
A
i

Y
a

b

c

a

A
R
R
2
A
A

K
C
K
T
P
S
B

1

o
c
c
t
t
o
w
t
a
J
s
b
t
m

f
w

h
1

Applied Soft Computing 63 (2018) 97–109

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

 Tabu search based clustering algorithm and its parallel
mplementation on Spark

inhao Lua, Buyang Caoa,∗, Cesar Regob, Fred Gloverc

School of Software Engineering, Tongji University, 4800 Cao’An Road, Shanghai, 201804 China
School of Business Administration, University of Mississippi, University, MS 38677, USA
ECEE, College of Engineering & Applied Science, University of Colorado, Boulder , CO 80309, USA

 r t i c l e i n f o

rticle history:
eceived 15 May 2017
eceived in revised form
1 November 2017
ccepted 24 November 2017
vailable online 2 December 2017

a b s t r a c t

The well-known K-means clustering algorithm has been employed widely in different application
domains ranging from data analytics to logistics applications. However, the K-means algorithm can be
affected by factors such as the initial choice of centroids and can readily become trapped in a local opti-
mum. In this paper, we propose an improved K-means clustering algorithm that is augmented by a Tabu
Search strategy, and which is better adapted to meet the needs of big data applications. Our design focuses
on enhancements to take advantage of parallel processing based on the Spark framework. Computational
experiments demonstrate the superiority of our parallel Tabu Search based clustering algorithm over a
eywords:
lustering
-means
abu search
arallel computing
park

widely used version of the K-means approach embodied in the parallel Spark MLlib system, comparing
the algorithms in terms of scalability, accuracy, and effectiveness.

© 2017 Elsevier B.V. All rights reserved.
ig data

. Introduction

The purpose of a clustering process is to group a set of (abstract
r physical) objects into multiple classes, so that the objects in each
lass (cluster) are similar according to certain rules or criteria. A
lustering algorithm in general seeks to build the clusters by the
wo interrelated criteria of selecting objects to lie in the same clus-
er that are as similar as possible while undertaking to assure that
bjects that lie in different clusters are as dissimilar as possible,
here the definition of similarity can be problem dependent. Clus-

ering problems can be found in applications ranging from data
nalytics to logistics applications as documented in the surveys of
ain et al. [1], Berkhin [2], Grabmeier and Rudolph [3], Xu and Wun-
ch [4], and Jain [5]. The search for new clustering algorithms that
est fit the different applications has proved fundamentally impor-
ant to many recent advances in the domains of biology, genetics,

edicine, business, engineering, and social science, among others.

Data-driven decision making as well as the burgeoning demand

or data analytics has inspired increasing numbers of scholars as
ell practitioners to develop and apply clustering algorithms. Clus-

∗ Corresponding author.
E-mail addresses: caobuyang@tongji.edu.cn, buyang60@hotmail.com (B. Cao).

ttps://doi.org/10.1016/j.asoc.2017.11.038
568-4946/© 2017 Elsevier B.V. All rights reserved.
tering is generally known as an unsupervised learning method
(since no prior knowledge is provided that determines which
objects should be grouped in a common cluster) and plays a crucial
role in finding patterns and trends in the datasets. The role of clus-
tering is highlighted in Grabmeier and Rudolph [3], who propose a
variety of criteria to evaluate the quality of clusters along with sug-
gestions about how to select solution methodologies. From another
perspective, Łuczak [6] proposes a hierarchical clustering approach
for classification problems involving time series datasets. Although
Łuczak’s method works well for classifying time series data, it can-
not be applied directly to most other clustering problems without
major modifications.

Data analytics based on clustering are especially pervasive in
the public health arena. Glatman-Freedman et al. [7] discuss the
use of near real-time spatiotemporal cluster analysis to devise
strategies for combatting some enteric bacteria diseases. With the
help of this type of analysis, the source of a disease can be iden-
tified in a timely manner to enable appropriate measures to be
taken before it becomes widespread. Clustering applications also
abound in the field of logistics, where spatial and other relational
restrictions often exist to limit the choice of objects that can lie

in a common cluster. To solve the problems encountered in such
applications, Cao and Glover [8] present an algorithm based on
Thiessen-polygons that proves highly effective in generating clus-
ters that satisfy restrictions on balancing and connectivity. In this

https://doi.org/10.1016/j.asoc.2017.11.038
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2017.11.038&domain=pdf
mailto:caobuyang@tongji.edu.cn
mailto:buyang60@hotmail.com
https://doi.org/10.1016/j.asoc.2017.11.038

9 Comp

c
i
a
n
m

a
M
p
i
c
a
t
i
c
i
o
o
w
f
r
a
a
p
t

a
c
g
t
f
t
o
e
o
t
t
u
[
a
c
o

f
a
p
m
c
b
t
r
p
e
s
n
s
o
w
o
i
t
m
l
a
p
i

8 Y. Lu et al. / Applied Soft

ase, the entire service area for the logistics application is divided
nto several geographically connected and balanced subareas that
ccount for geographic obstacles and constraints imposed by busi-
ess logic, enabling a logistics service provider to offer better and
ore efficient services for customers.
Among various clustering approaches, the K-means clustering

lgorithm [9] is one of the most popular and widely applied.
odern data analytical solver packages, including open source

ackages such as R and Spark MLlib, include the K-means cluster-
ng algorithm among their offerings. Nevertheless, the K-means
lustering algorithm exhibits some limitations that need to be
ddressed to solve clustering problems more effectively. Notably,
he algorithm relies on an initial determination of a set of centroids
n order to launch subsequent steps that assign objects to these
entroids and thereby identify new centroids. The choice of these
nitial centroids has a major influence on the structure and quality
f the final clusters produced, and hence an improper selection
f these centroids can lead to unsatisfactory outcomes. Moreover,
hen starting from any given set of centroids, the K-means process

or successively assigning objects and generating new centroids
elies on a heuristic approximation of conditions necessary to
chieve optimality, and the solution trajectory produced by this
pproach may not be particularly effective. Thus, researchers and
ractitioners have developed a variety of procedures in an attempt
o overcome these limitations.

Xiong et al. [10] utilize the exiting max-mix distance algorithm
s the foundation for improving the K-means approach, to over-
ome the great fluctuations in the final outcomes produced by
enerating initial centroids randomly. This approach accelerates
he convergence of the K-means algorithm but does not per-
orm well in terms of accuracy. Lin et al. [11] attempt to improve
he K-means algorithm by integrating it with an approach based
n particle swarm optimization and multiclass merging. Their
xperimental tests show that their approach yields better overall
utcomes than the original K-means algorithm. In general, the solu-
ions created by the K-means algorithm are influenced greatly by
he initial solution settings. Poorly selected initial solutions lead to
ndesirable final solutions. To overcome this problem, Celebi et al.
12] and Wang and Bai [13] propose a variety of methods to gener-
te better initial solutions rather than relying on randomly picked
entroids. The goal of generating better initial solutions is also one
f the motivations for our paper.

