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a b s t r a c t 

The capacitated arc routing problem (CARP) is a difficult combinatorial optimization problem that has 

been intensively studied in the last decades. We present a hybrid metaheuristic approach (HMA) to solve 

this problem which incorporates an effective local refinement procedure, coupling a randomized tabu 

thresholding procedure with an infeasible descent procedure, into the memetic framework. Other dis- 

tinguishing features of HMA include a specially designed route-based crossover operator for solution re- 

combination and a distance-and-quality based replacement criterion for pool updating. Extensive exper- 

imental studies show that HMA is highly scalable and is able to quickly identify either the best known 

results or improved best known results for almost all currently available CARP benchmark instances. In 

particular, it discovers an improved best known result for 15 benchmark instances (6 classical instances 

and 9 large-sized instances whose optima are unknown). Furthermore, we analyze some key elements 

and properties of the HMA-CARP algorithm to better understand its behavior. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The capacitated arc routing problem (CARP) has been the sub-

ect of a large number of studies during the last decades due to its

ide applicability in logistics, such as household waste collection,

roduct distribution, winter gritting and postal deliveries, among

thers ( Dror, 20 0 0 ). The CARP model can be informally described

s follows. We are given a graph with a set of vertices and edges,

here each edge has a predefined traversal cost and where a sub-

et of edges, which are required to be serviced by some vehicles,

re additionally associated with a service cost and a demand. A

eet of identical vehicles with a limited capacity is based at the

epot vertex. The objective of CARP is to find a set of vehicle routes

ith a minimum cost such that: (1) each required edge is serviced

n one of the routes; (2) each route must start and end at the de-

ot vertex; and (3) the total demand serviced on the route of a

ehicle must not exceed the vehicle capacity. 

From a theoretical point of view, CARP is known to be NP-hard

 Golden & Wong, 1981 ), and hence is not expected to be solved

y any exact algorithm in a polynomial time in the general case.
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he computational difficulty of solving CARP is also confirmed in

ractice. Indeed, the best existing exact algorithms are limited to

oderate instances with only 140 vertices and 190 edges ( Baldacci

 Maniezzo, 2006; Bartolini, Cordeau, & Laporte, 2013; Bode & Ir-

ich, 2012 ). For these reasons, intensive research has been devoted

o developing heuristic and metaheuristic methods. Representative

euristic methods include Augment-Merge ( Golden & Wong, 1981 ),

ath-Scanning ( Golden, DeArmon, & Baker, 1983 ), the route first-

luster second heuristic ( Stern & Dror, 1979 ) and Ulusoys Heuristic

 Ulusoy, 1985 ). Among the metaheuristic methods, neighborhood

earch approaches are popular, e.g., tabu search ( Brandão & Eglese,

008; Hertz, Laporte, & Mittaz, 2000; Mei, Tang, & Yao, 2009 ), vari-

ble neighborhood search ( Hertz & Mittaz, 2001; Polacek, Doerner,

artl, & Maniezzo, 2008 ), guided local search ( Beullens, Muylder-

ans, Cattrysse, & Van Oudheusden, 2003 ), GRASP with evolution-

ry path relinking ( Usberti, Paulo, & André, 2013 ). As another class

f popular metaheuristics for tackling CARP, population-based algo-

ithms generally achieve better performances, such as the memetic

lgorithm ( Lacomme, Prins, & Ramdane-Cherif, 2004; Tang, Mei, &

ao, 2009 ), the ant colony algorithm ( Santos, Coutinho-Rodrigues,

 Current, 2010 ) and the cooperative co-evolution algorithm ( Mei,

i, & Yao, 2014 ). Among these methods, two population-based algo-

ithms (MEANS Tang et al., 2009 and Ant-CARP Santos et al., 2010 )

nd one local search algorithm (GLS Beullens et al., 2003 ) rep-

esent the state-of-the-art solution methods for the classical test
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.02.015&domain=pdf
mailto:yuning@info.univ-angers.fr
mailto:hao@info.univ-angers.fr
mailto:jin-kao.hao@univ-angers.fr
mailto:glover@opttek.com
http://dx.doi.org/10.1016/j.ejor.2016.02.015


26 Y. Chen et al. / European Journal of Operational Research 253 (2016) 25–39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

p  

a  

|  

t  

(

 

r  

i  

d  

t  

s  

S  

l  

S  

a  

b  

{  

p  

w  

d  

u  

s

 

l  

3

 

t  

p  

c  

n  

s

3

 

e  

t  

b  

a  

1  

n  

r  

H  

t  

t  

p

 

S  

b  

e  

o  

t  

f  

(  

p  

t  

(  

l  
instance set, while RDG-MEANS ( Mei et al., 2014 ) is the cur-

rent best performing algorithm for the large-scale CARP (LSCARP)

instances. Finally, for a thorough and up-to-date discussion of

arc routing problems, the reader is referred to the recent book

( Corberán & Laporte, 2015 ) edited by Corberán and Laporte and in

particular, chapter 7 by Prins dedicated to heuristic approaches. 

In this work, we investigate a new population-based algorithm

under the memetic search framework ( Moscato, 1989 ). Memetic al-

gorithms (MAs) have been proved to be very effective for solving

a large number of difficult combinatorial optimization problems

( Moscato & Cotta, 2003; Neri, Cotta, & Moscato, 2011 ), including

CARP ( Lacomme et al., 2004; Tang et al., 2009 ). The success of a

MA highly depends on a careful design of two key search compo-

nents: the crossover operator and the local refinement procedure

( Hao, 2012 ). Based on our previous experiences on MAs applied to

various combinatorial problems, we go one step further by provid-

ing innovations for these two key components (crossover and local

refinement) with the goal of creating a more effective memetic al-

gorithm able to surpass the current state-of-the-art CARP methods.

The main contributions of our work can be summarized as

follows. 

• From the algorithmic perspective, the proposed population-

based hybrid metaheuristic approach (HMA) combines a pow-

erful local refinement procedure to ensure an effective search

intensification with a dedicated crossover operator specially de-

signed for CARP to guarantee a valid search diversification. The

local refinement procedure couples a randomized tabu thresh-

olding procedure to locate high-quality feasible solutions, with

an infeasible descent procedure to enable tunneling between

feasible and infeasible regions. The dedicated crossover oper-

ator relies on route information that can be embodied in ex-

changes of parent solutions to create new promising solutions.

Additionally, to maintain a healthy population diversity and

to avoid premature convergence, HMA employs a quality-and-

distance strategy to manage the pool of solutions using a dedi-

cated distance measure. 
• In terms of computational results, extensive experiments

carried out on 8 sets of widely used benchmarks show the

competitiveness of the proposed method compared to the

state-of-the-art CARP algorithms in solution quality and com-

putational efficiency. For the 7 sets of 181 small-sized and

medium-sized instances, HMA consistently matches or im-

proves on all the best known results. In particular, HMA dis-

covers a new best known result (new upper bound) for 6

well-studied instances. For the last set of 10 large-sized CARP

benchmarks, HMA exhibits an even better performance. It eas-

ily dominates the state-of-the-art algorithms, including those

specially designed for these CARP instances, by finding 9 new

best known solutions, while yielding significantly smaller aver-

age gap values, thus demonstrating the outstanding scalability

of the proposed method. 

The rest of the paper is organized as follows. Section 2 in-

troduces preliminary notation and the solution representation.

Sections 3 and 4 are dedicated to the description of the main HMA

algorithm. Section 5 presents the computational results. Section 6

investigates some key elements of HMA, followed by the conclu-

sions in Section 7 . 

2. Notation and solution representation 

We are given a graph G ( V , E ) with a set of vertices ( V ), a set of

edges ( E ), a set of required edges ( E R ⊂ E ) and a fleet of identical

vehicles with a capacity of Q that is based at the depot vertex v d 
( v d ∈ V ). Each edge e = (i, j) ∈ E is represented by a pair of arcs <

i , j > and < j , i > . A required edge is said to be served if and only
f one of its two arcs is included in one vehicle route of the routing

lan. For the sake of simplicity, we use the term task to represent

 required edge hereafter. Let n be the number of tasks, i.e., n =
 E R | . Each arc of a task, say u , is characterized by four elements:

he head vertex ( head ( u )), the tail vertex ( tail ( u )), the traversal cost

 tc ( u )) and the demand ( q ( u )). 

To represent a CARP solution, we assign to each task (i.e., a

equired edge) two IDs (i, i + n ) where i is an integer number

n [1, n ], i.e., one ID for each arc of the task. We also define a

ummy task with 0 as its task ID and both its head and tail ver-

ices being the depot vertex v d . This dummy task is to be inserted

omewhere in the solution as a trip delimiter. Suppose a solution

 involves m vehicle routes, S can then be encoded as an order

ist of (n+m+1) task IDs among which (m+1) are dummy tasks:

 = { S(1) , S(2) , . . . , S(n + m + 1) } , where S ( i ) denotes a task ID (an

rc of the task or a dummy task) in the i th position of S . S can

e also written as a set of m routes (one route per vehicle): S =
 0 , R 1 , 0 , R 2 , 0 , . . . , 0 , R m 

, 0 } , where R i denotes the i th route com-

osed of | R i | task IDs (arcs), i.e., R i = { R i (1) , R i (2) , . . . , R i (| R i | ) } ,
ith R i ( j ) being the task ID at the j th position of R i . Let dist(u, v )

enote the shortest path distance between the head vertex of arc

 ( head ( u )) and the tail vertex of arc v ( tail(v ) ), the total cost of a

olution S can be calculated as: 

f (S) = 

n + m ∑ 

i =1 

(tc(S(i )) + dist(S(i ) , S(i + 1))) (1)

The total load load ( R i ) of a route R i can be calculated as: 

oad(R i ) = 

| R i | ∑ 

j=1 

q (R i ( j)) (2)

. A hybrid metaheuristic algorithm for CARP 

In this section, we describe the proposed hybrid metaheuris-

ic algorithm (HMA) for CARP including the main procedure, the

rocedure for generating initial solutions, the specific route-based

rossover as well as the quality-and-distance based pool mainte-

ance procedure. The local refinement procedure of HMA is pre-

ented in Section 4 . 

.1. Main scheme 

Our HMA algorithm can be considered as a hybrid steady-state

volutionary algorithm which updates only one population solu-

ion at each generation of the evolution process ( Glover & Kochen-

erger, 2003 ). Algorithm 1 shows the main scheme of the HMA

lgorithm. HMA starts with an initial population of solutions (Line

 of Algorithm 1 ) which are first generated by a random path scan-

ing heuristic ( Section 3.2 ) and further improved with the local

efinement procedure ( Section 4 ). Before entering the main loop,

MA initializes a counter array Cnt (Lines 3 and 4) which is used

o record the accumulated number of successful pool updates with

he related threshold ratio value in a given set Sr (an external in-

ut). 

At each generation, HMA randomly selects two parent solutions

 

1 and S 2 from the population (Line 6), and performs a route-

ased crossover (RBX) operation (Line 7, see Section 3.3 ) to gen-

rate an offspring solution S 0 . RBX basically replaces one route of

ne parent solution with one route from the other parent solu-

ion, and repairs, if needed, the resulting solution to ensure the

easibility of S 0 . HMA then applies the local refinement procedure

Line 10, Section 4 ) to further improve S 0 . The local refinement

rocedure involves two sub-procedures, namely a randomized tabu

hresholding procedure (RTTP) and an infeasible descent procedure

IDP), which can be carried out in two possible orders: RTTP fol-

owed by IDP (RTTP → IDP) and IDP followed by RTTP (IDP →
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Algorithm 1: Main Scheme of HMA for CARP. 

Data : P - a CARP instance; P size - population size; St - a set 

of tabu timing values; W - the number of 

non-improving attractors visited; Sr - a set of threshold 

ratios; LB - the best known lower bound of P 

Result : the best solution S ∗ found 

// Population initialization, Section 3.2 

1 P OP ← Pool _ Init ializat ion (P size ) ; 

2 S ∗ ← Best(P OP ) ; /* S ∗ records the best solution found 

so far */ 

3 for i = 1 to | Sr| do 

4 Cnt(i ) = 1 ; /* Initialize the counter array Cnt */ 

// Main search procedure 

5 while stopping condition not reached do 

6 Randomly select two solutions S 1 and S 2 from P OP ; 

7 S 0 ← Crossov er(S 1 , S 2 ) ; /* Route-based crossover, 

Sect. 3.3 */ 

8 Od ← rand om _ d etermine (RT T P → I DP, I DP → RT T P ) ; 

/* Determine the order of conducting RTTP and IDP, 

Sect. 4.4 */ 

9 k ← probabil istic _ sel ect(Cnt) ; /* Select a ratio, Sect. 

