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Supply chains often experience significant economic losses from disruptions such as facility breakdowns,
transportation mishaps, natural calamities, and intentional attacks. To help respond and recover from a
disruption, we investigate adjustments in order activity across four echelons including assembly.
Simulation experiments reveal that the impact of a disruption depends on its location, with costlier and
longer lasting impacts occurring from disruptions at echelons close to ultimate consumption. Cost
functions based on system inventory and service can be quite ill-behaved in these complex problem
settings. Expediting, an adaptive ordering approach often used to mitigate disruptions, can trigger
unintended bullwhip effects, and hurt rather than help overall performance. As an alternative to expe-
diting interventions, dynamic order-up-to policies show promise as an adaptive mitigation tool. We also
find benefits in the dynamic policies from incorporating a metaheuristic parameter search over multiple
echelons, yielding significantly better solution quality than embedded unimodal search.

& 2016 Published by Elsevier Ltd.
1. Introduction

Disruptions introduce shocks into supply chain systems. Dis-
ruptions are often unfamiliar in nature, and not easily resolved.
We consider mitigation of the disruptions through adaptive
ordering policies in multi-echelon systems that serve as funda-
mental links in the procurement, manufacturing, and distribution
of products among firms within supply chains. The objective is to
quickly restore appropriate service and inventory levels, thus
reducing the short and long run cost of disruptions.

The causes of disruptions may range from natural (e.g., Japan
earthquake and tsunami of 2011) to accidental (Gulf of Mexico BP
oil spill of 2010) to intentional (Paris terrorist attacks of 2015,
World Trade Center attacks in 2001). With the increase in global
business activity, the impact of disruptions could be substantial.
Estimated at over $350 billion, the year 2011 was the costliest year
ever for natural disasters [1]. Average insured losses from natural
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causes within the U.S. for the years 2000 to 2013 were $29 billion
annually [2]. While each individual disruption has a low prob-
ability of occurrence, there is a reasonable chance overall that
something big and unexpected will happen. The consequences can
be substantial and long lasting, with rippling effects felt
throughout multiple business sectors. An Accenture study [3],
which polled 151 supply chain executives in large U.S. companies,
found that 73% of the firms experienced costly disruptions in the
past five years. Of those, it took 36% more than one month to
recover and another 32% between a week and a month. Hendricks
and Singhal [4] found that following a disruption, firms on average
experience a 107% decrease in operating income, 7% lower sales
growth, and 11% higher costs. The firms also suffered 33–40%
lower stock returns over a three-year period, and share-price
volatility rose by 13.5% in the year after the disruption. They
offered additional evidence on financial deterioration [5], and
market impact [6]. Kumar, Liu, and Scutella [7] extend investiga-
tion of the stock consequences of disruptions to markets in India.
Filbeck, Kumar, and Zhao [8] show that competitors of disrupted
companies also face stock declines. Mitroff and Alpaslan [9] ana-
lyzed crisis readiness of Fortune 500 companies over the past two
decades. They found that 95% of these companies are not prepared
for an unfamiliar disruptive event. Many others have reported
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costly consequences of disruptions as well. See Craighead, Black-
hurst, Rungtusanatham, and Handfield [10].

Our study of disruptions in complex multi-echelon inventory
systems leads to useful insights about post-disruption mitigation
strategies using adaptive ordering policies. The paper is organized
as follows. We begin by reviewing prior literature and our field
work on electronics case applications. Then we present a set of
simulation experiments using a representative four-echelon
assembly structure to explore each of the following key research
issues.

) What happens to supply chain system performance in the
presence of a disruption?

) How does expediting affect system performance?
) How well-behaved is system performance when dynamic order-
up-to policies are used?

) When should analytics or heuristics be applied in system
ordering?

) How do global and line search heuristics compare in solution
effectiveness and efficiency?

Our simulation results confirm that disruptions may have long
lasting, rippling, and costly consequences on inventory and service
within a supply chain, and that expediting efforts introduce cost
and may hinder rather than help system recovery. This raises
important issues about the widespread use of expediting as the
mitigation tool of choice, and inspires our research into ordering
approaches capable of mitigating without expediting. Even in the
absence of expediting, system cost can be quite ill-behaved. Con-
ventional ordering approaches, which assume unimodal behavior
within analytically tractable problems, may be inappropriate for
real-world supply chains. This need for managerial relevance
suggests fresh methodology capable of relaxing traditional
assumptions of unimodality, aggregation, substitutability, inde-
pendent steady-state distributions, and well-behaved supply and
demand functions across multiple stages.
2. Literature review

The related literature falls into four subject categories: dis-
ruptions and their treatment, expediting as a mitigation approach,
model complications from bullwhip effects, and inventory policies.
Within each subject, we organize the literature by research
methodology.

2.1. Disruptions

There is a rich body of analytical and empirical work on dis-
ruption management. Craighead et al. [10] and Heckmann, Comes,
and Nickel [11] provide thoughtful literature reviews. Most ana-
lytical work on disruptions relies on uncapacitated single-echelon
models, with exponential or geometric failure times, and inven-
tory buffering as mitigation [12]. Specific examples include Berk
and Arreola-Risa [13] for an EOQ policy, Parlor and Perry [14] for a
(q,r) policy, and Arreola-Risa and DeCroix [15] for an (s,S) policy.
See Snyder et al. [16] for a comprehensive review of supply chain
disruption models.

Other analytical literature assumes stochastically recurrent
disruptions, an order-up-to policy in a single echelon that main-
tains inventory, and in most cases, shortages backordered, not lost.
These papers address applications such as: lead time disruptions
from border closures [17], threat level information and evolving
risk [18], supplier selection and reliability [19], product mix and
supply diversification [20], facility location/allocation [21], and
inventory placement [12]. Wu and Chen [22] apply a two-echelon
Please cite this article as: Schmitt TG, et al. Mitigating disruptions i
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optimal control system to model oil industry economic behavior in
the presence of either a single shock or random Brownian shocks.
One echelon represents an individual firm, and the other, an
aggregation of the industry. Among other conclusions, they find
that price and inventory peak after a single shock and dissipate
slowly, with dampened propagation to the other echelon. Schmitt
et al. [23] study the risk pooling and risk diversification in a single
warehouse and multiple retailer supply chain. They show that
under a deterministic demand and disrupted supply, a decen-
tralized inventory placement is optimal.

The assumptions and simplifications of analytical work have
limited the generalizability of conclusions [24], especially with the
complexity introduced by disruptions in supply chains [12]. Qua-
litative, case-based, and simulation research has complemented
analytical work in revealing insights into disruptions issues.
Craighead et al. [10] cite as examples of disruption management,
recent work on supply chain risks [25], vulnerability [26], resi-
lience [27], and business continuity [28]. They also address a
related issue, supply chain severity. Kleindorfer and Saad [29],
Knemeyar, Zinn, and Eroglu [30], and Stecke and Kumar [31]
provide qualitative frameworks for vulnerabilities and mitigation
methods. Sheffi [32] outlines managerial implications of disrup-
tions and risk-management approaches such as buffering, redun-
dancy, and agility as means to achieve resilience.

