cih > 0 (h  Ni
+ 

and i  Nh
+
) and 

if cii + chh + cih + Ci
–
 + Ch

–
  0, then xi = xh = 1 in an optimal QUBO solution.  

 

The justification of Rule 3 is as follows. If Rule 1 does not yield xi = 1 or xh = 1, then cii + Ci
–
 

and chh + Ch
–
 are both negative, and the condition ci + ch + cih + Ci

–
 + Ch

–
  0 implies cih > 0 and 

consequently h  Ni
–
 and i  Nh

–
.  As previously noted, the least possible contribution to the 

objective function when xi = 1 results by setting xj = 0 for all j  Ni
+
 and xj = 1 for all j  Ni

–
, and 

similarly the least possible contribution to the objective function when xi = 1 results by setting xj 

= 0 for all j  Nh
+
 and xj = 1 for all j  Nh

–
.  Hence we can obviously can do no worse for xi = xh 

= 1 than to achieve the value ci + ch + cih + Ci
–
 + Ch

–
and if this value is nonnegative the objective 

function is not reduced.  
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Rule 4: Assume that Rule 2 does not yield either xi = 0 or xh = 0. If cih > 0 (h  Ni
+ 

and
 
i  Nh

+
) 

and if ci + ch + cih + Ci
+
 + Ch

+
 ≤ 0, then xi + xh ≤ 1 holds in an optimal QUBO solution. 

 

The justification of Rule 4 derives from an analysis related to the arguments justifying the 

preceding rules. 

  

Rule 5:   This is the trivial case when a row in the Q matrix is all 0s.  In this case neither  𝑥𝑖 = 0 

nor  𝑥𝑖 = 1 has an objective value effect and 𝑥𝑖  can be eliminated from Q.   Although you would 

not expect to create a QUBO with this condition, it may occur during preprocessing 

transformations.   

 

4.  GRAPH EXPANSION AND SENSITIVITY ANALYSIS 

 

4.1  Graph Expansion via Strongly Coupled Nodes 

In practice it is possible that a node may be restricted in the number of incident edges, this occurs 

in quantum annealing computers as well as in communication networks where nodes have edge 

capacity limitations.  In these cases, the over-capacity node moves some of its edges to 

additional nodes that are strongly coupled to it so that all have the same value at optimality.    Let 

m be the maximum allowable number of edges incident to any given node in the set of nodes N.  

Let Ei be the subset of node pairs in E that contain the node i,  Ei = {(k, l): k = i or l = i} and  |Ei| 

is the number of edges incident to node i and the restriction is |Ei| < m. 

If there exist nodes in G having |Ei| > m, then G can be transformed to an expanded graph G* = 

[N*, E*] via the introduction of additional nodes n* that are strongly coupled to those nodes 

having |Ei| > m.   Thus N* = {0, 1, 2, …, i, … n, (n+1)*, (n+2)*, …, n*} contains the original 

nodes in N up to n, but will rearrange the edges between nodes in N* to accommodate the 

additional nodes (n+1) to n*. 

When mapping to a physical graph such as the Chimera graph used in quantum annealing 

computers [17], we assume that G* is also subject to |Ei| < m and transformations can be 

continued, if necessary, until |Ei| = m.   The optimal solution to the QUBO problem based on the 

original G will be equivalent to the optimal solution based on G*. 

In order to strongly couple a collection of nodes we make use of penalty functions described in 

[11].   Specifically, if we wish to strongly couple nodes i and j in G*, then we use the penalty 

function M(xi – 2 xi xj + xj) in the objective function, where M is a large negative number in a 

maximization.  Note that the distinction between strong coupling and our Rule 3 is that the latter 

forces the corresponding variables to be equal to 1 in the optimal solution while strong coupling 

forces them to have the same value, either 0 or 1 at optimality. 
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A small example is presented to illustrate the transformation of G to G* via the addition of 

strongly coupled nodes.  Figure 3 shows the edges between nodes of a small graph G with 5 

nodes.    Let m = 3, that is, a node can have at most 3 edges. However node 0 has 4 edges, 

therefore the graph will be transformed by adding a node (or nodes) with penalty functions that 

guarantee that the optimal solution to both G and G* are equivalent. Note that there can be 

multiple ways to add nodes n* and the edges linking the original and new nodes.   

Figure 3 illustrates two transformations; the first adds a single node x5 with the maximum 3 

edges.  The second transformation adds two nodes x5 and x6 leaving an open edge on node 6 to 

which other strongly coupled nodes can be added.    

 

 

Figure 3.  Mapping from G to G* when m = 3 

 

In practice, we add an element xn+1 to the Q matrix that is strongly coupled to any node i with the 

following elements modified based on the value of M. 

 

G*(𝑐𝑖,𝑖 + M)  =  G(𝑐𝑖,𝑖)  

G*(𝑐𝑛+1,𝑛+1) =  M  

G*(𝑐𝑖,𝑛+1) = -2M 

 

Because we were interested in reductions and their effect on performance we did not implement 

and test strong coupling in this paper, however we note the value of future work to investigate 

the combination of applying rules 1- 5 to reduce graphs in conjunction with strong coupling to 

expand them in a situation where a given graph does not meet node and edge specifications [5]. 
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4.2  Use of the Rules in Sensitivity Analysis 

Robust optimization [3] is concerned with the fact that most data sets have a random element and 

thus contain inaccuracies and should not be treated as precise.  Since models using inaccurate 

data can lead to suboptimal solutions, the robustness of a solution to changes in the data should 

be examined.  Knowing the range of values over which a variable is determined as well as the 

relationship between that range of values and the interacting elements is a fundamental 

component of robustness.   

We examine Rules 1-4 to see how they are useful for analyzing the sensitivity of a determined 

variable to changes in elements of Q.    The rules provide the magnitude of change needed for a 

variable to become determined, or to stay indeterminate.   