Furthermore, like other heuristics, the K-means algorithm suf-
ers from its susceptibility to become trapped in local optima. To
ddress this issue, for a data analytical project Cao et al. [14] pro-
ose a Tabu Search algorithm that aims to produce tighter and
ore cohesive clusters based on incorporating criteria for these

haracteristics in the objective function. The algorithm succeeds
oth in obtaining better global solutions and in producing clusters
hat are more cohesive, but the computation time is greater than
equired by a well-implemented K-means method. To address the
erformance of K-means in solving large-scale problems, Bhimani
t al. [15] propose three parallel computational models including
hared memory, distributed memory, and GPU-based heteroge-
eous computing. Computational experiments on image datasets
howed these parallel versions of K-means to be 30 times faster
n average than the sequential counterpart. To overcome the
ell-known sensitivity of K-means to the initial solution, a set

f candidate solutions is first generated in parallel and the best
s selected to initiate the algorithm. This approach proved essen-
ial to maximize algorithm speedup. Xu and Cao [16] present a

ethod for parallelizing a Tabu Search clustering algorithm uti-

izing a subspace partitioning principle. The computational results
re appealing in terms of both solution quality and computing
erformance, but a gap remains in achieving outcomes that are

deal. The implementation utilizes a multi-core platform to run
uting 63 (2018) 97–109

a multi-thread version of the Tabu Search clustering processes
while employing a subspace partitioning principle to carry out the
data transactions. However, the underlying algorithm structure is
not compatible with a big data computational framework such as
Spark.

With the existence of big data computing infrastructures includ-
ing cloud computing, we are now increasingly able to analyze
and process large volumes of data efficiently. However, a variety
of classic optimization problems that require many iterations to
solve have yet to benefit from these latest technologies. Recourse
is sometimes made to heuristics that yield local optima of ques-
tionable quality. More ambitious metaheuristic based approaches
yield better solutions but in some cases face a challenge to pro-
duce such solutions within a reasonable span of computation time.
As more businesses move their IT services to centralized envi-
ronments such as cloud platforms, it is necessary to develop and
implement optimization algorithms more efficiently to accommo-
date the ever-increasing scale of practical problems. Consequently,
we are motivated to explore the possibilities of utilizing big data
computing infrastructures like Spark to solve large-scale optimiza-
tion problems.

As one of a series of research projects, in this paper we address
two major issues encountered in solving large-scale clustering
problems, namely, the potentially poor quality of local optima
obtained by simple clustering algorithms such as K-means, and the
generally poor computational times produced by more complicated
clustering algorithms. We propose a Tabu Search strategy to tackle
the local optimality problem in conjunction with a Spark platform
parallel processing implementation that makes it possible to han-
dle large-scale problems more efficiently. The main contributions
of the paper are:

- Design and implement the parallel mechanism for the algorithm
to operate within a big data computing infrastructure.

- Develop a strategy for generating initial clustering solutions to
provide stable and robust outcomes.

- Design the solution neighborhood structure and an associated
candidate list selection strategy so that the solution procedure
will be capable of effectively exploiting the MapReduce opera-
tions.

- Establish the merit and feasibility of applying metaheuristics such
as Tabu Search within the Spark environment, thereby encourag-
ing other researchers to explore the use of metaheuristics in big
data environments to solve large-scale optimization problems.

The paper is organized as follows: Section 2 describes the clus-
tering model, the Tabu Search based clustering algorithm, and its
parallel implementation on Spark platform. Computational results
are presented in Section 3. Finally, Section 4 concludes the paper
with our findings and future research directions.

2. Model and algorithms

2.1. The model

In the following we represent similarity by a distance measure,
and seek a collection of clusters that minimizes intra-cluster dis-
tance and maximizes inter-cluster distance. We call the objects to
be clustered as data points and refer to the set of objects as a dataset.
Consider a dataset of Np objects. Each data point in the dataset has
k attributes, i.e., it is k-dimensional. A data point xt will be rep-

resented by a vector xt = (xt1, xt2, . . ., xtk). The underlying dataset
then can be represented by

X =
{

xt : t = 1, . . ., Np

}
(2.1)

 Comp

w
t
t

C

p
s
i
a

t
o
d
v
t
i
E
p
(
a

S

s
e
m
d
t
p
f
d

V

f
p
d
o

t
f

o

2

w
d
c
d
t
o
c
t
e
n

t
[
h
i
u
m

for the next round. In other words, a move is performed by let-
ting the best solution in the current neighborhood become the new
working solution. This process defines one iteration of our local
Y. Lu et al. / Applied Soft

here Np identifies the total number of data points. Let Ns be the
otal number of clusters to be built and denote each cluster by Ci,
hen the resultant cluster set will be:

 =
{

Ci : i = 1, . . ., Ns

}
(2.2)

The goal of our clustering problem is to group data points into a
re-defined number of clusters by the criteria previously discussed
o that data points lying within the same cluster are as close (sim-
lar) as possible points lying in different clusters should be as far
part (dissimilar) as possible.

We employ the notation Score
(

xi, xj

)
from the Tabu Search clus-

ering paper of Cao et al. [14] to represent the similarity of a pair
f data points (xi, xj). More precisely, Score

(
xi, xj

)
describes the

egree of correlation between two data points, so that smaller
alues indicate a greater desirability for assigning the points to
he same cluster and larger values indicate a greater desirabil-
ty for assigning them to different clusters. Here we suppose that
uclidean distance is used to describe the similarity of two data
oints in a k-dimensional space though other distance measures
including those that do not satisfy the definition of a norm) can
lso be used. Hence, for our present purposes we define

core(xixj) =
√

�k
p=1(xip − xjp)2 (2.3)

Our algorithm makes use of distances between data points in
everal different ways depending on the objective, though in gen-
ral we will want to identify a data point xi that maximizes or
inimizes the sum of the distances from the data point to another

ata point or to a set of data points. In some instances, the objec-
ive may be to determine whether the sum of distances from a data
oint to a set of points fall below a specified threshold. The general
unction to perform those computations and identify the desired
ata point may be written as follows:

(i) = � Score(xixj), xi ∈ L, xj ∈ U, xj /= xj (2.4)

A main use for this function is to compute the total distance
rom all data points in a cluster to its centroid, which is also a data
oint of the cluster. Let xi denote the centroid of cluster Ci, the total
istance (from all data points xjto the centroid xi) of cluster Ci is
btained by setting L =

{
xi

}
and U = Ci\{xi}.