Another literature stream has focused on simulation-based
methodology to study the effects of disruptions in complex sup-
ply chains. Focusing on supply-chain design, Klibi and Martel [33]
offer a means to simulate disruption scenarios. Disruptions may
vary in frequency, location, duration, intensity, and predictability,
and may affect both demand and capacity in the supply chain.
They recognize a wide range of mitigation activities before, during,
and after the disruptions. Schmitt and Singh [34] investigate
supply and demand disruptions in a three-stage supply chain,
based on base stock practices of a large consumer packaging
maker. Their simulation outcomes indicate that disruptions
upstream and downstream have differing impacts, and that per-
formance recovery improves with global, rather than local,
inventory decisions.
2.2. Expediting

Disruptions represent exogenous shocks to a system, while
expediting offers an endogenous means to mitigate through
adaptive ordering. Beyer and Ward [35] report that over 65% of
orders are expedited in an HP supply chain. Other reported cases
of expediting include Amazon [36] and Nintendo [37].

While expediting in production and shipment appears rational
as a business behavior, research progress has been hampered by
the complexity it induces in modeling efforts [38]. Expediting
creates difficulties in analyzing crossover orders not arriving in the
sequence they were placed. Analytical research has focused on
finding optimal ordering policies at a single echelon. For analytical
tractability even in a single echelon, researchers avoid order
crossovers by either restricting regular and expedited lead times to
differ by one time unit, or assuming instantaneous expedited
delivery [39]. Others apply heuristics under more generalized lead
times [40]. Using simulation with parameters based on a computer
manufacturing application, Levy [41] attributes an increased cost
of disruptions to expediting and longer lead times of international
supply. Complications of interactions between expedited lead
times and capacity have not been considered in the literature we
reviewed.
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2.3. Bullwhip

Bullwhip effects add realism to studies of disruptions and
expediting. With dependencies in material, finance, and informa-
tion, variations in demand or supply may amplify within and
among firms, and disrupt the whole chain [42]. Bullwhip effects
have been attributed to both erratic human behavior and rational
decision making. Disney and Towill [43], Chen et al. [44], and Chen
and Lee [45] provide analytical treatment of rational bullwhip
effects under assumptions such as autocorrelated demand for a
single product, an order-up-to policy for a single echelon, and no
setup cost. This work on bullwhip effects has not considered the
impact of capacity interactions.

Sharing information offers advantages in a supply chain, and
some authors have addressed this [46,47]. Using simulations of
multiple echelons in complex problem settings, Fiala [48] and
Chatfield, Kim, Harrison, and Hayya [49] observe the impact of
information sharing on demand amplification. In behavioral stu-
dies simulated across four echelons, the observed variability is
amplified because participants tend to discount information from
upper echelons [50] and undervalue pipeline inventory as com-
pared with on-hand inventory and demand [51]. Sarkar and Kumar
[52] show different effects of disruptions at the upper and lower
echelons. They contrast disruptions at the two extremes of supply
chain with or without information sharing. Rong et al. [53,54]
observed reverse bullwhip effects due to over-reaction to shared
information.
2.4. Order-up-to inventory policy

Policies, which adapt order quantities and frequencies to the-
oretical inventory levels, are common in practice and have been
studied extensively in the literature. Researchers offering analytics
and heuristics have been careful in claiming utility only within
their system assumptions. Nahmias [55] and Axsater [56] provide
details about order-up-to systems, which provide optimality for
base-stock policies under certain assumptions about the supply
chain structure, shortages, order cost, and demand distributions.
Base-stock policies are found optimal over a variety of unimodal
risk-neutral and risk-averse objectives in single-item, single-stage
systems with multi-period finite horizons and no order cost [57].
Without claiming optimality, order-up-to and other well-known
policies have been applied in simple supply chains with supply or
demand disruptions [15,17,58].

Finding optimal policies for assembly systems are “notoriously
difficult … due to the multidimensionality of the problem” with
multiple components and echelons [59]. Benjaafar et al. [59] note
that the “literature dealing with optimal control policies for
assembly systems is relatively limited.” They study a multi-eche-
lon, multi-item assembly system with random demand. Assuming
exponential production times and Poisson demand, they formulate
the problem as a Markov decision process. A state-dependent
base-stock policy is shown to be optimal with respect to holding
and shortage costs.
3. A representative simulation model

We study a supply chain structure that offers enough com-
plexity to reflect a realistic supply chain composition, yet small
enough to control the experimental environment. The rationale for
our choice of simulation methodology, model structure, inventory
logic, and performance metrics is as follows.
Please cite this article as: Schmitt TG, et al. Mitigating disruptions i
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3.1. Simulation in this problem context

We acknowledge the contribution of Sandia National Labora-
tories in motivating our field study, methodological approach, and
model development. With a sense of urgency after terrorist attacks
of September 9, 2001, a group of economists within Sandia
embarked on a project to develop a large-scale simulation to
assess the regional economic impact of disruptions in critical
infrastructure on U.S. manufacturing firms and their supply chains.
To investigate vulnerabilities in complex, realistic operating
environments, and gain insights about mitigation strategies, they
developed an agent model capable of simulating the discrete
events of millions of entwined enterprises within regional supply
chains, and using enormous computing power, attempted to trace
the corresponding economic behavior. These efforts resulted in the
development of a simulation-based suite to examine threats and
analyze risk assessments for critical infrastructure such as dams,
power transmission facilities, and municipal water systems [60–
62]. The initial simulation model was developed by us in colla-
boration with Sandia National Laboratories.

Sandia approached us with an intriguing issue: How to model
the macroeconomic impact of a disruptive regional event. The
Northwestern United States was chosen as an initial test site for a
hypothetical attack. Our role in their modeling effort was to
characterize the ordering systems that link procurement, pro-
duction, distribution, and transportation activities across firms in
Pacific Northwest supply chains. Sandia has since incorporated our
model findings into studies of the macroeconomic impacts of
Hurricane Katrina and the Gulf oil spill [63]. Incorporation of our
model recommendations and findings in [60–63] serve as further
validation.

Our field work included the aforementioned literature review
of related topics as well case studies of three firms. The case stu-
dies can be requested by contacting the authors. These cases
contributed to developing insights to real-world supply chain
structures, performance drivers, complexities, vulnerabilities, and
disruption mitigation strategies. The applications motivate a
model that is considerably more complex than addressed pre-
viously. They help us define a rudimentary but workable model of
supply chain activity and operational performance. Considering
the complexity of supply chain disruption decisions, a case
approach has been used for various studies. Using case studies of
eight European companies, for example, Blome and Schoenherr
[64] identify strategies to mitigate demand disruptions. They
motivate case research as a “good method to study complex
phenomenon” such as supply chain disruptions.

With such complexity in this problem context, simulation
offers a methodology worthy of consideration. Concurring in this
assessment, Snyder and Shen [12] observe that “disruption models
are generally much less tractable than their deterministic-supply
counterparts and require numerical optimization since closed-
form solutions are rarely available.” The authors propose simula-
tion as an alternative to analytical study “to gain insights using
realistic models rather than to find optimal solutions to exact but
vastly simplified models.” Snyder et al. [16] motivate the use of
simulation as a “natural tool for evaluating the impact of disrup-
tions in … a supply chain.” Chatfield et al. [49] reinforce this by
noting, “simulation modeling of supply chains can provide both
realism and utility … by accounting for the natural variations that
occur in the various processes within the supply chain, and that
could not be captured analytically.”

3.2. A Reasonable baseline for the supply chain structure

We model more complex supply chain structures, order inter-
actions, and mitigation tactics than we found in the literature,
n a multi-echelon supply chain using adaptive ordering. Omega
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although we draw specific elements from our field work and from
several papers by others to develop a representative model and
establish its parameters. Our three case firms make electronic
products ranging from consumer appliances to devices used by
original equipment manufacturers. To gain insights into supply
chain behavior, we interviewed personnel from these three
representative firms and some of their suppliers. The three firms
are disguised as INT, ABC, and XYZ, and the cases are summarized
in Table 1. The three supply chains involve multinational interests
that broaden the exposure to disruptions. Most electronic com-
ponents are internationally sourced with associated transportation
exposure throughout the extended supply chain. Some electronics
assemblies are embedded into larger systems made by such cus-
tomers as Boeing and Honeywell, who, in turn, export many
products.

