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a b s t r a c t

The quadratic multiple knapsack problem (QMKP) is a challenging combinatorial optimization problem with

numerous applications. In this paper, we propose the first evolutionary path relinking approach (EPR) for

solving the QMKP approximately. This approach combines advanced features both from the path relinking

(PR) method and the responsive threshold search algorithm. Thanks to the tunneling property which allows

a controlled exploration of infeasible regions, the proposed EPR algorithm is able to identify very high quality

solutions. Experimental studies on the set of 60 well-known benchmarks and a new set of 30 large-sized in-

stances show that EPR outperforms several state-of-the-art algorithms. In particular, for the 60 conventional

benchmarks, it discovers 10 improved results (new lower bounds) and matches the best known result for the

remaining 50 cases. More significantly, EPR demonstrates remarkable efficacy on the 30 new larger instances

by easily dominating the current best performing algorithms across the whole instance set. Key components

of the algorithm are analyzed to shed lights on their impact on the proposed approach.

© 2015 Elsevier B.V. All rights reserved.

1

k

s

i

w

s

c

p

b

A

a

d

[

a

l

s

M

C

j

r

fi

i

a

e

1

m

k

r

s

i

t

t

l

t

q

p

p

h

0

. Introduction

The quadratic multiple knapsack problem (QMKP) is a well-

nown combinatorial optimization problem [1]. Given a set of knap-

acks of limited capacity and a set of objects (or items), each object

s associated with a weight, an individual profit and a pairwise profit

ith any other object. The QMKP aims to determine a max-profit as-

ignment (packing) of objects to the knapsacks subject to the capacity

onstraint of each knapsack. The QMKP has a number of relevant ap-

lications where resources with different levels of interaction have to

e distributed among different tasks [1].

The QMKP belongs to a large family of the knapsack problems.

mong these, the basic linear 0–1 knapsack problem (KP) is prob-

bly the least difficult case since exact solution methods based on

ynamic programming and branch-and-bound can be easily applied

2]. The KP can be encountered in many other settings [2] (see [3] for

n example in knowledge based systems—collaborative filtering). The

inear multiple knapsack problem (MKP) [4] and the quadratic knap-

ack problem (QKP) [5] generalize the basic KP. Between them, the

KP where multiple knapsacks are available for packing objects is a
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elatively easier problem for which state-of-the-art MKP solvers can

nd optimal solutions for very large instances (with up to 100,000

tems) in less than 1 s [4]. However, the QKP where pairwise profits

re defined is more computationally intractable and the most pow-

rful exact solver can only deal with instances with no more than

500 items [6]. The MKP is not to be confused with the very popular

ultidimensional knapsack problem (MDKP) [7,8] which has a single

napsack, but multiple linear constraints. Finally, the QMKP is also

elated to another variant of the basic KP—the discounted 0–1 knap-

ack problem (DKP) where discounted profits are defined for a pair of

tems but the problem remains linear [9].

The QMKP considered in this work generalizes both the QKP and

he MKP by allowing multiple knapsacks and pairwise profits be-

ween objects. On the other hand, the QMKP also belongs to the still

arger family of quadratic optimization problems whose represen-

ative members include the quadratic assignment problem [10], the

uadratic knapsack problem [5], the unconstrained binary quadratic

rogramming problem [11] and specific non-linear programming

roblems [12,13]. Due to their quadratic nature, these problems

re known to be extremely difficult. For this reason, approximate

lgorithms based on metaheuristics like evolutionary algorithms,

onstitute a very popular approach for tackling these problems

1,10,11,14–16].

The QMKP is highly combinatorial with a solution space of or-

er O((m + 1)n) for n objects and m knapsacks. Given the high
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computational complexity of the problem, no exact approach for the

QMKP has been published in the literature to the best of our knowl-

edge. On the other hand, some effort has been devoted to develop

heuristics which aim to provide satisfactory sub-optimal solutions

in acceptable computing time, but without provable optimal guar-

antee of the attained solutions. Among these heuristics, neighbor-

hood search and constructive/destructive search approaches are very

popular, including hill-climbing [1], tabu-enhanced iterated greedy

search [17], strategic oscillation [18] and iterated responsive thresh-

old search [19]. Population-based algorithms constitute another class

of popular tools for addressing the QMKP, such as genetic algorithms

[1,14], memetic algorithms [15,16] and artificial bee colony algorithms

[20].

In this work, we are interested in developing improved solution

methods for the QMKP. For this purpose, we propose a new algorithm

based on the general evolutionary path-relinking (EPR) metaheuristic

[22]. Our work is mainly motivated by two key observations.

• From the perspective of solution methods, the EPR framework

provides a variety of appealing features which have been demon-

strated to be useful for designing effective heuristic algorithms.

Indeed, EPR has been successfully applied to solve a number of

challenging problems encountered in diverse settings. Repre-

sentative examples include location routing [23], vehicle routing

[24], max–min diversity [25], permutation flowshop [21], ware-

house layout [26], unconstrained quadratic programming [11],

and quadratic assignment [27]. Often, local search/constructive

heuristics such as tabu search [11,27,28] and GRASP [25] are

combined with the path relinking method. Fundamentally, EPR

operates with a population of (elite) solutions and employs

path relinking procedures to generate (many) intermediate so-

lutions [22]. The process of path relinking can help to discover

better solutions along the paths or around some intermediate

solutions (typically identified by local refinement). More gen-

erally, EPR provides a unique framework for designing effective

search algorithms with a suitable balance of diversification and

intensification.

• From the perspective of the problem under investigation, the

QMKP is a strongly constrained combinatorial optimization prob-

lem in which the feasible region often consists of components

which are separated from each other by infeasible regions in the

search space, especially when the capacity constraints are tight. In

this case, imposing solution feasibility during the search, like most

of the existing QMKP methods, can make it difficult for the search

process to locate global optima or high quality solutions. On the

other hand, methods that can tunnel through feasible and infea-

sible regions are particularly attractive as a means to cope with

such a situation [29,30]. In this regard, EPR has the useful property

of generating new solution paths where both feasible and infea-

sible solutions are eligible, thus providing an algorithm with the

desired tunneling property.

As a general metaheuristic (or algorithmic framework) [31], EPR

can theoretically be applied to any optimization problem. Still in or-

der to obtain an effective solution algorithm for the problem at hand,

it is indispensable to carefully adapt EPR to the problem setting by

considering a set of algorithmic design issues such as the procedure

for generating initial solutions, the way of building solution paths

from an initiating solution to a guiding solution, the procedure for

local refinement, the criterion for selecting one or more solutions on

a path for local optimization as well as the way of managing the refer-

ence set of elite solutions. Within the context of the QMKP, as shown

in Section 3, our proposed EPR algorithm distinguishes itself from ex-

isting studies by introducing specific strategies to address all these

issues and by devising dedicated techniques to handle infeasible

solutions (see Section 3.8 for a summary of the main characteristics

of the proposed approach). In addition, as demonstrated in Section 4,
he proposed EPR algorithm attains a remarkable performance when

t is assessed on well-known and hard QMKP benchmark instances.

e undertake to shed light on what makes the proposed algo-

ithm successful by providing an in-depth algorithmic analysis (see

ection 5).

The following identifies the main contributions of the present

ork:

• The proposed EPR algorithm is the first adaptation of the gen-

eral EPR method tailored to the QMKP. The algorithm integrates a

set of original features including a probabilistic greedy construc-

tion procedure to generate initial solutions of the reference set, a

double-neighborhood path relinking procedure to build diversi-

fied solution paths, an effective responsive threshold search algo-

rithm for local refinement, and a fitness-based updating strategy

to maintain a reference set with a healthy diversity.

• Of particular interest is the ability of the proposed EPR algorithm

to make a controlled exploration of infeasible solutions during

the path relinking process. By allowing the search to oscillate be-

tween feasible and infeasible solutions, this strategy promotes ex-

ploration of large search zones and helps to identify high quality

solutions.

• The computational assessment on two sets of 90 QMKP bench-

mark instances indicates a remarkable performance of the pro-

posed algorithm. For the first set of 60 well-known QMKP in-

stances, the algorithm discovers 10 improved best solutions (i.e.,

new lower bounds) and matches all the remaining 50 best known

results. For the 30 new large-sized instances, the algorithm always

dominates the state-of-the-art algorithms.

• Ideas of the proposed approach can readily be adapted to design

effective algorithms for other knapsack and constrained optimiza-

tion problems.

The rest of the paper is organized as follows. Section 2 introduces

he problem definition and the mathematical formulation. Section 3

escribes the proposed EPR approach in detail. Section 4 presents ex-

erimental results of our algorithm, including comparisons with the

tate-of-the-art algorithms in the literature. Section 5 analyzes sev-

ral essential components of our proposed algorithm, followed by a

iscussion of conclusions in Section 6.