Under the foregoing settings, the objective function of our clus-
ering problem that we seek to minimize is then denoted by the
ollowing formula:

bjVal = �Ns
i=1V(i) (2.5)

.2. Tabu search algorithm design

To accommodate the parallel implementation of our algorithm,
e solve clustering problems by applying the so-called centroid-

riven approach. Unlike the regular K-means algorithm where
entroids (except for the initial centroids) are recalculated after
ata points are shuffled, we find better centroids for all clusters and
hen assign data points to the proper clusters to optimize the value
f objValdefined in (2.5). As long as cluster centroids are defined, we
an apply the same logic used in the K-means algorithm to identify
he clusters associated with these centroids simply by assigning
ach point to the centroid closest to it. As we show in detail in the
ext section, this strategy is easily parallelized.

The key strategies of the Tabu Search component of our clus-
ering algorithm may be described as follows. Tabu Search (TS)
17,18] is a metaheuristic algorithm designed to guide subordinate

euristic search processes to escape the trap of local optimal-

ty. TS is distinguished from other metaheuristics by its focus on
sing adaptive memory and special strategies for exploiting this
emory. Memory is often divided into short-term and long-term
uting 63 (2018) 97–109 99

memory, and the Tabu Search strategies for taking advantage of
this memory are often classified under the headings of intensi-
fication and diversification.1 A common form of TS short-term
memory is a recency-based memory that operates to temporarily
prevent recently executed moves from being reversed for a dura-
tion (number of iterations) known as the tabu tenure. Other types
of short-term and long-term memory make use of frequency-based
memory as described in Glover and Laguna [24]. In our current
implementation we make use of a simple version of TS that uses
recency-based memory alone.

Intensification strategies in TS are designed to focus the search
more strongly in regions identified by past search history and
by current evaluations as likely to harbor good solutions, while
diversification strategies focus the search more strongly on visiting
regions that have not been examined before. These two strategies
are interdependent, and the best forms of each result by including
reference to the goals of the other.

We employ the Spark platform in this setting to take advantage
of the fact that Spark has become a standard platform for processing
and analyzing large datasets. The parallel version of our algorithm
is chiefly based on the fact that the objects to be clustered do not
impact each other during the step in which they are reallocated to
new centroids to create new clusters.

Following standard terminology, the transition from a current
solution to a new one is called a move. Utilizing the centroid-driven
idea, the type of move we exploit by parallelization consists of
(a) selecting a data point as the new centroid of a cluster, and (b)
reassigning data points to their closest new centroids to create cor-
responding new clusters. However, we modify (b) by taking account
of the objective function value objVal defined in (2.5) as a basis for
generating improved clusters.

2.2.1. Neighborhood determination
A neighborhood is the solution subspace of the current solution

which defines the available moves for generating a new solution at
the next iteration. Neighborhood design and construction is highly
important for an efficient Tabu Search algorithm. An inappropriate
neighborhood may miss the opportunity to explore more promising
solution spaces or may result in spending too much time examining
unnecessary or unpromising spaces. We employ a neighborhood
definition that results by creating a sphere that places a centroid
at its center. For a given cluster Ci with centroid xi, we define the
neighborhood N (i) of this cluster as follows:

N (i) =
{

xj : |xj − xi| ≤ Ri, xi, xj ∈ Ci, xi /= xj

}
(2.6)

Here Ri is the radius of the neighborhood sphere, and |xj − xi|
is defined by (2.3). As mentioned earlier, we employ the conven-
tion whereby a centroid itself is treated as a data point. Any data
point that lies in cluster Ci and satisfies the conditions indicated in
(2.6) becomes an element of the neighborhood N (i), and hence is
a candidate to become a new centroid at the next iteration. Thus,
using (2.6), we first construct a neighborhood sphere from the cen-
troid of a current cluster, and then select an element in this sphere
to be the centroid of a new cluster. Then, a neighboring solution
is obtained by reassigning all remaining elements (data points) to
their closest centroid. Once this process is completed for all data
points other than the centroids in current clusters, the highest eval-
uation neighboring solution is chosen to define the new clusters
1 The intensification/diversification terminology introduced in Tabu Search has
subsequently been adopted by many other metaheuristics.

1 Comp

s
a

s
c
w

R

c
a
t

N

2

b
b
T
e
p
t
f

s
x

00 Y. Lu et al. / Applied Soft

earch procedure on which Tabu Search is superimposed to provide
ppropriate guidance, as explained later.

The sphere radius value plays an important role in our algorithm
earch strategy and is critical to performance. The following pro-
edure determines the radius value R. Relative to a given cluster Ci
ith centroid at xi and the data points, Ri is defined as follows:

i = �|Ci |
i=1Score

(
xj, xi

)
/|Ci|, xi, xj ∈ Ci, xi /= xj (2.7)

Clearly Ri varies as a function of the individual cluster Ci it is asso-
iated with, and in this sense changes dynamically for each cluster
s the cluster’s composition changes. The overall neighborhood of
he Tabu Search algorithm is then:

B = ∪Ns
i=1N (i) (2.8)

.2.2. Tabu list
A tabu list holds the information for those solutions that cannot

e revisited during the next t iterations. The solutions referenced
y the tabu list are called tabu, and t designates the tabu tenure.
he fact that in our algorithm clusters are formed by assigning
ach data point to its closest centroid allows for a move to be com-
letely defined by two data points in a common cluster that swap
heir labels (from centroid to non-centroid and vice versa). More
ormally, let O =

{
o1, . . ., oNs

}
be the set of current centroids in a
olution and Ō = X\O be its complement relative to data set X. Let
j and xk be two data points in the current cluster Ci where xj ∈ O
uting 63 (2018) 97–109

and xk � Ō. A move is then defined by setting oi = xk, which automat-
ically kicks xj out of set O; hence, after swapping labels we have
xk ∈ O and xj � Ō. The corresponding neighboring solution is then
obtained by assigning each data point in Ō to its closest data point
in O. For the purpose of short term memory guidance, it is sufficient
to impose a restriction that prevents xj from moving back into set
O during an appropriate number of iterations (from the current
one) which we denote by t. The tabu list is implemented as a linear
array TL (j) , j = 1, . . ., Np, with each component being the iteration
number at which the tabu restriction on xj is relaxed. Whenever
an element xj leaves the centroid set O, its tabu status is set to I + t,
where I denotes the current iteration. To provide greater flexibil-
ity and an opportunity to find better solutions, the tabu status of a
solution can be overridden (or lifted) if a so-called aspiration crite-
rion is met. In our application, the aspiration criterion is the most
basic one, which is satisfied if the solution produced by the move
is better than the best solution found so far. In the section for com-
putational experiments we provide more details for how to set the
tabu tenure for the clustering problems to be solved.