Let  𝑐𝑖𝑗 denote a change in the current value of 𝑐𝑖𝑗 and set 𝑐𝑖𝑗 = 0 to yield an alternative 

expression of Rule 1.  For a given i where 𝑐𝑖𝑖 > 0,  

  if  𝑐𝑖𝑖 >  ∑ |𝑐𝑖𝑗 + 𝑐𝑖𝑗|𝑖,𝑗
𝑖≠𝑗

  where 𝑐𝑖𝑗 < 0 and 𝑐𝑖𝑗 = 0, then  𝑥𝑖 = 1  (R1a) 

 

For a given i where R1 is valid, based on R1b the allowable decrease 𝑐𝑖𝑗 to 𝑐𝑖𝑗 for a given j and 

still having xi = 1 determined is 

 𝑐𝑖𝑗 <  ∑ |𝑐𝑖𝑘| − 𝑐𝑖𝑖𝑖,𝑘
𝑖≠𝑘

    k = 1 ... n (R1b) 

Thus, the right hand side of R1b is the difference in magnitude between the linear coefficient of a 

row and the sum of the negative quadratic coefficients for that row.  Conversely if an xi is not 

determined, then R1b provides the amount that either 𝑐𝑖𝑖 must increase, or the amount that a 𝑐𝑖𝑗 

must decrease in order for xi  to be set to 1.   By extension the sum of the negative changes to all 

negative interactions can only decrease by the amount of the right hand side of R1b in order for 

xi  to remain set to 1.  

  ∑ 𝑐𝑖𝑗𝑖,𝑗
𝑖≠𝑗

 <  ∑ |𝑐𝑖𝑘| − 𝑐𝑖𝑖𝑖,𝑘
𝑖≠𝑘

    k = 1 ... n (R1c)  

Similar expressions can be developed for Rules 2 and 3.  Although we did not specifically 

investigate sensitivity analysis and robustness in this paper, we did perform some repeated 

testing using a random Q matrix to verify the robustness of certain results (see Section 6). 

5.  PSEUDOCODE 
 

An implementation of rules 1-5 is outlined below and then described in more detail. 
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Inputs:  graph G of size n 

Outputs: graph G* of size n* 

1.  Convert_G_to_Q;  // read graph and convert to an internal Q format 

2.  sum_of_positive_off_diagonal[i] = Calculate_pos_sum_in_row( i ); 

3.  sum_of_negative_off_diagonal[i] = Calculate_neg_sum_in_row( i ); 

4.  x_determined[ i ] = -1;  // indicates whether variable i = 0,1, unknown 

5.  number_determined = -1;  

6.  While number_determined <> 0 

7. number_determined = Determine_x; // applies Rules 1-5 

8. Q = Reduce_Q;  // reduce the size of Q and adjust cii and cij 

9. Adjust_objective_function_value;   

10. Save_reduced_G*; 

 

Step 1 is provided to address the various formats for describing nodes and edges in a file and 

various methods for working with the Q matrix, e.g. input is provided as a full matrix or in row-

col-value format and stored in memory as a full or upper triangular matrix, hash table, or linked 

list.  Step 2 calculates ∑ 𝑐𝑖𝑗𝑖,𝑗
𝑖≠𝑗

  where 𝑐𝑖𝑗 > 0 for each i  N and step 3 calculates ∑ 𝑐𝑖𝑗𝑖,𝑗
𝑖≠𝑗

  where 

𝑐𝑖𝑗 < 0 for each  i  N.  These sums are dynamic and are updated in step 8.  Step 4 initializes an 

array recording whether a variable has been set to 0 or 1 or has not been determined (set to -1).   

Step 7 implements the Rules 1-5 and maintains the array of determined variables.  Step 8 reduces 

Q based on the results of Step 7 and updates the sums calculated in steps 2 and 3.  Any variables 

determined to equal 1 require that the objective function be adjusted by a constant in Step 9.  As 

Q is transformed, new determinable variables can be discovered, which continues until none are 

determined (Steps 6 – 9).  

6.  TESTING 
 

As noted in [6] “the border separating successful from unsuccessful preprocessing cases is very 

thin.”To gain an understanding of what separates successful from unsuccessful preprocessing, an 

experimental design approach was used to identify the main Q characteristics affecting QPro 

efficacy.  Six Q factors, or characteristics, were considered for their effect on three outputs of 

interest: percent Q reduction, objective value quality and time to best solution.  The factors and 

their settings used in the experimental design are described in Table 1.  We created a 2
6-2

 

fractional factorial design resulting in 16 tests for each of the 3 problem sizes and 2 problem 

densities, creating a total of 96 tests with detailed results provided in the Appendices.  
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Table 1.   Q Factors and their Low / High Settings 

Factor ID Description Low High 

1  -Upper Bound < cij  < Upper Bound 10 100 

2 Linear Multipliers  5 10 

3 Quadratic Multipliers 10 20 

4 % Quadratic Multiplied 5 15 

5 % Linear Multiplied 10 20 

6 % non-zero Linear elements 5 25 

 

 

The first factor sets the range of the uniform random number generator, for example a setting of 

10 indicates that random coefficients 𝑐𝑖𝑗 are uniformly distributed between -10 and +10.  The 

second factor is multiplied times the number generated within the bounds of factor 1 according 

to the probability percent of factor 5.   For example, setting factors 2 and 6 to their low settings 

means 5% of the linear elements are multiplied by 5 when generating the Q matrix, where factor 

6 indicates what percentage of the Q matrix will have linear elements.  Factor 3 is similar to 

factor 2 except it is used for quadratic elements and factor 4 determines the percentage of 

quadratic elements that will become outliers.    Thus the majority of Q elements are drawn from 

a uniform distribution but with a percentage of them moved outside the limits of uniformity. 