. Modeling the quadratic multiple knapsack problem

Let N = {1, 2, . . . , n} be a set of objects (or items) and M =
1, 2, . . . , m} a set of knapsacks. Each object i (i ∈ N) has a profit pi

nd a weight wi. Each pair of objects i and j (1 ≤ i �= j ≤ n) has a joint

rofit pij when both objects i and j are allocated to the same knapsack.

ach knapsack k (k ∈ M) has a capacity Ck. The purpose of the QMKP

s to assign the n objects to the m knapsacks (some objects can re-

ain unassigned) such that the overall profit of the assigned objects

s maximized subject to the following two constraints:

• Each object i (i ∈ N) can be allocated to at most one knapsack.

• The total weight of the objects assigned to each knapsack k (k ∈
M) cannot exceed its capacity Ck.

Let S = {I0, I1, . . . , Im} be an allocation of the n objects to the m

napsacks where each Ik ⊂ N (k ∈ M) represents the set of objects as-

igned to knapsack k and I0 is the set of unassigned objects. Then the

MKP can be formalized as follows:

ax f (S) =
∑

k∈M

∑

i∈Ik

pi +
∑

k∈M

∑

i �= j∈Ik

pi j (1)

ubject to:

i∈Ik

wi ≤ Ck,∀k ∈ M (2)

∈ {0, . . . , m}n (3)
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Algorithm 1 Pseudo-code of the EPR algorithm for the QMKP.

1: Input:
P: an instance of the QMKP, p: reference set size;

2: Output: the best solution S∗ found so far;
3: repeat

4: Re f Set = {S1, S2, . . . , Sp} ← Initial−Re f Set(p) /* Sect. 3.2 */
5: S∗ ← Best(Re f Set) /* S∗ records the best solution found

so far */
6: PairSet ← {(i, g) : Si, Sg ∈ Re f Set, f (Si) < f (Sg)}
7: Rank PairSet in descending order of f (Sg), for solutions with the

same f (Sg), rank PairSet in ascending order of f (Si)
8: while PairSet �= ∅ do

9: S0 ← {0}n

10: Pick the first solution pair (i0, g0) ∈ PairSet /* Sect. 3.3 */
11: Sequence = {S1, S2, . . . , St} ← path−relink(Si0

, Sg0
)

{Check if Sequence contains a solution better than the current
best solution S∗}

12: Sb f ← BestFeasible(Sequence) /* Identify the best feasible so-
lution of Sequence */

13: if f (Sb f ) > f (S∗) then

14: S0 ← Sb f

15: end if

{The best of Sequence is not better than the best solution S∗

found so far}
16: if f (S0) = 0 then

17: Select Sr ∈ Sequence /* Sect. 3.4 */
18: if Sr is infeasible then

19: Sr ← repair(Sr) /* Repair infeasible Sr to be feasible, Sect.
3.5 */

20: end if

21: if f (Sr) > f (S∗) then

22: S0 ← Sr

23: end if

24: if f (S0) = 0 then

25: S0 ← local−re f ine(Sr) /* Improve Sr by local refinement,
Sect. 3.6 */

26: end if

27: end if

{Offspring S0 is better than initiating solution Si0
, use S0 to

update Re f Set and PairSet}
28: if f (S0) > f (Si0

) then

29: (Re f Set, PairSet) ← pool−update(Re f Set, PairSet) /* Sect.
3.7 */

30: if f (S0) > f (S∗) then

31: S∗ ← S0

32: end if

33: else

34: PairSet ← PairSet\(i0, g0)
35: end if

36: end while

37: until stopping condition is reached
38: return S∗

E

R

S

o

f

v

l

Note that the QMKP can be conveniently formulated as a 0–1

uadratic program [19]. However, as shown in [19], the computa-

ional results of solving this quadratic model with the CPLEX 12.4

olver are quite disappointing since it cannot find an optimal solu-

ion even for some of the smallest benchmark instances with only

00 objects.

. An evolutionary path relinking algorithm for the QMKP

The general PR framework typically starts from a collection of di-

erse elite solutions which are contained in a population called a ref-

rence set (RefSet). In the most common version, pairs of solutions

n RefSet are created and recorded in a so-called pair set (PairSet). A

ath Relinking method is then applied to each pair of solutions in

airSet, to generate a path of intermediate solutions, where the solu-

ion starting the path is called initiating solution, and the one ending

he path is called guiding solution. One or several solutions are picked

rom the path to be submitted to a Local Refinement method in or-

er to identify enhanced solutions. One iteration (or generation) of

R terminates by updating RefSet and PairSet with the improved solu-

ions from Local Refinement. This process is iterated until all pairs in

airSet are examined.

In what follows, we introduce our evolutionary path relinking

EPR) method and provide an explanation of its ingredients.

.1. Main scheme

The main scheme of our EPR algorithm is described in Algorithm 1

hose operations are presented below.

At the beginning, an initial RefSet of elite solutions {S1, S2, . . . Sp}
re generated by a probabilistic greedy construction method (Line 4,

ee Section 3.2) and are further improved by the Local Refinement

rocedure (Section 3.6). PairSet is then formed to contain all possible

ndex pairs (i, g), (i, g ∈ {1, 2, . . . p}) of solutions of RefSet according

o two conditions. First, the initiating solution Si is worse than the

uiding solution Sg (i.e., f(Si) < f(Sg)). Second, these index pairs are

anked in descending order of the objective value f(Sg) of the guiding

olution Sg, and for solutions with the same f(Sg), the index pairs are

anked in ascending order of the objective value f(Si) of the initiating

olution Si.

EPR then enters a while loop of the path relinking phase until

airSet becomes empty. At the beginning of each loop, from an empty

ffspring solution S0, the algorithm picks the first index pair (i0, g0)

rom the ranked PairSet, and applies the Relinking Method to the two

elected solutions (Si0
, Sg0

) to generate a Sequence of solutions (Line

1, see Section 3.3). This Sequence of solutions forms a path con-

ecting Si0
(initiating solution) and Sg0

(guiding solution). From this

equence, we select one solution and apply operations which differ

ccording to whether the selected solution is feasible or infeasible.

EPR first checks if Sequence contains a feasible solution Sbf whose

uality is better than the best solution S∗ found so far (Lines 12–13). If

his is the case, EPR records Sbf as the offspring solution S0 of the cur-

ent EPR generation and then updates RefSet and PairSet accordingly

Line 29, see Section 3.7).

Then, if no new best solution exists in Sequence, EPR selects, with

he path solution selection method of Section 3.4, a solution Sr from

equence which can be either feasible or infeasible (Line 17). If the se-

ected solution Sr is infeasible, EPR repairs it with the Repair Method

f Section 3.5 (Lines 18–19). If the repaired solution Sr is a new best

olution, EPR records Sr as the offspring solution S0 (Lines 21–22) and

hen updates RefSet and PairSet accordingly (Line 29, see Section 3.7).

If the offspring solution S0 is not updated by the repaired solu-

ion Sr since it does not improve the best solution S∗ (i.e., S0 remains

mpty), EPR applies the Local Refinement procedure (Line 25, see

ection 3.6) to further improve Sr and assigns the improved Sr to S .
0
PR finishes the iteration at the pool updating phase where it updates

efSet, PairSet and the best solution.

EPR applies the above operations to each paired solutions of Ref-

et. Upon the completion of the path relinking process on all pairs

f RefSet, EPR rebuilds a new RefSet which includes the best solution

ound so far S∗, and the process repeats until a stopping condition is

erified (e.g., a time cutoff, a maximum number of allowed path re-

inking iterations).
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3.2. RefSet initialization

In the reference set initialization phase, EPR uses a probabilis-

tic greedy construction method (PGCM) to build an initial solution

which is further improved by the Local Refinement procedure. Un-

like deterministic greedy construction methods such as those used in

[17–19], PGCM employs a probabilistic choice rule which bears some

resemblance to the popular GRASP method [32] although proposed

earlier in [33,34]. PGCM relies on the notion of conditional attractive-

ness which extends the familiar bang-for-buck ratio of ordinary linear

knapsack problems to the present setting.