2.2.3. Candidate list
A candidate list CL is a subset of the neighborhood NB which

is generated to reduce the computational effort of examining the
complete neighborhood, using a design that focuses on moves
that are anticipated to be the more promising ones for uncover-
ing improved solutions. We use the following process to pick data
points to become members of the candidate list:

 Computing 63 (2018) 97–109 101

2

g
s
e
c
t

a
c
a
c
w
d
o
o
s
s
a
i

2

c

-
-

2

i

Y. Lu et al. / Applied Soft

.2.4. Intensification and diversification strategies
As previously noted, the intensification strategy in Tabu Search

uides the search to explore more attractive regions of the solution
pace while the diversification strategy encourages the search to
xplore rarely examined regions. In our implementation we focus
hiefly on speed of execution and therefore use extremely simple
ypes of intensification and diversification strategies.

Our intensification strategy consists precisely of restricting
ttention to members of the candidate list to pick new centroids for
lusters, given the design of CL which focuses on the highest evalu-
tion moves. Correspondingly, the diversification strategy merely
onsists of using the entire neighborhood NB as the candidate list
ithout restriction to the higher evaluation moves. Since the candi-
ate list for the diversification strategy is obviously larger than the
ne for the intensification strategy, we thereby gain the possibility
f exploring regions that are rarely examined by the intensification
trategy. Evidently, more sophisticated intensification and diver-
ification strategies are possible, but we find that these simple
pproaches perform in a satisfactory manner to support our parallel
mplementation.

.2.5. Stopping criteria
Our clustering algorithm terminates if one of the following two

onditions is met, as detailed in Section 2.4:

 A predefined maximum number of iterations is reached,
 An improvement is not found in two consecutive calls of the Tabu
Search procedure (one for the intensification and the other for
diversification).
.3. Construction of initial centroids

Our method of constructing an initial solution is based on a max-
mum distance idea expressed in terms of a sum of distances from
Fig. 1. Construction of initial centroids.

existing centroids. Unlike K-means, the centroids in our algorithm
are real data points. We assume the number of clusters, Ns, is greater
than 1. Initial solutions are created as follows:

Again, we have focused on simplicity rather than sophistication.
A variety of more advanced procedures are given in Glover [19]
that replace the maximum distance measure with generalizations
of a MaxMin distance measure utilizing iterative refinement and
adaptive thresholds.

Fig. 1 depicts the process of creating the initial centroids for
three clusters. Point X which is the first centroid is selected ran-

domly. Then we select the point farthest from X, identifying point
Y as the second centroid. The third centroid is chosen to be the
point possessing the largest sum of distances to the previously

1 Comp

s
p
t
i
t
p
c
G

2

c

02 Y. Lu et al. / Applied Soft

elected centroids, hence yielding the point Z. The remaining data
oints are then assigned to their closest centroids to form the ini-
ial clusters. We see that unlike the traditional K-means algorithm
n which the centroid of a cluster is the center of gravity, our ini-
ialization algorithm selects centroids of clusters which are data
oints. This likewise constitutes an instance of a more sophisti-
ated type of strategy in the pseudo-centroid clustering approach of
lover [19].

.4. Tabu search based clustering algorithm

We assemble the components described above to produce our
omplete algorithm as follows:
uting 63 (2018) 97–109

2.5. Parallelization

By utilizing latest advances in computer hardware and comput-
ing frameworks, the parallelization of algorithms has been shown
to be useful for solving large-scale data analytical and optimiza-
tion problems related to clustering in Rego [20], Xu and Cao [16],
Gopalani and Arora [21], and Wang et al. [22]. The motivation for
parallelizing our algorithm derives from the fact that the data points
are not affected by each other when they are reassigned to the clos-
est centroids. The process of reallocating data points to generate
new clusters can be parallelized by using the mapPartition trans-
form in Spark. At the end of the mapPartition phase, the selection of
new centroids for the resulting clusters can also be treated as inde-
pendent due to our special neighborhood design. In this case, the
evaluation for each cluster centroid can be implemented in parallel
using the Spark reduce operation.

Y. Lu et al. / Applied Soft Computing 63 (2018) 97–109 103

rall ar

s
i
e
o
i
s
c

p
c
d
t
t
t
b

Fig. 2. Ove

There are multiple Map-Reduce operations for the parallel ver-
ion of our algorithm where the entire dataset will be divided
nto several blocks, and each Map or Reduce is responsible for the
xploration of a data block. Let Nmrbe the number of Map-Reduce
perations, each of which is associated with one computing unit
n the parallel computing environment. When the whole dataset is
plit between these operations and processed simultaneously, the
omputation time is expected to be reduced significantly.

We parallelize two components of our algorithm. The first com-
onent is the process of reallocating/reassigning data points to the
lusters based on assigning them to the closest centroids. Since the
ata points can be treated independently in this process, during
he map phase each map assigns data points to their nearest cen-
roids in parallel. The second component is the process of updating

he centroid of each cluster. Since the neighborhood creation is
ased on the sphere of the current cluster, the selection of the best
chitecture.

centroids for individual clusters does not create any interference
between the clusters. This step can be parallelized as well.

The reduce process relies on the output of map: <centerId,
pointList>. By referring to centerId we can obtain all associated data
points forming the cluster, calculate the sphere radius of the cur-
rent cluster by formula (2.7), and obtain the candidate list from the
neighborhood sphere for either the intensification or diversifica-
tion strategy. At each iteration, multiple map-reduce operations are
run simultaneously on the splitting datasets and we choose the best
solution by merging all solutions from the individual map-reduce
processes for the current iteration.

2.6. Parallel implementation on spark

Based on the discussion of the preceding section, the parallel
version of our algorithm is quite like the non-parallel version with
the addition of customization to accommodate the map-reduce
operations. We will omit some details in the description of the par-
allel version that have been included in the non-parallel algorithm.