4.2 */ 

10 S 0 ← Local _ re f ine (P, S 0 , St, Sr(k ) , W, Od) ; /* Improve S 0 , 

Sect. 4 */ 

11 if f (S 0 ) = LB then 

12 return S 0 

13 (S ∗, P OP ) ← Pool _ U pdating(S 0 , P OP ) ; /* Pool updating, 

Sect. 3.4 */ 

14 if pool updating is successful then 

15 Cnt(k ) ← Cnt(k ) + 1 ; 

16 return S ∗
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(  
TTP). The applied order is determined randomly before running

he local refinement procedure (Line 8, see Section 4.4 ). RTTP re-

uires a threshold ratio which is probabilistically chosen among

he values of a given set Sr according to the probability formula:

 r(i ) = C nt(i ) / 
∑ | Sr| 

i =1 
C nt(i ) , where Pr ( i ) denotes the probability of

electing the i th value of Sr (Line 9). 

If the improved solution reaches the lower bound LB, HMA ter-

inates immediately and returns this solution (Lines 11 and 12).

therwise, HMA ends a generation by updating the recorded best

olution and the population with the offspring solution S c (Line 13,

ee Section 3.4 ). If S 0 is successfully inserted into the population,

he counter in relation to the threshold ratio used in the current

eneration is incremented by one (Lines 14 and 15). HMA termi-

ates when a stopping condition is reached, which is typically a

ower bound cutoff or a maximum number of generations. 

.2. Population initialization 

To generate one initial solution of the population, HMA uses a

andomized path-scanning heuristic (RPSH) to construct a solution

hich is then further improved by the local refinement procedure

escribed in Section 4 . RPSH is adapted from the well-known path-

canning heuristic ( Golden et al., 1983 ) by randomizing its five arc

electing rules. Specifically, RPSH builds one route at a time in a

tep-by-step way, each route starting at the depot vertex. At each

tep, RPSH identifies a set A of arcs (belonging to a set of unserved

asks) that are closest to the end of the current route and satisfy

he vehicle capacity constraint. If A is empty, RPSH completes the

urrent route by following a shortest deadheading path to the de-

ot vertex and starts a new route. Otherwise RPSH randomly se-
ects one arc from A and extends the current route with the se-

ected arc. The selected arc as well as its inverse arc are marked

erved. This process continues until all tasks are served. 

The solution constructed by RPSH is further improved by the

ocal refinement procedure of Section 4 . The improved solution is

nserted to the population if it is unique in terms of solution cost

elative to the existing solutions, or discarded otherwise. The pop-

lation initialization procedure stops when the population is filled

ith Psize (population size) different individuals or when a maxi-

um of 3 ∗ Psize trials is reached. The latter case helps to fill the

opulation with Psize distinct individuals. If ever only k < Psize dis-

inct solutions are obtained after 3 ∗ Psize trials, we set the popu-

ation size to k . 

.3. Route-based crossover operator for CARP 

At each of its generations, HMA applies a crossover operator

o create an offspring solution by recombining two parent solu-

ions randomly selected from the population. It has been com-

only recognized that the success of memetic algorithms relies

reatly on the recombination operator which should be adapted to

he problem at hand and be able to transfer meaningful properties

building blocks) from parents to offspring ( Hao, 2012 ). This idea

s closely related to the idea of using structured combinations and

ocabulary building ( Glover & Laguna, 1997 ). 

By considering that the solution of CARP is composed of a set of

outes, it is a natural idea to manipulate routes of tasks rather than

ndividual tasks. In this regard, the route-based crossover (RBX) op-

rator used for the vehicle routing problem (VRP) ( Potvin & Bengio,

996 ) seems attractive for CARP. However, given that CARP is quite

ifferent from the VRP, RBX must be properly adapted in our con-

ext within HMA. Given two parent solutions S 1 = { R 1 
1 
, R 1 

2 
, . . . , R 1 m 1 

}
ith m 1 routes and S 2 = { R 2 1 , R 

2 
2 , . . . , R 

2 
m 2 

} with m 2 routes, our RBX

rossover basically copies S 1 to an offspring solution S 0 and re-

laces a route of S 0 with a route from S 2 , and then repairs S 0 to

stablish feasibility if needed. The RBX crossover procedure con-

ists of three main steps: 

• Step 1: Copy S 1 to an offspring solution S 0 = { R 0 
1 
, R 0 

2 
, . . . , R 0 m 1 

}
and replace a route of S 0 with a route from S 2 . Generate two

random integer values a ( a ∈ [1, m 1 ]) and b ( b ∈ [1, m 2 ]); Re-

place the route R 0 a of solution S 0 with the route R 2 
b 

of solution

S 2 , and collect the tasks that are not served in S 0 to a set UT ; 
• Step 2: Remove duplicated tasks by the following rule. Let

S 0 ( p i ) be the task in position p i , and let p i − 1 be the po-

sition before p i and p i + 1 be the position after p i . Also

let dist(u, v ) denote the shortest path distance between ver-

tex head ( u ) and vertex tail(v ) . Given a task t 0 which ap-

pears twice respectively in position p 1 and p 2 , RBX re-

moves the appearance with the largest value of s ( p i ) ( i ∈ {1,

2}), where s (p i ) = dist(S 0 (p i − 1) , S 0 (p i )) + dist(S 0 (p i ) , S 
0 (p i +

1)) − dist(S 0 (p i − 1) , S 0 (p i + 1)) . 
• Step 3: Insert the unserved tasks of UT in S 0 . Before task inser-

tion, RBX sorts the tasks in set UT in random order. Then for

each task t in UT , RBX scans all possible positions of S 0 to in-

sert t . If a position is able to accommodate t while respecting

the vehicle capacity, RBX further calculates the saving (change

of the total cost) with t inserted. The two arcs of t are both con-

sidered for insertion, and the minimum saving is recorded. RBX

finally inserts the task to a position which causes the overall

least augmentation of the total cost while maintaining the so-

lution feasibility. Ties are broken randomly. This process is re-

peated until UT becomes empty. 

Our proposed RBX operator not only introduces a new route

taken from S 2 ) into S 0 , but also modifies other existing routes
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due to deletion of duplicated tasks and insertion of unserved tasks.

Clearly, RBX could lead to an offspring solution which is struc-

turally different from its parent solutions. This is a desirable fea-

ture which promotes the overall diversity of HMA. Moreover, the

quality of the offspring is not much deteriorated due to the use of

greedy heuristics in Steps 2 and 3. As such, when the offspring is

used as a seeding solution of local refinement, it helps the search

to move into a new promising region. RBX can be realized in O ( n 2 ),

where n is the number of tasks. 

3.4. Population management 

In population-based algorithms, one important goal aims to

avoid premature convergence of the population. This can be

achieved by adopting a carefully designed strategy for popula-

tion management. In HMA, we use a quality-and-distance strategy

(QNDS) for this purpose. QNDS takes into account not only the so-

lution quality, but also the diversity that the solution contributes

to the whole population by resorting to a solution distance mea-

sure. 

We propose in this work to adapt for the first time the Ham-

ming distance in the context of CARP and use it as our distance

measure. Any pair of consecutive tasks (S(i ) , S(i + 1)) of a solution

S is linked by a shortest path (a path with minimum deadheading

cost) between head ( S ( i )) and tail(S(i + 1)) , called deadheading-link

hereafter. Thus, solution S has n + m deadheading-links where n is

the number of tasks and m is the number of routes. Let V R ⊂ V be a

set of vertices that belong to the required edges, let V 
′ 
R 

= V R ∪ { v d }
be a set containing both the vertices of V R and the depot vertex

v d , let � = { (u, v ) | u, v ∈ V 
′ 
R } be the set of all possible deadheading-

links. Given two solutions S i with m i routes and S j with m j routes,

their Hamming distance D i , j is defined as the number of different

deadheading-links between S i and S j : 

D i, j = (n + m ) −
∑ 

(u, v ) ∈ �
x u v (3)

where m = min { m i , m j } , 

x u v = 

{
1 , if (u, v ) is a d ead head ing − link of both S i and S j 

0 , otherwise 

(4)

Given a population P OP = { S 1 , S 2 , . . . , S P size } of size P size and

the distance D i , j between any two individuals S i and S j ( i 	 = j ∈ [1,

Psize ]), the average distance between S i and any other individual in

POP is given by: 

AD i,POP = 

( ∑ 

S j ∈ POP, j 	 = i 
D i, j 

) 

/ (P size − 1) (5)

QNDS evaluates each solution in the population using the fol-

lowing quality-and-distance fitness (QDF for short) function: 

QDF (S i ) = α ∗ OR ( f (S i )) + (1 − α) ∗ DR (AD i,POP ) (6)

where OR ( f ( S i )) and DR ( AD i , POP ) represent respectively the rank of

solution S i with respect to its objective value and the average dis-

tance to the population (objective value is ranked in ascending

order while average distance is ranked in descending order), and

α is a parameter. We require the value of α to be higher than

0.5 to ensure that the best individual in terms of objective value

will never be removed from the population, which formalizes the

elitism property of QNDS. 

Given an offspring S 0 (which has undergone both crossover and

local refinement), QNDS first inserts S 0 into POP , evaluates the QDF

value of each individual and finally removes from POP the solution

S w with the largest QDF value. 
. Local refinement procedure of HMA 

The local refinement procedure is another key component of

ur HMA algorithm and plays en essential role in enforcing inten-

ification which ensures the high performance of HMA. Our local

efinement procedure involves two sub-procedures, i.e., a random-

zed tabu thresholding procedure which explores only the feasible

egion, and an infeasible descent procedure which visits both feasi-

le and infeasible regions. Both sub-procedures are based on a set

f move operators which are explained below. The implementation

f the two sub-procedures are also described. 

.1. Move operators 

Our local refinement procedure employs six move operators, in-

luding five traditional small-step-size operators: inversion, single

nsertion, double insertion, swap, two-opt; as well as a large-step-

ize operator called merge-split recently proposed in Tang et al.

2009) . These operators are briefly described as follows. 

Let u and v be a pair of tasks in the current solution S , tasks x

nd y be respectively the successor of u and v , rt ( u ) be the route

ncluding task u . 

• Inversion (IV): replace the current arc of task u with its reverse

arc in S ; 
• Single insertion (SI): displace task u after task v (also before

task v if v is the first task of rt(v ) ); both arcs of u are con-

sidered when inserting u in the target position, and the one

yielding the best solution is selected; 
• Double insertion (DI): displace a sequence ( u , x ) after task v

(also before task v if v is the first task of rt(v ) ); similar to SI,

both directions are considered for each task and the resulting

best move is chosen; 
• Swap (SW): exchange task u and task v ; similar to SI, both di-

rections are considered for each task to be swapped and the

resulting best move is chosen; 
• Two-opt (TO): two cases exist for this move operator: 1) if

rt(u ) = rt(v ) , reverse the direction of the sequence (x, v ) ; 2) if

rt(u ) 	 = rt(v ) , cut the link between ( u , x ) and (v , y ) , and estab-

lish a link between ( u , y ) and (v , x ) ; 
• Merge-split (MS): this operator obtains an unordered list of

tasks by merging multiple routes of the current solution,

and sorts the unordered list with the path scanning heuristic

( Golden et al., 1983 ). It then optimally splits the ordered list

into new routes using the Ulusoy’s splitting procedure ( Ulusoy,

1985 ). Each application of this operator results in five new solu-

tions and the best one is chosen. Interested readers are referred

to Tang et al. (2009) for more details. 

In the following two subsections, we explain how these opera-

ors are used in our two local refinement sub-procedures. 

.2. Randomized tabu thresholding procedure 

The proposed randomized tabu thresholding procedure (RTTP)

ollows the general principle of the Tabu Thresholding (TT) method

hose basis was first proposed in Glover (1995) . A main ingredi-

nt of TT is the candidate list strategy (CLS) which is dedicated to

educe the number of moves to be considered in order to accel-

rate the neighborhood examination. CLS subdivides the possible

oves of the current solution into subsets and executes one move

or each subset rather than for the whole neighborhood. CLS, along

ith the elements of probabilistic tabu search, simulates the tabu

echanism with memory structure. RTTP is a randomized proce-

ure in the sense that it explores multiple neighborhoods in a ran-

om order. 
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.2.1. Outline of the randomized tabu thresholding procedure 

The randomized tabu thresholding procedure basically alter-

ates between a Mixed phase and an Improving phase where

or both phases, five traditional move operators are employed:

nversion, single insertion, double insertion, swap and two-opt.

lgorithm 2 sketches the outline of the RTTP procedure for CARP.