The problem sizes, number of edges specified for the Q generator and average edge density for 

the six problems tested is provided in Table 2.  The 16 test runs with varied Q generation 

parameters are listed in Table 3.    The problem generator creates edges similar to the Q 

coefficients, in that they are uniformly distributed except that 1% of the nodes are densely 

connected  While the average densities may seem small, they represent up to 50 edges per node 

(P6), implying a binary decision quantifiably interacting with 50 other decisions.   All problems 

generated are connected graphs, but it is apparent that during preprocessing the graph could 

become disconnected, which would create multiple independently solvable smaller problems and 

future research will explore how to best leverage this fact. 

 

Table 2.  Problem Characteristics 

Problem ID Q size Edges Density % 

P1 1000 5000 1 

P2 1000 10000 2 

P3 5000 25000 0.2 

P4 5000 50000 0.4 

P5 10000 100000 0.2 

P6 10000 500000 1 
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Table 3.  Experimental Design Factors for 16 Tests 

ID 

Upper 

limit 

Linear 

Factor 

Quadratic 

Multiplier 

% large 

Quadratic 

% large 

Linear 

% non-zero 

Linear 

1 10 10 20 5% 10% 25% 

2 100 10 20 15% 20% 25% 

3 10 5 20 15% 10% 5% 

4 100 5 20 5% 20% 5% 

5 10 10 10 5% 20% 5% 

6 100 10 10 15% 10% 5% 

7 10 5 10 15% 20% 25% 

8 100 5 10 5% 10% 25% 

9 100 5 10 15% 20% 5% 

10 10 5 10 5% 10% 5% 

11 100 10 10 5% 20% 25% 

12 10 10 10 15% 10% 25% 

13 100 5 20 15% 10% 25% 

14 10 5 20 5% 20% 25% 

15 100 10 20 5% 10% 5% 

16 10 10 20 15% 20% 5% 

 

 

6.1  Test Results Using Cplex 

The 96 problems were first solved by default Cplex (with the quadratic-to-linear parameter 

turned off so that the problems were not linearized) and compared to using QPro followed by 

solution of the reduced problem using Cplex.   Default Cplex presolve was used for both 

approaches (except the quadratic-to-linear parameter was set to zero) and the average percent 

reductions found by QPro alone and by Cplex are summarized in Table 4 with detailed test 

results available in Appendix A.  Table 4 shows that QPro reduced all the problems by an 

average 30% while Cplex’s percent reduction was about 5%. The table also shows that QPro was 

faster to obtain the same, or better, solutions.  The objective differences reported in Table 4 for 

the 10000 variable 100000 edge problems are noticeably higher because of two tests (84 and 95 

in Appendix A) where QPro+ Cplex found much better answers to problems with large 

objectives.  However, removing those two tests still yields an average improvement in objective 

of about 8000 for that problem set and QPro found a better solution to every problem.    

The time and reduction ratios for QPro were very good overall and extremely good for a few 

problems in each size.  For example, the QPro percent reduction was on average 160x greater 

than that achieved by Cplex on problems 4, 15, 67 and 80, and the time to best solution for QPro 

was 160x faster for problems 29, 67 and 80.  Problems 67 and 80 (10000 variables) were solved 

to optimality by Cplex in 0.01 seconds after about 2 seconds when coupled with QPro versus 



12 
 

600+ seconds for the default version of Cplex.    These two problems have factors 1, 3 and 4 in 

common and analysis provided in the next section indicates that these three factors are the most 

significant for predicting percent reduction.   

 

Table 4.  Average Results for the 96 Test Runs comparing QPro+Cplex to Cplex 

  

QPro Cplex  

 

Objective 

Difference Size Edges  Time 

Total 

Time 

% 

Reduce  time 

% 

Reduce 

Time 

Factor 

% 

Reduce 

Factor 

1000 5000 0.01 4 36 25 11 7 3 0 

1000 10000 0.01 15 31 25 4 2 9 0.1 

5000 25000 0.37 111 34 187 11 2 3 2887 

5000 50000 0.30 157 29 136 3 1 11 465 

10000 100000 1.06 453 20 600 0.4 1 56 159332 

10000 500000 1.34 336 31 583 3 2 10 20712 

 

Figure 4 slices the data by Problem ID (Table 2) and provides the average Q reduction and time 

factor multiple of QPro+Cplex over default Cplex.   It identifies problem IDs 3, 13 and 16 as 

having over 50x more percent reductions and being solved 30x faster than default Cplex.   These 

three problem types have factors 3 and 4 (high percentage of large quadratic outliers) in 

common.    As anticipated, there is a positive correlation between percent reduction and time to 

best solution with QPro generally finding either the same or better solutions more quickly. 

 

 

Figure 4.  Cplex Average Time to Solution and Reduction Factors Categorized by Problem ID 
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While dramatic improvements were found when solving QUBO with non-uniform distributions, 

sample testing of the benchmark maxcut problems available at 

http://www.stanford.edu/~yyye/yyye/Gset/  could not determine any variables using these rules 

because the QUBO models created for maxcut problems are very highly structured with each 

diagonal coefficient 𝑐𝑖𝑖 equalling  ∑ 𝑐𝑖𝑗𝑖,𝑗
𝑖≠𝑗

, while each nonzero 𝑐𝑖𝑗{−1, 1} and there are no 

positive off diagonal elements.   Our rules did not yield reductions on the 10% dense and 

uniformly distributed ORLIB 2500 variable problems [2] due to distribution uniformity and 

density. 

 

6.1.2  Interpretation of Cplex Results 

Results show that the primary (linear) factors most affecting percent reduction are:  Magnitude of 

coefficient range, Size of Quadratic multiplier, and % Quadratics multiplied (factors 1, 3 and 4 in 

Table 1).  Thus, when collecting data and modeling a problem it would be desirable to emphasize 

these three factors so that it is more likely that large problems can be reduced and more quickly 

solved.   