1 Comp

2

b
c
A
a

•
•
•
•

N
u
t
c
t
T
t
c

n
r
d

04 Y. Lu et al. / Applied Soft

The overall algorithm can be written as follows:

.7. Time complexity analysis

In this analysis, we omit the time for computing distances
etween all data pairs since it is a constant. Nevertheless, in our
omputational experiments all distances are calculated on the fly.
ccording to the discussion in Section 2.6, the running time of the
lgorithm depends on the following factors:

the number of iterations Nl,
the number of clusters Ns,
the number of data points Np, and
the number of parallel data blocks Nmr.

Because our computational framework splits the dataset into
mr blocks, the quantity of the data in each block or computing
nit is approximately Np/Nmr. In each parallel computing unit, the
ask of the mapPartition function is to assign data points to the
orresponding clusters. For each data point we need to sort the dis-
ances from each data point to all Ns centroids in ascending order.
he quick sorting complexity is O (Nslog (Ns)), and the time to pick
he shortest distance after sorting is negligible. Therefore, the time
omplexity of this process is O

(
Nslog (Ns) Np/Nmr

)
.

The reduceByKey function first determines the radius of the
eighborhood sphere for each cluster. For each cluster the cor-
esponding computational time is proportional to the number of
ata points involved in each computing unit. Therefore, the time
uting 63 (2018) 97–109

complexity of determining Ri will be O
(

Np/Nmr

)
and the time com-

plexity for all clusters is O
(

NsNp/Nmr

)
. To determine the candidates

from a neighborhood we compute the cost V (j) for all xjin the neigh-
borhood and sort them in ascending order. Assuming the number
of data points in the neighborhood is �, the time complexity of
these two operations is O(˛(1 + log(˛)). The value of � is about an
Np/2Nmr order of magnitude operation by the neighborhood defi-
nition, and the time complexity of determining candidates for all
clusters is

O
(

NsNp

2Nmr

(
1 + log

(
Np

2Nmr

)))
.

If the algorithm runs for Nl iterations, the overall time complex-
ity for the parallel version (implemented in the Spark framework)
is therefore:

O
(

NsNp

Nmr

(
Nl (1 + log (Ns)) + 1

2

(
1 + log

(
Np

2Nmr

))))

The time complexity of the traditional K-means algorithm is()

O kNlNsNp if the data points are k dimensional. The time com-
plexity of our algorithm is similar to that of the K-means algorithm
with extra time spent on creating neighborhoods and candidate
lists.

 Computing 63 (2018) 97–109 105

3

t
i
t
t
E

e
(
i
i
c
o

3

i
t
t
b
e
t
c
t
s
s
a
o
a

P

t
i
f
p
a
u
a

r
i
f

•

•
•

i
f
i
m
w
T
i
i

Table 1
The impacts of algorithm parameters.

Dataset Number of
iterations

Tabu
tenure

Radius size Comp.
Time (sec.)

Accuracy

Iris 500 5 small 2.7134 0.6122
Iris 500 5 standard 3.3451 0.6928
Iris 500 10 standard 3.6190 0.6533
Iris 500 5 large 4.2296 0.7012
Iris 1000 5 small 4.3796 0.6384
Iris 1000 6 small 4.5120 0.6264
Iris 1000 8 small 4.5329 0.6211
Iris 1000 3 small 4.2198 0.6311
Iris 1000 2 small 4.1146 0.5821
Iris 1000 5 standard 8.0121 0.9234
Iris 1000 6 standard 8.0411 0.9125
Iris 1000 7 standard 8.0982 0.9052
Iris 1000 10 standard 8.1157 0.9021
Iris 1000 2 standard 7.7782 0.9192
Iris 1000 3 standard 7.8934 0.9203
Iris 1100 5 standard 8.5382 0.9234
Iris 1500 5 standard 11.2580 0.9234
Iris 1000 5 large 13.568 0.9255
Iris 1000 6 large 13.671 0.9203
Iris 1000 10 large 14.107 0.9128
Iris 1000 20 large 15.217 0.8972
Wine 500 5 standard 5.7653 0.5879
Wine 500 6 standard 5.7721 0.5823
Wine 500 10 standard 5.8283 0.5608
Wine 500 4 standard 5.7610 0.5822
Wine 1000 5 standard 11.8379 0.7239
Wine 1000 6 standard 12.2445 0.7157
Wine 1000 10 standard 12.4589 0.7012
Wine 1000 4 standard 12.2234 0.7211
Wine 1000 2 standard 12.1289 0.7067
Wine 1000 5 large 21.250 0.7311
Wine 1000 7 large 22.4329 0.7288
Wine 1000 2 large 20.1982 0.7215
Y. Lu et al. / Applied Soft

. Experiments

We have implemented the algorithm presented in Section 2 on
he Spark platform using a computational environment consist-
ng of four machines, which are divided into one master node and
hree slave nodes. The hardware configuration of each machine is
he same: CPU Intel core2 2.2 GHZ, RAM 2 GB, Hard Disk 500 GB,
thernet 100 M/s. The overall architecture is depicted as follows:

The datasets (Iris, Wine, Yeast, and Seeds) for the computational
xperiments are downloaded from the UCI open dataset depository
https://archive.ics.uci.edu/ml/datasets). The data types contained
n the datasets are different, so that we may validate the applicabil-
ty and performance of our algorithm. Furthermore, all data points
ontained in the datasets have been labeled so that the correctness
f the clustering outcomes can be verified relatively easily (Fig. 2).

.1. The impacts of the algorithm parameters

As previously mentioned, the tabu tenure has a significant
mpact on the quality of the results. We have used fixed tabu
enures instead of dynamic tenures to keep our algorithm simple,
hough dynamic tenures may generally be expected to produce
etter outcomes. Solution quality can also of course be influ-
nced by the number of iterations permitted for carrying out
he search process. To find reasonable algorithm parameters, we
onducted preliminary computational experiments using different
abu tenures and numbers of iterations. The experiments provide
ome insights into selecting proper parameters for obtaining more
atisfactory solutions. Let Ncorrect denote the number of data points
ssigned to correct clusters and let Ntotal denote the total number
f data points. Then the quality of a solution is determined by the
ccuracy P defined as follows:

 = Ncorrect

Ntotal
(3.1)

The original datasets contain labels for each data point iden-
ifying the cluster to which it should be assigned as a basis for
dentifying Ncorrect. The entries in the “Accuracy” column of all
ollowing tables is computed based upon this formula. The com-
utational times listed in all tables include times not only for the
lgorithm and distance calculations but also the ones spent partic-
larly in a distributed system such as task scheduling, job tracking
nd monitoring, data shuffling between different nodes, etc.