Definition 1 Given a solution S = {I0, I1, . . . , Im}, the conditional

attractiveness of object i (i ∈ N) with respect to knapsack k (k ∈ M) in S

is given by:

A(S, i, k) = (pi +
∑

j∈Ik, j �=i

pi j)/wi (4)

Starting from an empty solution S and the first knapsack (i.e., k = 1),

PGCM iteratively and probabilistically selects an unallocated object

i from a restricted candidate list RCL(S, k) and assigns i to knap-

sack k. Let R(S, k) denote the set of unselected objects such that ∀i ∈
R(S, k), wi + ∑

j∈Ik
w j ≤ Ck. To build RCL(S, k), we first sort all objects

in R(S, k) in descending order of their conditional attractiveness val-

ues (calculated by Eq. (4)), and then we put the first min{rcl, |R(S, k)|}
(rcl is a parameter) objects into RCL(S, k). The rth object in RCL(S, k) is

associated with a bias br = 1/er and is selected with a probability p(r)

which is calculated as:

p(r) = br/

|RCL(S,k)|∑

j=1

bj (5)

PGCM skips to the next knapsack each time RCL(S, k) (∀k ∈ M) be-

comes empty and this is repeated until the last knapsack (i.e., k = m)

is examined.

Algorithm 2 summarizes this RefSet initialization procedure. Ref-

Set is set to empty at first. Then a solution is generated using PGCM
Algorithm 2 Pseudo-code of the RefSet initialization procedure.

1: Input: P: An instance of the QMKP, p: reference set size;
2: Output: The reference set Re f Set

3: Re f Set ← ∅
4: maxTrial ← 3 ∗ p, nTrial ← 0, nIndi ← 0

5: while nTrial < maxTrial do

6: S ← {0, . . . , 0}
7: for k = 1 → m do

8: while RCL(S, k) �= ∅ do

9: Select an object i ∈ RCL(S, k) according to the biased proba-
bility function of Equation 5.

10: S(i) = k

11: Update RCL(S, k)
12: end while

13: end for

14: S ← local−re f ine(S)
15: if S is not a clone of any solution in Re f Set then

16: Re f Set ← Re f Set ∪ S

17: nIndi ← nIndi + 1

18: if nIndi = p then

19: break;
20: end if

21: end if

22: nTrial ← nTrial + 1

23: end while

24: p ← |Re f Set|
25: return Re f Set

c

s

(

n

s

m

[

i

t

c

m

3

n

s

i

t

i

r

i

a

b

t

Lines 6–10) and then improved by a Local Refinement procedure. The

meliorated solution is either inserted to RefSet if it is not a clone of

ny solution of RefSet, or discarded if it appears already in RefSet. The

nitialization procedure is iterated until the population is filled with p

reference set size) nonclone individuals or the number of iterations

eaches the maxTrial value (set to 3 × p). Finally, p is reset to the num-

er of solutions eventually obtained.

.3. The relinking method

The purpose of the relinking method is to generate a sequence

f new solutions by exploring trajectories that connect high quality

olutions. Starting from an initiating solution, the relinking method

enerates a solution path towards the guiding solution by progres-

ively introducing attributes into the initiating solution that are con-

ained in the guiding solution.

To ensure the efficacy of the relinking method, we consider two is-

ues. First, we need a distance measure to identify the difference be-

ween two solutions. Second, we need a means to explore the trajec-

ories connecting the initiating solution and the guiding solution with

he help of some neighborhoods and an evaluation function. These is-

ues are elaborated in the next two subsections.

.3.1. Measuring the distance between two solutions

The QMKP can be viewed as a grouping problem in the sense that

he n objects are to be distributed into different knapsacks (unas-

igned objects are kept in knapsack zero). Therefore, the well-known

et-theoretic partition distance [35] appears to be appropriate for

easuring the differences between two solutions. Given solutions S1

nd S2, we identify their distance Dist(S1, S2) by resorting to a com-

lementary measure Sim(S1, S2) called similarity, i.e., Dist(S1, S2) =
− Sim(S1, S2). The similarity Sim(S1, S2) defines the size of the iden-

ical part of two solutions which represents the maximum number of

lements of S1 that do not need to be displaced to obtain S2. Now we

xplain how to identify the similarity Sim(S1, S2).

In the context of the QMKP, knapsack i of the first solution might

orrespond to knapsack j (j �= i) of the second solution where the two

knapsacks may have many objects in common. To find the similar-

ity of two solutions, we first match the knapsack zero of the first

solution with the knapsack zero of the second solution. Then we cre-

ate a complete bipartite graph G = (V1,V2, E) where V1 and V2 repre-

ent respectively the m knapsacks of solutions S1 and S2. Each edge

k1
i
, k2

j
) ∈ E is associated with a weight w

k1
i

k2
j
, which is defined as the

umber of shared objects in knapsack k1
i

of solution S1 and knap-

ack k2
j

of solution S2. From this bipartite graph, we find a maxi-

um weight matching with the well-known Hungarian algorithm

36] which can be accomplished in O(m3). After the knapsack match-

ng procedure, we adjust the knapsack numbering of the two solu-

ions according to the matching outcome. The similarity Sim(S1, S2)

an then be identified by simply summing up the number of com-

on objects of each matched knapsack pair of solutions S1 and S2.

.3.2. Building the path

The performance of the relinking method highly depends on the

eighborhoods and evaluation function to move from the initiating

olution towards the guiding solution. A suitable design of the relink-

ng method seeks to create inducements to favor solution transitions

hat lead to good attribute compositions of the initiating and guid-

ng solutions. For this purpose, we propose a double-neighborhood

elinking method (denoted as DNRM).

DNRM jointly employs two restricted neighborhoods RNR and RNE

nduced by two basic move operators: REALLOCATE (REAL for short)

nd EXCHANGE (EXC for short). At each relinking step, the best neigh-

oring solution among both neighborhoods is selected for the transi-

ion. REAL(u, k) displaces an object u from its current knapsack S(u)
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Algorithm 3 Pseudo-code of the double-neighborhood relinking

method.

1: Input: An initiating solution Si and a guiding solution Sg;
2: Output: A Sequence of intermediate solutions;
3: Perform a matching of the knapsacks of Si and Sg, and adjust the

knapsack numbering of Sg according the matching result.
4: Compute the distance Dist(Si, Sg).
5: α ← f (Si)/W(Si)
6: count ← 0

7: Sequence ← ∅
8: S ← Si

9: while count < Dist(Si, Sg) do

10: Select a solution S
′ ∈ RNR(S) ∪ RNE(S) that maximizes φ(S

′
).

11: if Dist(S, Sg) − Dist(S
′
, Sg) = 2 then

12: count ← count + 2

13: else

14: count ← count + 1

15: end if

16: S ← S
′

17: Sequence ∪ S
′

18: end while

19: return Sequence
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o knapsack k (k �= S(u), k, S(u) ∈ {0, 1, . . . , m}) while EXC(u, v) ex-

hanges a pair of objects that are from two different knapsacks (i.e.,

(u) �= S(v), S(u), S(v) ∈ {0, 1, . . . , m}). Let S⊕OP denote the operation

f applying move operator OP to S. Let Si and Sg be the initiating and

uiding solutions respectively. The two restricted neighborhoods in-

uced by the above two move operators are described as follows:

• RNR(S) = {S
′

: S
′ = S ⊕ REAL(u, k), Si(u) �= Sg(u), Sg(u) = k}.

RNR(S) contains a set of solutions that are closer to the guiding

solution by exactly one unit compared to the current solution

S. These solutions are obtained by moving an object u from its

current knapsack Si(u) to another knapsack Sg(u) to which it

belongs in the guiding solution.

• RNE(S) = {S
′

: S
′ = S ⊕ EXC(u, v), Si(v) = Sg(u), Si(v) �= Sg(v)}.

RNE(S) contains a set of solutions that are closer to the guiding

solution by one or two units compared to the current solution

S. These solutions are obtained by moving an object u from its

current knapsack Si(u) to another knapsack Sg(u) to which it

belongs in the guiding solution, and moving an object v from its

current knapsack Si(v) to another knapsack Si(u) provided that

Si(v) �= Sg(v). If Si(u) = Sg(v), the solution obtained is two units

closer to the guiding solution, otherwise it is only one unit closer.

It is known that allowing a controlled exploration of infeasi-

le solutions may enhance the performance of neighborhood-based

earch, which may facilitate transitioning between structurally dif-

erent feasible solutions [29]. We thus allow our DNRM to tunnel

hrough infeasible regions of the solution space. Given a solution

= {I0, I1, . . . , Im}, its total violation of the knapsack capacity is com-

uted as: V(S) = ∑m
k=1 (max{0,

∑
i∈Ik

wi − Ck}, and its total weight of

he allocated objects is given by: W(S) = ∑m
k=1

∑
i∈Ik

wi. The quality

f the (infeasible) solution S is then assessed by considering both the

iolation of the capacity constraint and the total profit:

(S) = f (S) − α ∗ V(S) (6)

here α is a penalty parameter that balances the tradeoff between

otal profit and capacity violation. A larger value of φ(S) indicates

better solution. It would be possible to dynamically change the

alue of α during the search. However, according to our empirical

utcomes, we observe that the proposed algorithm performs well

y fixing α to the following value throughout the relinking process:

= f (Si)/W(Si), where Si is the initiating solution.