Our field and background research suggest that a four echelon
structure with assembly provides a useful representative baseline
for modeling an industrial supply chain. In particular, the supply
chains in all three case applications support four echelons with
component assembly. Most of the aforementioned simulation
research on bullwhip effects covers four stages to adequately
represent demand amplification. Other supporters of a minimum
of four echelons include Juneja and Rajamani [65], who cite an
electronics supply chain with assembly that includes the principal
components of Selectron (supplier), Matsushita (manufacturer),
Panasonic (distributor), and Best Buy (retail customer). Swami-
nathan et al. [66] propose multiple echelons and assembly as key
model components, in the context of an agent model. We concur
on the advisability of including assembly, regardless of the
industries represented. Whether at home, in an office, in a vehicle,
or in a factory, one typically encounters mechanical and electronic
assemblies comprised of two or more components.

Fig. 1 shows our rudimentary supply chain model. Each echelon
requires activity and storage. At Echelon 1, products are ordered
and shipped to a local or distant customer, which might be an
OEM manufacturer, distributor, or retailer. Echelon 2 represents
assembly of components A and B into finished goods. In Stages 3A
and 3B, suppliers (internal, local, or distant) transport parts, or
fabricate prior to transport. Stages 4A and 4B represent transpor-
tation and storage activities of domestic or overseas distributors.
Fig. 1 also displays lead time parameters in days – lead times (LTs)
under normal operating conditions and expedited lead times
(ELTs). These reflect the times of production and delivery, and are
based on the cases and the literature. Note that some researchers
also consider the end customer as another supply chain echelon.
This interpretation increases the number of echelons in our supply
chain model to five. We next review the inventory logic, with
details in Appendix A.

3.3. Inventory logic

Supply chain ordering systems regulate the goods flows and
inventories across companies in a supply chain. Our system
assumes stationary, autocorrelated demand at Echelon 1. Each
echelon/stage observes only the demand it receives from its
immediate stage customer. Using historical demand from the
immediate customer, we forecast at every stage for each successive
period the mean and variance of demand using single exponential
smoothing, a method used by many companies [24].

The demand and variance estimates are applied, along with a
service-level parameter, in a single-stage order-up-to formula to
update the replenishment order quantity each period. Replenish-
ment orders at one stage shown in Fig. 1 become the demand at
the preceding stage. Inventory balance equations link each stage in
a periodic (daily) review system. Each stage follows this FIFO logic
each day: (a) launch a replenishment order if necessary using the
Please cite this article as: Schmitt TG, et al. Mitigating disruptions i
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dynamic order-up-to system, (b) withdraw this day's demand
from available inventory to initiate shipment to a customer,
(c) receive goods from the previous stage into inventory, and
(d) update the inventory or backorder quantity (where backorders
are permitted).

If the demand at the succeeding stage is more than the avail-
able inventory at Echelon 1, we assume a partial shipment, with
the rest lost. Prior to assembly at Echelon 2, inventory of the two
component types is maintained, and orders are placed if war-
ranted. The quantity of an assembly order cannot exceed the
available inventory of either component. At Echelons 2, 3, and 4,
shortages are backordered. This is motivated by the practices of all
three case firms, who experience lost sales with unfulfilled
demand from their customers, and backorders with suppliers in
accord with long standing relationships. Other approaches have
also been applied in practice (e.g., see [47]), and the system
behavior may well be affected by assumptions of how shortages
are handled.

The parameters used in demand generation, forecasting, and
inventory control are presented in Appendix A. The order logic
assumes periodic review with no setup or order cost, infinite
production rates, fixed lead times, and i.i.d. demands. While suit-
ability of order-up-to policies is by no means assured for our
system, this logic is the most robust and applicable of available
methods. Attributing to their popularity, all three case companies
use periodic time-phased order-point systems (ERP). A consider-
able amount of literature has been devoted to this applicability.

3.4. Performance metrics

There are many ways to measure the short and long term
effects of disruptions and corresponding mitigation [10]. We focus
on a few first-order process metrics concerned with tactical
response and recovery [67,68]. We apply three process metrics
frequently cited in the literature as performance drivers and
applied in our case supply chains to capture important economic
effects during and after disruptions. The first is the service level (fill
rate) experienced by customers at the final supply chain echelon.
Disruptions in production and transportation may reduce product
availability to customers, and in turn, affect second and third order
performance metrics such as profitability, market share, and
reputation. At the final echelon, customers such as retailers and
OEMs may have other supply sources, and shortages may be lost to
these sources. Some may have contractual arrangements that
might instead specify backorders. The opportunity costs of
shortages from either lost sales or backorders that reach the final
echelon can be severe, with loss of future business at stake. For
example, late delivery of avionics to Boeing Commercial, an OEM
customer, may in turn cause late delivery of an aircraft. This would
result in loss of interest on delayed revenue receipts of hundreds
of millions of dollars, diminished revenue arising from contractual
penalties, and loss of goodwill with the airlines.

Firms at intermediate echelons typically have long term rela-
tionships with customers that call for backordering non-
commodity items [47]. Countermeasures such as expediting and
inventory positioning enable some of these backorders to catch up
in subsequent stages. Companies at various supply chain stages
often respond to disruptions with premium transportation and
alternate sourcing [69,70]. Nevertheless, this system expediting
may introduce significant premiums for transportation and pro-
duction that drain profit margins throughout the supply chain.
Expediting is our second metric.

The third process metric, system inventory, also drains profit
margins. Well-positioned inventory, however, may provide a
safety net against disruptions, and decrease shortages and expe-
diting. We chose total supply chain inventory as a metric because
n a multi-echelon supply chain using adaptive ordering. Omega
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Table 1
Case summaries.

Firm INT Firm ABC Firm XYZ

Supply Chain Model A 4-echelon supply chain with assembly is sufficiently representative.
Supply chain span Global spread with overseas transport, and distribution centers located elsewhere in the US, some local suppliers, and customers ranging from local to overseas.
Finished products 60 models with over 2500 configurations 200 different finished product types Three product groups, each that includes a lot of

customization
Primary customers Manufacturers, distributors, and retailers Automotive, utility, military, and aerospace industries Aerospace OEMs
Sole sourced components Approx. 10% Approx. 20% Approx. 20%

Operating policies Operation-type Assemble-to-order Make-to-order Primarily make-to-order
Electronic Co. operations
model

Lean JIT system using visual controls and Kanban for inter-
nal processes. MRP ordering for externally sourced
components.

Toyota style JIT for internal processes. MRP ordering
for externally sourced components.

MRP ordering internally and externally.

Management issues High product variety, high inventory and overhead costs,
and delivery problems

Expectations for high customer service Product cost and delivery performance

Risk management Concerns Telecommunication/power failure, transportation accidents, and sole sourcing
Recent disruptions Power failure, transportation accident. Sole source

disruption
West coast port lockout Texas port closure. Land-line service failure

Notable consequences of
disruptions

Electric power vulnerability. Loss of sole-source supplier
may introduce delays of up-to two years.

Better equipped than the other two because of lesser
number of SKUs. No telecom backup for contingency
plans.

Vulnerable to power and telecommunications failure. No
backup generator or contingency plans.

Mitigation planning Buffering. Expediting. Basic preventive measures such as
fencing, guards, and lighting.

Buffering. Expediting. Alternate sources and routing.
Backup generators.