Algorithm 2: Outline of the RTTP for CARP. 

Data : P - a CARP instance, St - a set of tabu timing values, r - 

threshold ratio, W - the number of non-improving 

attractors visited, S 0 - an initial solution; 

Result : the best solution S ∗ found so far; 

1 O ← { I V, SI , DI , SW, T O } ; /* O contains five move 

operators */ 

2 S ∗ ← S 0 ; /* S ∗ records the global best solution */ 

3 S ← S 0 ; /* S records the current solution */ 

4 f p ← f (S ∗) ; ; /* f p records the best local optimum 

objective value */ 

5 w ← 0 ; /* set counter for consecutive non-improving 

local optima */ 

6 while w < W do 

7 T ← random _ select (St ) ; 

// Mixed Phase 

8 for k ← 1 to T do 

9 Randomly shuffle all operators in O ; 

10 for each o ∈ O do 

11 Randomly shuffle tasks of S in M ; 

12 for each i ∈ M do 

13 (S, S ∗) ← Apply operator o to task i by searching 

MOVE _ CL( i, S, o) and accepting a move according 

to the quality threshold; 

// Improving Phase 

14 while Improving moves can be found do 

15 Randomly shuffle all operators in O ; 

16 for each o ∈ O do 

17 Randomly shuffle tasks of S in M ; 

18 for each i ∈ M do 

19 (S, S ∗) ← Apply operator o to task i by searching 

MOVE _ CL( i, S, o) and accepting the first met 

improving move; 

20 if f (S) < f p then 

21 f p ← f (S) ; w ← 0 ; 

22 else 

23 w ← w + 1 ; 

TTP starts by initializing a set of global variables with an initial

olution S 0 taken from an external input. RTTP then enters the

ain loop where Mixed phase and Improving phase alternate. 

In the Mixed phase , for any move operator o and for a given

ask i , RTTP examines the candidate list MOVE _ CL( i , S , o ) in ran-

om order and accepts the first improving feasible move if any, or

he best admissible feasible move otherwise. The admissible feasi-

le move satisfies a quality threshold TV , i.e., f (S 
′ 
) ≤ T V where S 

′ 

s the neighboring solution generated by the accepted move. TV is

alculated as: T V = (1 + r) ∗ f p , where f p is the current best local

ptimum objective value, and r is a threshold ratio. With this qual-

ty threshold, deteriorating solutions are allowed in order to di-

ersify the search. Solution cycling is prevented through the com-

lete reshuffling of the order in which candidate lists are examined

efore each neighborhood examination. An iteration of the Mixed

hase is based on the examination of the complete neighborhoods

f all move operators. The Mixed phase is repeated for T iterations.
 is called a tabu timing parameter, which is analogous to the tabu

enure when an explicit tabu list is used. T is randomly selected

mong the values of a given set St . 

In the Improving phase , RTTP always seeks an improving move

mong the feasible moves within each candidate list MOVE _ CL( i , S ,

 ). If no improving move is found in a given candidate list, RTTP

kips to the next candidate list. This phase is iterated until no im-

roving move can be found in any candidate list. 

If the local optimum reached in the Improving phase has a bet-

er objective value than the recorded best objective value f p , the al-

orithm updates f p and resumes a new round of Mixed − Improv ing

hases. RTTP terminates when f p has not been updated for a con-

ecutive W Mixed − Improv ing phases. 

.2.2. Construct candidate list 

When using the five traditional move operators, neighborhoods

f the current solution can always be obtained by operating on two

istinct tasks. For instance, insertion is to insert one task after or

efore another task; swap is to swap one task with another task;

wo-opt is to exchange the subsequent part of a task with that of

nother one. As such, given a move operator o , a natural choice for

he subsets to be used in the candidate list strategy is to define one

ubset MOVE _ SUBSET( i , S , o ) for each task i . In order to speed up

eighborhood examination, we further use an estimation criterion

o discard moves from MOVE _ SUBSET( i , S , o ) that are unlikely to

ead to a promising solution. This estimation criterion is based on

 distance measure between two tasks t 1 , t 2 which is defined as:

 task (t 1 , t 2 ) = 

( 

2 ∑ 

a =1 

2 ∑ 

b=1 

D (v a (t 1 ) , v b (t 2 )) 

) 

/ 4 (7)

here D (v a (t 1 ) , v b (t 2 )) is the traversing distance between t 1 ’s a th

nd node v a (t 1 ) and t 2 ’s b th end node v b (t 2 ) . (This distance mea-

ure was first used in Mei et al. (2014) to define the distance be-

ween two routes.) The candidate move list associated to task i

MOVE _ CL( i , S , o )) is restricted to contain Csize most promising

oves such that for each move which is associated with two tasks

 i , t ), t is a member of i ’s Csize closest neighboring tasks according

o the distance measure of formula ( 7 ). 

.3. Infeasible descent procedure 

For a constrained optimization problem like CARP, it is known

hat allowing a controlled exploration of infeasible solutions may

acilitate transitions between structurally different solutions and

elp discover high-quality solutions that are difficult to locate if

he search is limited to the feasible region. This observation is

ighlighted by discoveries made with the strategic oscillation ap-

roach (see, e.g., Glover & Hao, 2011 ) which alternates between

hases of infeasible descent and phases of improving feasible

earch. To further intensify the search, we employ in our local re-

nement procedure, as a complement to RTTP, an infeasible de-

cent procedure (IDP) which allows visiting infeasible solutions.

DP is a best-improvement descent procedure based on three tradi-

ional move operators, i.e., single insertion, double insertion, swap,

s well as a large-step-size merge-split operator that was recently

roposed and proved to be effective for CARP ( Tang et al., 2009 ).

e use the merge-split operator in the way as suggested in Tang

t al. (2009) . IDP basically involves two different stages. In the first

tage, IDP examines the complete neighborhoods induced by the

I, DI and SW operators and chooses the best move to perform

f it improves the current solution. When no improvement can be

ound in the first stage, IDP switches to the second stage where

t examines the neighboring solutions generated by the MS oper-

tor. Since MS is computationally expensive, IDP restricts the ex-

mination to a maximum of 100 neighboring solutions which are
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randomly sampled from the C 2 m 

possibilities where m is the num-

ber of routes. If C 2 m 

≤ 100 , all neighboring solutions will be exam-

ined. Still, the best improving move is performed until no improve-

ment is reported in this stage. If any improvement is found in the

second stage, IDP switches back to the first stage to explore the

new local region and terminates the algorithm when this stage is

finished; otherwise, IDP terminates at the end of the second stage.

As in many previous CARP algorithms which allow intermediate in-

feasible solutions ( Beullens et al., 2003; Brandão & Eglese, 2008;

Hertz et al., 20 0 0; Tang et al., 20 09 ), we evaluate the solution qual-

ity generated in the search process of IDP by adding a penalty item

to the original cost: 

φ(S) = f (S) + β ∗ EX (S) (8)

where EX ( S ) is the total excess demand of S and β is a self-

adjusting penalty parameter. β is halved (doubled) if feasible (in-

feasible) solutions have been achieved for five consecuti ve itera-

tions, and its initiating value is set to: 

β = f (S) / (2 ∗ Q ) (9)

where Q is the vehicle capacity. One notices that we don’t consider

the violation of S in Eq. 9 . This is because we always ensure that

IDP starts the search from a feasible solution. 

4.4. Combination of RTTP and IDP 

After presenting the implementation of RTTP and IDP, the or-

der of combining them in the local refinement procedure remains

an issue to be addressed. RTTP is the most important compo-

nent of our HMA algorithm which compared to IDP, makes more

contribution to the high performance of HMA, but also consumes

more computing time (see the analysis in Section 6.1 ). IDP is a

very simple descent procedure which, when used alone, is not ex-

pected to identify very high quality solutions (see the analysis in

Section 6.1 ). However, the search ability of RTTP and IDP can be

mutually strengthened when they are combined. Indeed, it is ben-

eficial to put IDP either before or after RTTP. When IDP is placed

before RTTP, the best feasible solution found by IDP can be con-

sidered as a good starting point for RTTP. This is because the per-

formance of neighborhood search algorithms may highly depend

on the initial solution and a high-quality initial solution could

help discover still better solutions. When IDP is put after RTTP,

the property of tunneling through infeasible regions and the large-

step-size MS operator of IDP may help to further improve the high

quality solution provided by RTTP. For the above reasons, both or-

ders (i.e., RTTP → IDP and IDP → RTTP) are allowed in our HMA

algorithm. The order is randomly determined before the local re-

finement procedure is carried out. 

5. Computational experiments 

To evaluate the efficacy of the proposed HMA algorithm, we

carry out extensive experiments on a large number of well-known

CARP benchmark instances, and compare the results 1 with those of

the state-of-the-art algorithms as well as the best known solutions

ever reported in the literature. 

HMA was coded in C ++ and compiled by GNU g ++ 4.1.2 with

the ’-O3’ option. The experiments were conducted on a computer

with an AMD Opteron 4184 processor (2.8 gigahertz and 2 giga-

bytes RAM) running Ubuntu 12.04. When solving the DIMACS ma-

chine benchmarks 2 without compilation optimization flag, the run

time on our machine is 0.40, 2.50 and 9.55 seconds respectively

for instances r30 0.5, r40 0.5 and r50 0.5. 
1 Our best solution certificates are available at: http://www.info.univ-angers.fr/ 

pub/hao/CARPResults.zip . 
2 dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/. 

 

 

.1. Experimental setup 

Our HMA algorithm was evaluated on a total of 191 benchmark

raphs with 7–255 vertices and 11–375 edges. These instances are

ery popular and widely used in the CARP literature. They cover

oth random instances and real-life applications, and are typically

lassified into eight sets: 

• gdb : 23 instances randomly generated by DeArmon ( DeArmon,

1981 ), with 7–27 nodes and 11–55 required edges. 
• val : 34 instances derived from 10 randomly generated graphs

proposed by Benavent, Campos, Corberan, and Mota (1992) ,

with 25–50 nodes and 34–97 required edges. 
• egl : 24 instances proposed by Eglese (1994) , which originate

from the data of a winter gritting application in Lancashire

(UK), with 77–140 nodes and 98–190 edges that include 51–190

required edges. 
• C : 25 instances generated by Beullens et al. (2003) based on

the intercity road network in Flanders, with 32–97 nodes and

42–140 edges that include 32–107 required edges. 
• D : 25 instances modified from the instances of set C by dou-

bling the vehicle capacity for each instance. 
• E : 25 instances, also generated by Beullens et al. (2003) based

on the intercity road network in Flanders, with 26–97 nodes

and 35–142 edges that include 28–107 required edges. 
• F : 25 instances modified from the instances of set E by doubling

the vehicle capacity for each instance. 
• EGL-G : 10 large-sized CARP instances, which like the set egl ,

were also generated based on the road network of Lancashire

(UK) ( Brandão & Eglese, 2008 ), each having 255 nodes and 375

edges with 374 to 375 required edges. 

Following the common practice in the literature, we compare

he results produced by our HMA algorithm on these benchmarks

o those of the following eight state-of-the-art algorithms: 

1. A guided local search (GLS) algorithm proposed by Beullens

et al. (2003) , who reported results on the instance set gdb ,

val and C-F . 

2. A deterministic tabu search algorithm (TSA) proposed by

Brandão and Eglese (2008) , who reported results on all eight

instance sets. Two sets of results (“TSA1” and “TSA2”) were

reported, and the one (“TSA2”) yielding better performance

will be considered for comparative study for all instance

sets except for EGL-G where only results of “TSA1” were re-

ported. 

3. A variable neighborhood search (VNS) algorithm proposed

by Polacek et al. (2008) , who reported results on set val

and egl . Two sets of results (“993 megahertz” and “3.6 gi-

gahertz”) were reported, and the one (“3.6 gigahertz”) yield-

ing better performance will be considered for comparative

study. 

4. A memetic algorithm with extended neighborhood search

(MAENS) proposed by Tang et al. (2009) , who reported re-

sults on set gdb , val , egl and C-F . 