Algorithm 3 shows the pseudo-code of our double-neighborhood

elinking method (DNRM). Initially, DNRM performs a matching of

he knapsacks of the initiating solution Si and guiding solution Sg (see

ection 3.3.1), and then adjusts the knapsack numbering of the guid-

ng solution Sg according to the matching result. When the knapsacks

f the two solutions are matched, the distance Dist(Si, Sg) can be iden-

ified easily by simply counting the number of different assignments

f the two matched solutions. Before entering the path building loop,

he penalty parameter α and counters are initialized, the Sequence is

et to an empty set, and the current solution is set to the initiating so-

ution Si. At each step towards the guiding solution, DNRM selects the

est solution, according to the penalized evaluation function (Eq. (6)),

rom the union of the restricted reallocate neighborhood RNR(S) and

he restricted exchange neighborhood RNE(S). If the selected solution

s two units closer to the guiding solution compared to the current

olution, the counter count is incremented by two, otherwise it is in-

remented by one. The current solution is then set to the selected best

olution, and it is included into the Sequence as an intermediate solu-

ion of the path. The number of steps needed by DNRM to accomplish

he path building process from the initiating solution to the guiding

olution is bounded by Dist(Si, Sg).
.4. Path solution selection

Following [22], once a relinking path is built from an initiating

olution Si to the guiding solution Sg, some intermediate solutions

ithin the path are selected and further improved by local refine-

ent. Note that in our case, two consecutive solutions on the relink-

ng path differ only in the attribute that was just introduced. Con-

equently, applying local optimization to solutions close to Si or Sg

ould very probably lead to the same local optimum. For this rea-

on, we select the path solution by considering both its quality and

istance to Si or Sg according to the following two rules:

• Rule 1: We first try to select a best feasible solution from the mid-

dle three fifths of the path. To do so, we first identify a subset of

solutions in Sequence denoted as subSeq (subSeq ⊂ Sequence) such

that ∀S ∈ subSeq, Dist(Si, S) ≥ Dist(Si, Sg)/5 and Dist(Sg, S) ≥ Dist(Si,

Sg)/5. We then pick the best feasible solution S from subSeq with

the largest objective value f(S).

• Rule 2: If there is no feasible solution in subSeq, we select the

infeasible solution S in the middle of the path (i.e., Dist(Si, S) =
Dist(Si, Sg)/2 or Dist(Si, S) = Dist(Si, Sg)/2 + 1 given that the move

step can be either one unit or two units). We then apply a Repair

Method (see Section 3.5) to bring the infeasible solution back to

the feasible region before submitting it to the Local Refinement

procedure.

.5. The repair method

If the selected solution in the relinking path is infeasible, we ap-

ly an aggressive neighborhood search method (ANSM) to repair this

olution. Basically, ANSM jointly employs two well-known operators

EAL and EXC to carry out a best improvement local search. At each it-

ration, all solutions that can be reached by these two operators from

he current solution (without confining to any constraint) are exam-

ned according to the penalty-based evaluation function (Eq. (6)), and

he best one (i.e., the one with the largest evaluation value) is chosen

s the output solution of this stage. The current solution will only be

eplaced by the output solution if the latter is better than the current

olution. The output of the whole repairing procedure is assured to

e a local optimum since ANSM conducts a thorough search within

he neighborhoods defined by the two operators. We can thus expect
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that the repaired feasible solution could be able to improve the best

solution found so far as well.

To redirect the search towards feasible region, we initialize the

penalty parameter α of Eq. (6) with a relatively large value: α = 10i ∗
f (S)/W(S), where S is the current solution and i is set to 1 at the

beginning. The value of α is kept unchanged during the search. If one

round of aggressive neighborhood search is not enough to repair the

input solution, i is incremented by one and α is recalculated. ANSM

then restarts a new round of its search. This is repeated until ANSM

has been launched three consecutive times. If the resulting solution

is still infeasible (this happens rarely), a greedy repair procedure is

triggered. The greedy repair procedure consists in simply removing

the least conditionally attractive objects from the capacity-violated

knapsacks until this constraint becomes satisfied. The pseudo-code

of the aggressive neighborhood search repair method is presented in

Algorithm 4.

Algorithm 4 Pseudo-code of the repair method.

1: Input: An infeasible solution Sin f ;
2: Output: A feasible solution S f ;
3: S ← Sin f

4: i ← 1

5: while i <= 3 do

6: α ← 10i ∗ f (S)/W(S)
7: S ← agressiveNeighSearch(S, α).
8: if S is feasible then

9: break

10: else

11: i ← i + 1

12: end if

13: end while

14: if S is infeasible then

15: S ← greedyRepair(S)
16: end if

17: return S

3.6. The local refinement method

The Local Refinement component has a significant impact to the

overall performance of the proposed EPR algorithm. For our purpose,

we adopt the responsive threshold search algorithm (RTS) introduced

in [19]. RTS was originally proposed with a perturbation operation

where the overall algorithm is called iterated responsive threshold

search (IRTS). The purpose of the perturbation operation is to help

the search escape from deep local optima. In the case of EPR, such a

functionality is realized by the path relinking method coupled with

the path solution selection rules in EPR. Therefore, the perturbation

operation is not useful and thus excluded from EPR.

RTS basically alternates between a threshold-based exploration

phase (Exploration for short) and a descent-based improvement

phase (Improvement for short). Starting from an initial solution

which is a feasible solution either picked in the relinking path or

produced by the Repair Method, RTS realizes an Exploration phase

which is composed of L (L is a parameter) calls of the Threshold Based

Exploration procedure which is based on three move operators (i.e.,

REAL, EXC and DROP). Note that in RTS, the REAL operator excludes

the case of displacing an assigned object to knapsack 0, which

is actually accomplished by the DROP operator. At each iteration,

RTS accepts any encountered neighboring solution that satisfies a

responsive quality threshold T. This threshold is dynamically deter-

mined according to the recorded best local optimum value (fp) and a

threshold ratio r: T = (1 − r) × fp, where r is calculated by an inverse

proportional function with respect to fp (see [19] for details). After

an Exploration phase, RTS switches to the Improvement phase for
ntensification purpose. In the Improvement phase, RTS continues

ccepting the first met improving neighboring solutions which are

nduced by REAL or EXC operator until no improving solutions can be

ound. If the local optimum eventually attained during the Improve-

ent phase has a better objective value than the recorded best local

ptimum value (fp), RTS updates fp as well as the threshold ratio r,

nd then restarts a new round of Exploration–Improvement phases.

TS terminates when fp has not been updated for a consecutive W

imes of Exploration–Improvement phases.

To accelerate neighborhood examination, RTS restricts its search

ithin the feasible neighboring solutions when operators REAL and

XC are applied. No restriction is needed for the DROP operator since

t never generates infeasible solution. The neighborhoods are ex-

lored in a token-ring way during both the Exploration phase and

he Improvement phase [19].

.7. The pool updating strategy

For each new solution S0 which can be the best feasible solution in

he relinking path, the best feasible solution obtained by the Repair

ethod or the best solution produced by the Local Refinement proce-

ure, we need to decide whether S0 should be inserted into RefSet or

ot. To make this decision, we employ a fitness-based replacement

trategy (FBRS) for updating both RefSet and PairSet at each genera-

ion.

With FBRS, EPR replaces the initiating solution Si0
(which is al-

ays worse than the guiding solution Sg0
) with S0 if the following

wo conditions are simultaneously verified: (1) S0 is better than the

nitiating solution Si0
; (2) S0 is not a clone of any other solution in

efSet. Once S0 is inserted into RefSet, we update PairSet accordingly

y inserting all the previously removed index pairs that are associ-

ted with S0 into PairSet. For each inserted index pair (i, g), we en-

ure that the objective value of Si is smaller than that of Sg. Then, the

ndex pairs in PairSet are ranked in descending order of the objec-

ive value f(Sg) of the guiding solution Sg, and for solutions with the

ame f(Sg), they are ranked in ascending order of the objective value

f the initiating solution f(Si). The pool updating procedure is shown

n Algorithm 5.

lgorithm 5 Pseudo-code of the pool updating procedure.