Buffering. Expediting. Alternate sources for most com-
ponents. Geographically dispersed locations.

T.G
.Schm

itt
et

al./
O
m
ega

∎
(∎∎∎∎)

∎∎∎
–∎∎∎

5

Please
cite

th
is

article
as:

Sch
m
itt

TG
,
et

al.
M
itigatin

g
d
isru

p
tion

s
in

a
m
u
lti-ech

elon
su

p
p
ly

ch
ain

u
sin

g
ad

ap
tive

ord
erin

g.
O
m
ega

(2016),h
ttp

://d
x.d

oi.org/10.1016/j.om
ega.2016.07.0

04i

http://dx.doi.org/10.1016/j.omega.2016.07.004
http://dx.doi.org/10.1016/j.omega.2016.07.004
http://dx.doi.org/10.1016/j.omega.2016.07.004


Fig. 1. Prototypical supply chain.
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without accountability, inventory in motion or at rest might be
shifted elsewhere, and associated costs overlooked. Beyond the
case applications, similar service and inventory metrics are com-
monly observed in much of the literature we reviewed, and
expediting metrics have an important role in some of the work on
post-disruption mitigation.

We show in Key Issues 1 and 2 in Section 4 that performance
dominance among process metrics in our simulation results
enables us to reach general conclusions without rolling up metrics
into total costs. Schonberger [67,68] has found that measures such
as total cost and profit are once, twice, or more removed from the
first-order process drivers that are easily measured, understood,
and acted upon. In other instances (Key Issues 3 and 4), we find it
necessary to weight the process metrics, and elaborate on how the
cost parameters are justified and applied.
4. Experimental results

Simulation runs were conducted using the aforementioned
model structure and metrics, and the experimental design was
tailored to examine each of the Key Issues 1–4. Cost structures
varied substantially by firm and item in our case firms as well as in
other research. We addressed this complication in ways that differ
by key issue. We wish to examine the performance effects of
disruptions without adaptive ordering interventions in Issue 1, and
with expedited ordering in Issue 2. We avoid the need for cost
estimation by applying common practices of ordering to attain
service level criteria. See Appendix A for details. With these Issues
1 and 2, we apply MANOVA across process metrics, and focus on
general statistical inferences consistent among the metrics. See
Appendix A for a discussion of MANOVA.

With Key Issues 3 and 4, however, weighting the metrics allows
us to depict different cost structures. This also enables us to
examine the collective effects of dynamic cost-based ordering
policies and global cost search methods as an alternative to
expediting interventions. One example that demonstrates ill-
Please cite this article as: Schmitt TG, et al. Mitigating disruptions i
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behaved cost performance is presented in Issue 3, and this phe-
nomenon, which challenges traditional tractability assumptions, is
supported in general in Issue 4 with statistical analysis over a
variety of cost structures.

4.1. Key issue 1 – system performance with a disruption

Management of all three case firms indicated that the “duration
of a disruption” is a critical factor, and expressed concerns about
response and recovery. They had encountered disruptions of fire,
weather disasters, worker strikes, port lockouts, supply shortages,
power failures, telecommunication failures, transportation break-
downs, and machine breakdowns. In one example, the loss of a
sole-source supplier introduced delays of up to two years to find
and procure alternate materials. In another, a disruption in the
transportation of commodity components, with replenishment by
sea, involved a 90-day delay. Loss of electric power or tele-
communications would quickly stop activities in every firm in a
region during the length of the disruption, although essential
telecommunication transactions might be handled by cellular
telephone, if the networks are not overloaded. Contrary to pre-
viously cited research on information sharing in supply chains,
managers of the case firms warned that quality information is
sparse during a crisis, even within progressive supply chains. One
would not likely know how other customers and suppliers will
behave during a disruption, and when the disruption will end.

Consequently, we chose to introduce a generic shock (time
delay) to represent many types of disruptions that may occur in
practice. We limit information sharing such that each echelon only
has access to demand information from adjacent lower echelons.
After an initialization period of 1000 days, we induce a 20-day
disruption, and compare performance thereafter with the base
case (without expediting and disruptions). Clearly, the time ele-
ments are interrelated. For our experiments the review period is
one day, a short period relative to the disruption, and the run
length is relatively long, i.e., 2000 days. Issues of simulation steady
state and statistical independence are explored in Appendix A.
n a multi-echelon supply chain using adaptive ordering. Omega
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In practice, disruptions may occur at any stage of a supply chain
and cause complex interactions elsewhere. In our exploratory
research, we limited the disruptions to each end of the supply
chain: Echelon 1 (shipment to customers) and Echelon 4/Stage A
(supply by a parts distributor). During each disruption, the facility
at the affected echelon receives shipment orders in-route before
the start of the disruption, but stops all other activity. It cannot
place orders, produce orders, or make shipments. A similar
approach is used by Sarkar and Kumar [52] to study the behavioral
effects of disruptions at upper and lower echelons. However, their
study used a traditional beer game model and did not have an
assembly stage.

For Key Issue 1, performance is observed on a day-by-day basis
over 100-day time blocks, experiments are replicated 100 times,
and performance is compared between the disrupted and base
cases. A time block covers five months in a 240-working day year.
We chose 100-day time blocks after observing the behavior of our
process metrics within blocks of various lengths. We found 100-
day blocks short enough to capture significant performance
effects, as we next show. Shorter disruptions than ours may war-
rant shorter blocks to reveal after effects.

Our MANOVA design has two fixed factors: time block and
location of disruption. We do not mitigate with expediting for this
Key Issue, and observe the service-level and system-inventory
metrics as dependent variables. We find that values from each
metric are drawn from different distributions, according to Pillai's
Trace, Wilks' Lambda, Hotelling's Trace, and Roy's Largest Root
statistics at the .01 level [71]. This enables us to separately con-
sider each metric (see Appendix A). Results for the two metrics are
summarized in Fig. 2. Each point in the graphs depicts the mean
value over an indicated five-month time block.

Waller-Duncan multiple-range post-hoc tests disclose that
regardless of the location of disruption, service level is sig-
nificantly different between the disrupted state and base-case
state over the first two time blocks (10 months). In the final eight
time blocks, there is no significant difference among the means
and zero. All of these results hold at the .01 and .05 levels.
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System inventory is significantly different over the first five
time blocks (25 months) with both disrupted locations. In the final
five time blocks, there is no significant difference among the
means and zero.

Clearly, the effects of disruptions on the two performance
metrics last a long time. There are severe decreases in service level
for almost a year. Additional system inventory over the base case
exceeds ten weeks of demand for more than two years after a
disruption at Echelon 1. Fortunately, the direction of these first-
order process metrics support one another, and our general con-
clusions that the disruptions last a long time are not dependent on
specific cost parameters applied to the two metrics.

We performed additional analyses comparing disruptions at
Echelons 1 and 4 (as disclosed by contrasts between means in left
and right graphs). The MANOVA contrasts at the .01 level indicate
significantly worse service levels at Echelon 1 than 4 over the first
five months, as well as increased system inventory (more than
twice the amount) in months six through 25. Recognition of a
disruption at Echelon 1 is transmitted to other echelons as a
function of the smoothing parameter α, the service level para-
meter, and lead times. Even with small α values, the forecasted
demand at subsequent echelons drops fast, which reduces the
order-up-to levels and order quantities. This amplifies as the
variability propagates across echelons from Echelon 1 in accord
with lead time offsets, a finding also observed by Chen et al. [72].

