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a b s t r a c t

An equitable k-coloring of an undirected graph G¼ ðV ; EÞ is a partition of its vertices into k disjoint
independent sets, such that the cardinalities of any two independent sets differ by at most one. As a
variant of the graph coloring problem (GCP), the equitable coloring problem (ECP) concerns finding a
minimum k for which an equitable k-coloring exists. In this work, we propose a backtracking based
iterated tabu search (BITS) algorithm for solving the ECP approximately. BITS uses a backtracking scheme
to define different k-ECP instances, an iterated tabu search approach to solve each particular k-ECP
instance for a fixed k, and a binary search approach to find a suitable initial value of k. We assess the
algorithm's performance on a set of commonly used benchmarks. Computational results show that BITS
is very competitive in terms of solution quality and computing efficiency compared to the state-of-the-
art algorithm in the literature. Specifically, BITS obtains new upper bounds for 21 benchmark instances,
while matching the previous best upper bound for the remaining instances. Finally, to better understand
the proposed algorithm, we study how its key ingredients impact its performance.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Given an undirected graph G¼ ðV ; EÞ with vertex set V ¼ fv1;
v2;…; vng and edge set E� V � V , a k-coloring of G is a partition of
its vertices into k disjoint independent sets fV1;V2;…;Vkg (also
called color classes), i.e., any two vertices of any Vi ði¼ 1;…; kÞ are
not linked by an edge. For a given k, G is k-colorable if a k-coloring
exists for G. The problem of finding a k-coloring for a given
number of k colors is called the graph k-coloring problem. The
classical graph coloring problem (GCP) is to determine the smal-
lest k (the chromatic number of G) such that G is k-colorable.

An equitable k-coloring of G (or k-eqcol) is a k-coloring fV1;

V2;…;Vkg such that the numbers of vertices in any two color
classes differ by at most one (i.e., JVi j � jVj Jr1, 8 ia j. This is
called the equity constraint Méndez-Díaz et al., 2015). In other
words, an equitable k-coloring is a conflict-free k-coloring satis-
fying the equity constraint. The equitable coloring problem (ECP)
is to determine the smallest number k of colors such that an
equitable k-coloring of G exists (Meyer, 1973). This minimum k is
called the equitable chromatic number of G and denoted by χeðGÞ.

Clearly the ECP is tightly related to the classical GCP. Like the
GCP, the ECP is NP-hard (Furmańczyk, 2005) and thus
gers, 2 bd Lavoisier, 49045

(F. Glover).
computationally challenging. In addition to its theoretical sig-
nificance, the ECP has a variety of applications, like garbage col-
lection (Tucker, 1973), partitioning and load balancing (Blazewicz
et al., 2001), scheduling (Ding et al., 2015; Irani and Leung, 1996;
Meyer, 1973), etc. For a review of possible applications of the ECP,
the reader is referred to recent papers like Bahiense et al. (2014),
Méndez-Díaz et al. (2014b).

Due to its relevance, much effort has been devoted to the stu-
dies of the ECP from a theoretical point of view. For example,
Meyer suggested a conjecture that χeðGÞoΔðGÞ for any connected
graph except the complete graphs and the odd circuits, where ΔðGÞ
is the maximum vertex degree of G (Meyer, 1973). Lih and Wu
showed that χeðGÞ ¼ χðGÞ holds for any connected bipartite graph
GðX;YÞ, where χðGÞ is the chromatic number of G (Lih and Wu,
1996). Lam et al. obtained an explicit formula to calculate the
equitable chromatic number of a complete n-partite graph (Lam
et al., 2001). Bodlaender and Fomin proved that the ECP can be
solved in polynomial time for graphs with bounded treewidth
(Bodlaender and Fomin, 2005). Kostochka and Nakprasit proved
that a graph with maximum degree ΔðGÞ is equitably k-colorable
for every kZΔþ1 if the average degree of vertices are at most Δ=5
(Kostochka and Nakprasit, 2005). Furmańczyk discussed the
computational complexity of the ECP for some special graphs
(Furmańczyk, 2005). Wu and Wang investigated the planar graphs
with large girth (Wu and Wang, 2008). Chen and Lih investigated
equitable colorings for trees (Chen and Lih, 1994) and Chang stu-
died equitable colorings for forests (Chang, 2009). Nakprasit and
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Nakprasit obtained some results on the ECP for planar graphs with
some special properties (Nakprasit and Nakprasit, 2012). Yan and
Wang investigated the ECP for Kronecker products of the complete
multipartite graphs and complete graphs (Yan and Wang, 2014).

From the computational point of view, several exact and heuristic
algorithms have been proposed in the literature for solving the ECP
for arbitrary graphs. Specifically, Furmanczyk and Kubale proposed
two constructive heuristics (Naive and Subgraph) (Furmanczyk and
Kubale, 2004). Bahiense et al. presented two effective branch-and-cut
algorithms (Bahiense et al., 2009, 2014). Méndez-Díaz et al. investi-
gated a polyhedral approach (Méndez-Díaz et al., 2014a), a DSatur-
based exact algorithm (Méndez-Díaz et al., 2015), and a tabu search
heuristic (Méndez-Díaz et al., 2014b). Kierstead et al. proposed a fast
algorithm ðOðn2ÞÞ to find an equitable k-coloring where k¼ΔðGÞþ1
(Kierstead et al., 2010).

Given the NP-hard nature of the ECP, it is unlikely that an exact
algorithm will be found that is able to determine the equitable
chromatic number of arbitrary graphs in polynomial time. Con-
sequently, as for any NP-hard problem, heuristics constitute a very
appealing and indispensable alternative which can be used to
approximate the equitable chromatic number of a graph. On the
other hand, the literature review shows that there are only limited
studies on heuristic algorithms for the ECP.

In this paper, we provide a method to solve the ECP approxi-
mately by means of a backtracking based iterated tabu search
(BITS) algorithm. BITS solves a series of k-ECP, i.e., equitable k-
coloring instances with different fixed k values. For a given k-ECP
(with a particular k), the purpose of the iterated tabu search (ITS)
is to seek a conflict-free equitable k-coloring. The backtracking
scheme is used to adjust k to an appropriate value. A technique
based on binary search is used to determine a good initial k value.

We perform a computational study testing our proposed BITS
algorithm on a large number of benchmark instances widely used
in the literature. The computational results show that our new
algorithm is very competitive in terms of both solution quality and
computation efficiency compared to the state-of-the-art heuristics.
Specifically, we are able to find new upper bounds of the equitable
chromatic number for 21 benchmark instances, matching the
previous best upper bound for the remaining instances.

The rest of the paper is organized as follows. In Section 2, we
describe the components of the BITS algorithm, including the search
space and evaluation function, the initial solution generation proce-
dure, the iterated tabu search procedure, and the binary search pro-
cedure for determining an initial k. In Section 3, we present the com-
putational benchmark assessments and compare our results with those
of the state-of-the-art heuristic algorithms in the literature. Section 4
analyzes and discusses some important components of the proposed
algorithm. Finally, we provide concluding comments in Section 5.
2. Backtracking based iterated tabu search for the ECP

In this section, we present the general solution approach and
the supporting procedures that compose it.