1: Input: Re f Set, PairSet, an offspring solution S0, an initiating solution
Si0

, a guiding solution Sg0
;

2: Output: Re f Set, PairSet;
3: if f (S0) > f (Si) and S0 is not a clone of any solution S ∈ Re f Set

then

4: Re f Set ← (Re f Set ∪ {S0})\Si;
5: Update PairSet;
6: Rank index pairs in PairSet;
7: else

8: PairSet ← PairSet\(i0, g0);
9: end if

10: return Re f Set,PairSet

.8. Discussion

By properly adapting the PR method to the QMKP at hand, the pro-

osed EPR algorithm has a number of notable characteristics. First,

nlike other evolutionary frameworks where an improved offspring

olution is typically provided by some variant of a local refinement

rocedure, our EPR algorithm uses the path relinking procedure and

he repair procedure as two complementary means for generating

mproved offspring solutions. This is achieved thanks to the mech-

nisms used in these two procedures which allow a controlled ex-

loration of infeasible solutions. We provide experimental data in
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1 The best solution certificates are available at http://www.info.univ-angers.fr/pub/

hao/EPRresults.zip.
2

ection 5.2 to show that these two procedures help to identify high

uality solutions.

Second, our EPR algorithm explores only one directional path

tarting from a worse initiating solution and ends at a better guid-

ng solution. A solution in the path is picked for local refinement

hen suitable conditions (e.g., there is no improved solution along

he path) are verified. This is different from the typical practice where

wo paths are usually built by reversing the initiating solution and

he guiding solution. According to our observations, building an ex-

ra link seldom achieves improved solutions while consuming more

omputing time. Therefore, our strategy to explore one directional

ath proves to be a good choice when the allowed computing time is

imited as in our case.

Third, we update both RefSet and PairSet at each generation when

n improved offspring solution is identified. This strategy accelerates

he evolution of our algorithm by dynamically transferring the

mproved solution pairs taken from RefSet into PairSet which helps

o maintain the elitism of the initiating and guiding solution. Our

trategy is different from the typical strategy where one finishes

xamining all solution pairs in the current PairSet before proceeding

o examine the updated PairSet. We investigate the implications of

hese differences in Section 5.3.

Finally, when all solution pairs in the PairSet have been examined,

ur EPR algorithm starts a new round of evolutionary path relink-

ng process. This restart mechanism provides a form of diversifica-

ion and is able to displace the search to a distant unexplored region.

nvestigations presented in Section 5.3 show the usefulness of this

echanism.

. Computational experiments

To evaluate the performance of the proposed EPR algorithm, we

onducted extensive experiments on 90 benchmark instances. The

ssessment was performed by comparing our results to those of the

tate-of-the-art methods and the current Best Known Results (BKR)

ver reported in the literature.

.1. Benchmark instances

The 90 benchmark instances used in our experiments belong to

he two sets:

• Set I: This set consists of 60 well-known benchmarks which are

commonly used for the QMKP algorithm assessment in the liter-

ature [1,14,15,17–20]. Built from the quadratic knapsack problem

(QKP) instances introduced in [37] which can be download from:

http://cedric.cnam.fr/∼soutif/QKP/QKP.html, these instances are

characterized by their number of objects n ∈ {100, 200}, the den-

sity d ∈ {0.25, 0.75} (i.e., the number of non-zero coefficients of

the objective function divided by n(n + 1)/2), and the number of

knapsacks m ∈ {3, 5, 10}. For each instance, the capacities of the

knapsacks are set to 80% of the sum of object weights divided by

the number of knapsacks. The optimal solutions of these instances

are unknown.

• Set II: The second set is composed of 30 new large instances with

300 objects (i.e., n = 300), with unknown optima. Like the in-

stances of Set I, they are also characterized by their density d ∈
{0.25, 0.75} and the number of knapsacks m ∈ {3, 5, 10}. To build

these 30 QMKP instances, we first randomly generated 10 QKP

instances (5 instances for each density) using the method intro-

duced in [37]. Based on each QKP instance, we then created 3

QMKP instances, each with a different number of knapsacks, and a

knapsack capacity set to 80% of the sum of object weights divided

by the number of knapsacks. These new instances can be down-

loaded from: http://www.info.univ-angers.fr/pub/hao/qmkp.zip.
.2. Experimental settings

The proposed EPR algorithm was programmed in C++,1 and com-

iled with GNU g++ on an Intel Xeon E5440 processor (2.83 GHz

nd 2 GB RAM) with ‘-O3’ flag. Without using a compiler optimiza-

ion flag, it requires respectively 0.44, 2.63 and 9.85 s to solve the

ell-known DIMACS machine benchmark graphs2 r300.5, r400.5 and

500.5 on our machine.

Like other QMKP algorithms, the proposed EPR algorithm has a

umber of parameters to be tuned. Most of the parameters are re-

uired by the RTS local refinement procedure for which we adopt

he same values used in [19] (which were identified by conducting

careful statistical analysis). As suggested in [22], EPR maintains a

airly small-sized reference set of 10 elite solutions. Even if it would

e possible to find a parameter setting better than the setting used

n this paper, the experimental results reported in this section show

hat the adopted setting performs very well on the tested benchmark

nstances.

Note that it is a common practice in the QMKP literature to use a

ime cutoff as the stopping condition to evaluate the algorithm per-

ormance. In our case, we imposed a time limit of 15 s, 90 s and 180 s

or instances with respectively 100 objects, 200 objects and 300 ob-

ects. The first two time limits for the instances of Set I have been used

n [19]. Under these stopping conditions, we focus primarily on com-

aring the solution quality, the deviation and the success rate over

ultiple runs of the competing algorithms.

.3. Comparative results on the instances of Set I

This section is dedicated to the computational results obtained by

ur EPR algorithm on the 60 instances of Set I. EPR was run 40 times

or each instance and for each run the program was terminated with

time limit of 15 s for the instances with 100 objects and 90 s for

hose with 200 objects. We also included a comparative study of our

esults with respect to those of the state-of-the-art algorithms.

Table 1 shows the results of our EPR algorithm along with the best

nown results ever reported in the literature. The characteristics of

ach instance are listed from Columns 1–5: the number of objects n,

ensity d, number of knapsacks m, instance identity number I and

napsack capacity C. Column 6 gives the best known lower bounds

hich are extracted from the results reported in [19]. Columns 7–11

how our results, including the overall best lower bound ( fbest), the

verage value of the 40 best lower bounds ( favg), the standard devia-

ion of the 40 best lower bounds (sd), the number of runs where EPR

each fbest (hit) and the earliest CPU time in seconds over the 40 runs

hen fbest is first reached (CPU).

Table 1 shows that EPR achieves a very competitive performance

y matching (bold entries) or improving (starred bold entries) all the

est known lower bounds. Specifically, our EPR can reach the previ-

us best known results for 50 out of 60 cases, and for 18 out of these

0 cases, EPR achieves a success rate of 100% which means one run

uffices for EPR to attain the best known lower bound. More impor-

antly, for 10 instances, EPR is able to attain an improved result over

he previous best known lower bound.

To further evaluate the performance of the proposed EPR algo-

ithm, we show a comparison of our results with those of 3 recent

est performing algorithms:

• TIG: A tabu-enhanced iterated greedy algorithm [17].

• SO: A strategic oscillation algorithm [18].

• IRTS: An iterated responsive threshold search algorithm [19].
dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique.

http://cedric.cnam.fr/~soutif/QKP/QKP.html
http://www.info.univ-angers.fr/pub/hao/qmkp.zip
http://www.info.univ-angers.fr/pub/hao/EPRresults.zip
ftp://dimacs.rutgers.edu/pub/dsj/clique
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Table 1

Computational results of EPR on the 60 benchmark instances of Set I with 15 s per run for instances with 100

objects and 90 s per run for instances with 200 objects.

Instance fbk EPR

n d m I C fbest favg sd Hit CPU(s)