The neighborhood N (i) described above plays an important
ole in obtaining satisfactory clustering results. To investigate the
mpacts of various neighborhood sizes in more detail, we tested the
ollowing three settings for the neighborhood size:

Small: half of that defined in (2.7), i.e., Ri/2 for individual cluster
Ci.
Standard: as defined by (2.7), i.e., Ri for all clusters Ci.
Large: the largest distance among those from the current centroid
to all data points. In this case, the neighborhood contains all data
points in the current cluster. Note, however, that CL in general is
different from the neighborhood.

The best tradeoff between neighborhood size and number of
terations is key to maximum algorithm performance. On one hand,
or constant neighborhood size more iterations will necessarily
ncrease the computational time while less iterations may compro-

ise solution quality. On the other hand, a similar result is expected

hen varying the neighborhood for constant number of iterations.

he sensitivity of the algorithm to the tabu tenure should also be
nvestigated under the various neighborhood sizes and numbers of
terations.
Wine 1100 5 standard 14.1053 0.7239
Wine 1500 5 standard 16.9110 0.7239

To gauge the impact of the algorithm parameters on perfor-
mance, we conduct a set of experiments with different parameter
settings, running the algorithm ten times for each instance and
averaging the results. The outcomes are listed in Table 1.

The table shows that tabu tenures between 3 and 6 yield sat-
isfactory solutions while tabu tenures outside of this range cause
the solution quality to deteriorate. As may generally be expected,
when the tabu tenure is set too small, cycling can occur and the
process becomes trapped in a local optimum. Inversely, when the
tabu tenure is too large, the neighborhood of admissible moves can
become too restricted and prevent the method from discovering
some of the higher quality solutions.

For a given tabu tenure and number of iterations, the small
neighborhood sizes have a significant negative impact on the
final results while standard and large neighborhood sizes produce
almost the same outcomes. When we use a small neighborhood
size, the candidate lists have fewer choices for their elements and
eventually miss some opportunities to yield better solutions. On
the other hand, the larger neighborhood sizes that involve consid-
eration of a greater number of alternatives for building clusters will
obviously need more time to evaluate (see the above time complex-
ity and computational time analyses). In terms of computational
time, on average the large neighborhood size needs more compu-
tational time than the standard neighborhood one does while the
qualities of both settings are almost the same.

Table 1 also shows that running the algorithm for more than
1000 iterations does not yield significant benefit. On the other hand,

running for less than 1000 iterations usually leads to poor solutions.

Based on our experiments, we set the tabu tenure to 5, the neigh-
borhood size to be the standard, and the number of iterations to be
1000 respectively for all subsequent computational testing.

https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets

106 Y. Lu et al. / Applied Soft Computing 63 (2018) 97–109

Table 2
Accuracy of both algorithms on the Iris dataset.

The N-th experiment Comp. time of K-means (s) Accuracy of K-means Comp. time of our algorithm(s) Accuracy of our algorithm

1 5.2341 0.8633 8.0901 0.9267
2 5.8921 0.8456 8.538 0.9267
3 6.3327 0.8698 7.8762 0.9223
4 6.5255 0.8321 8.1237 0.9116
5 7.1782 0.9139 8.3621 0.9267
6 5.9120 0.8140 8.0328 0.9233
7 6.2569 0.8569 8.2712 0.9187
Average value 6.1902 0.8565 8.1849 0.9223
Standard deviation 0.5598 0.031723988 0.2052 0.00557567

Table 3
Accuracy of both algorithms on the Wine dataset.

The N-th experiment Comp. time of K-means(s) Accuracy of K-means Comp. time of our algorithm(s) Accuracy of our algorithm

1 8.1626 0.6836 12.014 0.7246
2 9.5498 0.7145 11.781 0.7233
3 8.6745 0.5166 11.216 0.7246
4 7.3589 0.6731 12.197 0.7242
5 5.7622 0.6389 11.009 0.7137
6 7.3561 0.6977 10.253 0.7244
7 5.8458 0.7012 11.833 0.7181
Average value 7.53 0.6608 11.472 0.7218
Standard deviation 1.2989 0.068095325 0.6337 0.004276625

Table 4
Accuracy of both algorithms on the Yeast dataset.

The N-th experiment Comp. time of K-means(s) Accuracy of K-means Comp. time of our algorithm(s) Accuracy of our algorithm

1 9.1216 0.5233 11.115 0.6096
2 9.3110 0.5387 11.435 0.6177
3 7.1103 0.5899 10.329 0.6211
4 9.2352 0.6211 12.188 0.6185
5 8.4460 0.4910 11.649 0.6201
6 9.8320 0.5529 11.587 0.6195
7 8.9561 0.4967 12.172 0.6237
Average value 8.8589 0.5448 11.4964 0.6186
Standard deviation 0.8106 0.047659941 0.5950 0.004418522

Table 5
Accuracy of both algorithms on the Seeds dataset.

The N-th experiment Comp. time of K-means(s) Accuracy of K-means Comp. time of our algorithm(s) Accuracy of our algorithm

1 5.8223 0.8826 7.3171 0.9467
2 6.4570 0.9105 8.2981 0.9345
3 4.8901 0.8944 6.3312 0.9488
4 5.1018 0.8367 7.2891 0.9488
5 3.8790 0.9533 7.3242 0.9391
6 5.2740 0.9269 8.2912 0.9431

3

m
i
m
d
a
r
o
t

t
o
A
t

7 5.1451 0.9102

Average value 5.2256 0.9021

Standard deviation 0.7389 0.03671818

.2. Comparisons in accuracy and stability

To compare the results obtained by our algorithm and the K-
eans algorithm of Spark MLlib we used the parameter settings

ndicated in Section 3.1 by selecting the tabu tenure and the maxi-
um number of iterations to be 5 and 1000 respectively for all four

atasets. Since our algorithm chooses the first centroid randomly
nd the Spark MLlib K-means algorithm picks all initial centroids
andomly, we run both algorithms multiple times to evaluate their
verall accuracies and stabilities. The following four tables show
he means and standard deviations of the solution accuracies.

Our algorithm unsurprisingly takes longer computational time

han the K-means algorithm embedded in Spark MLib because
f the more sophisticated procedures introduced in our method.
ccording to the last two rows of Tables 2–5, we can conclude

hat our algorithm provides a significant improvement over the
6.3341 0.9502
7.7321 0.9445
0.7416 0.00585117

K-means algorithm in terms of accuracy and robustness. We con-
jecture two reasons to account for this outcome. First is that the
creation of initial solutions based on maximum distances can gen-
erate relatively robust initial solutions which facilitate the search
process. Second is that the Tabu Search mechanism embedded in
our algorithm can overcome local optimality more effectively and
provide a better exploration of the solution space.