2.1. Solution approach and general procedure
Algorithm 1. Main scheme of the proposed BITS algorithm for the
ECP.
1:

2:
Input: Graph G¼ ðV ; EÞ, the cutoff time tmax, the depth of
backtracking m, the depth of tabu search α, the number of

perturbations β.

Output: the best number of colors ðknÞ and an equitable kn-
coloring (sn).
/n Find an initial k (kr) and an equitable kr-coloring using
the binary search n/

ðkr ; srÞ’Binary_SearchðV ; E;αÞ =n Determine an initial kr

and sr , Section 2.3 n/

kn’kr , k’kr , sn’sr /n kn and sn keep the best results
found n/

repeat
if k¼ kn�m or k¼2 then
k’kn�1 /n backtrack to kn�1once k¼ kn�m or 2
n/

else
k’k�1

end if
10:

/n solve the corresponding k-ECP using the ITS algorithm

n/

s’Iterated_Tabu_Searchðk;G;α;βÞ /n Section 2.4 n/

if f ðsÞ ¼ 0 then
kn’k, sn’s

end if
until TimeðÞZtmax
return ðkn; snÞ
16:

As a basis for determining the equitable chromatic number of a
graph by finding the smallest number k of colors such that an
equitable k-coloring exists, we employ the fact that, like the GCP
(Galinier and Hertz, 2006; Galinier et al., 2012; Hertz and de
Werra, 1987), the ECP can be approximated by solving a series of k-
ECP problems with decreasing k values, where a k-ECP problem
aims at searching for a legal equitable k-coloring for a given fixed k
value. This approach is called k-fixed penalty approach in the
context of the GCP (Galinier and Hertz, 2006; Galinier et al., 2012)
and used in TabuEqCol (Méndez-Díaz et al., 2014b) for the ECP. Our
BITS algorithm, however, adopts this general solution approach
with a notable difference. Unlike previous studies, where the
search stops once a k-ECP cannot be solved and returns kþ1 as the
final solution, our BITS algorithm continues with k�1; k�2… even
if the k-ECP is not solved. As a result, BITS iteratively tries to find
an equitable k-coloring with kAfkn�1; kn�2;…; kn�mg where kn

is the current smallest number of colors admitting an equitable
kn-coloring and m41 is a parameter. We provide arguments in
favor of this approach in Section 2.5.

Specifically, starting from an initial k determined with the method
given in Section 2.3, our BITS algorithm seeks to solve the k-ECP to
find an equitable k-coloring. This leads to one of two possible situa-
tions. First, if an equitable k-coloring is found, then after recording k
as kn (kn records the current smallest number of colors admitting an
equitable kn-coloring), we set k to k�1 and solve the new k-ECP.
Second, if no legal equitable k-coloring is found for the current k after
a given amount of computational effort, we still set k to k�1 and try
to solve the new k-ECP. If no k-ECP is solved for m consecutive k¼
kn�1; kn�2;…; kn�m values (where the parameter m is called the
backtracking depth and fixed to 4 in this paper), we perform a
backtracking step by resetting k to kn�1 and start a new round of
search with kAfkn�1; kn�2;…; kn�mg. Backtracking also occurs
when k¼2 (which is the smallest lower bound for χeðGÞ).

To solve each k-ECP, our BITS algorithm employs an iterated
tabu search (ITS) procedure (Section 2.4) which operates in a
solution space where the equity constraint is always satisfied and
only the coloring constraint can be violated (Section 2.2). ITS
undertakes to find a conflict-free k-coloring where the equity
constraint is always maintained during the search.

The pseudo-code of the BITS algorithm is given in Algorithm 1,
consisting of two stages. In the first stage, a binary search method
is employed to rapidly determine an appropriate initial number of
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colors (kr) which admits an equitable kr-coloring (lines 3–4, see
Section 2.3). In the second stage, the algorithm enters a loop which
primarily consists of three parts, the backtrack mechanism for
setting k (lines 6–10), the iterated tabu search procedure for sol-
ving the associated k-ECP (line 11, see Section 2.4), and the pro-
cedure for updating kn (lines 12–14). BITS terminates once a given
timeout limit is reached (line 15) and returns the smallest number
kn of colors admitting an equitable kn-coloring as the approximate
equitable chromatic number.

2.2. Search space and evaluation function

For a given k-ECP, the BITS algorithm searches a space Ωk

composed of all possible k-partitions (denoted by P ¼ fV1;

V2;…;Vkg) satisfying the equity constraint, which are called k-
eqpartitions in this work. Formally, Ωk can be written as

Ωk ¼ fP : ∣∣Vi∣� ∣Vj∣∣r1; ia j;1r i; jrkg ð1Þ
For the ECP, the complete search space Ω explored by our BITS
algorithm can be written as

Ω¼ ⋃
n

k ¼ 2
Ωk ð2Þ

Notice that any candidate k-eqpartition of the search space
satisfies the equity constraint, but does not necessarily satisfy the
coloring constraint, i.e., some adjacent vertices may receive the
same color.

To evaluate the quality of a candidate k-eqpartition in Ω, we
adopt an evaluation function which counts the total number of
conflicting edges induced by the k-eqpartition. Specifically, letting
s¼ fV1;V2;…;Vkg be a k-eqpartition inΩ, the evaluation function f
(s) used by our BITS algorithm is written as Galinier and Hertz
(2006); Galinier et al. (2012):

f ðsÞ ¼
X

fvi ;vjgAE

δði; jÞ ð3Þ

δði; jÞ ¼
1; if (yAf1;2;…; kg such that viAVy and vjAVy; ð4Þ
0; otherwise; ð5Þ

(

Therefore, a k-eqpartition sAΩ with f ðsÞ ¼ 0 corresponds to an
equitable k-coloring satisfying both the equity and coloring con-
straints and is thus a legal solution to the k-ECP. To locate such an
equitable k-coloring, our ITS procedure explores the search space
of the given k-ECP by transitioning between various k-eqpartitions
while minimizing the evaluation function with the purpose of
attaining a solution s with f ðsÞ ¼ 0.

2.3. Binary search method for finding an initial value of k
Algorithm 2. Binary search ðV ; E;αÞ.

1:

2:
3:
4:
5:

6:
7:
8:
9:
10:
11:

12:
13:
Input: Graph G¼ ðV ; EÞ, the depth of tabu search α.

Output: the obtained kr and an equitable kr-coloring sr
UK’jV j , LK’0
while UK4LK þ1 do
k’⌊ðUK þLK Þ=2c

s’ Solution_Initialization(V,E,k) /n Section 2.4.1 n/
1:
s’ Tabu_Searchðs;αÞ /n Section 2.4.2 n/

2:
if f ðsÞ ¼ 0 then
3:
sr’s, kr’k, UK’k
4:
else
5:
LK’k
6:
end if
7:
end while
return ðkr ; srÞ
14:

Clearly, it would be excessively time-consuming for BITS to
solve all k-ECP problems (2rkr jV j ). Hence, to speed up the
search, we employ a binary search method to determine an
appropriate initial value of k.