In general, increasing the range of coefficients tended to slightly decrease the percent reduction.  

The explanation is that increasing the range of coefficients makes the distributions more uniform 

than if the range is smaller.  For example, if the linear multiplier is 10x and the linear coefficient 

randomly generated is between [-100, 100] then there are more possibilities of not producing 

outliers because numbers such as 10, 20, 30, … 100 are likely not to be outliers.  However, if the 

range is between [-10,10] then the number of outliers is increased, which allows more 

reductions.    

Increasing the percentage of large quadratics (factors 3 and 4) tends to increase the percent 

reduction because it increases the use of Rule 3 that determines values for two variables at a 

time.   It also adds 𝑐𝑖𝑗 to the corresponding 𝑐𝑖𝑖 and 𝑐𝑗𝑗 for variables that were not determined, 

possibly changing them into determined variables.   Factor 4 increases the percentage of large 

quadratics and it was the most significant factor in five of the six problem types.  Table 5 

summarizes the effects of the six factors on the six problem types and shows factor 4 (percent 

quadratic outliers) had the largest impact for all six problem types. 

 

 

 

http://www.stanford.edu/~yyye/yyye/Gset/
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Table 5.  The  Primary and Interaction Effects of the 6 Factors on Percent Reduction 

  

Problem ID 

Factor 

ID 

Factor 

ID 
P1 P2 P3 P4 P5 P6 

1 1 -4 -3 -2 -2 -3 -2 

2 2 0 0 0 0 0 0 

3 3 2 8 3 7 6 20 

4 4 13 17 13 16 17 20 

5 5 0 0 0 0 0 0 

6 6 0 0 0 1 1 -1 

1 2 0 0 0 0 0 0 

1 3 0 1 0 1 0 -1 

1 4 -1 -2 0 -1 -1 -1 

1 5 0 0 0 0 0 0 

1 6 1 3 1 2 2 20 

2 3 0 0 0 0 0 0 

2 4 0 0 0 0 0 0 

2 5 1 3 1 2 2 20 

2 6 0 0 0 0 0 0 

3 4 1 3 1 2 2 20 

3 5 0 0 0 0 0 0 

3 6 -1 -2 0 -1 -1 -1 

4 5 0 0 0 0 0 0 

4 6 0 1 0 1 0 -1 

5 6 0 0 0 0 0 0 

 

 

Table 5 also shows there is some confounding of the interaction between factors due to the setup 

of the experimental design.  For example, factor interactions 1-6 and 2-5 and 3-4 are confounded, 

meaning that they have the same test set ups.  An approach used to resolve confounding is to 

look at the primary effects of the interactions and disregard interactions having small primary 

effects.   In this case factors 1, 2, 5 and 6 have relatively small individual effects and so we 

would not expect their interactions to be large.  Therefore, the 20% reduction in P6 of Table 5 is 

most likely associated with the interaction between factors 3 and 4, both of which are 

individually large. 

Table 5 provides data for a surface response equation that can be used to estimate the percent 

reduction that will occur when setting the six factors at a value between their defined bounds.  

Averaging effects and taking into account confounding and disregarding small interaction 

effects, an estimate of the average percent reduction for these problems is 

 PR(f1, f2, f3, f4, f5, f6) = -3f1 + 8f3 + 16f4 + 5f3f4 + 30 (2) 
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where the fi  values are in the interval [-1, 1] and represent the range of values for the factors in 

Table 1.  For example, f1 = -1 means the range is [-10, 10].  The constant 30 is the average 

percent reduction if all factors were set to the middle of their range (implemented as fi  = 0).   

Maximum estimated percent reduction occurs when the Q range is [-10, 10], the quadratic 

multiplier is 15% and percent quadratic multiplied is 20%.   

 

6.1.3  Robustness of Results  under Randomness 

To support that our conclusions are based on results that were typical and not “cherry picked” or 

out of the ordinary, we ran repeated randomized tests on some problems.   We randomly selected 

test number 15 for the 1000 variable problem with 5000 and 10000 edges then generated 100 

instances using a current time seeded random number generator, applied QPro and recorded the 

percent reduction in Q.  The distribution of the count of the percent reductions found is shown in 

Figure 5.   For the original run, the percent reductions were 18% for the 10000 edge problem and 

20% for the 5000 edge problem and for the 100 random instances for test fifteen, the average 

number of reductions for 10000 edges was 15% ± 5% and for 5000 edges 20% ± 3%, indicating 

that the problems used in analysis were not out of the ordinary.  The 10000 edge problems had a 

wider distribution (± 5% vs ± 3%) because 10% of the problems yielded no reductions, revealing 

that reductions can be sensitive to random changes in Q.  An early article recognizing that small 

changes to Q can have large effects on problem difficulty is that of [16].   

 

Figure 5.  Percent Reduction using Random Q for Problem ID 15 
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Two problems (3 and 16) for the largest and densest problems (P6) showed dramatic reductions 

and decreases in time to best solution.    After QPro these problems were solved to optimality in 

0.01 seconds versus not even entering the branch-and-cut phase of Cplex after 600 seconds 

without QPro.   For problems with these characteristic Q matrices, Cplex found less than 40 

reductions while QPro found over 7000.   As a test of robustness of these results, 100 random 

samples of 10000 variable 500000 edge problems were generated using the characteristics for 

Problem IDs 3 and 16.  The narrow frequency distribution of count of percent reduction shown 

in Figure 6 illustrates that these problem types are robust to the reduction rules and consistently 

yield very large reductions when random changes are made to the elements of Q. 