5. An improved ant colony optimization based algorithm (Ant-

CARP) proposed by Santos et al. (2010) , who reported re-

sults on set gdb , val , egl and C-F . Two sets of results (“Ant-

CARP _ 6 ” and “Ant-CARP _ 12 ”) were reported, and the one

(“Ant-CARP _ 12 ”) yielding overall better performance will

be considered for comparative study. Hereafter, we use

“Ant _ 12 ” to represent “Ant-CARP _ 12 ”, and use its median

results for comparison when we study the average perfor-

mance of the reference algorithms since their average results

are not available. 

6. A GRASP with evolutionary path relinking (GRASP) proposed

by Usberti et al. (2013) , who reported results on the set gdb ,

val and egl . 

http://www.info.univ-angers.fr/pub/hao/CARPResults.zip
ftp://dimacs.rutgers.edu/pub/dsj/clique/
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Table 1 

Scaling factors for computers used in the reference algorithms. Our computer (AMD Opteron 4184) is used as the basis. 

Algorithm Reference Processor type Frequency (gigahertz) Factor 

HMA - AMD Opteron 4184 2 .8 1 .0 

GLS ( Beullens et al., 2003 ) Pentium II 0 .5 0 .18 

VNS ( Polacek et al., 2008 ) Pentium IV 3 .6 1 .29 

TSA2 ( Brandão & Eglese, 2008 ) Pentium Mobile 1 .4 0 .50 

MAENS ( Tang et al., 2009 ) Intel Xeon E5335 2 .0 0 .71 

Ant _ 12 ( Santos et al., 2010 ) Pentium III 1 .0 0 .36 

GRASP ( Usberti et al., 2013 ) Intel Core 2 3 .0 1 .07 

ILS-RVNS ( Martinelli et al., 2013 ) Intel Core i5 3 .2 1 .14 

RDG-MAENS ( Mei et al., 2014 ) Intel Core i7-2600 3 .4 1 .21 

Table 2 

Parameter tuning results. 

Parameter Description Range Final value 

Psize Population size [6,16] 10 

α Parameter of QDF in pool updating [0.51,0.90] 0.60 

St Tabu timing parameter values in RTTP [28,33] - 

W Maximum number of attractors in RTTP [5,20] 10 

Sr Threshold ratios in RTTP for classical sets {0.0 03,0.0 04,0.0 05,0.0 06} - 

for EGL-G set {0.0 0 01,0.0 0 05,0.0 010,0.0 015} 

Csize Candidate list size [6,20] 12 

 

 

 

 

 

 

e  

g  

C  

t  

p  

S  

o  

p  

t  

r  

d  

n  

s  

s  

e  

t  

f

5

 

a  

e  

2  

t  

p  

T  

w  

p  

C  

r  

c  

s  

e  

c  

G  

G  

T  

t

5

 

s  

5  

T  

C  

(  

e  

s  

m  

b  

r  

a  

c  

v  

v  

c  

r  

p  

a  

a  

2  

s  

&  

A  

s  

a  

t

 

t  

m  

C  

i  

w

7. An iterated variable neighborhood descent algorithm (ILS-

RVND) proposed by Martinelli, Poggi, and Subramanian

(2013) . We reference their reported results of set EGL-G . 

8. A cooperative co-evolution algorithm with route distance

grouping (RDG-MAENS) proposed by Mei et al. (2014) . RDG-

MAENS was specifically designed for large-sized CARP in-

stances, and thus we reference their results on set EGL-G . 

These reference algorithms were tested on different comput-

rs with a CPU frequency ranging from 500 megahertz to 3.6 gi-

ahertz. To make a relatively fair comparison of the runtime, all

PU times reported in the reference papers are scaled here into

he equivalent AMD Opteron 4184 2.8 gigahertz run times. Like in

revious CARP literature ( Martinelli et al., 2013; Mei et al., 2014;

antos et al., 2010; Tang et al., 2009 ), our time conversion is based

n the assumption that the CPU speed is approximately linearly

roportional to the CPU frequency. We provide in Table 1 the CPU

ype and its frequency of each reference algorithm, as well as its

esulting scaling factors. This time conversion is only made for in-

icative purposes, since the computing time of each algorithm is

ot only influenced by the processor, but also by some inacces-

ible factors such as the operating systems, compilers and coding

kills of the programmer. Nevertheless, we show in the following

xperiments, the outcomes provide interesting information about

he performance of the proposed algorithm relative to the best per-

orming algorithms. 

.2. Parameter tuning 

The HMA algorithm relies on a set of correlated parameters. To

chieve a reasonable tuning of the parameters, we adopt the It-

rated F-race (IFR) method ( Birattari, Yuan, Balaprakash, & Stützle,

010 ), which allows an automatic parameter configuration, using

he IFR algorithm that is implemented and integrated in the irace

ackage ( López-Ibáñez, Dubois-Lacoste, Stützle, & Birattari, 2011 ).

able 2 summarizes the parameters of our HMA algorithm, along

ith the range of values that were determined by preliminary ex-

eriments. Among these parameters, four of them (Psize, α, W,

size) need to be tuned and the other two parameters (threshold

atio r and tabu timing parameter T ) are adaptively or randomly

hosen among the values in the given sets (Sr and St) during the

earch process. We set the tuning budget to 10 0 0 runs of HMA and
ach run is given 100 generations. We restrict the training set to

ontain 8 challenging instances taken from val , egl , C , E and EGL-

 sets: val-10D, egl-e3-B, egl-s3-C, C11, E12, E15, EGL-G1-B, EGL-

2-B. The final choices of the parameter values are presented in

able 2 and they are used in all experiments in the following sec-

ions unless otherwise mentioned. 

.3. Comparative results on 7 classical instance sets 

We first assess HMA on the 7 most commonly used instance

ets (181 instances): gdb, val, egl, C, D, E, F. It is compared to

 current state-of-the-art algorithms: GLS ( Beullens et al., 2003 ),

SA2 ( Brandão & Eglese, 2008 ), VNS ( Polacek et al., 2008 ), Ant-

ARP ( Santos et al., 2010 ), GRASP ( Usberti et al., 2013 ), and MAENS

 Tang et al., 2009 ). To give a general picture of the performance of

ach compared algorithm, we summarize in Table 3 , for each in-

tance set and for each algorithm, the number of best results that

atch or improve on the best known results ( # Best), the num-

er of average results that match or improve on the best known

esults ( # BestAvg), the average gap between the average results

nd the best known results in percentage (AvgGap, the gap is cal-

ulated as ( f a v g - f bk ) × 100/ f bk where f a v g is the average solution

alue obtained by the algorithm and f bk is the best known solution

alue reported in the literature), and the average of the instance

omputing time in seconds (AvgTime). When we count # Best, we

efer to the current best known results (BKRs) which are com-

iled from the “best results” reported in all previous CARP liter-

ture. These “best results” could be those obtained by a single

lgorithm with various parameter settings (e.g., Lacomme et al.,

004; Polacek et al., 2008; Santos et al., 2010 ) or even with a

pecific setting tuned for each instance (e.g., TSA best in Brandão

 Eglese, 2008 ). Finally, to complement these summarized results,

ppendix A ( Tables A .1 –A .7 ) reports, for each of the 181 CARP in-

tance, the detailed results of our HMA algorithm as well as the

verage results of the reference algorithms. These tables permit a

horough assessment of all compared algorithms. 

Note that some results were obtained from a single run of

he algorithms (GLS and TSA) whereas other results came from

ultiple runs (VNS, GRASP, Ant-CARP, MAENS, HMA1 and HMA2).

learly, # Best favors multiple-run results. To make a fair compar-

son, we refer to average statistics ( # BestAvg, AvgGap, AvgTime)

hen we compare single-run results with multiple-run results. 
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Table 3 

Comparative statistical results on the 7 classical instance sets: gdb, val, egl, C-F. The best result of each row is indicated in bold. The results of 

HMA 2 are starred if they improve on the results of HMA 1 . 

GLS TSA2 VNS GRASP Ant _ 12 MAENS HMA 1 HMA 2 
1 run 1 run 10 runs 15 runs 10 runs 30 runs 30 runs 30 runs 

gdb # Best 23 21 - 23 22 23 23 23 

# BestAvg 23 21 - 19 21 22 23 23 

AvgGap 0.00 0.07 - 0.11 0.10 0.01 0.00 0.00 

AvgTime 0.32 1.23 - 5.47 1.21 4.47 1.19 1.19 

val # Best 30 29 32 30 29 31 32 34 ∗

# BestAvg 30 29 26 0 26 0 29 30 

AvgGap 0.05 0.14 0.09 0.12 0.17 0.18 0.03 0.02 ∗

AvgTime 14.64 10.09 56.70 65.85 9.11 48.35 11.23 26.71 

egl # Best - 4 11 12 11 12 15 23 ∗

# BestAvg - 4 4 3 9 2 9 14 ∗

AvgGap - 0.75 0.56 0.50 0.58 0.59 0.13 0.07 ∗

AvgTime - 145.68 649.17 854.48 181.09 4 98.4 9 198.83 646.03 

C # Best 20 18 - - 22 23 24 25 ∗

# BestAvg 20 18 - - 16 3 18 23 

AvgGap 0.12 0.14 - - 0.52 0.98 0.06 0.02 ∗

AvgTime 42.49 42.92 - - 40.76 165.50 36.88 54.22 

D # Best 24 17 - - 23 23 25 25 

# BestAvg 24 17 - - 20 10 20 23 

AvgGap 0.04 0.66 - - 0.34 0.79 0.17 0.10 

AvgTime 17.36 19.20 - - 51.88 219.53 14.65 35.13 

E # Best 19 17 - - 20 20 23 25 ∗

# BestAvg 19 17 - - 16 5 16 20 

AvgGap 0.20 0.39 - - 0.83 1.44 0.19 0.08 ∗

AvgTime 40.65 46.00 - - 40.54 160.89 42.62 116.54 

F # Best 25 15 - - 22 25 25 25 

# BestAvg 25 15 - - 20 12 25 25 

AvgGap 0.00 0.90 - - 0.77 1.01 0.00 0.00 

AvgTime 10.67 21.09 - - 52.17 166.85 8.44 8.44 
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For each instance, our HMA algorithm was run 30 times un-

der two different stop criteria: 500 generations and 20 0 0 genera-

tions. To ease presentation, we denote HMA with 500 generations

as HMA 1 , and HMA with 20 0 0 generations as HMA 2 . Studying the

outcomes of these two termination criteria affords insights into

how HMA behaves when more computing time is available. 

From Table 3 , we can see that HMA 1 shows a remarkable per-

formance on all 7 tested instance sets compared to the multiple-

run reference algorithms. Indeed, it attains the largest number of

best known results for all 7 data sets and the lowest average gap to

the best known results for 6 out of 7 sets. Compared to Ant _ 12 and

MAENS which, like HMA 1 , are both population-based algorithms,

HMA 1 clearly shows its dominance in terms of both best results

and average results. For set D, HMA 1 is the only algorithm which

is able to find all BKRs. Additionally, HMA 1 obtains improved best

known results on three well-studied instances from set egl . By in-

creasing the HMA 1 termination criterion of 500 to 2000 gener-

ations, HMA 2 achieves a still better performance, always obtain-

ing equal or better results in terms of both # Best and AvgGap. In

particular, for set egl, HMA 2 discovers 6 new BKRs and matches

6 more BKRs, leading to # Best = 23 which is significantly larger

than those obtained by the reference algorithms. HMA 2 is able

to achieve overall 180 current or new BKRs out of 181 instances

with one standard parameter setting, while the previous BKRs

are compiled from many previous articles, among which some

were obtained with parameters specifically tuned for individual

instance. 

Now we turn to compare our HMA algorithm to the single-

run reference algorithms. As mentioned before, we should look

at average statistics when comparing multiple-run algorithms to

single-run algorithms. According to two average indicators, namely

# BestAvg and AvgGap, GLS is clearly the best performing single-

run algorithm among all 6 reference algorithms (including single-

run algorithms and multiple-run ones). Still, compared to GLS, our

HMA algorithm remains competitive on 6 instance sets (i.e., gdb,
al and C-F). Indeed, when the short time limit (500 generations)

s applied, HMA 1 performs better in items of AvgGap (by achiev-

ng an equal or lower AvgGap for more instance sets: 5 vs. 3),

ut worse in terms of # BestAvg (by attaining an equal or higher

 BestAvg for less instance sets: 2 vs. 6). On set D, both HMA 1 and

MA 2 are dominated by GLS in terms of both indicators. Finally,

ne observes that when given more computing time, HMA 2 is able

o further improve its results. 