Our binary search method (Algorithm 2) uses two variables
(respectively denoted by UK and LK) to record the upper and lower
bounds of k. Specifically, we begin by setting UK ¼ jV j , LK¼0 and
k¼ ⌊ðUK þLK Þ=2c and then solve the associated k-ECP by means of a
short tabu search starting with a random initial solution in Ωk. If an
equitable k-coloring is obtained by the tabu search procedure, we set
UK to the current k, and set LK to the current k otherwise. The above
process is repeated until the condition UK rLK þ1 holds. Finally, UK is
returned as the result of the binary search method.

2.4. Iterated tabu search procedure for k-ECP
Algorithm 3. Iterated tabu search for k-ECP.
Input: Graph G¼ ðV ; EÞ, the number of colors k, the para-
meter β, the depth of tabu search α

Output: The best solution s found during this search
process

s’Solution_InitializationðV ; E; kÞ /n Section 2.4.1 n/

s’ Tabu_Searchðs;αÞ /n Section 2.4.2 n/

d’0 /n d counts the consecutive perturbations where s
is not updated n/

repeat
s0’Perturbation_OperatorðsÞ /n Section 2.4.3 n/

s″’ Tabu_Searchðs0;αÞ /n Section 2.4.2 n/

if f ðs″Þo f ðsÞ then

s’s″
d’0

else
d’dþ1

end if
until d¼ β or f ðsÞ ¼ 0

return s
16:

Our ITS algorithm starts with an initial solution (see Section 2.4.1)
and then applies a basic tabu search (TS0) procedure (in Section 2.4.2)
to improve the incumbent solution (lines 3–4). Then, ITS repeatedly
applies a perturbation operator to modify the incumbent solution (in
Section 2.4.3) followed by an improvement phase by TS0. The resulting
solution is accepted as the new incumbent solution as long as it is
better than the incumbent solution in terms of the evaluation function
f (Eq. (3)) (lines 5–15). Our ITS procedure terminates if a conflict-free
(and equitable) k-coloring is found or if the best solution found so far
cannot be improved after a number β of consecutive perturbations.

2.4.1. Initialization procedure for the k-ECP

Algorithm 4. Solution initialization for k-ECP.
Input: Graph G¼ ðV ; EÞ, the number k of colors used

Output: a k-eqpartition fV1;V2;…;Vkg satisfying the equity
constraint

for each iA ½1; k� do

Vi’∅
end for
U’V=n U is the set of unassigned vertices n/

for each iA ½1; k� do
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Randomly pick a vertex vAU

Vi’Vi [ fvg, U’U⧹fvg
end for
i’1

while Ua∅ do
v’arg minfjΓiðv0Þj : v0AUg
13:
=nΓiðvÞis the set of neighbors of v in Vi, ties are broken
randomly n/

Vi’Vi [ fvg, U’U⧹fvg
i’1þ i mod k.

end while
16:

The purpose of the initialization step (Algorithm 4) is to gen-
erate an initial solution (i.e., a k-eqpartition) with as few conflicts
as possible for the given k-ECP problem. This is achieved as fol-
lows. First, we randomly pick k distinct vertices from the set U of
unassigned vertices (U is set to V initially) and assign them
respectively to k color classes. Then, the unassigned vertices are
assigned one by one to the current color class Vi in a greedy way,
where Vi denotes the ith color class, and the initial value of i is set
to 1. More specifically, for the current color class Vi, we choose an
unassigned vertex v that has the smallest number of neighbors in
Vi and assign it to Vi, breaking the ties at random. After that, we
move to the next color class in a rotating fashion by setting
i’1þ imod k, and repeat the former operations.

2.4.2. Basic tabu search procedure

Algorithm 5. Tabu search ðs0;αÞ.

Input: Input solution s0, the neighborhood N, the depth of
tabu search α

Output: The best solution sb found during the tabu search
process

s’s0 /n s is the current solution n/

sb’s /n sb is the best solution found so far n/

d’0 /n d counts the consecutive iterations where sb is
not updated n/

repeat
Choose a best admissible neighboring solution s0ANðsÞ
7:

/n s0 is admissible if it is not forbidden by the tabu list or

better than sb n/

s’s0
Update tabu list

if f ðsÞo f ðsbÞ then
sb’s,

d’0
else
d’dþ1

end if
until d¼ α or f ðsÞ ¼ 0

return sb
17:

The basic tabu search procedure TS0 used in our ITS algorithm
is based on the classic TabuCol algorithm for the GCP (Hertz and de
Werra, 1987). The goal of TS0 is to find a legal k-coloring (i.e., a
conflict-free k-eqpartition) starting from a given initial conflicting
k-coloring in the search space Ωk (see Section 2.2). Our TS0 pro-
cedure shares the same evaluation function and neighborhood
structure as TabuEqCol (Méndez-Díaz et al., 2014b). However, in
contrast to TabuEqCol (and TabuCol), our TS0 procedure employs a
hybrid tabu list management strategy to control the tabu tenures
dynamically. For the sake of completeness, we describe our TS0

procedure as follows.
Given a neighborhood function N (see below), the evaluation

function f (Section 2.2), and a given initial solution s0 (Section
2.4.1), our TS0 iteratively replaces the incumbent solution s by a
neighboring solution s0 (initially set to s0) until a stopping condi-
tion is met, i.e., an equitable k-coloring is found or the best solu-
tion found so far is not updated during α consecutive iterations (α
is called the depth of tabu search). At each iteration of TS0, the
incumbent solution s is replaced by a best admissible neighboring
solution s0 generated by a move operator, and the associated move
is recorded on the tabu list to prevent the reverse move from being
performed for the next tt iterations, where tt is called the tabu
tenure and is dynamically controlled by the tabu list management
strategy (see below). Here, a move is considered to be admissible if
it is not forbidden by the tabu list or if it leads to a solution better
than the best solution found so far. The pseudo-code of TS0 is
described in Algorithm 5, and its ingredients are described as
follows.

2.4.2.1. Neighborhood structures. Our tabu search procedure
exploits the union of two basic neighborhoods, i.e., the critical
one-move neighborhood N1 and critical swap neighborhood N2.
The neighborhood N1 can be described by a constrained OneMove
operator. Given a conflicting k-coloring (or a k-eqpartition)
s¼ fV1;V2;…;Vkg, the constrained OneMove operator transfers a
conflicting vertex v from its current color class Vi to another color
class Vj ensuring that the equity constraint is always respected, i.e.,
jVi jZ⌊nkc and jVj jr⌈nk⌉. Let 〈v;Vi;Vj〉 designate such a move and
s � 〈v;Vi;Vj〉 be the resulting neighboring solution when applying
the move to s. Let C(s) be the set of conflicting vertices in the
current solution s, a vertex being conflicting if it belongs to the
same color class as at least one of its adjacent vertices. Then the
neighborhood N1 of s is composed of all possible solutions that can
be obtained by applying the constrained OneMove operator to s.
i.e.,

N1ðsÞ ¼ s � 〈v;Vi;Vj〉 : vAVi \ CðsÞ; ia j; jVi j4
n
k

j k
; jVj jo⌈

n
k
⌉

n o
where n is the number of vertices in the graph. In other words,
N1ðsÞ is the set of k-eqpartitions which can be reached by trans-
ferring a conflict vertices of s to another color class. Note that this
neighborhood is empty and not applicable if n¼ l� k holds, where
l is a positive integer. Clearly N1 is bounded by OðjCðsÞj � kÞ in size.