 

 

Figure 6.  Percent Reduction using Random Q for 10000 variables Problem IDs 3 and 16 
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divided by QPro+PR2.  The average time factor in the table is the average of the time factors for 

the sixteen tests for each size and density. 

The averages show that QPro+PR2 was about 4x faster to a slightly better solution.   Detailed 

results from testing are provided in Appendix B and those results show that both approaches 

found the same answer for the 1000 variable problems for 31 of the 32 tests and that QPro+PR2 

was over 30x faster on three of the 32 1000-variable problems.  The detailed results indicate that 

for the 5000 variable problems PRreQ+PR2 consistently had better objectives and was slightly 

faster.   

 

 

Table 6.  Average Results for the 96 Test Runs comparing QPro+PR2 to PR2 

Size Edges 

QPro+PR2 

Time 

PR2 Default 

Time 

Average 

Time 

Factor 

Percent 

Objective 

Difference 

1000 5000 1.0 3.3 7 0 

1000 10000 2.0 3.8 8 0 

5000 25000 45.8 49.7 1 0.05 

5000 50000 53.0 77.3 8 0.04 

10000 100000 77.5 87.8 3 0.13 

10000 500000 88.5 117.8 1 0 

 Averages 45 57 4 0.04 

 

 

Figure 8 averages the time factor improvements over Q size and density for each of the 16 

problem types and illustrates that problems of type 16 had significantly better improvements in 

PR2 time to solution, which is also consistent with the Cplex results.   

Figure 9 drills down by problem size and shows that the majority of improvement in time was in 

the 1000 variable problems, which may be due to input parameter selections not being tuned for 

the larger problems.  The purpose of this research was not to compare heuristic and exact 

methods, however we found that QPro had more of an objective function value impact on Cplex 

than on PR2 because PR2 is already very good at quickly finding near optimal solutions. 
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Figure 8.  PR2 Time to Solution Improvements for each Problem Type 

 

  

Figure 9.  PR2 Time to Solution Improvements for each Problem Type by Problem Size 
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to reduce the size of the Q matrix defining the QUBO problem in order to reduce the run time 

and the solution accuracy of methods for solving this problem. Our work builds on the 

recognition that many business problems modeled using big data are unstructured and subject to 

randomness, and we have accompanied our research into reducing Q by developing a new set of 

test problems to more accurately reflect these types of models.   The resulting problems have 

elements that are sparsely connected with the majority of Q elements being uniformly distributed 

but with varying amounts of outlier elements.  

The principal contribution of our research is the creation and justification of five rules for 

reducing the size of QUBO.   We have presented basic pseudocode for combining the rules into a 

rapid preprocessor called QPro and have tested the results of using our preprocessor with the 

exact solver Cplex and with a tabu search metaheuristic incorporating path relinking.   Careful 

testing and analysis shows that the Q characteristics most influencing reduction are the range of 

the uniformly distributed elements and the number and magnitude of the quadratic outliers 

In conclusion, we have established that the QPro preprocessing implementation is very fast and 

effective at reducing the time to obtain high quality solutions.  We have additionally identified 

ways to apply the rules to sensitivity analysis and robustness, as well as the use of 

transformations that increase the size, but reduce edge density per node. 
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APPENDICES 

A.  Problem Characteristics and Detailed Test Results Using QPro and Cplex  

 

ID 

 DOE 

ID Size 

Density 

% 

QPro  

Obj 

Cplex  

Obj Difference 
1 1 1000 2 43804 43804 0 

2 2 1000 2 903359 903359 0 

3 3 1000 2 96986 96986 0 

4 4 1000 2 382632 382632 0 

5 5 1000 2 29905 29905 0 

6 6 1000 2 479397 479397 0 

7 7 1000 2 55874 55874 0 

8 8 1000 2 254819 254819 0 

9 9 1000 2 481453 481453 0 

10 10 1000 2 29668 29668 0 

11 11 1000 2 260325 260325 0 

12 12 1000 2 54874 54874 0 

13 13 1000 2 879654 879652 2 

14 14 1000 2 43543 43543 0 

15 15 1000 2 382945 382945 0 

16 16 1000 2 97345 97345 0 

17 1 1000 1 26074 26074 0 

18 2 1000 1 488919 488919 0 

19 3 1000 1 52493 52493 0 

20 4 1000 1 215402 215402 0 

21 5 1000 1 18662 18662 0 

22 6 1000 1 277851 277851 0 

23 7 1000 1 32259 32259 0 

24 8 1000 1 156133 156133 0 

25 9 1000 1 273774 273774 0 

26 10 1000 1 18405 18405 0 

27 11 1000 1 158849 158849 0 

28 12 1000 1 32406 32406 0 

29 13 1000 1 484897 484897 0 

30 14 1000 1 25883 25883 0 

31 15 1000 1 216039 216039 0 

32 16 1000 1 52698 52698 0 

 

A1.  1000 variable problems size, density and objective values 
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  QPro Cplex  Ratios 