To validate the above observations, we apply a Wilcoxon test

ith a significance factor of 0.05 for a pairwise comparison of

he average performance between HMA 1 and TSA2, Ant _ 12 as well

s MAENS, which are three approaches that have been tested on

ll 181 instances. The resulting p-values of 2.15E-10, 9.31E-10 and

.20E-16 confirm that the results of HMA 1 are significantly bet-

er than those of these current best performing algorithms. This

onclusion remains valid for HMA 2 since it always performs better

han HMA 1 . 

When it comes to computational time (‘AvgTime’ in Table 3 ),

ur HMA algorithm also remains competitive. Recall that the in-

icated time for the reference algorithms are scaled according

o our computer and the average time of a multiple-run algo-

ithm can be compared to the time of a single-run algorithm.

able 3 shows that HMA 1 is in overall not slower than any of

he reference algorithms. Compared to the fast GLS, TSA2 and

nt _ 12 algorithms, HMA 1 generally requires comparable comput-

ng time. Compared to the remaining reference algorithms (i.e.,

NS, GRASP and MAENS), HMA 1 is clearly more efficient. By ex-

ending the stop condition to 20 0 0 generations, HMA 2 , which finds

mproved solutions, consumes more computing time than HMA 1 as

xpected. 

Finally, the “best results” reported by previous CARP studies

ere often achieved by executing tests involving multiple param-

ter settings to show the extreme performance of the associated

lgorithms. Following this practice, we report in Appendix A some

ew best known results discovered by our HMA algorithm with



Y. Chen et al. / European Journal of Operational Research 253 (2016) 25–39 33 

p  

T  

w  

m  

m

5

 

t  

A  

l  

t  

c  

s  

h  

p  

i  

a  

M  

L  

H  

i  

g

 

u  

g  

w  

r  

r  

I  

f  

a  

f  

a  

t  

l  

g  

s

 

r  

a  

t  

r

v  

t

v  

b  

B  

h  

g  

e  

r  

s  

s  

1  

p  

m  

e  

b

 

t  

e  

(  

m T
a

b
le
 
4
 

C
o

m
p

a
ra

ti
v

e
 
re

su
lt

s 
o

f 
o

u
r 

H
M

A
 
a

lg
o

ri
th

m
 
w

it
h
 
4
 
st

a
te

-o
f-

th
e

-a
rt
 
a

lg
o

ri
th

m
s 

o
n
 
th

e
 
1

0
 
in

st
a

n
ce

s 
o

f 
E

G
L

-G
 
se

t.
 
T

h
e
 
b

e
st
 
av

e
ra

g
e
 
re

su
lt

s 
a

n
d
 
b

e
st
 
re

su
lt

s 
a

re
 
in
 
b

o
ld

. 
T

h
e
 
b

e
st
 
re

su
lt
 
o

f 
H

M
A
 ∗

is
 
st

a
rr

e
d
 
if
 
it
 
im

p
ro

v
e

s 
o

n
 
th

e
 
B

K
R

. 

IN
S

T
 

(|
 N
 |,
 
| E
 R
 

|)
 

A
v

e
ra

g
e
 
re

su
lt

s 
B

e
st
 
re

su
lt

s 

T
S

A
1
 

IL
S
 

M
A

E
N

S
 

R
D

G
 

H
M

A
 1
 

T
im

e
 

H
M

A
 2
 

T
im

e
 

LB
 

B
K

R
 

H
M

A
 1
 

H
M

A
 2
 

H
M

A
 ∗

1
 
ru

n
 

1
0
 
ru

n
s 

3
0
 
ru

n
s 

3
0
 
ru

n
s 

3
0
 
ru

n
s 

3
0
 
ru

n
s 

G
1

-A
 

(2
5

5
,3

4
7

) 
1

0
4

9
7

0
8
 

1
0

1
0

9
3

7.
4

0
 

1
0

0
9

3
0

2
 

1
0

0
7

6
1

9
 

9
9

2
8

2
3

.0
0
 

1
2

2
1.

4
5
 

9
9

2
3

0
0

.3
3
 

3
2

0
9

.1
6
 

9
7

6
9

0
7
 

9
9

8
7

7
7
 

9
9

2
3

3
7
 

9
9

2
0

4
5
 

9
9

2
0

4
5
 ∗

G
1

-B
 

(2
5

5
,3

4
7

) 
11

4
0

6
9

2
 

11
3

7
1

4
1.

5
0
 

11
2

8
11

4
 

11
2

2
8

6
3
 

11
17

1
9

8
.7

7
 

1
3

5
4

.5
7
 

11
1

4
9

9
2

.5
3
 

3
9

6
1.

8
1
 

1
0

9
3

8
8

4
 

11
11

9
7

1
 

11
1

4
1

2
5
 

11
1

3
0

0
3
 

11
1

2
2

4
5
 

G
1

-C
 

(2
5

5
,3

4
7

) 
1

2
8

2
2

7
0
 

1
2

6
6

5
7

6
.8

0
 

1
2

5
5

7
0

9
 

1
2

5
0

17
4
 

1
2

4
0

2
0

0
.1

3
 

1
4

5
3

.3
2
 

1
2

3
7

5
4

3
.9

3
 

4
2

8
8

.6
0
 

1
2

1
2

1
5

1
 

1
2

4
17

6
2
 

1
2

3
5

0
6

2
 

1
2

3
3

5
3

6
 

1
2

3
1

3
3

5
 ∗

G
1

-D
 

(2
5

5
,3

4
7

) 
1

4
2

0
1

2
6
 

1
4

0
6

9
2

9
.0

0
 

1
3

9
0

0
3

4
 

1
3

8
6

1
2

0
 

1
3

7
4

5
5

5
.2

7
 

1
4

11
.7

1
 

1
3

7
1

4
8

8
.5

3
 

3
7

6
8

.3
5
 

1
3

4
1

9
1

8
 

1
3

7
1

4
4

3
 

1
3

7
0

3
3

1
 

1
3

6
5

2
5

9
 

1
3

6
5

2
5

9
 ∗

G
1

-E
 

(2
5

5
,3

4
7

) 
1

5
8

3
1

3
3
 

1
5

5
4

2
2

0
.2

0
 

1
5

3
5

5
11
 

1
5

2
5

6
2

9
 

1
5

1
6

7
9

0
.6

3
 

1
3

3
8

.0
2
 

1
5

1
3

7
3

1
.1

0
 

3
4

9
6

.3
5
 

1
4

8
2

17
6
 

1
5

1
2

5
8

4
 

1
5

11
6

8
4
 

1
5

0
6

17
9
 

1
5

0
3

8
7

1
 ∗

G
2

-A
 

(2
5

5
,3

7
5

) 
11

2
9

2
2

9
 

11
1

8
3

6
3

.0
0
 

11
0

9
3

7
6
 

11
0

4
9

4
4
 

1
0

9
5

0
2

7.
8

0
 

1
8

1
6

.9
3
 

1
0

9
1

9
9

9
.3

7
 

4
5

6
6

.2
7
 

1
0

6
9

5
3

6
 

1
0

9
4

9
1

2
 

1
0

9
0

5
9

5
 

1
0

8
8

0
4

0
 

1
0

8
8

0
4

0
 ∗

G
2

-B
 

(2
5

5
,3

7
5

) 
1

2
5

5
9

0
7
 

1
2

3
3

7
2

0
.5

0
 

1
2

2
5

3
6

1
 

1
2

2
1

4
2

9
 

1
2

0
6

3
1

3
.7

7
 

17
4

9
.7

2
 

1
2

0
1

9
4

4
.5

0
 

4
9

7
2

.8
8
 

11
8

5
2

2
1
 

1
2

0
8

3
2

6
 

1
2

0
0

8
17

 
11

9
9

8
7

7
 

11
9

9
2

7
2
 ∗

G
2

-C
 

(2
5

5
,3

7
5

) 
1

4
1

8
1

4
5
 

1
3

7
4

4
7

9
.7

0
 

1
3

5
8

3
9

8
 

1
3

5
5

5
4

8
 

1
3

3
8

9
1

8
.8

7
 

1
6

4
6

.8
3
 

1
3

3
7

6
1

5
.8

3
 

3
9

1
3

.6
9
 

1
3

11
3

3
9
 

1
3

4
1

5
1

9
 

1
3

3
4

1
3

0
 

1
3

3
2

7
9

1
 

1
3

3
1

6
4

6
 ∗

G
2

-D
 

(2
5

5
,3

7
5

) 
1

5
1

6
1

0
3
 

1
5

1
5

11
9

.3
0
 

1
5

0
0

4
1

5
 

1
4

9
2

0
6

3
 

1
4

8
0

17
5

.7
0
 

1
5

8
0

.9
3
 

1
4

7
7

0
0

7.
1

0
 

4
4

6
4

.6
4
 

1
4

4
6

6
8

0
 

1
4

8
11

8
1
 

1
4

7
3

0
9

9
 

1
4

7
11

0
7
 

1
4

7
0

0
5

9
 ∗

G
2

-E
 

(2
5

5
,3

7
5

) 
17

0
1

6
8

1
 

1
6

5
8

3
7

8
.1

0
 

1
6

4
1

2
6

0
 

1
6

2
9

0
0

2
 

1
6

1
8

9
2

4
.9

7
 

1
6

5
5

.1
5
 

1
6

1
5

8
4

8
.8

3
 

4
4

0
7.

0
6
 

1
5

8
1

4
5

9
 

1
6

1
8

8
9

9
 

1
6

11
3

6
4
 

1
6

0
6

8
0

7
 

1
6

0
6

0
7

9
 ∗

A
v

g
G

a
p
 

3
.9

4
 

2
.2

2
 

1.
3

2
 

0
.8

9
 

-0
.0

2
 

-0
.2

2
 

- 
- 

- 
- 

- 

A
v

g
T

im
e
 

5
1

0
.5

5
 

11
6

3
.7

1
 

2
4

3
7.

3
0
 

1
6

3
3

.8
6
 

1
5

2
2

.8
6
 

4
1

0
4

.8
8
 

- 
- 

- 
- 

- 
arameter settings other than the standard one given in Table 2 .

he form of HMA using these additional parameter settings, which

e call HMA 

∗, further attains two new BKRs (for S4-A, S4-B) and

atches the BKR for S3-C, which finally makes HMA 

∗ consistently

atch or improve on all 181 BKRs. 

.4. Comparative results on the EGL-G set 

To test the scalability of HMA, we carried out experiments on

he EGL-G set containing 10 large scale CARP (LSCARP) instances.

s stated in Mei et al. (2014) , solving LSCARP is much more chal-

enging than solving small-sized or medium-sized instances since

he solution space increases exponentially as the problem size in-

reases. Compared to the classical instance sets which involve in-

tances having at most 190 required edges, all instances in EGL-G

ave more than 347 required edges. Such a size, as was shown in

revious studies ( Brandão & Eglese, 2008; Martinelli et al., 2013 ),

s large enough to pose a scalability challenge to the existing CARP

lgorithms. For this reason, a dedicated algorithm called RDG-

AENS ( Mei et al., 2014 ) has been proposed specifically for solving

SCARP instances. In this section, we evaluate the capacity of our

MA algorithm to solve these 10 LSCARP instances by comparing

ts performance to those of the current best performing CARP al-

orithms including RDG-MAENS. 

As before, HMA was executed 30 runs to solve each instance

nder two termination criteria: 500 generations (HMA 1 ) and 20 0 0

enerations (HMA 2 ). We also report the results obtained by HMA

ith various other parameter settings (HMA 

∗). Table 4 summa-

izes our results on the EGL-G set, along with those of the cur-

ent best performing algorithms: TSA1, ILS, MAENS, RDG-MAENS.

n Mei et al. (2014) , the authors report the results of RDG-MAENS

or 6 parameter combinations of (g, α) where g = 2 and 3, α = 1 , 5

nd 10. We include the results of the best version ( g = 2 , α = 10 )

or our comparative study. Table 4 lists the average results of each

lgorithm, the solution time of HMA, the best lower bounds ( LB ),

he best known results ( BKR ), and the best results of HMA. The

ast two rows show, for each algorithm, the average of the average

aps to the BKR ( A v gGap), and the “scaled” average of the average

olution time ( A v gT ime ). 