The neighborhood N2 is defined by the constrained Swap
operator. Given two vertices v and u which are located in two
different color classes and either v or u is a conflict vertex, Swapð
v;uÞ exchanges their color classes to produce a neighboring solu-
tion. Thus, the neighborhood N2 of a solution s is composed of all
possible neighboring solutions that can be obtained by applying
the constrained Swap operator to s, i.e.,

N2ðsÞ ¼ fs � Swapðv;uÞ : vAVi;uAVj; ia j; fv;ug \ CðsÞa∅g

N2ðsÞ is thus the set of k-eqpartitions which can be reached
from s by swapping two vertices such that at least one of them is a
conflict vertex. Clearly the size of N2 is bounded by OðjCðsÞj � nÞ.

Our TS0 procedure explores the combined neighborhood N3ðsÞ
which is the union of N1 and N2 : N3ðsÞ ¼N1ðsÞ [ N2ðsÞ.

2.4.2.2. Fast neighborhood evaluation technique. To effectively cal-
culate the move value (Δf) which identifies the change in the
evaluation function f (Eq. (3)), our TS0 procedure adopts a fast
incremental evaluation technique first developed for the graph
coloring problem (Dorne and Hao, 1998; Fleurent and Ferland,
1996; Galinier and Hao, 1999Dorne and Hao). Specifically, a n� k
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matrix M is maintained in which the entry M½v�½q� ð1rvrn;1r
qrkÞ is the number of adjacent vertices to v which are colored in
color q in the current solution s¼ fV1;V2;…;Vkg, i.e., M½v�½q� ¼P

fv;ugAEδ1ðq; PðuÞÞ, where P(u) represents the color class of vertex
u in s and the function δ1ðx; yÞ is defined as follows:

δ1ðx; yÞ ¼
1; for x¼ y; ð6Þ
0; otherwise; ð7Þ

(

With this memory structure, each move value can be rapidly cal-
culated. First, when a OneMove move (i.e., 〈v;Vi;Vj〉) is performed,
its move value, Δf ðov;Vi;Vj4 Þ, can be calculated as
Δf ð〈v;Vi;Vj〉Þ ¼M½v�½Vj��M½v�½Vi�, and then the matrix M is
accordingly updated as follows. For each neighbor u of vertex v,
M½u�½Vi�’M½u�½Vi��1, and M½u�½Vj�’M½u�½Vj�þ1. Clearly, updating
M can be done in O(n). Second, if a Swap move (i.e., Swapðu; vÞ) is
performed, its move value Δf ðSwapðu; vÞÞ can be calculated as
Δf ðSwapðu; vÞÞ ¼ ðM½v�½PðuÞ��M½v�½PðvÞ�ÞþðM½u�½PðvÞ��M½u�½PðuÞ�Þ�
2δ2ðv;uÞ, where the function δ2ðv;uÞ is defined as

δ2ðv;uÞ ¼
1; fv;ugAE; ð8Þ
0; otherwise; ð9Þ

(

It should be noted that the Swapðu; vÞ move can be performed as a
combined move which consists of two consecutively performed
OneMove moves, i.e., s � Swapðv;uÞ ¼ ðs � 〈v; PðvÞ; PðuÞ〉Þ � 〈u; PðuÞ;
PðvÞ〉, thus matrix M can be updated in O(n).

2.4.2.3. Tabu list management strategy. The tabu list is used to
impart vigor to the search and prevent (or strongly discourage) the
search from revisiting previously encountered solutions. If a OneMove
move ð〈v; Pi; Pj〉Þ is performed, i.e., vertex v is displaced from its cur-
rent color class Vi to color class Vj, then vertex v is forbidden to move
back to Vi for the next tt (tabu tenure) iterations. Similarly, if a Swap
ðv;uÞ move is performed, vertices v and u are forbidden to join their
respective color classes for the next tt iterations. During the search
process, we use a hybrid tabu list management strategy to dynami-
cally tune the tabu tenure tt, which integrates the following rules.

By the first rule, if the current iteration is x, the tabu tenure of a
move is determined as: ttðxÞ ¼ C0þrandðC1Þ, where C0 and C1 are two
constant numbers which are empirically set to 5, and randðC1Þ is a
random number between 0 to C1. This rule is used to generate small
tabu tenures ðttr10Þ, thus favoring an intensified search of tabu
search.

The second rule, first proposed in Dorne and Hao (1998);
Galinier and Hao (1999) and adapted in Méndez-Díaz et al. (2014b)
consists of setting ttðxÞ ¼ α0 � jCðsÞj þrandðβÞ, where C(s) is the
set of conflicting vertices in the current solution s, α0 and β are
two parameters which are respectively set to 0.9 and 5.

The third rule adapts the technique proposed in Galinier et al.
(2011) where the tabu tenure is adjusted by a periodic step func-
tion. Specifically, the tabu tenure function is defined, for each
period, by a sequence of values ða1; a2;…; apþ1Þ and a sequence of
interval margins ðx1; x2;…; xpþ1Þ such that for each iteration x in
½xi; xiþ1�1�, ttðxÞ ¼ aiþrandð2Þ. Here, p is fixed to 15,
ðaÞi ¼ 1;…;15 ¼ Tmax

8 ð1;2;1;4;1;2;1;8;1;2;1;4;1;2;1Þ, where Tmax is a
parameter and represents the maximum tabu tenure. The interval
margins are defined by x1 ¼ 1, xiþ1 ¼ xiþ3ai; ðir15Þ.

To enhance the robustness of the tabu search algorithm, the
three preceding rules are applied in alternation and each rule is
employed for γ ðγ ¼ 3� 104Þ consecutive iterations.

2.4.3. Perturbation operators of iterated tabu search
During the TS0 procedure, if the best solution found so far

cannot be improved during α (i.e., the depth of tabu search)
consecutive iterations, the search is estimated to be trapped in a
deep local optimum. To jump out of the local optimum trap, we
follow the strategy of the breakout local search method (Benlic
and Hao, 2013) and apply both random perturbations and directed
perturbations to change the incumbent solution. These two per-
turbations can be described as follows.

Given a solution s to be perturbed, the directed perturbation
iteratively performs η1 (empirically set to 5� 103) OneMove or Swap
moves (see Section 2.4.2 for these operators), and at each iteration it
chooses a best unforbidden move to perform, breaking ties randomly.
First, if a OneMovemove (denoted by 〈v;Vi;Vj〉) is chosen, i.e., vertex v

is moved from the current color class Vi to the new color class Vj, then
vertex v is forbidden to move back to Vi for the next ttmoves. Second,
if a Swap move (denoted by Swapðv;uÞ) is performed, then vertices v
and u are forbidden to move back to their respective color class for
the next tt moves. Here, tt is the tabu tenure and is dynamically
determined as tt ¼ 2000þrandð1000Þ, where randð1000Þ represents a
random number between 0 and 1000. In addition, a forbidden move
is always accepted if it leads to a better solution than the best solution
found so far.