 ID  Time Total Time % Reduce  Time % Reduce Time Reduce 

1 0.01 8        20.4  20          2.3  2.5 9  

2 0.01 3        54.8  10        11.7  3.3 5  

3 0.02 2        62.8  9          3.6  4.5 17  

4 0.01 20        18.8  65          0.2  3.3 94  

5 0.01 10        10.9  20          0.6  2.0 18  

6 0.02 7        32.7  15          1.2  2.1 27  

7 0.02 5        43.3  11          8.1  2.2 5  

8 0.01 45          5.6  50          1.5  1.1 4  

9 0.02 7        32.1  15          2.1  2.1 15  

10 0.01 14        10.8  18          0.3  1.3 36  

11 0.01 80          6.9  45          3.1  0.6 2  

12 0.01 3        42.6  11          7.2  3.7 6  

13 0.03 3        55.6  7        10.0  2.3 6  

14 0.01 9        20.4  22          2.2  2.4 9  

15 0.01 20        18.8  70          0.2  3.5 94  

16 0.02 2        62.9  11          3.9  5.5 16  

17 0.01 5        27.9  8        10.8  1.6 3  

18 0.01 3        47.2  6        11.7  2.0 4  

19 0.01 2        56.5  3        16.0  1.5 4  

20 0.01 7        19.9  14          4.4  2.0 5  

21 0.01 5        24.0  8          7.5  1.6 3  

22 0.01 2        41.3  12          5.4  6.0 8  

23 0.02 0.2        51.7  1        24.4  5.0 2  

24 0.01 7        16.7  12          5.7  1.7 3  

25 0.01 3        40.1  11          5.6  3.7 7  

26 0.01 3        24.1  2          7.0  0.7 3  

27 0.01 7        18.1  12          6.7  1.7 3  

28 0.02 0.1        51.8  0.5        23.3  5.0 2  

29 0.01 2        47.0  280        10.3  140.0 5  

30 0.01 5        28.1  8        12.1  1.6 2  

31 0.01 6        19.8  12          4.4  2.0 5  

32 0.01 2        56.7  4        16.7  2.0 3  

 Averages 0.01 9 33 25 7 7 13 

 

A2.  1000 variable time to best solution and percent reductions 
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ID 

 DOE 

ID Size 

Density 

% QPro Obj Cplex  Obj Difference 

33 1 5000 0.4 204391 204262 129 

34 2 5000 0.4 4230341 4227909 2432 

35 3 5000 0.4 448027 448000 27 

36 4 5000 0.4 1793275 1767620 25655 

37 5 5000 0.4 142924 142839 85 

38 6 5000 0.4 2277417 2276055 1362 

39 7 5000 0.4 256085 256066 19 

40 8 5000 0.4 1220530 1219811 719 

41 9 5000 0.4 2282365 2278151 4214 

42 10 5000 0.4 142568 142465 103 

43 11 5000 0.4 1247769 1247377 392 

44 12 5000 0.4 259523 259489 34 

45 13 5000 0.4 4175231 4172468 2763 

46 14 5000 0.4 201192 201035 157 

47 15 5000 0.4 1798995 1790940 8055 

48 16 5000 0.4 450303 450260 43 

49 1 5000 0.2 118508 118430 78 

50 2 5000 0.2 2482738 2482738 0 

51 3 5000 0.2 246707 246707 0 

52 4 5000 0.2 1091258 1088083 3175 

53 5 5000 0.2 88070 87970 100 

54 6 5000 0.2 1360353 1360299 54 

55 7 5000 0.2 149308 149308 0 

56 8 5000 0.2 789052 788540 512 

57 9 5000 0.2 1357177 1357177 0 

58 10 5000 0.2 87401 87308 93 

59 11 5000 0.2 830412 829672 740 

60 12 5000 0.2 151219 151219 0 

61 13 5000 0.2 2390595 2390595 0 

62 14 5000 0.2 117471 117349 122 

63 15 5000 0.2 1090106 1087537 2569 

64 16 5000 0.2 248397 248397 0 

 

A3.  5000 variable problems size, density and objective values 
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  QPro Cplex  Ratios 

 ID  Time 

Total 

Time 

% 

Reduce  Time 

% 

Reduce Time Reduce 

33 0.24 270        18.8  90          2.2  0.3 8  

34 0.38 100        52.6  275          8.2  2.7 7  

35 0.4 22        56.5  180          3.4  8.0 19  

36 0.19 280        16.1  60          0.4  0.2 43  

37 0.2 45          9.5  70          0.4  1.5 17  

38 0.38 290        31.6  120          1.0  0.4 31  

39 0.38 30        40.2  200          5.5  6.6 8  

40 0.16 45          7.0  60          1.1  1.3 6  

41 0.38 280        31.4  50          0.9  0.2 32  

42 0.2 290          9.5  50          0.4  0.2 20  

43 0.19 50          8.0  60          1.9  1.2 4  

44 0.41 116        40.9  190          5.7  1.6 8  

45 0.38 110        52.1  295          6.8  2.7 9  

46 0.23 273        18.6  85          2.2  0.3 9  

47 0.19 290        16.0  200          0.4  0.7 45  

48 0.42 20        56.8  190          3.4  9.3 18  

49 0.3 72        26.3  275        11.6  3.8 2  

50 0.5 10        49.4  240        14.5  25.3 4  

51 0.49 20        54.1  130        15.5  6.3 3  

52 0.25 300        21.5  30          5.8  0.1 3  

53 0.39 80        22.1  100          9.8  1.2 2  

54 0.4 15        42.3  295          7.5  19.2 5  

55 0.45 20        48.4  110        18.4  5.4 3  

56 0.23 280        17.5  210          6.9  0.7 2  

57 0.4 45        42.1  299          7.6  6.6 5  

58 0.38 95        21.3  100          9.1  1.0 2  

59 0.27 290        18.4  180          7.8  0.6 2  

60 0.45 20        48.0  122        18.3  6.0 3  

61 0.41 32        48.8  295        13.0  9.1 4  

62 0.31 107        26.1  140        11.6  1.3 2  

63 0.25 280        21.6  280          5.7  1.0 3  

64 0.49 18        54.5  130        16.3  7.0 4  

Averages 0.3 131 32 160 7 4 10 

 

A4.  5000 variable time to best solution and percent reductions 
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ID 