For the sake of clarity, we display the means and standard
deviations of the accuracies listed in the preceding four tables in
Figs. 3 and 4 respectively.

As the figures clearly depict, our algorithm can create more
accurate and robust solutions.
To provide an analysis of the quality of our results relative to the
K-means algorithm of Spark MLlib, we conduct statistical tests of
the hypothesis that the results of the two methods are significantly
different. Since the distribution of the results obtained by the algo-

Y. Lu et al. / Applied Soft Computing 63 (2018) 97–109 107

Fig. 3. Average accuracy of two algorithms on four datasets.

Fig. 4. Standard deviations of two algorithms on four datasets.

tio of

r
A
t
u
t
a

t

Fig. 5. The accelerating ra

ithms is unknown, a non-parametrical test should be used. Like
blanedo-Rosas and Rego [23], we use the Wilcoxon signed rank

est to determine whether two samples were selected from pop-
lations having the same distribution. The null hypothesis is that

he populations of results obtained by K-means and our algorithm
re identical.

The open source R statistical software is used to conduct the
est by calling wilcox.test(a,b, paired = TRUE), which is provided
 K-means in Spark MLlib.

with the results from our four datasets listed in Tables 2–5. The p-
value of this test is: 7.451e-08 and the output from R is: “alternative
hypothesis: true location shift is not equal to 0”.

Therefore, we reject the null hypothesis and conclude that the

results obtained by our algorithm significantly differ from those
obtained by the K-means algorithm of MLlib. Because the accura-
cies of our results are better than those obtained by the K-means
method, statistically our algorithm performs better.

108 Y. Lu et al. / Applied Soft Computing 63 (2018) 97–109

Fig. 6. The accelerating ratios of our algorithm in the Spark environment.

ration

3

i
r
b

E

r
r
i
t
l
o
r
u
fi

a
r
c
r
i
n

a
t

Fig. 7. The accele

.3. Comparison in accelerating ratio

In the field of parallel computing, the accelerating ratio is used to
ndicate how fast the parallel algorithm runs compared to its cor-
esponding sequential execution. The accelerating ratio is defined
y:

r = Ts

Tr
(3.2)

In (3.2), Ts represents the time required for the algorithm to
un in a traditional sequential manner, and Tr indicates the time
equired for the algorithm to run in a cluster environment consist-
ng of r computing nodes. A higher accelerating ratio Erindicates
hat less computational time is required by the algorithm in a paral-
el computing environment and thus indicates the higher efficiency
f parallelization. In this experiment, we capture the accelerating
atios for our algorithm and the Spark MLlib K-means algorithm
sing two datasets. The experimental results yield the following
gures.

Figs. 5 and 6 illustrate the accelerating ratios of the K-means
lgorithm in Spark MLlib and our algorithm in the Spark envi-
onment. Both algorithms are run in parallel mode on multiple
omputing units/nodes. These figures show that the accelerating
atios of the two algorithms are almost the same, and hence the
ntegration of the Tabu Search component in our algorithm does

ot negatively impact the accelerating ratio.

On the other hand, the accelerating ratios for both algorithms
re not particularly high. This is to be expected given the fact that
he sizes of the datasets used in these experiments are not very
 of our algorithm.

large (less than 10 M). When a data is loaded as an RDD, it can fit
completely into the memory of a single computing node. Conse-
quently, the algorithm runs relatively efficiently even in sequential
mode when it is run on the single computing node. But when the
data is split to be allocated to multiple computing nodes, then as the
number of these computing nodes increases, the overhead between
nodes also grows due to increased data shuffling. Hence, this coun-
teracts the performance increase brought about by introducing
more computing nodes. From the curves in Figs. 5 and 6, we see
that the acceleration slows down when the number of computing
nodes is greater than 2 for our experiments.

To better validate the speedup of our algorithm, we use some
big datasets found in practical logistics applications [8]. Data points
are the x-,y-coordinates of customer locations. Formula (3.2) is
used to measure the algorithm speed-up. The outcomes are pre-
sented in Table 6 and Fig. 7 respectively, where five clusters are
built and the parameters for the algorithm are defined as pre-
viously stated, i.e., tabu tenure = 5, number of iterations = 1000,
and neighborhood size = standard. For the parallel experiments, the
configuration consists of one master and three slaves. The solution
values are averages over ten runs.

As we anticipated that for larger datasets, the effectiveness of
parallelization is significant. The parallel version of our algorithm
runs three times faster than its sequential counterpart. It should
additionally be noted that the K-means algorithm in Spark MLlib

has been highly tuned and can solve very large-scale clustering
problems. According to the computational experiments, the ability
of our algorithm to attain a similar accelerating ratio while yielding
superior solutions and exhibiting a more robust performance and

Y. Lu et al. / Applied Soft Comp

Table 6
Computational results for big datasets.

Number of data points Value of Ts
Tr

931 2.8
1766 2.9
2512 2.98
3180 3.15
3817 3.23
4396 3.36
4936 3.35
5386 3.48

s
a
p
i
t

4

c
g
c
o
“
s
i
r
m
k
i

g
M
l
o
a
o

m

•

•

•

•

[

[

[

[

[

[

[

[
[
[
[

[

[22] L. Wang, Y. Wang, Y. Xie, Implementation of a parallel algorithm based on a
spark cloud computing platform, Algorithms 8 (3) (2015) 407–414.

[23] J. Ablanedo-Rosas, C. Rego, Surrogate constraint normalization for the set
5834 3.52
6257 3.55
6706 3.56

calability bodes well for the potential of the parallel version of our
lgorithm to provide similar advantages for large-scale clustering
roblems. The fact that Tabu Search typically provides increasingly

mproved solutions as problem size grows reinforces this expecta-
ion.

. Conclusions

Our Tabu Search based clustering algorithm utilizes the
entroid-driven orientation of the K-means algorithm under the
uidance of a simple version of Tabu Search. Given that the non-
entroid data points can be assigned to the proper clusters based
n their distances to the centroids without knowing the individual
coordinates” or attributes of each data point, the centroid-driven
trategy of our algorithm facilitates its parallel implementation
n the Spark environment. One of the primary objectives of our
esearch is to explore the possibility of implementing complicated
etaheuristics such as Tabu Search in a Spark environment. To our

nowledge, no algorithm based on Tabu Search has previously been
mplemented on the Spark platform.

Computational experiments disclose that our algorithm can
enerate better solutions than the K-means algorithm of Spark
LLib in terms of both quality and stability, while achieving a simi-

ar accelerating ratio when run on multiple computing nodes. These
utcomes motivate the exploration of clustering applications from
dditional settings using Tabu Search by making use of Spark or
ther big data computing infrastructures.