Table 4 discloses that although HMA 2 is the best new algo-

ithm, outperforming the early terminating algorithm HMA 1 , it is

lso true that HMA 1 in fact dominates all reference algorithms. In

erms of average results, HMA 1 is much better than any of the

eference algorithms for all 10 instances. The very small A v gGap

alue of −0.02% of HMA 1 indicates that HMA 1 is on average bet-

er than the previous BKRs, and compares favorably to the A v gGap

alue of more than 0.89% for the other approaches. In terms of

est results, HMA 1 discovers an improved solution relative to the

KRs for 9 out of 10 instances (90%). As the current best and

ighly specialized algorithm, the best version of the reference al-

orithm RDG-MAENS is outperformed by HMA 1 . Moreover, the av-

rage computational time of HMA 1 is comparable to that of the

eference algorithms. HMA 1 requires much less time to find sub-

tantially better results than MAENS. Compared to the best ver-

ion of RDG-MAENS, HMA 1 is also on average faster (1522.86 vs.

633.86 seconds). The fact that HMA 2 further significantly im-

roves on HMA 1 demonstrates that HMA can reach better perfor-

ance when more computational time is allowed. By testing sev-

ral other parameter settings, HMA 

∗ further discovers 6 improved

est known results. 

A Wilcoxon test is finally applied to a pairwise comparison of

he average performance between HMA 1 and each of the four ref-

rence methods, which always results in a p-value of 0.001953

 < 0.05) for all tested pairs, indicating the superiority of our

ethod relative to the compared approaches. 
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Table 5 

Analysis of the components of the local refinement procedure using a single solu- 

tion approach. 

IDP TTP RTTP I + R RST HMA 1 

BestGap 4 .63 0 .69 0 .65 0 .55 0 .14 0 .01 

AvgGap 9 .30 1 .80 1 .79 1 .80 0 .29 0 .13 

AvgTime 0 .07 0 .98 0 .98 0 .99 213 .02 198 .83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Analysis of different combinations of the crossover operator and the local refine- 

ment procedure using a population of solutions. 

XO + I XO + R XO + I → R XO + R → I HMA 1 

BestGap 0 .72 0 .02 0 .02 0 .04 0 .01 

AvgGap 1 .59 0 .16 0 .16 0 .15 0 .13 

AvgTime 6 .77 254 .11 158 .37 244 .20 198 .83 

Table 7 

Analysis of the quality-and-distance pool updating strategy. 

HMA PW 1 HMA 1 HMA PW 2 HMA 2 

BestGap 0 .02 0 .01 0 .00 -0 .04 

AvgGap 0 .15 0 .13 0 .10 0 .07 

AvgTime 188 .15 198 .83 437 .34 646 .03 
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6. Analysis 

In this section, we present additional experimental results to

analyze the performance of each algorithmic component of the

proposed HMA algorithm, in order to understand their contribu-

tion to the overall performance of HMA and how they should be

combined in the proposed algorithm. These experiments were per-

formed on the egl set which contains a number of challenging in-

stances of medium size, and helps to better distinguish the perfor-

mance of the algorithm variants to be considered. 

6.1. Analysis of algorithmic components 

To provide insight of the performance of the local refinement

procedure and the crossover operator, we test in this experiment

several algorithm variants based on a single solution rather than

a population of solutions. The “IDP” version is a very simple al-

gorithm having only solution initialization (random path scanning)

and IDP as its two components. Similar to “IDP”, the “RTTP” ver-

sion includes only the solution initialization and the RTTP proce-

dure. The “TTP” version is exactly the same as “RTTP” except that

the move operators are used in a fixed order as they are presented

in Section 4.1 . The “I+R” version combines IDP and RTTP in ran-

dom order. The “RST” version is a random restart algorithm that

simply starts “I + R” for 500 times. We also include the results of

HMA 1 (500 generations) for comparative purposes. For each algo-

rithm variant, we report in Table 5 the average of the best gap

to the BKR in percentage (BestGap), and the average of the aver-

age gap to the BKR in percentage (AvgGap), as well as the average

computing time in seconds (AvgTime). 

Table 5 shows that TTP performs much better than IDP. RTTP

further improves on TTP which shows the effectiveness of the ran-

dom use of move operators. The results of “I + R” indicates that

though RTTP is a very crucial component, its performance can be

still ameliorated by a random collaboration with IDP. The compar-

ative results of RST and HMA 1 clearly shows the relevance of the

crossover operator and the population-based framework. 

6.2. Analysis under the population-based framework 

Given that both the local refinement procedures and the

crossover operator are effective, this part of analysis investigates

how they should be combined to achieve the best performance. For

this purpose, we propose another set of algorithm variants based

on a population of solutions. The “XO+I” version is obtained by

removing the RTTP procedure from HMA, “XO+R” version by re-

moving IDP from HMA. “XO+I → R” version works all the same as

HMA, except that the order of using IDP and RTTP is fixed to I →
R. Similarly, “XO+R → I” uses the order R → I. Table 6 summarizes

the results of these algorithm variants, along with those of HMA 1 .

Without surprise, using only IDP in the local refinement procedure

shows a rather poor performance, while employing RTTP in the

local refinement procedure leads to a much better performance.

Compared to “XO+R”, including an additional IDP in the local re-

finement procedure never leads to a definitely better performance

if the order of using IDP and RTTP is fixed. However, if IDP and
TTP are used in a random order as in HMA, a better performance

an be observed in terms of both BestGap and AvgGap. 

.3. Analysis on the pool updating strategy 

The third part of the analysis investigates the effectiveness

f our pool updating strategy, which uses the hamming distance

o control the diversity of the population. We therefore com-

are the adopted strategy to a traditional “pool worst” strategy

hich simply replaces the worst solution in terms of fitness in

he population, leading to an algorithm variant denoted as HMA PW 

.

MA PW 

was tested under two termination criteria: 500 genera-

ions (HMA PW 1 ) and 20 0 0 generations (HMA PW 2 ), and the out-

omes are compared to those of HMA 1 and HMA 2 . The compu-

ational results are summarized in Table 7 , from which we can

learly see that HMA 1 performs better than HMA PW 1 , and the su-

eriority of HMA 2 relative to HMA PW 2 enlarges when more com-

uting time is allowed. This experiment confirms the usefulness of

he diversity control mechanism used in our HMA. 

. Conclusions 

The capacitated arc routing problem (CARP) is of great practical

nterest and represents a significant computational challenge due

o its NP-hardness. We developed a new hybrid metaheuristic ap-

roach (HMA) for effectively solving CARP, which employs a ran-

omized tabu thresholding procedure (RTTP) coupled with an in-

easible descent procedure to explore both feasible and infeasible

egions. HMA relies on a specialized route-based crossover oper-

tor to generate diversified and promising new solutions. Thanks

o its quality-and-distance based pool updating strategy, HMA pre-

ents the search process from premature convergence. 

The proposed approach demonstrates an excellent performance

ver the eight sets of 191 popular CARP benchmarks. Specifically,

n the 7 sets of 181 classical instances, HMA with a standard

arameter setting outperforms the current best performing algo-

ithms, in terms of both solution quality and computational ef-

ciency. HMA further improves its own performance when more

omputing time is available (to run 20 0 0 generations), attaining

he best known results for all 181 cases including 6 improved

ew best results. HMA also proves to be scalable to handle the

ast set of 10 large-sized instances, by obtaining 9 new best re-

ults, dominating the current state-of-the-art algorithms including

he approaches which were specially designed for the large-sized

ARP instances. We additionally conducted experiments to analyze

he contribution of the two sub-procedures for local refinement,

he relevance of the route-based crossover operator (and thus the

opulation-based framework), the strategy for combining crossover
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ith the local optimization procedure, as well as the quality-and-

istance pool updating strategy. 

Finally, we observe that the proposed method can be adapted to

andle other CARP variants with slight modifications of the route-

ased crossover operator and of the local refinement procedure to

ccommodate additional constraints. 
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Table A.1 

Detailed comparative results of HMA algorithm with five state-of-the-art algorithms on

results of HMA 1 (500 generations) are highlighted in bold if they match the BKRs. The o

INST (| N |, | E |) Average (median) results 

GLS TSA2 Ant _ 12 GRASP

1 run 1 run 10 runs 15 run

1 (12,22) 316 316 316 316 .00

2 (12,26) 339 339 339 339 .00

3 (12,22) 275 275 275 275 .00

4 (11,19) 287 287 287 287 .00

5 (13,26) 377 377 377 377 .00

6 (12,22) 298 298 298 298 .00

7 (12,22) 325 325 325 325 .00

8 (27,46) 348 348 348 349 .50

9 (27,51) 303 303 303 303 .60

10 (12,25) 275 275 275 275 .00

11 (22,45) 395 395 395 395 .00

12 (13,23) 458 458 458 458 .00

13 (10,28) 536 540 544 542 .60

14 (7,21) 100 100 100 100 .00

15 (7,21) 58 58 58 58 .00

16 (8,28) 127 127 127 127 .00

17 (8,28) 91 91 91 91 .00

18 (9,36) 164 164 164 164 .00

19 (8,11) 55 55 55 55 .00

20 (11,22) 121 121 121 121 .00

21 (11,33) 156 156 156 156 .00

22 (11,44) 200 200 200 200 .00

23 (11,55) 233 235 235 234 .70

AvgGap 0.00 0.07 0.10 0.11 

AvgTime (scaled) 0.32 1.23 1.21 5.47 

Table A.2 

Detailed comparative results of HMA algorithm with 6 state-of-the-art algorithms on the

of HMA 1 (500 generations) and HMA 2 (20 0 0 generations) are highlighted in bold if they

INST (| N |, | E |) Average (median) results 

GLS TSA2 VNS Ant _ 12 GRASP MAEN

1 run 1 run 10 runs 10 runs 15 runs 30 ru

1A (24,39) 173 173 173 .00 173 173 .00 173 .0

1B (24,39) 173 173 173 .00 173 173 .00 173 .0

1C (24,39) 245 245 245 .00 245 245 .00 245 .0

2A (24,34) 227 227 227 .00 227 227 .00 227 .0

2B (24,34) 259 259 259 .00 259 259 .00 259 .0

2C (24,34) 457 457 457 .00 457 457 .30 457 .2

3A (24,35) 81 81 81 .00 81 81 .00 81 .0

3B (24,35) 87 87 87 .00 87 87 .00 87 .0

3C (24,35) 138 138 138 .00 138 138 .00 138 .0

4A (41,69) 400 400 400 .00 400 400 .00 400 .0

4B (41,69) 412 412 412 .00 412 412 .00 412 .0

4C (41,69) 428 428 428 .00 428 430 .30 431 .10

4D (41,69) 530 530 531 .20 530 531 .00 532 .9

5A (34,65) 423 423 423 .00 423 423 .00 423 .0

5B (34,65) 446 446 446 .00 446 446 .00 446 .0

5C (34,65) 474 474 474 .00 474 474 .00 474 .0

5D (34,65) 579 583 579 .80 583 584 .50 582 .9

6A (31,50) 223 223 223 .00 223 223 .00 223 .0

6B (31,50) 233 233 233 .00 233 233 .00 233 .0
ational Natural Science Foundation of China (Grants 61473301 ,
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ppendix A 

This appendix shows the detailed results of our HMA algo-

ithm on the 181 conventional CARP instances ( Tables A .1 –A .7 ).

e also include in Table A.3 the new best known results (BKRs)

iscovered by HMA on egl instances with various parameter set-

ings (indicated by HMA 

∗) other than the standard setting given

n Table 2 . 
 the 23 instances of Set gdb. The average results of all algorithms and the best 

ptimal BKRs are underlined. 

Best results 

 MAENS HMA 1 Time BKR HMA 1 
s 30 runs 30 runs 

 316 .00 316 .00 0 .09 316 316 

 339 .00 339 .00 0 .16 339 339 

 275 .00 275 .00 0 .09 275 275 

 287 .00 287 .00 0 .08 287 287 

 377 .00 377 .00 0 .13 377 377 

 298 .00 298 .00 0 .13 298 298 

 325 .00 325 .00 0 .09 325 325 

 348 .70 348 .00 14 .01 348 348 

 303 .00 303 .00 3 .20 303 303 

 275 .00 275 .00 0 .12 275 275 

 395 .00 395 .00 0 .34 395 395 

 458 .00 458 .00 0 .24 458 458 

 536 .00 536 .00 6 .59 536 536 

 100 .00 100 .00 0 .11 100 100 

 58 .00 58 .00 0 .10 58 58 

 127 .00 127 .00 0 .14 127 127 

 91 .00 91 .00 0 .13 91 91 

 164 .00 164 .00 0 .16 164 164 

 55 .00 55 .00 0 .05 55 55 

 121 .00 121 .00 0 .12 121 121 

 156 .00 156 .00 0 .19 156 156 

 200 .00 200 .00 0 .33 200 200 

 233 .00 233 .00 0 .71 233 233 

0.01 0.00 - - 

4.47 1.19 - - 

 34 instances of Set val. The average results of all algorithms and the best results 

 match the BKRs. The optimal BKRs are underlined. 