100 25 3 1 688 29,286 29,286 29,286.00 0.00 40 0.10

100 25 3 2 738 28,491 28,491 28,491.00 0.00 40 0.08

100 25 3 3 663 27,179 27,179 27,179.00 0.00 40 0.25

100 25 3 4 804 28,593 28,593 28,593.00 0.00 40 0.11

100 25 3 5 723 27,892 27,892 27,892.00 0.00 40 0.16

100 25 5 1 413 22,581 22,581 22,568.80 25.31 31 0.38

100 25 5 2 442 21,704 21,704 21,671.70 8.43 1 4.78

100 25 5 3 398 21,239 21,239 21,239.00 0.00 40 0.18

100 25 5 4 482 22,181 22,181 22,180.95 0.31 39 0.16

100 25 5 5 434 21,669 21,669 21,660.85 14.83 27 0.92

100 25 10 1 206 16,221 16,221 16,205.17 8.10 4 4.27

100 25 10 2 221 15,700 15,700 15,683.98 33.44 29 0.41

100 25 10 3 199 14,927 14,927 14,866.50 28.92 3 7.36

100 25 10 4 241 16,181 16,181 16,181.00 0.00 40 1.12

100 25 10 5 217 15,326 15,326 15,297.52 36.37 24 0.92

200 25 3 1 1381 101,471 101,471 101,467.10 6.87 24 9.25

200 25 3 2 1246 107,958 107,958 107,958.00 0.00 40 0.22

200 25 3 3 1335 104,589 104,589 104,581.68 7.22 19 11.04

200 25 3 4 1413 100,098 100,136* 100,136.00 0.00 40 10.81

200 25 3 5 1358 102,311 102,311 102,308.65 2.26 19 12.99

200 25 5 1 828 75,623 75,623 75,578.35 37.77 12 25.07

200 25 5 2 747 80,033 80,033 80,009.27 41.36 29 5.42

200 25 5 3 801 78,043 78,043 78,036.10 20.82 36 3.56

200 25 5 4 848 74,140 74,140 74,080.12 41.73 1 21.59

200 25 5 5 815 76,610 76,610 76,610.00 0.00 40 1.10

200 25 10 1 414 52,293 52,293 52,147.97 112.48 1 62.77

200 25 10 2 373 54,830 54,830 54,696.15 76.22 7 8.48

200 25 10 3 400 53,661 53,678* 53,596.60 38.09 1 64.25

200 25 10 4 424 51,297 51,302* 51,096.15 78.88 1 60.67

200 25 10 5 407 53,621 53,621 53,575.57 40.06 8 9.71

100 75 3 1 669 69,977 69,977 69,977.00 0.00 40 0.08

100 75 3 2 714 69,504 69,504 69,504.00 0.00 40 0.07

100 75 3 3 686 68,832 68,832 68,832.00 0.00 40 0.07

100 75 3 4 666 70,028 70,028 70,028.00 0.00 40 0.04

100 75 3 5 668 69,692 69,692 69,692.00 0.00 40 0.12

100 75 5 1 401 49,421 49,421 49,417.40 8.57 34 0.25

100 75 5 2 428 49,365 49,400* 49,360.47 17.20 5 0.58

100 75 5 3 411 48,495 48,495 48,495.00 0.00 40 0.11

100 75 5 4 400 50,246 50,246 50,246.00 0.00 40 0.41

100 75 5 5 400 48,753 48,753 48,749.25 8.93 16 0.62

100 75 10 1 200 30,296 30,296 30,231.95 75.62 10 5.49

100 75 10 2 214 31,207 31,207 31,120.22 41.50 3 1.39

100 75 10 3 205 29,908 29,908 29,900.60 12.57 25 0.43

100 75 10 4 200 31,762 31,762 31,717.47 41.55 18 0.57

100 75 10 5 200 30,507 30,507 30,465.35 25.29 8 4.40

200 75 3 1 1311 270,718 270,718 270,718.00 0.00 40 1.88

200 75 3 2 1414 257,288 257,288 257,287.73 1.72 39 6.34

200 75 3 3 1342 270,069 270,069 270,069.00 0.00 40 1.79

200 75 3 4 1565 246,993 24,6993 246,963.23 34.73 7 38.53

200 75 3 5 1336 279,598 279,598 279,598.00 0.00 40 6.43

200 75 5 1 786 185,493 185,493 185,487.58 28.10 37 7.06

200 75 5 2 848 174,836 174,836 174,814.30 27.54 21 4.87

200 75 5 3 805 186,774 186782* 186,737.12 27.72 2 39.44

200 75 5 4 939 166,990 167,142* 166,957.67 96.46 2 24.71

200 75 5 5 801 193,310 193,310 193,219.40 40.89 1 37.23

200 75 10 1 393 113,139 113,324* 112972.98 158.98 1 84.97

200 75 10 2 424 105,807 105,966* 105554.00 143.34 1 69.09

200 75 10 3 402 114,596 114,860* 114397.62 141.19 1 82.61

200 75 10 4 469 99,106 99,422* 98,875.45 146.35 1 39.89

200 75 10 5 400 117,309 117,309 116867.85 126.49 1 77.89

c

o

(

a

d

i

S

a

We divide the 60 instances of Set I into 12 classes, each containing

5 instances, which are indicated in n − d − m where n is the number

of objects, d is the density and m is the number of knapsacks. Table 2

summarizes the statistical results of our algorithm as well as those

of the reference algorithms. For each algorithm, we list the number

of instances out of the 5 instances in each class where the corre-

sponding algorithm achieves the best known lower bound (#Bests).

The best known lower bounds used in this comparative study are
ompiled from the previous best known lower bounds (Column fbk

f Table 1) and the best lower bound obtained by our EPR algorithm

Column fbest of Table 1). We also list in Table 2 the average of the

verage results (Avg., for all algorithms) and the average of the stan-

ard deviation (SD, for IRTS and EPR) across the 5 instances of each

nstance class. The detailed results of the reference algorithms (TIG,

O, IRTS), which were obtained by running the source code of each

lgorithm 40 times in our computing environment under exactly the
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Table 2

Comparison of EPR with three state-of-the-art methods on Set I: TIG [17], SO [18], and IRTS [19].

Inst. TIG SO IRTS EPR

#Bests Avg. #Bests Avg. #Bests Avg. SD #Bests Avg. SD

100-25-3 4 28,198.56 5 28,253.59 5 28,288.20 0.00 5 28,288.20 0.00

100-25-5 2 21,773.08 2 21,782.05 5 21,854.16 15.93 5 21,864.26 9.78

100-25-10 2 15,541.86 0 15,453.85 5 15,638.42 24.53 5 15,646.83 21.37

200-25-3 0 102,635.96 1 102,753.30 4 103,273.20 5.45 5 103,290.29 3.27

200-25-5 0 76,086.16 0 76,007.99 5 76,853.04 28.84 5 76,862.77 28.34

200-25-10 0 52,261.18 0 51,951.31 3 53,004.66 57.09 5 53,022.49 69.15

100-75-3 4 69,592.90 4 69,585.12 5 69,605.72 2.07 5 69,606.60 0.00

100-75-5 3 49,147.68 2 49,133.77 4 49,220.42 50.42 5 49,253.62 6.94

100-75-10 0 30,413.96 0 30,397.46 5 30,679.14 41.47 5 30,687.12 39.31

200-75-3 4 264,833.60 3 264,761.80 5 264,866.20 111.56 5 264,927.19 7.29

200-75-5 0 181,082.40 0 180,904.00 3 181,246.00 130.11 5 181,443.21 44.14

200-75-10 0 109,161.98 0 108,967.79 1 109,682.30 130.96 5 109,733.58 143.27
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ame stopping criterion as the one used in this paper, were extracted

irectly from the results reported in [19]. In this regard, we can say

hat the comparison performed in this section is quite fair.

From Table 2, we observe that the proposed EPR algorithm com-

etes very favorably with the 3 reference state-of-the-art algorithms

n all listed indicators. Indeed, EPR easily dominates TIG and SO

y obtaining a higher number of best known lower bounds and

better average value for almost all 12 instance classes. EPR also

utperforms its competitive counterpart IRTS by attaining more best

nown lower bounds (60 vs. 50). Moreover, compared to IRTS, EPR

lways achieves a better average result and usually attains a smaller

tandard deviation which demonstrates that EPR performs more

tably. Given that EPR uses a simplified version of IRTS as its local

efinement procedure, this comparison demonstrates the usefulness

f the evolutionary path-relinking procedure compared to the single

rajectory counterpart.

To validate our conclusion, we applied the Wilcoxon test with a

ignificance factor of 0.05 for pairwise comparisons between our re-

ults (both best and average) and those of the reference algorithms.

able 3 shows the statistical test outcomes where the left part is for

he best result comparison and the right part is for the average result

omparison. For each comparison item and for each algorithm pair,

e list in Table 3 the positive rank sum (R+), the negative rank sum

R−), the resulting p-value (p-value) and whether they are significant

ifferent (Diff?). From Table 3, we can see that EPR is statistically dif-

erent from any of the three reference algorithms both in terms of

est result and average result. Moreover, the fact that the positive

ank sum is consistently larger than the negative rank sum in both

omparison items confirms the dominance of our EPR algorithm over

he reference algorithms.

.4. Comparative results on the instances of Set II

The computational results and comparative study of Section 4.3

emonstrated that the proposed EPR algorithm performs very well

n the set of commonly used instances with up to 200 objects. Now

e are interested to know how the proposed algorithm will perform

n larger instances. For this purpose, we conduct an additional exper-

ment on the 30 instances of Set II with 300 objects. For this experi-

ent, we adopt a time limit of 180 s and again run our EPR algorithm

0 times for each instance. For comparative purposes, we also pro-

ide the results obtained by TIG [17], SO [18] and IRTS [19] by running

heir source codes on our machine under exactly the same stopping

ondition.