The goal of the directed perturbation is twofold. In addition to
leading the search toward a new search region, the directed per-
turbation also serves as a local optimization procedure for some
special problem instances.

The random perturbation is composed of η2 (empirically set to
0:3� n) consecutively performed Swap moves that are randomly
chosen from the set of available moves, and for each swap move
the colors of two vertices v and u belonging to two different color
classes are exchanged.

In our ITS algorithm, the random and directed perturbations
are applied with a probability of pA ½0;1� and 1�p, respectively.
2.5. Motivation of the backtracking mechanism

As explained in Section 2.1, we approximate the equitable
chromatic number by searching for k within an interval ½kn�m; kn

�1� where kn is the current smallest number of colors admitting
an equitable kn-coloring. This strategy is different from the com-
monly used technique for the graph coloring problem where the
search stops and returns kn ¼ kþ1 as the approximate chromatic
number as soon as no k-coloring can be found. We justify our
adopted strategy as follows.

For the GCP, the ðk�1Þ-coloring problem is necessarily more
difficult than the k-coloring problem. Hence in this case it is sui-
table to stop the search for a ðk�1Þ-coloring if no k-coloring can
be found.

However, unlike the GCP, due to the equity constraint in the
ECP, it is possible that the ðk�1Þ-ECP is easier to solve than the k-
ECP for some graphs and some k values (This is experimentally
confirmed as we show in Section 4.3). Therefore, for the ECP, it is
not appropriate to solve a series of k-ECP with strictly decreasing k
values, since such a search process can be blocked by a very dif-
ficult k-ECP, but can be unblocked if we continue with
ðk� jÞ�ECP ðj41Þ. For this reason, our BITS algorithm uses a
backtracking mechanism to allow the search to iteratively consider
several k-ECP problems with kAfkn�1; kn�2;…; kn�mg. As we
show in Sections 3 and 4.3, this strategy proves to be useful for a
number of problem instances.
3. Computational results and comparisons

In this section, we present computational results and compar-
isons to assess the performance of the proposed BITS algorithm.



Table 1
Settings of important parameters.

Parameters Section Description Values

m 2.1 Depth of backtracking 4
β 2.4 Number of perturbations 30
α 2.4.2 Depth of tabu search f102 ;105g
Tmax 2.4.2 Maximum tabu tenure of TS 80
γ 2.4.2 Number of iterations for each tabu rule 3� 104

η1 2.4.3 Strength of directed perturbation 5� 103

η2 2.4.3 Strength of random perturbation 0:3� n
p 2.4.3 Probability of choosing the random

perturbation
0.7
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3.1. Benchmark instances

We tested a set of 73 benchmark instances which are com-
monly used in the literature. These instances, which were initially
proposed for the conventional graph coloring problems, are
available at http://www.info.univ-angers.fr/pub/porumbel/graphs/
and http://www.cs.hbg.psu.edu/txn131/graphcoloring.html.

3.2. Parameter settings and experimental protocol

First, Table 1 shows the parameters used in our algorithm as
well as their settings which are determined by a preliminary
experiment. Note that the tabu search depth parameter α takes
102 for the tabu search procedure employed in the binary search
method introduced in Section 2.3, and 105 in other cases.

Our BITS algorithm was coded in Cþþ and compiled using the
gþþ compiler with the ‘-O2’ option,1 and all experiments were
carried out with an Intel Xeon E5440 processor (2.83 GHz CPU and
2 Gb RAM), running the Linux operating system. The user times of the
DIMACS machine benchmark procedure2 on our machine are 0.23,
1.42 and 5.42 s for graphs r300.5, r400.5, and r500.5, respectively.

Two experiments were carried out to assess and compare the
performance of the proposed BITS algorithm. In the first experi-
ment, we followed Méndez-Díaz et al. (2014b) and ran our BITS
algorithm one time to solve each instance with a cutoff time of
3600 s. This allowed us to compare our results with those of
Méndez-Díaz et al. (2014b). Secondly, to further assess the search
capacity of the proposed algorithm under a longer timeout limit,
in the second experiment we used a cutoff time of 104 s for the
instances with nr500 and 2� 104 s for larger instances with
n4500, respectively. Note that such cutoff limits (and even larger
values) were typically used in the literature for testing graph
coloring algorithms. Moreover, given the random nature of our
BITS algorithm, each instance was independently solved 20 times
in the second experiment.

3.3. Computational results and comparison

Table 2 reports the computational results achieved by the BITS
algorithm on the set of 73 benchmark instances.3 The first two
columns give the name and size of each instance. Columns 3 and
4 indicate the best lower bound (LB) and upper bound (UB) of χe
reported in Méndez-Díaz et al. (2014b, 2015), which are yielded by
some very recent algorithms or CPLEX. Column 5 reports the best
results (kpre) obtained in Méndez-Díaz et al. (2014b) by means of a
recent and highly effective tabu search algorithm which is the
1 The source code of our BITS algorithm will be available at http://www.info.
univ-angers.fr/pub/hao/ecp.html.

2 dmclique: ftp://dimacs.rutgers.edu/pub/dsj/clique.
3 The best results reported in this work is available at: http://www.info.univ-

angers.fr/pub/hao/ecp.html
current best performing heuristic for the ECP, with a one hour
cutoff time. The results of our first experiment with a one hour
cutoff time are given in column 6 (k1), and the results of the sec-
ond experiment with relaxed cutoff times are given in columns 7–
10, including the best result for each instance (i.e., the smallest
number of colors achieved by the BITS algorithm) over 20 inde-
pendent runs (kbest), the average results (kavg), the success rate (SR)
to achieve kbest over 20 runs, and the average computing time (in
seconds) to obtain our best results (t(s)). A bold entry highlights an
improved result relative to the published best upper bound. An
entry in italics indicates that our upper bound matches the current
best lower bounds and consequently the optimality of the solution
is proved. Entries with “-” mean that the corresponding results are
not available in the literature.

Table 2 discloses that the outcomes from our BITS algorithm are
noteworthy compared to the current best known results in the
literature. First, BITS improves the best known upper bound for 21
instances, while matching the best known upper bound for the
other instances that have been investigated in previous studies.
Second, for 26 instances, our BITS algorithm attains the optimum
solutions, i.e., our upper bounds equal the best lower bounds. In
addition, our BITS algorithm obtains a success rate of at least 10/20
except for 17 instances, which shows the robustness of the algo-
rithm. Finally, the average computing time is related to the hard-
ness of the instances, and varies between 0 and 2� 104 s.

Compared to the highly effective TabuEqCol algorithm of
Méndez-Díaz et al. (2014b) which reports the previously best
known upper bounds for the 50 tested instances, our algorithm
under the same one hour cutoff time delivers a better result
(upper bound) (k1) for 26 instances, while achieving the same
bounds for the remaining 24 instances. TabuEqCol was run on a
computer with an Intel i5 CPU 750@2.67Ghz, which is comparable
to the computer used to run our BITS algorithm (with an Intel
Xeon E5440 CPU 2.83 GHz).
4. Analysis and discussions

In this section, we study several key ingredients of the BITS
algorithm to get some insight into its behavior.

