
1 23

Journal of Heuristics

ISSN 1381-1231
Volume 21
Number 4

J Heuristics (2015) 21:457-477
DOI 10.1007/s10732-015-9285-2

A tabu search algorithm for cohesive
clustering problems

Buyang Cao, Fred Glover & Cesar Rego

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

J Heuristics (2015) 21:457–477
DOI 10.1007/s10732-015-9285-2

A tabu search algorithm for cohesive clustering
problems

Buyang Cao · Fred Glover · Cesar Rego

Received: 11 October 2014 / Revised: 23 January 2015 / Accepted: 27 January 2015 /
Published online: 12 February 2015
© Springer Science+Business Media New York 2015

Abstract Clustering problems can be found in a wide range of applications includ-
ing data mining/analytics, logistics, healthcare, biotechnology, economic analysis and
many other areas. Solving a clustering problem from the real world often poses sig-
nificant challenges in spite of the fact that extensive research has been devoted to this
topic. In this paper we present a tabu Search algorithm for a new problem class called
cohesive clustering which arises in a variety of business applications. The class intro-
duces an objective function to produce clusters as “pure” as possible, to maximize
the similarity of the elements in each given cluster. Tabu search intensification and
diversification strategies are employed in order to produce enhanced outcomes. The
computational results demonstrate the effectiveness of the proposed algorithm.

Keywords Clusters · Heuristic · Meta-heuristic · Tabu search

1 Introduction

Clustering is commonly defined to consist of grouping a set of objects in a manner
that causes objects in the same group or cluster to be more similar (or closer) to

B. Cao (B)
China Intelligent Urbanization Co-Creation Center for High Density Region,
School of Software Engineering, Tongji University, 4800 Cao’An Road, Shanghai 201804, China
e-mail: caobuyang@tongji.edu.cn

F. Glover
OptTek Systems, Inc., 2241 17th Street, Boulder, CO 80302, USA
e-mail: glover@opttek.com

C. Rego
School of Business Administration, University of Mississippi, University, MS 38677, USA
e-mail: crego@bus.olemiss.edu

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-015-9285-2&domain=pdf

458 B. Cao et al.

each other than they are to objects in other groups or clusters. Clustering problems
arise in many applications. Within the realm of business applications, which provides
the setting for the present work, a common type of clustering problem (April et al.
2014) arises in the situationwhere organizations seek to aggregate different employees
into “employee pools” whose members share significant similarities and attributes. A
related application discussed in the same reference arises in settings where it is desired
to group jobs into common categories so that each category can be treated as a unified
job classification. Linoff andBerry (2011) illustrate an applicationwhere the clustering
challenge is to build customer segments for a publishing company. In this case the
company is interested in finding segments with particularly good customers. Provost
and Fawcett (2013) note that clustering is very often used by business units to target
their marketing segments.

To handle business applications more effectively, a variety of clustering methods
have been developed that are tailored specifically for problems found in business
contexts. Liu (1999) proposes a clustering-based algorithm to cluster and arrange
items for stock location and pick-up operations for a warehouse application. Two
similarity measures are proposed for items and customers according to order quality
and types of items. Simulation indicates the proposedmodel and solutionmethodology
are capable of creating useful results for its area of application.

Grabmeier and Rudolph (2002) conduct a survey on clustering techniques in data
mining business, focusing on clustering models where the goal is to create clusters
based upon (1) similarities or similarity indices and (2) distance functions. Criteria to
evaluate the clustering results are provided to assist scholars to judge the outcomes
obtained by various clustering algorithms. The paper provides useful suggestions for
modeling clustering problems properly and picking appropriate solution methodolo-
gies and optimization criteria.

Strehl andGhosh (2002) develop an algorithm to address real-life data-mining prob-
lems found in retail-industry applications, in which data reside in a high dimensional
space. Their approach introduces a similarity relationship defined on each pair of data
samples that transforms the problem into one over the similarity domain without the
original high-dimensional space. The goal is to cluster data samples into k groups so
that data samples for different clusters have similar characteristics. The problem is
formulated as a vertex-weighted graph partitioning problem, where each vertex (data
sample) is assigned a weight representing its importance and each pair of vertices is
connected by an undirected edge whose weight is determined by their similarity mea-
surement. The objective of this partitioning problem is to produce a minimum weight
solution that accounts for the vertex weight balancing constraint. An algorithm called
OPOSSUM (optimal partitioning of space similarities using metis) is developed to
tackle the underlying problem.

Kochenberger et al. (2005) introduce a variant of clustering based on a clique parti-
tioningmodel to analyze gene data more effectively. The authors propose a tabu search
based approach and perform a computational study that documents its effectiveness
for the problem class considered.

The well-known K-means algorithm is applied widely in solving clustering prob-
lems in business settings with adaptations for the case at hand. For example, in order to
accommodate a distributed data environment Datta et al. (2009) propose a distributed

123

Author's personal copy

A tabu search algorithm for cohesive clustering problems 459

K-means clustering approach over a peer-to-peer network. The approach is scalable,
so that it can be applied to solve large-scale clustering problems.