Computational results of our EPR algorithm as well as those of

he 3 reference algorithms are reported in Table 4 where we list

or each instance the best lower bound ( fbest) and the average re-

ult ( favg) obtained over 40 runs by each algorithm. Table 4 discloses

dominance of our EPR algorithm over the reference algorithms.
ndeed, EPR attains the best lower bound for all instances of Set II.

uch a performance is not matched by any of the 3 reference algo-

ithms. Moreover, EPR obtains a best average result for 27 out of 30

ases (90%). The average performance is also the best among the com-

ared algorithms. When compared with TIG and SO, even our average

esults are better than their best lower bounds for most cases.

In order to evaluate the statistical significance of our findings, we

pplied the Wicoxon test with a significance factor of 0.05 for pair-

ise comparison of our results with those of the reference algorithms

n the instances of Set II. Table 5 summarizes the test results where

he left part of the table provides the statistical data with the best re-

ults as input, and the right part shows the statistical data with the

verage results as input. Table 5 discloses that a statistical difference

s detected for each compared case (between EPR and any reference

lgorithm) with a p-value smaller than 0.05. The superiority of our

PR algorithm over the best performing reference algorithms is con-

rmed by the fact that the sum of the positive ranks is always signif-

cantly larger than the sum of the negative ones.

Without bothering to give a detailed tabulation of additional re-

ults, we mention that, when more computing time is allowed, EPR

an further improve its best results for some of the instances and the

bove conclusions still hold. Indeed, when we set the time limit to

60 seconds for all methods, our EPR algorithm always outperforms

he reference algorithms.

. Analysis

The computational outcomes and especially the comparisons of

PR with its counterpart IRTS [19] presented in Section 4 have

hown the strength of the evolutionary path relinking framework. In

his section, we conduct additional experimental analyses to gain a

eeper understanding of the important ingredients of the proposed

PR algorithm.

.1. The repair method

When an infeasible solution is picked from the relinking path, EPR

dopts an aggressive neighborhood search method (ANSM) to repair

his solution. A greedy procedure is triggered as a complement when

he solution cannot be repaired by ANSM. The greedy procedure sim-

ly drops the least conditionally attractive objects from the capacity-

iolated knapsacks until each knapsack becomes satisfied. It would

e interesting to determine if the greedy procedure alone is sufficient

or EPR to achieve its best performance. To test this, we conduct an

xperiment to compare the performance of EPR with its alternative

ersion EPRGR which repairs an infeasible solution solely with the in-

icated greedy procedure. Each algorithm is run 40 times on the in-

tances of Set I. Table 6 summarizes the computational results in the

orm of 12 instance classes. In this experiment, we set the best known
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Table 3

Wilcoxon test for results of Set I.

Algorithm pair Best result Average result

R+ R− p-value Diff? R+ R− p-value Diff?

EPR vs TIG 861 0 2.52e−08 Yes 1483 2 1.87e−10 Yes

EPR vs SO 946 0 1.16e−08 Yes 1711 0 3.60e−11 Yes

EPR vs IRTS 55 0 5.92e−03 Yes 1082 94 4.16e−07 Yes

Table 4

Comparative results of EPR with three state-of-the-art algorithms (TIG [17], SO [18], IRTS [19]) on the 30 large-sized instances of Set II with a time limit of 180 s. A value in bold

indicates a best known lower bound or a best average result over 40 runs.

Instance TIG SO IRTS EPR

n d m I C fbest favg fbest favg fbest favg fbest favg

300 25 3 1 2048 223,243 221,842.77 223,291 222,986.12 223,661 223,514.08 223,661 223,609.52

300 25 3 2 2058 209,202 207,786.02 209,940 209,320.70 210,981 210,812.08 210,981 210,958.70

300 25 3 3 2090 209,296 208,036.48 209,621 208,962.30 210,910 210,732.25 210,910 210,886.02

300 25 3 4 2104 214,624 212,620.15 214,773 214,348.10 215,639 215,564.62 215,732 215,608.40

300 25 3 5 2045 211,378 209,392.75 211,567 211,216.77 212,432 212,429.25 212,432 212,432.00

300 25 5 1 1229 162,924 160,672.77 162,952 162,529.55 163,668 163,539.35 163,746 163,654.27

300 25 5 2 1234 151,825 149,890.20 151,533 150,989.67 152,860 152,728.83 152,951 152,770.45

300 25 5 3 1254 152,233 149,855.35 152,043 151,572.08 153,347 153,183.75 153,489 153,313.50

300 25 5 4 1262 153,289 149,752.70 155,179 153,822.45 156,340 156,235.95 156,340 156,256.20

300 25 5 5 1227 153,642 150,678.05 153,592 153,022.08 154,936 154,724.73 154,936 154,836.83

300 25 10 1 614 107,929 103,716.35 107,525 107,083.35 109,400 109,275.38 109,400 109,319.45

300 25 10 2 617 100,931 97,292.02 100,699 100,196.70 102,306 102,049.90 102,383 102,078.30

300 25 10 3 627 102,395 98,351.38 102,338 101,711.60 103,707 103,510.95 103,794 103,508.18

300 25 10 4 631 103,284 98,986.73 103,177 102,482.77 105,290 105,035.38 105,294 105,049.98

300 25 10 5 613 103,034 99,035.18 102,649 102,073.38 104,120 103,927.52 104,218 104,019.32

300 75 3 1 2073 589,453 587,619.35 589,453 589,277.88 589,453 589,139.00 589,739 589,559.28

300 75 3 2 1892 641,192 640,637.22 641,085 641,082.75 641,085 640,829.32 641,610 641,600.75

300 75 3 3 2065 598,000 596,776.55 597,965 597,568.53 598,124 597,239.70 598,124 598,012.30

300 75 3 4 2170 581,227 580,539.10 581,227 581,054.40 581,227 580,796.68 581,227 581,121.30

300 75 3 5 1931 612,383 610,555.22 612,369 612,206.50 612,373 611,860.40 612,383 612,164.12

300 75 5 1 1244 404,902 403,472.90 404,909 404,110.95 405,050 404,716.35 405,191 404,909.03

300 75 5 2 1135 445,497 444,288.58 445,195 444,656.80 445,655 445,306.38 445,655 445,557.30

300 75 5 3 1239 405,800 405,167.90 405,863 405,123.08 406,556 405,820.47 406,800 406,172.22

300 75 5 4 1302 395,648 394,453.80 395,422 394,707.42 395,760 395,345.10 396,021 395,514.78

300 75 5 5 1159 415,057 412,957.67 414,447 414,085.50 415,400 415,032.12 415,804 415,179.58

300 75 10 1 622 247,429 246,408.15 247,481 246,749.67 248,006 247,650.23 248,136 247,765.67

300 75 10 2 567 266,922 265,934.88 266,877 266,523.10 267,728 267,399.05 268,003 267,491.38

300 75 10 3 619 239,088 237,844.67 238,587 238,139.98 239,661 239,358.02 239,875 239,407.88

300 75 10 4 651 230,355 228,457.08 229,855 229,378.48 231,744 231,043.75 231,812 231,412.27

300 75 10 5 579 248,488 247,048.98 248,114 247,681.90 249,476 249,113.02 249,668 249,171.75

Table 5

Wilcoxon test for results of Set II.

Algorithm pair Best result Average result

R+ R− p-value Diff? R+ R− p-value Diff?

EPR vs TIG 460 0 4.00e−06 Yes 465 0 1.86e−09 Yes

EPR vs SO 435 0 2.70e−06 Yes 464 1 3.73e−09 Yes

EPR vs IRTS 210 0 9.57e−05 Yes 463 2 5.59e−09 Yes

5

l

i

f

F

t

t

f

m

a

h

s

f

I

l

lower bound of each instance to the one obtained by our EPR. For

each instance class, we report the number of instances for which the

algorithm is able to achieve or improve the best known lower bound

(#Bests), the average of the 5 average results (Avg.), the average of the

5 standard deviations (SD.) and the average of the 5 hits (Hit.). From

Table 6, we can see that EPR always attains a higher number of best

known lower bounds and a better average result than EPRGR. More-

over, EPR usually achieves a higher hit value than EPRGR even if EPR

and EPRGR have a comparable standard deviations. A Wilcoxon test

with a significance factor of 0.05 is applied to compare both the best

results and the average results obtained by these two algorithm vari-

ants. The resulting p-values of 2.48e−2 and 8.68e−4 clearly show the

statistical difference between these two groups of data. The superi-

ority of EPR over EPRGR is validated by the larger positive rank sum

compared to the negative ones. This experiment confirms the merit

of the adopted repair method with respect to the greedy method for

EPR.
.2. Impact of searching infeasible solutions

EPR allows infeasible solutions to be generated during its path re-

inking process. To handle this situation, the Repair Method takes an

nfeasible solution as input and explores infeasible spaces around the

easibility boundary. Indeed, with the evaluation function defined in

ormula (6), the search always retains the possibility of re-entering

he infeasible region even if it is currently in the feasible region. In

he case where only improving solutions are accepted, a transition

rom a feasible solution (say S) to an infeasible one (say S
′
) can be

ade when the infeasible solution has a high objective value ( f (S
′
))

nd a low constraint violation (V(S
′
)) which yields consequently a

igher penalized objective value (φ(S
′
)) compared to the current fea-

ible solution, i.e., φ(S
′
) > φ(S). In this section, we discuss how those

eatures contribute to the overall performance of our EPR algorithm.

ndeed, it has long been recognized in the constrained optimization

iterature that it is useful to allow controlled exploration of infeasible
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Table 6

Different strategies for the repairing procedure.