In future research, we plan to investigate the following enhance-
ents of our approach motivated by the findings reported here:

add a self-evaluation mechanism to our algorithm which will
allow the number of clusters built to be decided automatically.
revise the implementation of our algorithm to follow the protocol
of Spark MLlib, which will ultimately enable our method to be
integrated with Spark MLlib for open source.
incorporate more advanced forms of Tabu Search and more

sophisticated neighborhood/candidate list strategies to further
improve the efficiency of our algorithm.
explore opportunities to implement additional metaheuristics in
the Spark environment.

[

uting 63 (2018) 97–109 109

Acknowledgements

We are indebted to two anonymous reviewers for insightful
observations and suggestions that have helped to improve our
paper. This work was partially supported by the China Intelligent
Urbanization Co-Creation Center [grant number CIUC20150011].

References

[1] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Comput. Surv.
(CSUR) 31 (1999) 264–323.

[2] P. Berkhin, Survey of Clustering Data Mining Techniques, Accrue Software,
Inc., 2002, pp. 56 http://www.cc.gatech.edu/?isbell/reading/papers/
berkhin02survey.pdf.

[3] J. Grabmeier, A. Rudolph, Techniques of cluster algorithms in data mining,
Data Min. Knowl. Discov. 6 (2002) 303–360.

[4] R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw.
16 (3) (2005) 645–678.

[5] A.K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognit. Lett. 31
(2010) 651–666.

[6] M. Łuczak, Hierarchical clustering of time series data with parametric
derivative dynamic time warping, Exp. Syst. Appl. 62 (2016) 116–130.

[7] A. Glatman-Freedman, Z. Kaufman, E. Kopel, R. Bassal, D. Taran, L. Valinsky, V.
Agmon, M. Shpriz, D. Cohen, E. Anis, T. Shohat, Near real-time space-time
cluster analysis for detection of enteric disease outbreaks in a community
setting, J. Infect. 73 (2016) 99–106.

[8] B. Cao, F. Glover, Creating balanced and connected clusters for improved
service delivery routes in logistics planning, J. Syst. Sci. Syst. Eng. 19 (2010)
453–480.

[9] J.B. MacQueen, Some methods for classification and analysis of multivariate
observations Proceedings of 5-th Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, University of California Press, Berkeley, 1967,
pp. 281297.

10] Z. Xiong, R. Chen, Y. Zhang, Effective method for cluster centers’ initialization
in K-means clustering, Appl. Res. Comput. 28 (2011) 4188–4190.

11] Y. Lin, N. Tong, M. Shi, K-means Optimization Clustering Algorithm Based on
Particle Swarm Optimization and Multiclass Merging, Advances in Computer
Science and Information Engineering, Springer Verlag Berlin, Heidelberg,
2012, pp. 569–578.

12] M.E. Celebi, H. Kinggravi, P. Vela, A comparative study of efficient
initialization methods for the K-means clustering algorithm, Expert Syst.
Appl. 40 (1) (2013) 200–210.

13] X.Y. Wang, Y.P. Bai, The global minmax k-means algorithm, SpringerPlus 5 (1)
(2016) 1665.

14] B. Cao, F. Glover, C. Rego, A tabu search algorithm for cohesive clustering
problems, J. Heuristics 21 (2015) 457–477.

15] J. Bhimani, M. Leeser, N. Mi, Accelerating K-means clustering with parallel
implementations and GPU computing, in: 2015 IEEE High Performance
Extreme Computing Conference (HPEC), IEEE, 2015.

16] Z. Xu, B. Cao, A parallel tabu search algorithm with solution space partition for
cohesive clustering problems, in: International Conference on Algorithms and
Architectures for Parallel Processing, Springer International Publishing, 2015,
pp. 333–343.

17] F. Glover, Tabu search – part I, ORSA J. Comput. 1 (1989) 190–206.
18] F. Glover, Tabu search – part II, ORSA J. Comput. 2 (1990) 4–32.
19] F. Glover, Pseudo-centroid clustering, Soft Comput. (2016) 1–22.
20] C. Rego, Node-ejection chains for the vehicle routing problem: sequential and

parallel algorithms, Parallel Comput. 27 (3) (2001) 201–222.
21] S. Gopalani, R. Arora, Comparing apache spark and map reduce with

performance analysis using K-means, Int. J. Comput. Appl. 113 (1) (2015).
covering problem, Eur. J. Oper. Res. 205 (3) (2010) 540–551.
24] F. Glover, M. Laguna, Tabu Search, Springer, 1997.

http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0005
http://www.cc.gatech.edu/?isbell/reading/papers/berkhin02survey.pdf
http://www.cc.gatech.edu/?isbell/reading/papers/berkhin02survey.pdf
http://www.cc.gatech.edu/?isbell/reading/papers/berkhin02survey.pdf
http://www.cc.gatech.edu/?isbell/reading/papers/berkhin02survey.pdf
http://www.cc.gatech.edu/?isbell/reading/papers/berkhin02survey.pdf
http://www.cc.gatech.edu/?isbell/reading/papers/berkhin02survey.pdf
http://www.cc.gatech.edu/?isbell/reading/papers/berkhin02survey.pdf
http://www.cc.gatech.edu/?isbell/reading/papers/berkhin02survey.pdf
http://www.cc.gatech.edu/?isbell/reading/papers/berkhin02survey.pdf
http://www.cc.gatech.edu/?isbell/reading/papers/berkhin02survey.pdf
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0015
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0020
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0025
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0030
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0035
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0040
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0045
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0050
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0055
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0075
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0080
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0085
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0090
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0100
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0105
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0110
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0115
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0120
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0120
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0120
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0120
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0120
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0120
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0120
http://refhub.elsevier.com/S1568-4946(17)30701-9/sbref0120

	A Tabu search based clustering algorithm and its parallel implementation on Spark
	1 Introduction
	2 Model and algorithms
	2.1 The model
	2.2 Tabu search algorithm design
	2.2.1 Neighborhood determination
	2.2.2 Tabu list
	2.2.3 Candidate list
	2.2.4 Intensification and diversification strategies
	2.2.5 Stopping criteria

	2.3 Construction of initial centroids
	2.4 Tabu search based clustering algorithm
	2.5 Parallelization
	2.6 Parallel implementation on spark
	2.7 Time complexity analysis

	3 Experiments
	3.1 The impacts of the algorithm parameters
	3.2 Comparisons in accuracy and stability
	3.3 Comparison in accelerating ratio

	4 Conclusions
	Acknowledgements
	References