 DOE 

ID Size 

Density 

% QPro Obj Cplex  Obj Difference 

65 1 10000 1 1555611 1555611 0 

66 2 10000 1 37838000 37833600 4400 

67 3 10000 1 4212259 4212053 206 

68 4 10000 1 10947337  10947300 37 

69 5 10000 1 985534  985534 0 

70 6 10000 1 17759300  17759300 0 

71 7 10000 1 2249326  2249326 0 

72 8 10000 1 5495629  5495629 0 

73 9 10000 1 17743900  17743900 0 

74 10 10000 1 981258  981258 0 

75 11 10000 1 5596983  5596983 0 

76 12 10000 1 2263103  2263103 0 

77 13 10000 1 37181848  36855100 326748 

78 14 10000 1 1547867  1547867 0 

79 15 10000 1 10968200  10968200 0 

80 16 10000 1 4224394  4224394 0 

81 1 10000 0.2 429901 426791 3110 

82 2 10000 0.2 9028291 9020055 8236 

83 3 10000 0.2 954647 954517 130 

84 4 10000 0.2 3533451 2317043 1216408 

85 5 10000 0.2 299673 299589 84 

86 6 10000 0.2 4651197 4646122 5075 

87 7 10000 0.2 542974 542933 41 

88 8 10000 0.2 2429373 2387583 41790 

89 9 10000 0.2 4661455 4656335 5120 

90 10 10000 0.2 296544 296456 88 

91 11 10000 0.2 2544042 2506695 37347 

92 12 10000 0.2 547371 547344 27 

93 13 10000 0.2 8696580 8685361 11219 

94 14 10000 0.2 426669 423492 3177 

95 15 10000 0.2 3529275 2311948 1217327 

96 16 10000 0.2 961129 960992 137 

 

 

A5.  10000 variable problems size, density and objective values 
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  QPro Cplex  Ratios 

 ID  Time 

Total 

Time 

% 

Reduce  time 

% 

Reduce Time Reduce 

65 0.85 601          1.4  600          0.2  1.0 6  

66 3.13 23        74.3  600          1.2  25.9 63  

67 3.53 4        85.5  600          0.4  169.5 237  

68 0.27 600          0.1  600          0.0  1.0 3  

69 0.14 600          0.2  600          0.1  1.0 3  

70 0.14 600          0.1  600          0.1  1.0 1  

71 0.29 600          1.1  600          0.8  1.0 1  

72 0.13 600          0.1  600          0.2  1.0 0  

73 0.14 600          0.1  600          0.2  1.0 0  

74 0.14 600          0.0  600          0.0  1.0 1  

75 0.14 600          0.6  600          0.3  1.0 2  

76 0.42 600          0.9  600          0.7  1.0 1  

77 3.3 22        75.5  600          1.0  26.9 76  

78 0.7 601          1.7  600          0.2  1.0 8  

79 0.27 600          0.1  600          0.0  1.0 6  

80 3.38 3        84.6  600          0.4  177.0 217  

81 1.12 301        20.2  600          2.8  2.0 7  

82 1.76 502        53.9  600        10.6  1.2 5  

83 2.04 102        60.5  600          2.8  5.9 22  

84 0.76 301        15.5  600          0.5  2.0 32  

85 0.97 271        11.9  600          0.7  2.2 17  

86 1.72 194        34.2  600          0.7  3.1 52  

87 1.76 102        44.7  500          6.7  4.9 7  

88 0.64 601          7.4  600          1.0  1.0 8  

89 1.72 112        34.2  600          0.7  5.4 46  

90 0.84 401        11.5  600          0.4  1.5 27  

91 0.78 601          8.3  600          2.3  1.0 4  

92 1.89 552        45.1  600          5.6  1.1 8  

93 1.6 602        53.6  600          8.6  1.0 6  

94 1.1 371        19.8  600          3.0  1.6 7  

95 0.77 281        15.4  600          0.3  2.1 48  

96 2.04 87        60.4  430          3.4  4.9 18  

 

1  395  26  592  2  14  29  

 

A6.  10000 variable time to best solution and percent reductions 
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APPENDIX B.  Detailed Test Results using QPro and  Path Relinking Metaheuristic PR2 

 

   

QPro + PR2 PR 2 default 

Objective 

Difference 

Time 

Factor  ID Size 

Density 

% Objective Time Objective Time 

1 1000 2 43804 0.9 43804 0.9 0 1.0 

2 1000 2 903359 0.3 903359 12.6 0 40.6 

3 1000 2 96986 0.0 96986 0.3 0 7.5 

4 1000 2 382632 6.0 382632 2.4 0 0.4 

5 1000 2 29905 6.0 29905 4.7 0 0.8 

6 1000 2 479397 2.0 479697 2.8 -300 1.4 

7 1000 2 55874 0.5 55874 4.7 0 9.0 

8 1000 2 254819 2.0 254819 3.9 0 1.9 

9 1000 2 481453 1.0 481453 3.9 0 3.8 

10 1000 2 29668 2.0 29668 7.7 0 3.8 

11 1000 2 260325 3.7 260325 5.9 0 1.6 

12 1000 2 54874 0.1 54874 1.0 0 9.1 

13 1000 2 879654 0.3 879654 1.7 0 6.1 

14 1000 2 43543 0.6 43543 1.1 0 1.8 

15 1000 2 382945 2.3 382945 4.9 0 2.1 

16 1000 2 97345 0.1 97345 2.4 0 34.3 

17 1000 1 26074 1.3 26074 1.0 0 0.8 

18 1000 1 488919 0.5 488919 4.7 0 9.2 

19 1000 1 52493 0.1 52493 0.9 0 8.2 

20 1000 1 215402 1.0 215402 4.8 0 4.8 

21 1000 1 18662 1.0 18662 2.6 0 2.6 

22 1000 1 277851 1.9 277851 10.8 0 5.7 

23 1000 1 32259 0.3 32259 0.5 0 1.6 

24 1000 1 156133 1.4 156133 3.3 0 2.3 

25 1000 1 273774 1.6 273774 8.1 0 5.0 

26 1000 1 18405 1.7 18405 2.3 0 1.3 

27 1000 1 158849 3.0 158849 2.5 0 0.8 

28 1000 1 32406 0.3 32406 1.0 0 3.1 

29 1000 1 484897 1.0 484897 2.7 0 2.7 

30 1000 1 25883 0.2 25883 2.5 0 14.7 

31 1000 1 216039 1.0 216039 1.8 0 1.8 

32 1000 1 52698 0.1 52698 3.3 0 47.1 
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QPro + PR2 PR 2 default 