Best results 

S HMA 1 Time HMA 2 Time BKR HMA 1 HMA 2 
ns 30 runs 30 runs 

0 173 .00 0 .28 173 .00 0 .28 173 173 173 

0 173 .00 0 .33 173 .00 0 .33 173 173 173 

0 245 .00 0 .43 245 .00 0 .43 245 245 245 

0 227 .00 0 .16 227 .00 0 .16 227 227 227 

0 259 .00 6 .37 259 .00 6 .37 259 259 259 

0 457 .17 10 .18 457 .00 12 .90 457 457 457 

0 81 .00 0 .17 81 .00 0 .17 81 81 81 

0 87 .00 0 .25 87 .00 0 .25 87 87 87 

0 138 .00 0 .31 138 .00 0 .31 138 138 138 

0 400 .00 0 .43 400 .00 0 .43 400 400 400 

0 412 .00 0 .44 412 .00 0 .44 412 412 412 

 428 .00 1 .22 428 .00 1 .22 428 428 428 

0 530 .00 6 .39 529 .87 17 .57 528 530 528 

0 423 .00 0 .49 423 .00 0 .49 423 423 423 

0 446 .00 0 .41 446 .00 0 .41 446 446 446 

0 474 .00 0 .48 474 .00 0 .48 474 474 474 

0 576 .33 59 .65 575 .60 210 .21 575 575 575 

0 223 .00 0 .25 223 .00 0 .25 223 223 223 

0 233 .00 0 .82 233 .00 0 .82 233 233 233 

( continued on next page ) 
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Table A.2 ( continued ) 

INST (| N |, | E |) Average (median) results Best results 

GLS TSA2 VNS Ant _ 12 GRASP MAENS HMA 1 Time HMA 2 Time BKR HMA 1 HMA 2 
1 run 1 run 10 runs 10 runs 15 runs 30 runs 30 runs 30 runs 

6C (31,50) 317 317 317 .00 317 317 .00 317 .00 317 .00 0 .54 317 .00 0 .54 317 317 317 

7A (40,66) 279 279 279 .00 279 279 .00 279 .00 279 .00 0 .41 279 .00 0 .41 279 279 279 

7B (40,66) 283 283 283 .00 283 283 .00 283 .00 283 .00 0 .37 283 .00 0 .37 283 283 283 

7C (40,66) 334 334 334 .00 334 334 .00 334 .00 334 .00 0 .48 334 .00 0 .48 334 334 334 

8A (30,63) 386 386 386 .00 386 386 .00 386 .00 386 .00 0 .39 386 .00 0 .39 386 386 386 

8B (30,63) 395 395 395 .00 395 395 .00 395 .00 395 .00 0 .43 395 .00 0 .43 395 395 395 

8C (30,63) 521 529 522 .00 527 526 .50 525 .90 521 .00 58 .00 521 .00 58 .00 521 521 521 

9A (50,92) 323 323 323 .00 323 323 .00 323 .00 323 .00 1 .09 323 .00 1 .09 323 323 323 

9B (50,92) 326 326 326 .00 326 326 .00 326 .00 326 .00 0 .83 326 .00 0 .83 326 326 326 

9C (50,92) 332 332 332 .00 332 332 .00 332 .00 332 .00 0 .88 332 .00 0 .88 332 332 332 

9D (50,92) 391 391 390 .80 391 392 .10 391 .00 390 .03 112 .24 389 .50 391 .30 389 389 389 

10A (50,97) 428 428 428 .40 428 428 .00 428 .00 428 .00 1 .52 428 .00 1 .52 428 428 428 

10B (50,97) 436 436 436 .60 436 436 .00 436 .00 436 .00 2 .45 436 .00 2 .45 436 436 436 

10C (50,97) 446 446 447 .00 446 446 .20 446 .00 446 .00 1 .78 446 .00 1 .78 446 446 446 

10D (50,97) 526 530 526 .90 528 530 .60 533 .60 526 .37 111 .37 526 .00 194 .26 525 526 525 

AvgGap 0.05 0.14 0.09 0.12 0.17 0.18 0.03 0.02 - - - 

AvgTime (scaled) 14.64 10.09 56.70 9.11 65.85 48.35 11.23 26.71 - - - 

Table A.3 

Detailed comparative results of HMA algorithm with five state-of-the-art algorithms on the 24 instances of Set egl. The average results of all algorithms and the best results 

of HMA 1 (500 generations) and HMA 2 (20 0 0 generations) are highlighted in bold if they match the BKRs. The best results of HMA ∗ are starred if they are new BKRs. The 

optimal BKRs are underlined. 

INST (| N |, | E |) Average (median) results Best results 

TSA2 VNS Ant _ 12 GRASP MAENS HMA 1 Time HMA 2 Time LB BKR HMA 1 HMA 2 HMA ∗

1 run 10 runs 10 runs 15 runs 30 runs 30 runs 30 runs 

E1-A (77,98) 3548 3548 .00 3548 3548 .00 3548 .00 3548 .00 0 .58 3548 .00 0 .58 3548 3548 3548 3548 3548 

E1-B (77,98) 4533 4522 .20 4539 4508 .60 4516 .50 4498 .00 9 .62 4498 .00 9 .62 4498 4498 4498 4498 4498 

E1-C (77,98) 5595 5608 .00 5595 5615 .30 5601 .60 5595 .00 8 .71 5595 .00 8 .71 5595 5595 5595 5595 5595 

E2-A (77,98) 5018 5023 .80 5018 5018 .00 5018 .00 5018 .00 24 .08 5018 .00 24 .08 5018 5018 5018 5018 5018 

E2-B (77,98) 6343 6335 .40 6344 6330 .70 6341 .40 6319 .77 44 .29 6317 .00 104 .93 6317 6317 6317 6317 6317 

E2-C (77,98) 8347 8355 .90 8335 8335 .80 8355 .70 8335 .00 28 .12 8335 .00 28 .12 8335 8335 8335 8335 8335 

E3-A (77,98) 5902 5898 .00 5898 5898 .00 5898 .80 5898 .00 5 .35 5898 .00 5 .35 5898 5898 5898 5898 5898 

E3-B (77,98) 7816 7806 .40 7787 7787 .30 7802 .90 7777 .00 76 .19 7776 .93 98 .19 7744 7775 7777 7775 7775 

E3-C (77,98) 10309 10322 .30 10292 10296 .50 10321 .90 10294 .43 133 .00 10292 .00 177 .41 10244 10292 10292 10292 10292 

E4-A (77,98) 6473 6459 .40 6464 6461 .10 6475 .20 6461 .17 82 .61 6450 .57 675 .30 6408 64 4 4 6446 64 4 4 64 4 4 

E4-B (77,98) 9063 9016 .30 9047 9037 .10 9023 .00 8991 .50 143 .63 8987 .00 454 .17 8935 8961 8972 8961 8961 

E4-C (77,98) 11627 11750 .10 11645 11670 .00 11645 .80 11582 .40 203 .43 11563 .97 511 .24 11512 11529 11545 11529 11529 

S1-A (140,190) 5072 5018 .00 5018 5038 .90 5039 .80 5018 .00 11 .98 5018 .00 11 .98 5018 5018 5018 5018 5018 

S1-B (140,190) 6388 6388 .00 6388 6388 .40 6433 .40 6388 .00 36 .29 6388 .00 36 .29 6388 6388 6388 6388 6388 

S1-C (140,190) 8535 8518 .20 8518 8521 .50 8518 .30 8518 .00 21 .59 8518 .00 21 .59 8518 8518 8518 8518 8518 

S2-A (140,190) 10038 9997 .90 9974 9980 .50 9959 .20 9907 .23 390 .84 9891 .33 1887 .59 9825 9884 9888 9874 9874 ∗

S2-B (140,190) 13178 13176 .00 13283 13240 .60 13231 .60 13149 .97 361 .66 13153 .70 597 .74 13017 13099 13111 13078 13078 ∗

S2-C (140,190) 16505 16551 .60 16558 16539 .90 16509 .80 16465 .30 294 .90 16439 .67 1002 .06 16425 16425 16430 16425 16425 

S3-A (140,190) 10451 10291 .20 10306 10276 .10 10312 .70 10228 .10 463 .81 10217 .83 1719 .03 10165 10220 10220 10201 10201 ∗

S3-B (140,190) 13981 13829 .20 13890 13860 .70 13876 .60 13739 .10 466 .39 13705 .67 1397 .05 13648 13682 13688 13682 13682 

S3-C (140,190) 17346 17327 .90 17304 17277 .70 17305 .80 17248 .60 345 .12 17217 .63 1338 .38 17188 17188 17196 17189 17188 

S4-A (140,190) 12462 12440 .40 12439 12406 .50 12419 .20 12269 .73 603 .98 12258 .30 2035 .96 12153 12268 12254 12244 12216 ∗

S4-B (140,190) 16490 16410 .30 16502 16432 .00 16441 .20 16264 .70 611 .16 16243 .70 1663 .58 16113 16260 16222 16216 16201 ∗

S4-C (140,190) 20733 20731 .50 20731 20660 .50 20767 .20 20545 .53 404 .61 20518 .37 1695 .86 20430 20481 20479 20476 20476 ∗

AvgGap 0.75 0.56 0.58 0.50 0.59 0.13 0.07 - - - - - 

AvgTime (scaled) 145.68 649.17 181.09 854.48 4 98.4 9 198.83 646.03 - - - - - 
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Table A.4 

Detailed comparative results of HMA algorithm with 4 state-of-the-art algorithms on the 25 instances of Set C. The average results of all algorithms and the best results 

of HMA 1 (500 generations) and HMA 2 (20 0 0 generations) are highlighted in bold if they match the BKRs. The optimal BKRs are underlined. 

INST (| N |, | E |) Average (median) results Best results 

GLS TSA2 Ant _ 12 MAENS HMA 1 Time HMA 2 Time LB BKR HMA 1 HMA 2 
1 run 1 run 10 runs 30 runs 30 runs 30 runs 

C1 (69,98) 1660 1660 1705 1707 .00 1661 .00 117 .04 1660 .00 160 .51 1660 1660 1660 1660 

C2 (48,66) 1095 1095 1095 1095 .70 1095 .00 9 .10 1095 .00 9 .10 1095 1095 1095 1095 

C3 (46,64) 925 925 925 927 .80 930 .33 30 .94 926 .33 163 .67 925 925 925 925 

C4 (60,84) 1340 1340 1340 1342 .70 1340 .00 5 .20 1340 .00 5 .20 1340 1340 1340 1340 

C5 (56,79) 2475 2470 2540 2522 .30 2470 .33 67 .19 2470 .00 84 .00 2470 2470 2470 2470 

C6 (38,55) 895 895 895 907 .50 895 .00 13 .78 895 .00 13 .78 895 895 895 895 

C7 (54,70) 1795 1795 1795 1795 .00 1795 .00 0 .61 1795 .00 0 .61 1795 1795 1795 1795 

C8 (66,88) 1730 1730 1730 1732 .30 1730 .00 14 .20 1730 .00 14 .20 1730 1730 1730 1730 

C9 (76,117) 1825 1830 1860 1852 .80 1820 .00 74 .70 1820 .00 74 .70 1805 1820 1820 1820 

C10 (60,82) 2290 2270 2305 2317 .80 2270 .00 24 .17 2270 .00 24 .17 2270 2270 2270 2270 

C11 (83,118) 1815 1815 1820 1853 .70 1815 .00 37 .19 1813 .67 121 .19 1790 1805 1815 1805 

C12 (62,88) 1610 1610 1610 1610 .00 1610 .00 1 .30 1610 .00 1 .30 1605 1610 1610 1610 

C13 (40,60) 1110 1110 1110 1122 .00 1110 .00 8 .20 1110 .00 8 .20 1110 1110 1110 1110 

C14 (58,79) 1680 1680 1680 1687 .30 1680 .00 15 .88 1680 .00 15 .88 1680 1680 1680 1680 

C15 (97,140) 1860 1865 1880 1896 .50 1860 .00 82 .70 1860 .00 82 .70 1840 1860 1860 1860 

C16 (32,42) 585 585 585 585 .20 585 .00 9 .56 585 .00 9 .56 585 585 585 585 

C17 (43,56) 1610 1610 1610 1618 .30 1610 .00 5 .00 1610 .00 5 .00 1610 1610 1610 1610 

C18 (93,133) 2410 2415 2390 2411 .70 2385 .00 160 .09 2385 .00 160 .09 2345 2385 2385 2385 

C19 (62,84) 1395 1400 1400 1425 .70 1396 .33 53 .91 1395 .00 115 .09 1395 1395 1395 1395 

C20 (45,64) 665 665 665 668 .50 665 .00 0 .64 665 .00 0 .64 665 665 665 665 

C21 (60,84) 1725 1725 1725 1725 .20 1725 .00 1 .52 1725 .00 1 .52 1725 1725 1725 1725 

C22 (56,76) 1070 1070 1070 1070 .00 1070 .00 0 .30 1070 .00 0 .30 1070 1070 1070 1070 

C23 (78,109) 1690 1700 1710 1724 .30 1690 .33 66 .86 1690 .00 76 .30 1680 1690 1690 1690 

C24 (77,115) 1360 1360 1360 1368 .50 1361 .00 104 .42 1360 .00 190 .24 1360 1360 1360 1360 

C25 (37,50) 905 905 905 907 .00 905 .00 17 .47 905 .00 17 .47 905 905 905 905 

AvgGap 0.12 0.14 0.52 0.98 0.06 0.02 - - - - 

AvgTime (scaled) 42.49 42.92 40.76 165.50 36.88 54.22 - - - - 

Table A.5 

Detailed comparative results of HMA algorithm with 4 state-of-the-art algorithms on the 25 instances of Set D. The average results of all algorithms and the best results 

of HMA 1 (500 generations) and HMA 2 (20 0 0 generations) are highlighted in bold if they match the BKRs. The optimal BKRs are underlined. 