By contrast, a disrupted facility at Echelon 4 immediately sus-
pends production and shipments to Echelon 3, but the interrup-
tion in supply goes unnoticed in our system, i.e., until shortages
eventually appear as lost sales at Echelon 1. Beforehand, shifts
occur from inventories to backorders at Echelons 4, 3, and 2, but
the pipeline totals remain stable, and so do the order-up-to levels,
demand forecasts, and order quantities.

We observe a strong whipping effect across echelons, especially
with a disruption at Echelon 1, and these results are supported by
much of the bullwhip literature, e.g., [42–44,72]. Chen and Lee [45]
and Disney and Towill [43] derive bounds on demand amplifica-
tion whose volatility grows at stages away from echelon 1. These
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references also contain tables and figures illustrating bullwhip
from experimental data [43] and industry data [42].

However, these other results are inconsistent with the findings
by Wu and Chen [22], who noted that regardless of source in a two
stage system, larger fluctuations occur closer to the disruption and
dampen when propagating away. We attribute this to differences
in our forecasting and ordering system, which includes more than
two echelons, the presence of lead times, price inelasticity, and
limited information sharing.

Inventory policies, stage lead times, and the length of a dis-
ruption may affect the ability of a supply chain to absorb the
impact of a disruption at Echelon 4. For example, when experi-
encing a disruption duration longer than we considered, the buffer
in the supply chain may not be enough to mitigate the disruptive
effects. In such cases, buffer inventory may only partially mitigate
the disruption, and lower echelons may experience shortages.
Additionally, performance differences may arise when lead times
are shorter than we considered, e.g., with lean inventory practices
even more effective than those practiced by our electronics case
firms. As another example, longer disruptions at Echelon 1 could
further exacerbate bullwhip effects and cause further deteriora-
tions in supply chain performance. Following the bullwhip litera-
ture and our findings, however, we would expect in general that
the performance impact of longer disruptions (than we con-
sidered) at Echelon 1 to be costlier and longer lasting than dis-
ruptions of the same length at Echelon 4.

The bounds of Chen and Lee [45] show impressive potential
savings from information sharing in the supply chains, but
research findings are mixed as to how to systematically incorpo-
rate information for performance advantage [48–51,53,54]. The
precise effect may be affected by the manner in which information
is shared and used in altering ordering decisions. Information
quality and trust within the supply chain may also affect the
impact of disruptions. Overreactions at echelons other than 1 to
information about disruptions might increase system variability
and costs, despite the supply chain inventory. Some have observed
these reverse bullwhip effects due to information sharing and
over-reaction [53,54].

Our experimentation sheds light on the relevance of Key Issue
1 and offers novel, situation-based insights about the propagation
of disruptions within the context of our parameters. We describe
in Appendix A the care with which the lead times were selected.
However, we acknowledge that the effects of disruptions across
echelons might be affected by the lead times between them, the
duration of the disruption, and the manner in which information
along the supply chain is treated. This suggests further research on
the reactions to and effects of disruptions at different stages in the
supply chain under a variety of experimental conditions.

4.2. Key issue 2 – system performance under expediting

All three case supply chain firms frequently use expediting to
avoid shortages. Depending on the echelon, the percentage of
orders expedited ranges from 5% to 20%, with a premium cost per
unit ranging from 10% to 50%. Expediting is typically accomplished
using faster transportation options, or with production adjust-
ments such as overtime, additional shifts, part-time help, alternate
routing, and outsourcing. Bradley [73] provides additional moti-
vation for expediting.

Following prior practice and research, we applied two triggers
to expedite lead times as orders are launched. We experimented
with a range of parameters for each type of trigger to match an
expediting frequency observed in the case studies. The first trigger
is activated when the quantity throughout the stage pipeline (on-
order plus on-hand inventory) falls below the expected lead time
demand [40,74]. The second is activated when on-hand inventory
Please cite this article as: Schmitt TG, et al. Mitigating disruptions i
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falls below a demand-based target. See Appendix A for details.
Expediting (which might be due to a reduction in production and
transportation times) shortens the total lead time between eche-
lons. Beyer and Ward [35], for example, observed that Hewlett
Packard's supply network applies this second type of trigger to
expedite via air transport.

We compare the performance results of cases with and without
expediting. If the expediting option is enabled, expediting is per-
mitted at all echelons, with order crossover a possibility. We
replicate 100 times and are able to consider separately the three
performance metrics (final-echelon service level, system inven-
tory, and system expediting) as dependent variables. This is
because values from the three metrics are drawn from different
distributions at the .01 level according to the Pillai's Trace, Wilks'
Lambda, Hotelling's Trace, and Roy's Largest Root statistics.

We find significant performance differences at the .01 level
between the base and expediting cases for each metric. These
differences raise issues about the value of expediting. Shortages
improve with expediting by only .18 units per day on average
demand of 111 units, while total system inventory increases by an
average of 787 units per day (almost seven days of average
demand). System inventory increases so much because expediting
increases the variability in order quantity and frequency, and this
variability is amplified elsewhere in the supply chain. Since all
three first-order process metrics deteriorate with expediting, these
conclusions do not rely on values of cost parameters that might be
applied as weights.

An explanation for the poor performance of expediting versus
dynamic ordering might be traced to underpinnings of each. Our
dynamic ordering scheme relies on frequent parameter updates
within a static ordering policy. Static order-up-to policies and
forecasting models each have robust theoretical and analytical
roots for single stage systems [55,56]. In our more complex multi-
stage system, changes in the dynamic order-up-to quantities are
likely gradual, and the corresponding system variability more
controlled. This is because of the discounting of current and his-
torical information that occurs in the forecasting procedure. By
contrast, our expediting rules, as others before us, rely on the
current state variables, but lack historical perspective. They do not
filter, nor dynamically adapt to, demand volatility.

According to the personnel we interviewed, expediting offers a
first line of defense against shortages, but our findings raise
questions about the value of this practice as a mitigation approach
of choice. We are not the first to raise these concerns. Even before
bullwhip effects were recognized, the practice of expediting was
challenged because of the nervousness it induces in MRP systems.
See Schmitt [75] and its citations. In addition, expediting, while
considered necessary [73,76], is usually expensive [74,77]. Beyer
and Ward [35] observed that expediting by air in HP's supply chain
costs up to five times more than standard shipment by sea. In our
field applications, we found that expediting was quite expensive
as well.

Three case companies motivated our choice of parameters of
lead times and expedited lead times. In general, the performance
effects of expediting may be affected by the extent to which orders
are expedited. Instantaneous, or very short delivery (relative to our
state of normal), may be helpful in significantly improving service
levels, and also help in terms of system inventory and order
variability. We suggest further experimentation to investigate
issues of generality beyond the conditions reflected by our case
applications.

Despite evidence of the undesirable consequences of expedit-
ing, we do not expect firms to discontinue this practice. At an
assembly echelon, for example, it would be difficult to convince
managers of an electronics firm not to expedite one component,
when the remaining hundreds needed for assembly and sale of a
n a multi-echelon supply chain using adaptive ordering. Omega
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finished product are available. Practitioner behavior might be
influenced by future research that finds merit in the targeted
application of certain types of expediting at specific supply chain
stages, or between stages. In addition, information sharing across
echelons may help reduce the unintended consequences of
expediting, but there is little evidence of this in the literature.
Because of bullwhip properties, overreactions to current infor-
mation might adversely affect future system performance [53,54].