4.1. Influence of the tabu list management strategy

The effectiveness of the critical tabu search procedure depends on
its tabu list management strategy. To show the impact of our multiple
tabu list strategy, we carried out an additional experiment based on a
set of 40 representative instances by means of our BITS algorithm and
its three variants, i.e., BITS1, BITS2, and BITS3 which respectively
employ the first, second, and third tabu list management rule alone
(Section 2.4.2 for details). In this experiment, each algorithm was
independently performed 20 times to solve each instance with the
same cutoff time limits given in Section 3.2.

The experimental results are summarized in Table 3. The first
column indicates the names of instances, and the second column
shows the best results (kn) yielded in this experiment. The results
of BITS and its three variants are respectively listed in columns
3–14, including the best results in the number of colors used
(kbest), the success rate to reach kbest over 20 runs (SR), and the
difference between kbest and kn (Δ¼ kbest�kn). The rows Equal and
Worse respectively indicate the number of instances for which the
associated algorithm attains an equal and worse result compared
to kn. The row Sum denotes the sum of Δ over the tested instances.

Table 3 discloses that the multiple tabu list strategy leads to the
best performance among all 4 compared strategies. First, in terms of
the number of instances for which the associated algorithm yields a
worse result compared to kn, BITS misses the current best known

http://www.info.univ-angers.fr/pub/porumbel/graphs/
http://www.cs.hbg.psu.edu/txn131/graphcoloring.html
http://www.info.univ-angers.fr/pub/hao/ecp.html
http://www.info.univ-angers.fr/pub/hao/ecp.html
ftp://dimacs.rutgers.edu/pub/dsj/clique
http://www.info.univ-angers.fr/pub/hao/ecp.html
http://www.info.univ-angers.fr/pub/hao/ecp.html


Table 2
Computational results of the proposed BITS algorithm on the set of 73 benchmark instances. Improved results are indicated in bold compared to the previous best upper
bound. The optimum results obtained in this work are indicated in italic.

Instance N LB (Méndez-Díaz et al., 2014b,
2015)

UB (Méndez-Díaz et al., 2014b,
2015)

kpre (Méndez-Díaz et al.,
2014b)

BITS

k1 kbest kavg SR t(s)

DSJC125.1 125 5 5 5 5 5 5.0 20/20 0.96
DSJC125.5 125 9 18 18 17 17 17.5 10/20 5169.38
DSJC125.9 125 43 45 45 44 44 44 20/20 0.16
DSJC250.1 250 5 8 8 8 8 8.0 20/20 5.50
DSJC250.5 250 12 32 32 32 30 31.9 1/20 3265.63
DSJC250.9 250 63 83 83 72 72 72.0 20/20 1179.92
DSJC500.1 500 5 13 13 13 13 13.0 20/20 6.96
DSJC500.5 500 13 62 63 57 56 56.95 1/20 484.60
DSJC500.9 500 101 148 182 130 129 129.9 2/20 3556.53
DSJR500.1 500 12 12 12 12 12 12.0 20/20 0.58
DSJR500.5 500 120 131 133 126 126 126.3 14/20 3947.61
DSJC1000.1 1000 5 22 22 22 21 21.95 1/20 3605.49
DSJC1000.5 1000 15 112 112 112 103 105.1 3/20 18078.94
DSJC1000.9 1000 126 268 329 254 252 253.3 1/20 4064.65
R125.1 125 – – – 5 5 5.00 20/20 0.01
R125.5 125 – – – 36 36 36.00 20/20 0.39
R250.1 250 – – – 8 8 8.00 20/20 0.01
R250.5 250 – – – 67 66 66.65 7/20 6275.08
R1000.1 1000 – – – 20 20 20.00 20/20 3.09
R1000.5 1000 – – – 269 250 250.40 12/20 10723.29
le450_5a 450 5 5 – 5 5 5.00 20/20 45.86
le450_5b 450 5 5 7 5 5 5.00 20/20 74.43
le450_5c 450 – – – 5 5 5 20/20 1877.73
le450_5d 450 5 8 8 5 5 5.00 20/20 2231.59
le450_15a 450 15 15 – 15 15 15.00 20/20 4.44
le450_15b 450 15 15 15 15 15 15.00 20/20 4.16
le450_15c 450 – – – 15 15 15.1 18/20 410.35
le450_15d 450 15 16 16 15 15 15.70 6/20 629.83
le450_25a 450 25 25 – 25 25 25.00 20/20 0.72
le450_25b 450 25 25 25 25 25 25.00 20/20 0.78
le450_25c 450 – – – 26 26 26.00 20/20 16.50
le450_25d 450 25 27 27 26 26 26.00 20/20 14.08
wap01a 2368 41 46 46 43 42 42.60 8/20 4183.29
wap02a 2464 40 44 44 42 41 41.80 4/20 6829.03
wap03a 4730 40 50 50 46 45 45.05 19/20 11267.27
wap04a 5231 – – – 46 44 44.15 17/20 11345.30
wap05a 905 – – – 50 50 50.00 20/20 8.46
wap06a 947 – – – 42 41 41.70 6/20 6892.09
wap07a 1809 – – – 43 43 43.05 19/20 718.25
wap08a 1870 – – – 43 43 43.05 19/20 951.85
flat300_28_0 300 11 36 36 35 34 34.70 6/20 4407.62
flat1000_50_0 1000 – – – 112 101 102.80 1/20 9206.28
flat1000_60_0 1000 – – – 112 102 102.90 5/20 10201.53
flat1000_76_0 1000 14 112 112 112 102 103.40 3/20 13,063.39
latin_square_10 900 90 130 130 129 115 120.00 1/20 17,859.13
C2000.5 2000 – – – 202 201 201.65 7/20 4808.96
C2000.9 2000 – – – 504 502 502.45 11/20 7772.04
mulsol.i.1 197 49 49 50 49 49 49.00 20/20 14.82
mulsol.i.2 188 34 39 48 36 36 36.35 13/20 3633.61
fpsol2.i.1 496 65 65 78 65 65 65.00 20/20 830.30
fpsol2.i.2 451 47 47 60 47 47 47.00 20/20 976.07
fpsol2.i.3 425 55 55 79 55 55 55.00 20/20 729.47
inithx.i.1 864 54 54 66 54 54 54.00 20/20 1468.27
inithx.i.2 645 30 93 93 36 36 36.35 13/20 12412.83
inithx.i.3 621 – – – 38 37 37.45 11/20 9214.61
zeroin.i.1 211 49 49 51 49 49 49.00 20/20 1367.14
zeroin.i.2 211 36 36 51 36 36 36.00 20/20 96.99
zeroin.i.3 206 36 36 49 36 36 36.00 20/20 109.11
myciel6 95 7 7 7 7 7 7.00 20/20 0.00
myciel7 191 8 8 8 8 8 8.00 20/20 0.02
4-FullIns_3 114 7 7 – 7 7 7.00 20/20 0.00
4-FullIns_4 690 6 8 8 8 8 8.00 20/20 0.23
4-FullIns_5 4146 6 9 9 9 9 9.00 20/20 54.49
1-Insertions_6 607 3 7 7 7 7 7.00 20/20 0.34
2-Insertions_5 597 3 6 6 6 6 6.00 20/20 0.11
3-Insertions_5 1406 3 6 6 6 6 6.00 20/20 0.57
school1 385 15 15 15 15 15 15.00 20/20 1.30
school1_nsh 352 14 14 14 14 14 14.00 20/20 2.63
qg.order40 1600 40 40 40 40 40 40.00 20/20 4.73
qg.order60 3600 60 60 60 60 60 60.00 20/20 21.57
ash331GPIA 662 4 4 4 4 4 4.00 20/20 2.02
ash608GPIA 1216 3 4 4 4 4 4.00 20/20 0.50
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Table 2 (continued )