Algo. #Bests Avg. SD. Hit.

100-25-3 EPR 5 28,288.20 0.00 40.00

EPRGR 5 28,288.20 0.00 40.00

100-25-5 EPR 5 21,864.26 9.78 27.60

EPRGR 5 21,862.51 10.84 26.80

100-25-10 EPR 5 15,646.83 21.37 20.00

EPRGR 5 15,644.08 22.73 19.60

200-25-3 EPR 5 103,290.29 3.27 28.40

EPRGR 4 103,273.96 6.39 15.60

200-25-5 EPR 5 76,862.77 28.34 26.80

EPRGR 5 76,860.14 23.18 23.20

200-25-10 EPR 5 53,022.49 69.15 3.60

EPRGR 2 53,008.23 69.01 4.40

100-75-3 EPR 5 69,606.60 0.00 40.00

EPRGR 5 69,606.60 0.00 40.00

100-75-5 EPR 5 49,253.62 6.94 27.00

EPRGR 5 49,253.45 6.00 28.80

100-75-10 EPR 5 30,687.12 39.31 12.80

EPRGR 5 30,681.94 39.05 12.20

200-75-3 EPR 5 264,927.19 7.29 33.20

EPRGR 5 264,921.86 22.93 32.20

200-75-5 EPR 5 181,443.21 44.14 12.60

EPRGR 4 181,391.65 90.60 10.20

200-75-10 EPR 5 109,733.58 143.27 1.00

EPRGR 1 109,709.86 112.50 1.00

Table 7

Statistics on the relinking method and the repair method.

For each representative instance, we show the number of

runs over 40 executions in which the relinking method

attains the best lower bound of that run (RMHit), and the

number of runs in which the repair method achieves the

best lower bound of that run (RPHit).

Instance RMHit RPMHit

n d m I

100 25 3 5 0/40 2/40

100 25 5 1 1/40 3/40

100 25 10 2 5/40 1/40

200 25 3 4 2/40 25/40

200 25 5 1 2/40 6/40

200 25 10 2 3/40 0/40

100 75 3 4 1/40 1/40

100 75 5 4 0/40 3/40

100 75 10 2 4/40 1/40

200 75 3 3 0/40 6/40

200 75 5 1 2/40 2/40

200 75 10 3 3/40 2/40
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Table 8

Different strategies for the pool updating method.

Restart NoRestart

PUS1 #Bests 60 55

Avg. 0.00 −0.52

PUS2 #Bests 51 51

Avg. −1.02 −1.14
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olutions in order to ease solution transitions between structurally

ifferent feasible solutions. (The conjectured relevance of this out-

ome was the basis for the version of the strategic oscillation ap-

roach that crosses feasibility boundaries. See [29] for a historical

iscussion and an illustration of the power of this strategy.) By intro-

ucing such a possibility in EPR, we expect that EPR can identify high

uality solutions when the search cross back and forth the boundary

etween feasible and infeasible regions.

To support our expectation, we give some statistical data in Table 7

here we select one representative instance from each instance

lass and report the number of runs in which the relinking method

chieves the best lower bound of that run (RMHit), and the number

f runs in which the repair method attains the best lower bound of

hat run (RPMHit). From Table 7, we can see that these two meth-

ds sometimes obtain the best lower bound in a single execution of

ur EPR algorithm. The relinking method can discover a best lower

ound up to 5 out of 40 runs for instance 100-25-10-2, and the re-

air method is able to find a best lower bound up to 25 out of 40

uns for instance 200-25-3-4. Recall that except for identifying im-

roved solutions, another mission for the relinking method and the
epair method is to provide a good starting point for the Local Re-

nement method (i.e., the responsive threshold search method, see

ection 3.6). The excellent performance of EPR presented in Section 4

emonstrates that these methods have fulfilled this mission.

.3. The pool updating strategy

EPR maintains a reference set (RefSet) of elite solutions and a pair

et (PairSet) for path relinking. At each path relinking and Local Re-

nement, RefSet is updated with the offspring solution if the offspring

s better than the initiating solution. Then PairSet is immediately up-

ated according to the rule presented in Section 3.7. This updating

ule for PairSet (denoted by PUS1) is different from the conventional

trategy (denoted by PUS2) as suggested in [22]. Unlike PUS1 which

pdates PairSet after each path relinking, PUS2 updates PairSet only

hen all solution pairs in the current PairSet have been examined,

hough RefSet is always updated by replacing the worst solution with

n improved offspring solution.

Apart from the pool updating strategy, we also introduce a restart

echanism within our EPR algorithm. When all solution pairs in

airSet have been examined and if the stopping condition is not

eached, EPR starts a new round of the evolutionary path relinking

rocess by reinitializing RefSet and PairSet. The best solution found so

ar becomes a member of the new RefSet and the remaining solutions

re generated in the same way as in the first round. To investigate

he efficacy of our pool updating strategy and the restart mechanism,

e carry out an experiment on the instances of Set I to compare the

erformance of four algorithm variants EPR1R (PUS1 with restart),

PR1NR (PUS1 without restart), EPR2R (PUS2 with restart), EPR2NR

PUS2 without restart). These four algorithm variants are the same

xcept in the pool updating part. We note that EPR1R corresponds

o the EPR algorithm. Table 8 summarizes the computational results

hich show that the algorithms with the restart mechanism always

erform better than those without restarts. When comparing EPR1R

i.e., EPR) and EPR2R which differ only in the pool updating strat-

gy, we observe that EPR1R outperforms EPR2R by attaining more best

nown lower bounds and better average results. Based on these find-

ngs, we conclude that our adopted pool updating strategy and restart

echanism contribute to ensuring the high performance of EPR.

. Conclusion

The quadratic multiple knapsack problem is a useful model in

ractical applications that represents an imposing computational

hallenge. We propose a highly effective algorithm for the QMKP

ased on the general evolutionary path relinking (EPR) framework.

o ensure the efficacy of the proposed EPR algorithm, we address

our important issues: the construction method for creating the ini-

ial reference set of elite solutions, the path relinking method for gen-

rating intermediate solutions from an initial solution to a guiding

olution(s), the threshold search for local optimization and the pool

pdating strategy for maintaining the reference set. Given the highly

onstrained feature of the QMKP, we also devised a method to explore

nfeasible regions during the path relinking process which proves to

e a critical strategy for the performance of the algorithm.

Comprehensive experimental studies on two sets of 90 bench-

arks show that our EPR algorithm competes very favorably with the
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state-of-the-art algorithms. On the first set of 60 well-known QMKP

benchmark instances, EPR is capable of matching or improving the

best known lower bound for all 60 cases. Notably, the proposed algo-

rithm discovers an improved best solution (new lower bound) for 10

challenging benchmarks. On the set of 30 new large-sized instances,

EPR achieves the best lower bounds as well as average results over

multiple runs that are much better than those of the state-of-the-art

reference methods.

There are several elements that account for the high perfor-

mance of our proposed EPR algorithm. First is its mechanism to

explore infeasible solutions. As shown in Sections 5.1 and 5.2, this

mechanism allows the search to transition between structurally

different feasible solutions and helps the search to locate high

quality solutions. Second is manner in which we jointly use of

path relinking and local optimization provides the algorithm with a

high-level trade-off between diversification and intensification. As

revealed by the computational results of Section 4, the path relinking

procedure generates diversified (and possibly infeasible) solutions

while the local optimization procedure with responsive threshold

search ensures an intensified examination of some selected path

solutions. Finally, the fitness-based pool updating strategy used in

the proposed algorithm maintains the elitism of the reference set

while ensuring a healthy diversity, as is shown in Section 5.3.

For future work, we can consider another form of path relinking

called Exterior Path Relinking as recently elaborated in [38]. Exte-

rior Path Relinking offers the possibility of including characteristics

that are not present in the guiding solution during the relinking pro-

cess. It would also be interesting to adapt the path relinking approach

to other constrained knapsack problems (e.g., the multidimensional

knapsack problem [8], the quadratic knapsack problem with multiple

constraints [39]) and other quadratic optimization problems (e.g., the

quadratic assignment problem [10]).
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