4.3. Key issue 3 – system performance with dynamic order policies –
applicability of analytics and heuristics in the parameter search

Ross et al. [58] found instances where a non-stationary time-
varying order-up-to policy is more effective than a static policy in
terms of the total costs of holding, ordering, and lost sales. An
issue arises for us as to how to find reasonable cost-based order-
up-to levels across multiple echelons in the presence of demand
amplification. As an alternative to expediting interventions, we
explore in Issues 3 and 4 the potential reactive capabilities affor-
ded by improved estimates of dynamic order-up-to parameters
across echelons. Here we use traditional formulations for calcu-
lating order-up-to levels that rely on cost rollups, and allow these
levels to vary across periods.

We observe non-unimodal total cost behavior within a range of
stage order-up-to levels, while leaving the inventory systems
unhindered by expediting. To define a case, we chose a holding
cost of $1/unit/day, a backorder cost of $2/unit/day (at Echelons 2,
3, and 4), a lost-sales cost of $3/unit (at Echelon 1), and a stage
production/transportation cost of $1/unit. We present the notable
erratic behavior for this one case, which highlights the potential
savings of good parameter estimates. In the next section (Issue 4),
Total Supply Chain Cost vs Echelon 1 Order-up-to level 
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we observe similar erratic behavior in total cost under a variety of
cost parameter combinations.

Fig. 3 shows plots of the simulation results of total cost over
various stage order-up-to levels for this example. The two graphs
to the left focus on behavior solely at Echelon 1, while the ones to
the right show interactions between Echelon 1 and Echelon 2.

The graphs on the left show total cost values for discrete order-
up-to levels at Echelon 1, while allowing the other three echelons
to derive order-up-to levels from stage demand forecasts. The top
left graph displays total cost performance versus Echelon 1 order-
up-to levels over the range [1,2000]. Clearly, the local optima vary
considerably in value, e.g., one yields a total cost 6.95 times larger
than the lowest observed total cost value, given the starting point.
The bottom left graph depicts a finer grain relationship over the
range [1000,1530]. It highlights the striking volatility of the cost
function.

The graphs on the right of Fig. 3 show the interactive behavior
between the first two echelons, depicting total supply chain cost
while varying Echelon 1 order-up-to levels for prescribed Echelon
2 levels. In this set of experiments, Echelons 3 and 4 derive order-
up-to levels from stage demand forecasts. The course and fine
grain representations at the top and bottom right, respectively,
generalize the previous observations solely about Echelon 1.
Clearly, computationally-efficient iterative line searches or analytic
searches can yield poor solutions in these operating scenarios,
depending on the starting point.

There are multiple ways to confirm concerns about ill-
structured performance behavior and inappropriateness of exact
approaches. Some involve violations of Kuhn-Tucker conditions, or
alternatively, properties of derivatives. We chose another way, the
presentation of a counter example, one where an exact approach
yields higher total cost. While the cost parameters are realistic in
Total Supply Chain Cost vs Echelon 1 Order-up-to level over the Quantity 
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that they are within limits of most prior studies we examined, the
existence of such a counter example, with parameters of any
magnitude, is sufficient to obviate generality of exact analytical
approaches that assume unimodality. In the next section, we
examine the relative efficacy of unimodal and global search
methods over a wide variety of cost structures.

4.4. Key issue 4 – global search versus line search

With insight from the preceding key issue, we examine the
modality of the objective function surface across different cost
settings. In their agent model simulation, Sandia applied a stan-
dard genetic algorithm (GA) utility as a means to “jump over” local
optima in a global parameter search across echelons. Taking this
further, we conducted experiments to evaluate GA methodology as
a global optimizer in our problem context. Besides Sandia, the GA
tool developed by us has been applied to optimization of the
satellite tracking and monitoring application. As the review begins
for each period in the planning horizon, GA considers the history
to date to conduct a search for cost-effective order-up-to quan-
tities across all echelons and stages. The GA utility represents
candidate order-up-to solutions as binary numbers in the search. A
randomly generated set of 100 solutions initiates the search pro-
cedure. Crossover and mutation operators are used to overcome
local minima. At an iteration, two of the 100 solutions are ran-
domly chosen for crossover, with a small probability that the
binary solutions would mutate. The solutions generated after
crossover and mutation are tested for fitness based on total supply
chain cost. Using a GA ‘elitist’ strategy, the 100 best solutions are
preserved and used as candidate solutions for the next iteration.
For details, see [78].

Using a single inventory echelon, Snyder and Shen [12] found
the total costs of inventory, orders, and backorders fairly well-
behaved, and employed line search (LS) to establish (s,S) para-
meters. We also use LS as a basis for procedural comparison and
modality concerns. LS ensures optimality only when the objective
function is unimodal. In our problem setting, an LS approach that
increments upwards from an order quantity of 0 to find a local
optima typically yields much higher costs than GA. To facilitate a
reasonably fair comparison, our adaptation of LS searches one
echelon at a time, beginning each period with an order-up-to
quantity equal to the mean lead time demand at Echelon 1. It
searches each direction in the neighborhood (upward first) until it
encounters local optima. It allows demand forecasts to guide
decision making at other echelons. While holding the order-up-to
parameter fixed at the local optimal level at Echelon 1, the search
process continues echelon by echelon until parameters for both
stages of Echelon 4 are determined. In pilot experiments, this
adaptation of LS resulted in much better solutions, while keeping
computation time reasonable.

To represent a variety of operating conditions, we selected a
range of cost parameters as presented in Table 2. We considered
findings from the literature in the context of our research objec-
tives. Relative costs depend on the type of product, industry, and
supply chain, among other factors. Cohen et al. [76] observed that
with short life cycles and obsolescence in the semiconductor
industry, the cost of losing a sale is about twice the cost of back-
logging. Faaland et al. [79] experimented with lost-sales costs in a
Table 2
Various costs at two levels each.

Back-ordering cost Cost of lost sales Carrying cost Expediting cost

Low 4 6 2 3
High 8 12 4 5
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single echelon ranging from 62 to 500 times the periodic inven-
tory holding cost, shortage values much higher than the ones we
chose. Their parameters were based on a cross-industry survey by
Boer and Jeter [80]. Our motivation in the choice of relatively low
shortage costs is to compare a GA global optimizer and LS under
modest conditions. We observed in pilot experiments that larger
shortage costs relative to inventory carrying costs further exag-
gerated differences between solutions obtained by the GA and LS
approaches. This suggests our conclusions are insensitive to
shortage cost values.

Table 3 shows the savings under various cost scenarios. The
percentage improvements represent averages over 100 replica-
tions for each of the 16 cost combinations. The superiority of the
GA global optimizer over LS holds at the .005 level using student-T
tests. The solutions obtained by global optimization as compared
with those obtained by LS yielded a cost savings greater than 16%,
and in one scenario greater than 30%. Less effective starting
solutions for LS would have made the relative differences between
the approaches greater.

In single-stage stationary systems, even with deterministic
demand, tractability has not been established when shortages are
lost [81]. Others have acknowledged but discounted this phe-
nomenon by asserting that the total cost surface is relatively flat in
regions around the global minimum. We question this conven-
tional wisdom by showing how far off the local optima may be
under a broad spectrum of cost parameters. The literature on
disruptions, expediting, and bullwhip effects express similar con-
cerns. We claim applicability of this modality phenomenon only
within the limits of our supply chain structure and parameter
settings, and further experimentation seems warranted.