Instance N LB (Méndez-Díaz et al., 2014b,
2015)

UB (Méndez-Díaz et al., 2014b,
2015)

kpre (Méndez-Díaz et al.,
2014b)

BITS

k1 kbest kavg SR t(s)

ash958GPIA 1916 3 4 4 4 4 4.00 20/20 23.31

Table 3
Influence of tabu list management strategies on the performance of the BITS algorithm. The performances of the BITS algorithms with four different tabu list management
strategies are assessed on a set of 40 representative instances.

Instance kn BITS1 BITS2 BITS3 BITS

kbest SR Δ kbest SR Δ kbest SR Δ kbest SR Δ

DSJC125.5 17 17 20/20 0 17 3/20 0 17 1/20 0 17 10/20 0
DSJC250.5 29 29 2/20 0 32 20/20 3 32 20/20 3 30 1/20 1
DSJC250.9 72 72 20/20 0 72 20/20 0 72 3/20 0 72 20/20 0
DSJC500.1 13 13 20/20 0 13 20/20 0 13 13/20 0 13 20/20 0
DSJC500.5 56 56 7/20 0 57 20/20 1 57 1/20 1 56 1/20 0
DSJC500.9 128 128 2/20 0 129 14/20 1 131 10/20 3 129 2/20 1
DSJR500.5 126 126 11/20 0 126 9/20 0 126 2/20 0 126 14/20 0
DSJC1000.1 21 21 20/20 0 21 5/20 0 22 4/20 1 21 1/20 0
DSJC1000.5 101 101 1/20 0 112 20/20 11 112 20/20 11 103 3/20 2
DSJC1000.9 252 252 5/20 0 253 7/20 1 254 1/20 2 252 1/20 0
R250.5 66 67 6/20 1 67 2/20 1 66 19/20 0 66 7/20 0
R1000.5 250 250 4/20 0 250 16/20 0 250 2/20 0 250 12/20 0
le450_15c 15 15 1/20 0 15 16/20 0 15 19/20 0 15 18/20 0
le450_15d 15 16 18/20 1 15 8/20 0 15 7/20 0 15 6/20 0
le450_25c 26 26 20/20 0 26 20/20 0 27 20/20 2 26 20/20 0
le450_25d 26 26 20/20 0 26 20/20 0 27 20/20 2 26 20/20 0
wap01a 42 43 20/20 1 42 2/20 0 42 11/20 0 42 8/20 0
wap02a 41 42 2/20 1 41 4/20 0 41 8/20 0 41 4/20 0
wap03a 45 49 8/20 4 45 15/20 0 45 20/20 0 45 19/20 0
wap04a 44 48 4/20 4 44 20/20 0 44 20/20 0 44 17/20 0
wap06a 41 41 4/20 0 41 9/20 0 41 5/20 0 41 6/20 0
wap07a 42 43 19/20 1 42 5/20 0 43 19/20 1 43 19/20 1
wap08a 42 43 4/20 1 42 7/20 0 42 1/20 0 43 19/20 1
flat300_28_0 34 34 16/20 0 35 20/20 1 35 4/20 1 34 6/20 0
flat1000_50_0 101 101 2/20 0 104 8/20 3 105 5/20 4 101 1/20 0
flat1000_60_0 101 101 1/20 0 104 1/20 3 106 3/20 5 102 5/20 1
flat1000_76_0 102 102 10/20 0 104 2/20 2 108 1/20 6 102 3/20 0
latin_square_10 113 113 1/20 0 129 12/20 16 130 20/20 17 115 1/20 2
C2000.5 201 201 19/20 0 202 20/20 1 203 1/20 2 201 7/20 0
C2000.9 502 503 1/20 1 503 20/20 1 504 6/20 2 502 11/20 0
mulsol.i.2 36 36 10/20 0 36 10/20 0 36 13/20 0 36 13/20 0
fpsol2.i.1 65 65 20/20 0 65 20/20 0 65 20/20 0 65 20/20 0
fpsol2.i.2 47 47 20/20 0 47 20/20 0 47 20/20 0 47 20/20 0
fpsol2.i.2 55 55 20/20 0 55 20/20 0 55 20/20 0 55 20/20 0
inithx.i.1 54 54 20/20 0 54 20/20 0 54 20/20 0 54 20/20 0
inithx.i.2 36 36 15/20 0 36 11/20 0 36 14/20 0 36 13/20 0
inithx.i.3 37 37 13/20 0 37 15/20 0 37 9/20 0 37 11/20 0
zeroin.i.1 49 49 20/20 0 49 20/20 0 49 20/20 0 49 20/20 0
zeroin.i.2 36 36 20/20 0 36 20/20 0 36 20/20 0 36 20/20 0
zeroin.i.3 36 36 20/20 0 36 20/20 0 36 20/20 0 36 20/20 0

#Equal 31 27 24 33
#Worse 9 13 16 7
Sum 15 45 63 9
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results (kn) for only 7 instances, whereas BITS1, BITS1, and BITS3 miss
the current best known results for 9, 13, 16 instances, respectively. It is
interesting to note that the best results obtained in Section 3.3 are
further improved in this experiment for 7 instances. Second, con-
cerning the sum ofΔ over all instances, the result of BITS is 9, whereas
the results of BITS1, BITS2, and BITS3 are 15, 45, 63 respectively. On
the other hand, when comparing the three single tabu list manage-
ment strategies, one finds that the first strategy (i.e., BITS1) performs
the best, and the third strategy (i.e., BITS3) performs the worst.

4.2. Effectiveness of perturbation operators

Perturbation is another important ingredient of the proposed
BITS algorithm. In order to show the effect of the perturbation
operators on the performance of the BITS algorithm, we compared
BITS with a variant called BMTS where instead of perturbing the
incumbent solution, we generate a new solution by the initi-
alization procedure introduced in Section 2.4.1, while keeping the
other ingredients of BITS are unchanged. We ran both BITS and
BMTS 20 times on each of the 40 representative instances used in
Section 4.1 and reported the computational results in Table 4.

Table 4 shows that BITS substantially outperforms BMTS. First,
in terms of the best result kbest, BITS obtains a better result on 15
out of the 40 instances compared to BMTS, while matching the
results of BMTS for the other 24 instances. Second, BITS has a
better average result (kavg) than BMTS on 26 instances, while
obtaining a worse result for only 7 instances. Concerning the
success rate in the case where both algorithms obtain the same



Table 4
Influence of perturbation operators on the performance of the BITS algorithm. Note that our BMTS algorithm is obtained by replacing its perturbation operators of the BITS
algorithm with the initialization procedure for k-ECP. Better results between the BITS and BMTS algorithms are indicated in bold.