INST (| N |, | E |) Average (median) results Best results 

GLS TSA2 Ant _ 12 MAENS HMA 1 Time HMA 2 Time LB BKR HMA 1 HMA 2 
1 run 1 run 10 runs 30 runs 30 runs 30 runs 

D1 (69,98) 725 740 745 745 .00 743 .83 14 .09 738 .83 145 .70 725 725 725 725 

D2 (48,66) 480 480 480 480 .00 480 .00 0 .34 480 .00 0 .34 480 480 480 480 

D3 (46,64) 415 415 415 415 .20 415 .00 0 .24 415 .00 0 .24 415 415 415 415 

D4 (60,84) 615 615 615 616 .00 615 .00 1 .25 615 .00 1 .25 615 615 615 615 

D5 (56,79) 1040 1040 1040 1040 .00 1040 .00 0 .76 1040 .00 0 .76 1040 1040 1040 1040 

D6 (38,55) 485 485 485 493 .00 485 .00 0 .43 485 .00 0 .43 485 485 485 485 

D7 (54,70) 835 835 855 847 .30 838 .67 53 .72 835 .00 145 .24 835 835 835 835 

D8 (66,88) 685 685 685 704 .20 685 .00 6 .98 685 .00 6 .98 685 685 685 685 

D9 (76,117) 680 680 680 680 .00 680 .00 0 .84 680 .00 0 .84 680 680 680 680 

D10 (60,82) 910 910 910 910 .00 910 .00 0 .26 910 .00 0 .26 910 910 910 910 

D11 (83,118) 930 960 935 935 .20 930 .00 38 .38 925 .33 286 .78 920 920 920 920 

D12 (62,88) 680 680 680 680 .00 680 .00 4 .94 680 .00 4 .94 680 680 680 680 

D13 (40,60) 690 695 690 691 .00 690 .00 6 .70 690 .00 6 .70 690 690 690 690 

D14 (58,79) 930 940 930 931 .00 930 .00 0 .40 930 .00 0 .40 930 930 930 930 

D15 (97,140) 910 950 920 919 .00 910 .50 115 .49 910 .00 141 .87 910 910 910 910 

D16 (32,42) 170 170 170 170 .00 170 .00 0 .13 170 .00 0 .13 170 170 170 170 

D17 (43,56) 675 675 675 675 .00 675 .00 0 .17 675 .00 0 .17 675 675 675 675 

D18 (93,133) 930 930 930 934 .20 930 .00 3 .69 930 .00 3 .69 930 930 930 930 

D19 (62,84) 680 690 680 680 .00 680 .00 0 .64 680 .00 0 .64 680 680 680 680 

D20 (45,64) 415 415 415 415 .20 415 .00 0 .32 415 .00 0 .32 415 415 415 415 

D21 (60,84) 805 825 810 834 .20 805 .17 79 .37 805 .00 93 .50 760 805 805 805 

D22 (56,76) 690 690 690 690 .00 690 .00 0 .24 690 .00 0 .24 690 690 690 690 

D23 (78,109) 735 735 735 748 .20 735 .00 33 .69 735 .00 33 .69 735 735 735 735 

D24 (77,115) 670 670 670 683 .50 670 .00 2 .88 670 .00 2 .88 665 670 670 670 

D25 (37,50) 410 410 410 410 .00 410 .00 0 .19 410 .00 0 .19 410 410 410 410 

AvgGap 0.04 0.66 0.34 0.79 0.17 0.10 - - - - 

AvgTime (scaled) 17.36 19.20 51.88 219.53 14.65 35.13 - - - - 
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Table A.6 

Detailed comparative results of HMA algorithm with 4 state-of-the-art algorithms on the 25 instances of Set E. The average results of all algorithms and the best results of 

HMA 1 (500 generations) and HMA 2 (20 0 0 generations) are highlighted in bold if they match the BKRs. The optimal BKRs are underlined. 

INST (| N |, | E |) Average (median) results Best results 

GLS TSA2 Ant _ 12 MAENS HMA 1 Time HMA 2 Time LB BKR HMA 1 HMA 2 
1 run 1 run 10 runs 30 runs 30 runs 30 runs 

E1 (73,105) 1940 1935 1945 1967 .80 1936 .83 102 .65 1935 .00 160 .72 1925 1935 1935 1935 

E2 (58,81) 1610 1610 1610 1615 .50 1610 .00 11 .38 1610 .00 11 .38 1610 1610 1610 1610 

E3 (46,61) 750 750 750 752 .00 750 .00 1 .33 750 .00 1 .33 750 750 750 750 

E4 (70,99) 1610 1615 1675 1684 .30 1610 .00 23 .60 1610 .00 23 .60 1610 1610 1610 1610 

E5 (68,94) 2170 2160 2220 2228 .70 2162 .33 85 .64 2160 .00 132 .12 2160 2160 2160 2160 

E6 (49,66) 670 670 670 670 .00 670 .00 0 .24 670 .00 0 .24 670 670 670 670 

E7 (73,94) 1900 1900 1900 1900 .00 1900 .00 0 .63 1900 .00 0 .63 1900 1900 1900 1900 

E8 (74,98) 2150 2155 2150 2150 .50 2150 .00 2 .11 2150 .00 2 .11 2150 2150 2150 2150 

E9 (93,141) 2250 2300 2295 2327 .70 2247 .50 170 .23 2228 .67 498 .99 2220 2225 2225 2225 

E10 (56,76) 1690 1690 1690 1691 .50 1690 .00 1 .44 1690 .00 1 .44 1690 1690 1690 1690 

E11 (80,113) 1850 1855 1860 1932 .00 1846 .67 96 .44 1840 .00 460 .01 1830 1830 1830 1830 

E12 (74,103) 1710 1730 1760 1764 .30 1723 .83 124 .02 1707 .00 341 .32 1695 1695 1700 1695 

E13 (49,73) 1325 1325 1325 1335 .30 1325 .00 7 .97 1325 .00 7 .97 1325 1325 1325 1325 

E14 (53,72) 1810 1810 1810 1817 .00 1810 .67 46 .57 1810 .00 51 .25 1810 1810 1810 1810 

E15 (85,126) 1610 1610 1610 1617 .80 1601 .00 149 .37 1599 .00 723 .39 1590 1590 1600 1590 

E16 (60,80) 1825 1825 1825 1825 .00 1825 .00 39 .74 1825 .00 39 .74 1825 1825 1825 1825 

E17 (38,50) 1290 1290 1290 1294 .30 1291 .00 18 .71 1290 .00 26 .35 1290 1290 1290 1290 

E18 (78,110) 1610 1610 1610 1612 .30 1610 .00 1 .41 1610 .00 1 .41 1610 1610 1610 1610 

E19 (77,103) 1435 1435 1435 1437 .00 1435 .00 3 .54 1435 .00 3 .54 1435 1435 1435 1435 

E20 (56,80) 990 990 990 990 .00 990 .00 0 .64 990 .00 0 .64 990 990 990 990 

E21 (57,82) 1705 1705 1760 1755 .50 1705 .00 51 .59 1705 .00 51 .59 1705 1705 1705 1705 

E22 (54,73) 1185 1185 1185 1187 .50 1185 .00 1 .42 1185 .00 1 .42 1185 1185 1185 1185 

E23 (93,130) 1430 1445 1435 1469 .00 1432 .33 88 .98 1430 .33 336 .54 1430 1430 1430 1430 

E24 (97,142) 1785 1785 1785 1822 .20 1785 .00 35 .38 1785 .00 35 .38 1785 1785 1785 1785 

E25 (26,35) 655 655 655 655 .00 655 .00 0 .45 655 .00 0 .45 655 655 655 655 

AvgGap 0.20 0.39 0.83 1.44 0.19 0.08 - - - - 

AvgTime (scaled) 40.65 46.00 40.54 160.89 42.62 116.54 - - - 

Table A.7 

Detailed comparative results of HMA algorithm with 4 state-of-the-art algorithms on the 25 instances of Set F. The average results of all algorithms and the best results of 

HMA 1 (500 generations) are highlighted in bold if they match the BKRs. The optimal BKRs are underlined. 

INST (| N |, | E |) Average (median) results Best results 

GLS TSA2 Ant _ 12 MAENS HMA 1 Time LB BKR HMA 1 
1 run 1 run 10 runs 30 runs 30 runs 

F1 (73,105) 1065 1085 1065 1071 .00 1065 .00 43 .29 1065 1065 1065 

F2 (58,81) 920 920 920 920 .00 920 .00 0 .67 920 920 920 

F3 (46,61) 400 400 400 400 .00 400 .00 0 .25 400 400 400 

F4 (70,99) 940 960 955 963 .50 940 .00 22 .54 940 940 940 

F5 (68,94) 1180 1180 1180 1180 .30 1180 .00 3 .86 1180 1180 1180 

F6 (49,66) 490 490 490 490 .00 490 .00 0 .22 490 490 490 

F7 (73,94) 1080 1080 1080 1090 .70 1080 .00 3 .00 1080 1080 1080 

F8 (74,98) 1145 1145 1145 1145 .00 1145 .00 0 .41 1145 1145 1145 

F9 (93,141) 1145 1170 1225 1197 .80 1145 .00 11 .24 1145 1145 1145 

F10 (56,76) 1010 1010 1010 1010 .00 1010 .00 0 .23 1010 1010 1010 

F11 (80,113) 1015 1015 1045 1037 .50 1015 .00 6 .56 1015 1015 1015 

F12 (74,103) 910 910 975 939 .50 910 .00 10 .40 910 910 910 

F13 (49,73) 835 835 835 835 .00 835 .00 0 .63 835 835 835 

F14 (53,72) 1025 1035 1025 1065 .50 1025 .00 9 .62 1025 1025 1025 

F15 (85,126) 945 990 945 951 .70 945 .00 2 .41 945 945 945 

F16 (60,80) 775 775 775 775 .00 775 .00 0 .45 775 775 775 

F17 (38,50) 605 630 605 605 .00 605 .00 0 .15 605 605 605 

F18 (78,110) 850 850 850 861 .20 850 .00 0 .85 840 850 850 

F19 (77,103) 725 740 725 725 .00 725 .00 3 .21 715 725 725 

F20 (56,80) 610 610 610 614 .80 610 .00 6 .38 610 610 610 

F21 (57,82) 905 905 905 905 .00 905 .00 2 .43 905 905 905 

F22 (54,73) 790 790 790 790 .00 790 .00 0 .85 790 790 790 

F23 (93,130) 725 730 730 736 .30 725 .00 27 .86 725 725 725 

F24 (97,142) 975 1010 975 1001 .30 975 .00 53 .28 975 975 975 

F25 (26,35) 430 430 430 430 .00 430 .00 0 .12 430 430 430 

AvgGap 0.00 0.90 0.77 1.01 0.00 - - 

AvgTime (scaled) 10.67 21.09 52.17 166.85 8.44 - - 
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