We acknowledge the potential for practical contributions in
addressing the global optimization problem. However, our use of
genetic search for this purpose achieved its improved cost results
at a computational price. Each run consists of successive para-
meter updates for 2000 periods, replicated 100 times. On a laptop
with Intel Core i5 processor, the time per run for GA was about
14 h, and our adaptation of LS averaged about 10 min. While the
computation time for GA may be acceptable for Sandia with its fast
complex of computers, we recognize an opportunity in future
work to employ metaheuristics such as tabu search and scatter
search that have proved superior to GA in global optimization, as
disclosed in recent studies [82–85].
5. Conclusions and future directions

Disruptions can have many sources covering the gamut from
natural to accidental to intentional. Regardless of cause, disrup-
tions can have long-lasting, widespread, and costly effects on
supply chains. We describe aspects of a stream of research to
assess several key issues concerning the economic impact of
supply chain disruptions. We consider simulation with embedded
adaptive ordering analytics to augment the optimization models of
others whose utility may depend on the validity of inherent sim-
plifying assumptions. This enables us to relax customary
assumptions such as aggregation of demand and supply data,
substitutability of supply options, independent and steady-state
behavior of underlying stochastic distributions, well-behaved
objective functions, and simple supply chain structures. Our
study was initiated to address Sandia's concern that entities within
the U.S. government and private sectors cannot afford to wait for
researchers to overcome the substantial challenges of relaxing the
underlying assumptions in optimization models, given the high
stakes that are involved in disasters.

Drawing from cases and other literature, we offer a funda-
mental set of design requirements, performance metrics, and
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Table 3
Results for line and genetic search under various cost combinations.

Back ordering cost Cost of lost sales Carrying cost Expediting cost Line search LS Genetic search GA Reduction in cost LS-GA Mean percentage cost savings

Low Low Low Low 5510.1 4723.8 786.3 14.27
Low Low Low High 6067.8 4936.1 1131.7 18.65
Low Low High Low 8085.5 6857.9 1227.6 15.18
Low High Low Low 6212.2 4969.1 1243.1 20.01
High Low Low Low 6906.1 5169.8 1736.3 25.14
High High Low Low 7642.2 5442.6 2199.6 28.78
High Low High Low 9966.2 9226.6 739.6 7.42
High Low Low High 7428.0 5241.3 2186.7 29.44
High High High Low 10,287.1 9276.9 1010.2 9.82
High High Low High 7976.2 5510.8 2465.4 30.91
High Low High High 9946.1 9225.6 720.5 7.24
Low High High High 9742.1 8963.6 778.5 7.99
Low High High Low 8732.9 8124.1 608.8 6.97
Low High Low High 6683.2 5102.8 1580.4 23.65
Low Low High High 8520.2 8330.0 190.2 2.23
High High High High 10,711.1 9412.3 1298.8 12.13
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research questions. Our findings lead to the conclusion that a
representative model should include at least:

� Four echelons per supply chain
� One echelon with assembly
� Bullwhip effects facilitated by a multi-echelon inventory system

with local planning
� Shortages along the supply chain in the form of backorders and

lost sales
� Capability to expedite at all stages
� Three metrics as performance drivers (service level at the final

echelon, system expediting, and system inventory)
� Disruptions in the form of time delays at various stages in the

supply chain.

Each design element is anchored with citations from papers,
which span many industries and operational settings. Additionally,
our field work on actual cases was crucial in weaving all of the
elements together into a coherent problem context, as a precursor
to model development.

Guided by these design elements, we explored research ques-
tions, whose answers were driven by simulation results. This led
to the following additional key findings.

� Lost sales, multiple echelons, and assembly serve to perturb the
stationary behavior that has otherwise been assumed in less
complex systems. Disruptions and expediting exacerbate the
situation.

� Variability from disruptions is amplified across the model
structure presently considered, and has long-lasting and costly
consequences particularly when the disruption source is down-
stream and close to ultimate consumption in the supply chain.

� Standard industry practices of setting order parameters locally
and intervening with expediting contribute to system variation.

� Dynamic determination of inventory parameters globally across
echelons offers substantial promise of mitigating these unde-
sirable effects without special intervention. Additional research
is needed to streamline the parameter search process.

� Although increased information and flexibility to react are
generally appealing, it is also easy to overreact, with undesirable
consequences. If local planning is applied, as is often the case,
we recommend that current demand information, with its
inherent variability, should be discounted substantially espe-
cially towards the supply end of the chain. Pilot experimenta-
tion prescribed a low smoothing weight of .01 on the most
recent local information for the firms in the last echelon,
Echelon 4. A disruptive event creates a critical watershed. The
Please cite this article as: Schmitt TG, et al. Mitigating disruptions i
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issues are how much weight to place on the news and what to
do about it.

The remainder of the section considers the implications of such
ill-behaved cost performance in a four-echelon supply chain. Our
investigation reveals a weakness of analytical optimization
approaches in the present setting by providing a counter example
where these methods are unable to obtain satisfactory solutions.
Results of this one case are further supported by statistical evi-
dence in experiments over a wide range of cost structures. Our
cases, model development, and experimentation highlight the
value of simulation analysis and field study as means to verify key
propositions, including those that indicate the severity of a dis-
ruption is related to time, its location, the structure of the supply
chain, and types of mitigation. This buttresses assertions by
Craighead et al. [10]. By further extension, we address disruptions
at each end of a four-echelon supply chain, and find that inventory
cushions the disruptions occurring upstream. This suggests that an
expanded study may benefit from investigating disruptions at
intermediate echelons as well.

The irregular cost surface documented by our results leads us
to observe that future efforts should be directed towards devel-
oping efficient and effective search methods to find local optima
close to global cost values. Research in improved metaheuristics
for global optimization should provide means for obtaining better
solutions to supply chain problems and for doing so efficiently.
This work has an important intersection with analytics through
the use of data mining in simulation and optimization, as noted in
Better, Glover, and Laguna [86]. From a managerial perspective,
case firms such as those we studied, which employ interconnected
periodic-review time-phased order-point systems (ERP), may be
able to collaborate on dynamic ordering policies when provided
with appropriate decision support tools.

The three cases contribute insights to prior case work on per-
formance metrics, and help to define a basic workable model. Our
conclusions are bound by assumptions and based on consistent
practices of these case firms. Lost sales are assessed at echelon 1,
and backorders at all other echelons. An exploration of other
assumptions about shortages at various echelons might yield
interesting insights. With fixed and known replenishment lead
times, periodic review, and iid customer demands, Janakiraman
et al. [87] compare two single-stage inventory systems, one with
shortages lost, and the other with shortages backordered. The
relative performance of their system under the two alternatives
varies in complicated ways in instances where the unit lost sales
cost is higher than the unit backorder cost. A higher unit cost for
lost sales is reasonable since backorders delay contribution-to-
n a multi-echelon supply chain using adaptive ordering. Omega
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profit, while lost sales eliminate it. Future research that covers
various assumptions about shortages may add insight, especially
in the presence of multiple echelons and bullwhip effects. Con-
sider, for example, the application of lost sales, instead of back-
orders. We suspect that on one hand, system stability would
benefit from the reduced mean demand from lost sales, but on the
other, truncated (lost) demand might induce additional variability
to be amplified at other stages.

Sandia has extended our model to include price/demand elas-
ticity functions, and a diverse customer base for agent firms.
Others have suggested the need to capture the economic effects of
product quality, resilience, and preparedness [10]. As a means to
supplement our examination of normal and expedited activity lead
times, it might also be worthwhile to consider capacity interac-
tions resulting from finite replenishment, setups, and capacity
adjustments (e.g., overtime, additional shifts, part-time help,
alternate routing, and sub-contracting). Non-stationary demand,
stochastic lead times, stochastic failure times, lead time/demand
elasticity, and a range of lead times and disruption durations are
other realistic extensions. Each of these extensions would have
introduced considerable complexity into our experimental design,
and we chose to limit the scope. We used expediting triggers
based on pipeline inventory and on-hand inventory. These triggers
are static and are not dynamically adjusted when disruptions
occur. Perhaps, further research could explore the impact of
dynamic expediting triggers.