Instance N BITS BMTS

kbest kavg SR t(s) kbest kavg SR t(s)

DSJC125.5 125 17 17.50 10/20 5169.38 17 17.45 11/20 5511.65
DSJC250.5 250 30 31.90 1/20 3265.63 30 31.90 1/20 4318.98
DSJC250.9 250 72 72.00 20/20 1179.92 72 72.00 20/20 1884.94
DSJC500.1 500 13 13.00 20/20 6.96 13 13.00 20/20 7.41
DSJC500.5 500 56 56.95 1/20 484.60 56 56.95 1/20 1249.59
DSJC500.9 500 129 129.90 2/20 3556.53 129 130.00 2/20 5427.04
DSJR500.5 500 126 126.30 14/20 3947.61 126 126.50 10/20 2048.89
DSJC1000.1 1000 21 21.95 1/20 3605.49 21 21.85 3/20 2088.95
DSJC1000.5 1000 103 105.10 3/20 18078.94 102 106.00 1/20 18887.27
DSJC1000.9 1000 252 253.30 1/20 4064.65 252 253.20 2/20 4412.62
R250.5 250 66 66.65 7/20 6275.08 66 66.90 2/20 7315.66
R1000.5 1000 250 250.40 12/20 10723.29 268 271.05 1/20 17131.15
le450_15c 450 15 15.10 18/20 410.35 15 15.05 19/20 399.87
le450_15d 450 15 15.70 6/20 629.83 15 15.50 10/20 1143.19
le450_25c 450 26 26.00 20/20 16.50 26 26.00 20/20 14.77
le450_25d 450 26 26.00 20/20 14.08 26 26.00 20/20 16.85
wap01a 2368 42 42.60 8/20 4183.29 42 42.95 1/20 15801.24
wap02a 2464 41 41.80 4/20 6829.03 42 42.00 20/20 1621.23
wap03a 4730 45 45.05 19/20 11267.27 45 45.95 1/20 12994.88
wap04a 5231 44 44.15 17/20 11345.30 44 44.70 6/20 14063.33
wap06a 947 41 41.70 6/20 6892.09 42 42.00 20/20 78.90
wap07a 1809 43 43.05 19/20 718.25 43 43.00 20/20 1899.08
wap08a 1870 43 43.05 19/20 951.85 43 43.10 18/20 2538.18
flat300_28_0 300 34 34.70 6/20 4407.62 34 34.65 7/20 3644.83
flat1000_50_0 1000 101 102.80 1/20 9206.28 101 102.80 1/20 11486.31
flat1000_60_0 1000 102 102.90 5/20 10201.53 102 103.00 5/20 11549.44
flat1000_76_0 1000 102 103.40 3/20 13063.39 103 103.75 8/20 12468.99
latin_square_10 900 115 120.00 1/20 17859.13 116 121.55 1/20 18863.40
C2000.5 2000 201 201.65 7/20 4808.96 201 201.75 5/20 5577.63
C2000.9 2000 502 502.45 11/20 7772.04 502 502.70 6/20 10229.98
mulsol.i.2 188 36 36.35 13/20 3633.61 37 37.50 10/20 3340.18
fpsol2.i.1 496 65 65.00 20/20 830.30 84 85.90 3/20 5326.77
fpsol2.i.2 451 47 47.00 20/20 976.07 66 72.35 1/20 8753.76
fpsol2.i.3 425 55 55.00 20/20 729.47 79 83.55 1/20 9991.45
inithx.i.1 864 54 54.00 20/20 1468.27 68 70.95 1/20 12028.89
inithx.i.2 645 36 36.35 13/20 12412.83 56 58.15 6/20 13287.27
inithx.i.3 621 37 37.45 11/20 9214.61 58 60.10 4/20 9183.48
zeroin.i.1 211 49 49.05 20/20 1367.14 58 58.85 3/20 6531.84
zeroin.i.2 211 36 36.00 20/20 96.99 42 45.25 1/20 958.29
zeroin.i.3 206 36 36.00 20/20 109.11 45 45.05 19/20 1742.31

#Better 15 26 1 7
#Equal 24 7 24 7
#Worse 1 7 15 26

Table 5
Comparison of the BITS algorithms with and without the backtracking scheme on some selected instances. Better results between the two algorithms are indicated in bold.

Instance N BITS BITS�

kbest kavg SR t(s) kbest kavg SR t(s)

flat1000_76_0 1000 102 103.40 3/20 13063.39 112 112.00 20/20 21.15
latin_square_10 900 115 120.00 1/20 17859.13 123 128.45 1/20 19,758.08
DSJC1000.5 1000 103 105.10 3/20 18,078.94 112 112.00 20/20 23.92
le450_5c 450 5 5.00 20/20 1877.73 7 7.00 20/20 1.21
le450_5d 450 5 5.00 20/20 2231.59 7 7.00 20/20 0.93
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best results (kbest), BITS outperforms or matches BMTS in all but
6 instances. These outcomes imply that the perturbation operators
of the BITS algorithm play an important role for its performance.

4.3. Importance of backtracking scheme

To assess the merit of our BITS backtracking scheme to solve
the k-ECP instances with kA ½kn�m; kn�1�;m41, we remove this
strategy and stop the search once the current k-ECP instance
(k¼ kn�1Þ cannot be solved. In other words, we effectively set
m¼1 and call this variant BITS� . We ran both algorithms 20 times
on each of five selected benchmark instances to highlight the fact
that even if the backtracking mechanism is not needed in all
situations, it is indeed very useful for finding improved solutions
for some particularly difficult instances. The results of this
experiment are summarized in Table 5 with the same information
as in the previous tables.

As shown in Table 5, the BITS algorithm significantly outper-
forms the BITS� algorithm by obtaining much better results for
the instances tested. These outcomes clearly indicate that the
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popular strategy designed for the classic graph coloring problem,
i.e., solving a series of k-colorability problems with strictly
decreasing k values, is not appropriate for the ECP, and our back-
tracking scheme helps the BITS algorithm to attain improved
solutions for some difficult instances.
5. Conclusions

Our backtracking based iterated tabu search (BITS) approach to
solve the equitable coloring problem (ECP) achieves a high level of
performance by integrating several components: a backtracking
scheme to define different k-ECP instances, a tabu search proce-
dure with a hybrid tabu list management strategy to solve each
associated k-ECP instance, two perturbation operators to jump out
of local optima, and a binary search method to determine the
initial value of k.

The effectiveness of the BITS algorithm is demonstrated by a
computational study on a set of 73 benchmark instances, com-
paring our method with the best existing heuristic algorithms in
the literature. Among other features, our algorithm finds improved
upper bounds for 21 out of the 73 benchmark instances.

Finally, we investigated several essential components to shed
light on the behavior of the BITS algorithm. Our tests disclose that
the multiple tabu list management strategy, the perturbation
operators, and the backtracking scheme all contribute to the
algorithm's performance.
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