Objective 

Difference 

Time 

Factor  ID Size 

Density 

% Objective Time Objective Time 

33 5000 0.4 204411 43.2 204374 54.0 37 1.2 

34 5000 0.4 4230341 62.4 4228816 46.0 1525 0.7 

35 5000 0.4 448027 21.4 447965 58.0 62 2.7 

36 5000 0.4 1794446 55.2 1792891 53.0 1555 1.0 

37 5000 0.4 143042 69.2 142940 56.0 102 0.8 

38 5000 0.4 2278847 56.4 2278361 53.0 486 0.9 

39 5000 0.4 256083 61.4 256027 42.0 56 0.7 

40 5000 0.4 1223703 74.2 1221522 50.0 2181 0.7 

41 5000 0.4 2283311 61.4 2282826 40.0 485 0.7 

42 5000 0.4 142645 63.2 142607 56.0 38 0.9 

43 5000 0.4 1251370 63.2 1250671 50.0 699 0.8 

44 5000 0.4 259510 31.4 259458 44.0 52 1.4 

45 5000 0.4 4175186 47.4 4174697 45.0 489 0.9 

46 5000 0.4 201237 66.2 201205 53.0 32 0.8 

47 5000 0.4 1801032 67.2 1799503 54.0 1529 0.8 

48 5000 0.4 450303 8.4 450267 41.0 36 4.9 

49 5000 0.2 118480 52.3 118425 86.0 55 1.6 

50 5000 0.2 2482694 65.5 2481641 88.0 1053 1.3 

51 5000 0.2 246705 35.5 246695 80.0 10 2.3 

52 5000 0.2 1089450 66.3 1088571 79.0 879 1.2 

53 5000 0.2 88046 63.4 88024 81.0 22 1.3 

54 5000 0.2 1359965 59.4 1358681 81.0 1284 1.4 

55 5000 0.2 149300 58.5 149285 81.0 15 1.4 

56 5000 0.2 789690 41.2 788841 88.0 849 2.1 

57 5000 0.2 1356638 65.4 1356338 86.0 300 1.3 

58 5000 0.2 87361 57.4 87372 85.0 -11 1.5 

59 5000 0.2 830362 63.3 829205 79.0 1157 1.2 

60 5000 0.2 151215 44.5 151187 79.0 28 1.8 

61 5000 0.2 2390567 45.4 2389123 74.0 1444 1.6 

62 5000 0.2 117435 63.3 117438 77.0 -3 1.2 

63 5000 0.2 1088555 63.3 1086962 25.0 1593 0.4 

64 5000 0.2 248397 33.5 248375 71.0 22 2.1 
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QPro + PR2 PR 2 default 

Objective 

Difference 

Time 

Factor  ID Size 

Density 

% Objective Time Objective Time 

65 10000 1 1620836 118.9 1620899 83.0 -63 0.7 

66 10000 1 37837990 7.1 37837887 40.0 103 5.6 

67 10000 1 4212259 3.9 4212259 58.0 0 14.8 

68 10000 1 12474795 113.3 12472295 90.0 2500 0.8 

69 10000 1 1054227 139.1 1054083 99.0 144 0.7 

70 10000 1 18214481 120.1 18214499 123.0 -18 1.0 

71 10000 1 2267676 31.3 2267676 29.0 0 0.9 

72 10000 1 7276904 92.1 7283019 101.0 -6115 1.1 

73 10000 1 18200291 62.1 18200834 132.0 -543 2.1 

74 10000 1 1048779 71.1 1048929 130.0 -150 1.8 

75 10000 1 7469937 114.1 7471912 131.0 -1975 1.1 

76 10000 1 2278831 2.4 2278831 30.0 0 12.4 

77 10000 1 37181848 25.3 37181832 141.0 16 5.6 

78 10000 1 1612715 74.7 1612817 103.0 -102 1.4 

79 10000 1 12487346 80.3 12480960 99.0 6386 1.2 

80 10000 1 4224394 3.4 4224394 16.0 0 4.7 

81 10000 0.2 430087 151.1 430031 131.0 56 0.9 

82 10000 0.2 9029102 105.8 9006658 108.0 22444 1.0 

83 10000 0.2 954645 69.0 958865 116.0 -4220 1.7 

84 10000 0.2 3537453 148.8 3529326 128.0 8127 0.9 

85 10000 0.2 299702 172.0 299427 124.0 275 0.7 

86 10000 0.2 4652467 106.7 4653917 116.0 -1450 1.1 

87 10000 0.2 542995 88.8 542583 115.0 412 1.3 

88 10000 0.2 2430925 101.6 2426515 107.0 4410 1.1 

89 10000 0.2 4664901 106.7 4653846 88.0 11055 0.8 

90 10000 0.2 296604 153.8 296251 119.0 353 0.8 

91 10000 0.2 2542752 99.8 2545270 114.0 -2518 1.1 

92 10000 0.2 547389 116.9 546725 119.0 664 1.0 

93 10000 0.2 8695308 116.6 8661439 63.0 33869 0.5 

94 10000 0.2 426909 126.1 426758 125.0 151 1.0 

95 10000 0.2 3533974 149.8 3508360 118.0 25614 0.8 

96 10000 0.2 961109 60.0 959744 1.8 1365 0.0 

 

B1 (continued).  PR2 comparison of Objective Value and Time using the 96 Test Problems 

 

 
 

 