Our findings leave no doubt that variability in quantity and
timing, whether from normal operations, disruptions, or expedit-
ing, tends to be amplified in supply chains. It is important to
recognize that model extensions, such as those we suggest for
future work, would likely further increase this variability and
amplification. This recognition leads to the conclusion that pro-
blem tractability constitutes a key challenge for treating real-
world supply chains, and that improved metaheuristics for solving
global optimization problems is critical for future advances. The
practical value of our contribution is affirmed by the N-ABLE
Project Leader from Sandia National Laboratories: “[This work]
demonstrated the importance of careful design in modeling the
realities of supply chain behavior, and provided strong motivation
for further simulation development and experimentation.”
Appendix A: Experimental design specifications

This appendix covers modeling details and justifications in our
application of inventory policy, forecasting, buffering, order sizes,
lead times, and statistical analysis.

A.1. Forecasting and buffering

We apply an autoregressive process AR(1) to model customer
demand at Echelon 1. The customer demand as observed in period
t at Echelon 1 is of the form: Dt ¼ μþρDt�1þεt , with μ¼ 100,
ρ¼ :1, and independent and identically distributed random vari-
ables εt with distribution Nð0;σ ¼ 15Þ. In this process, the expected
demand is μ= 1�ρ

� �¼ 111.
Companies frequently experience auto-correlated demand [46].

Demand functions such as ours have been used in many studies,
including Lee et al. [42], and Chen et al. [72]. Our interviews
revealed that operating managers within the case firms and their
suppliers seldom share point-of-sale data. Most were familiar with
features of the Beer Game, and claimed that their processes
encountered the full effects of demand amplification. There was
strong consensus that the way to model reality across firms is
through local forecasting and buffering. They also rescheduled
frequently (expediting some orders, and postponing others)
Please cite this article as: Schmitt TG, et al. Mitigating disruptions i
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without the benefit of shared data across firms. We recognize
however, the existence of progressive supply chains that plan
more holistically [88].

Most products consist of many components. We considered
assembly of two components. With local planning, a convenient
way to address service level requirements for assembly systems is
to increase the z value of each of the components to reflect the
joint probabilities of having more components in assembly.

Parameters in demand generation and inventory control play
important roles in controlling bullwhip effects [89]. Order varia-
bility induces demand amplification, even when the only source of
uncertainty is with final customer demand [42,44]. We chose to
keep the system in control by collectively searching α (smoothing
parameter) and z (service level parameter) values in pilot experi-
ments as a means to achieve a reasonable service level at Echelon
1, as benchmarked in our cases. At any period, α is the weight for
the current demand data, while (1�α) is the weight on the fore-
cast for the last period. As such, α and its complement govern the
weighting of demands in each prior period forecast. A relatively
small α discounts the effect of changes in the current demand,
relative to prior demands reflected in the forecast from the last
period. Therefore, small α may limit the amplification of order
variability progressing across the echelons of a supply chain. The
service level parameter z is used to calculate safety stock for a
particular echelon. Safety stock serves to maintain a prescribed
service level for that echelon.

We focused the pilots on base case conditions (no expediting or
disruption). Across echelons, we tried three z values {2, 2.5, 3} and
α values in increments of .05 over the range [.01, .51]. A value of
z¼2 under i.i.d demand theoretically ensures a 95% service level at
a single echelon [55]. Yet with z¼2 at each stage in our system, no
values of α could achieve a service level of 95% at the final echelon.
Chen et al. [44,72] found in a less complex system that demand
amplification increases with higher values of z and α. We observed
similar behavior in the pilots. With z¼2.5, α values below .01 were
needed at all stages to attain a service level of at least 95%. Con-
sequently in subsequent experimentation, the z values were held
fixed at our highest experimental levels (3.0) at all echelons and
stages to allow practical α values [24]. We achieved a service level
of 95% at Echelon 1 with α values of .21, .11, .06, and .01, respec-
tively, for Echelons 1 through 4. We applied these parameters in
subsequent experiments.

A.2. Lot sizes

We restrict order sizes to cover accumulated requirements
between review periods. In practice, batching can be applied at
every echelon as well to address order, setup, and minimum-
shipment elements, but we dispense with these issues in the
experiments. We are interested in exploring a minimum set of
conditions (stationary demand, no order cost, no setup cost, no
setup time, no returns, an infinite production rate, and static lead
times) to support future research on the Key Issues under more
robust operating conditions.

A.3. Lead times

Lead time logic and parameters are noteworthy. When expe-
diting is activated, we experimented in pilots with a range of
parameters for each order trigger to achieve expediting of about
10–15% of the orders, a frequency observed in the case applica-
tions. We embedded two types of triggers to expedite production
and transportation times. One corresponds to lead time demand.
The other occurs when on-hand inventory falls below a demand-
based target [35]. We found reasonable parameters for this second
trigger of average demand at Echelon 1, two times average
n a multi-echelon supply chain using adaptive ordering. Omega
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demand at Echelon 2, three times at Echelon 3, and four times at
Echelon 4.

Our use of point estimates for lead times enables us to examine
behavior in a relatively complicated supply system, where varia-
bility is introduced solely through disruptions, expediting, and
Echelon 1 demand. We considered the cases and literature in the
selection of regular, expedited, and disrupted times. Our lead times
depicted in Fig. 1 fall roughly midway between ranges observed in
our cases. However, we found little guidance in the literature on
disruptions for lead time choices, expediting, and bullwhip effects.
Many of these models assume fixed or no regular lead times
without rationale. We noted substantial differences across studies
in the times used for regular, disrupted, and expedited states, as
well as for demand during the various lead times, and the lead-
time demands of normal relative to disrupted and expedited
states. The parameters in our experiments fell well within these
wide ranges.

A.4. Statistical issues

We draw from the experimental designs of literature on bull-
whip effects most closely related to our problem context [48–51].
It was important in the simulation experiments that our initiation
period was long enough to remove transient effects. We chose a
run length sufficient to facilitate the interesting statistical results
that we have observed. Each simulation was run for 2000 days.
The first 1000 established steady state conditions. Performance
was observed over the remaining time. We found that across 100
pilot replications, a fifty-period moving average of order-up-to
quantities showed convergence after about 600 periods at all
echelons and stages. See Welch’s warm-up procedure in Law and
Kelton [90], Chapter 9. A fifty period base was long enough for our
model to enable a few order placements.

Finally, we distinguish issues of independence of a performance
measure within and across replications. We do not claim or expect
independence within replications either in demand or supply.
Demand is by definition autocorrelated over time, and inventory
levels and replenishment orders are clearly linked from one period
to the next. Indeed, we wish to allow bullwhip effects over time to
reflect practical behavior within each replication.

Across replications, however, we desired independence. We
attempted to induce independence by applying terminating sam-
pling. We chose independent random number seeds to initiate
replications in half the samples, and in the other half, antithetic
random numbers were used to increase statistical rigor [90]. We
followed by testing for latent dependencies among the three
simulated performance metrics using MANOVA. This tool is cap-
able of detecting correlations among dependent variables and
offering overall statistical tests across them. In our experiments,
the various MANOVA tests indicated that values from each of the
three process metrics (dependent variables) are drawn from
separate distributions, according to four different statistical tests
(Pillai's Trace, Wilks' Lambda, Hotelling's Trace, and Roy's Largest
Root). This enabled us to analyze the dependent variables sepa-
rately (essentially as ANOVA experiments), but we took care to
draw conclusions only in dominant cases where the results across
dependent variables supported one another.
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