Trappey et al. (2010) build on the methodology of Liu (1999) to identify how to
cluster customers into segments so that logistics companies can provide better and spe-
cialized services to different customer segments upon their preferences and demands.

Bae et al. (2010) introduce a new measure of clustering similarity to overcome
shortcomings of existing similarity criteria. They point out two major issues to be
addressed: inabilities to detect structural dissimilarity and the need to compare clusters
of non-overlapping points. The measure proposed by the authors represents clusters
as density profiles, and is able to consider feature distribution and point relationship
information. The measure can be utilized to compare clusters, evaluate the clustering
results, and to create alternative clusters with good qualities.

Clustering problems found in logistics applications often arise where logistics com-
panies apply clustering models to build their service areas, taking the travel distances
and/or times into account. In order to minimize travel distance or travel time the
clusters are built to be as compact as possible. Cao and Glover (2010) propose an
algorithm based on Thiessen-polygon capable of generating balanced and connected
cluster. Computational tests on real applications demonstrate the efficiency of the pro-
posed algorithm. Nowadays big data applications clustering problems are encountered
frequently, e.g., finding communities in social networks, classifying customers, etc.
Wu et al. (2013) proposed a cluster-based methodology in order to solve “cold start”
problems involving collaborative recommendation more effectively. They first apply
an algorithm similar to K-means to cluster customers according to their properties
and then identify products/services appropriate to recommend to customers in each
cluster.

In addition to the well-known K-means algorithm, researchers have developed a
variety of clustering algorithms attempting to solve various clustering problems more
efficiently. A useful review of this area is provided by Brusco et al. (2012), who
survey a variety of non-traditional clustering algorithms ranging from model-based
to metaheuristics-based methods, focusing on an objective function derived from a
proximity measurement.

An important clustering application which motivates our present work arises in
one of world largest e-commerce companies (a confidentially agreement prevents us
from giving this company’s name). In order to detect the exceptions occurring on its
cloud platforms efficiently, the company needs to identify patterns associated with the
jobs performed. However, there are many jobs and it is not effective to identify the
pattern for an individual job. Therefore, it is worthwhile to group jobs into several
categories and characterize the patterns for job categories in relation to their attributes
(for instance, CPU usages, I/O, memory requirement, etc.).

To address this and related applications we present a clustering model that incor-
porates an objective designed to create clusters in which elements (jobs) should be as
“pure” as possible. Themodel is conceived from the standpoint of generating solutions
that provide a baseline to classify new elements, as where it is desired to assign new
jobs to the proper job segments. From this perspective, the goal is not to generate clus-
ters rapidly but rather to create a judicious collection of clusters with the aim of using
them multiple times over an extended horizon as a means for future classification.

123

Author's personal copy

460 B. Cao et al.

In the following exposition, Sect. 2 describes the clusteringproblemand its objective
function in more detail, and the algorithms to solve the clustering problem discussed
here. Computational results documenting the effectiveness of our new procedures are
presented in Sect. 3. Finally, we summarize our findings and present some conclusions
in Sect. 4.

2 Model and algorithms

2.1 Problem description and model

Let x = (x1, . . . , xk) represent a vector of k-attributes (factors), each describing a
specific element. We associate such a vector x(t) with tth element so that the problem
data consists of a collection of such vectors represented by

x(t), t = 1 to NP (2.1)

We use NP to denote the total number of such element under consideration. For a given
set of element T = (t1. . . . , tn) (where n = Np) in which each element is described
by (2.1) and n is the total number of elements in the set. Without losing generality
in the following discussions we assume each element t possesses a unique type or
property presented by x(t). Our goal is to aggregate subsets of elements into clusters,
i.e., assigning each ti to a specific cluster where the collection of all such clusters is
denoted by

C (s) , for s = 1 to Ns (2.2)

and where NS identifies the total number of clusters under the consideration and
it is predefined. As previously indicated the objective of the clustering problem we
consider will be formulated to account both for the distributions (we use distribution
in this paper to describe how elements are spread geographically on a “plane”) and
similarities of elements to be clustered. Before stating the objective formally, some
notation and definitions are required.

Let Score(ti , t j) denote the “score” that measures the desirability or undesirability
of assigning elements ti and t j to the same cluster. A desirability measure is relevant
for maximizing while an undesirability measure is relevant for minimizing. For exam-
ple, the value Score(ti , t j) can be a form of undesirability measure in the sense of
representing a form of “distance” between elements where the distance is determined
upon their attributes (2.1). The score is applied to any pair of elements in T . We may
view the goal in this instance as seeking to minimize distances (broadly conceived)
between elements lying in the same cluster.

2.1.1 Calibration of the scores

the calibration of the values represented by (ti , t j) may be achieved by using various
distance-related measures, for instance:

123

Author's personal copy

A tabu search algorithm for cohesive clustering problems 461

Score(ti , t j) = ||x(ti) − x(t j)|| (2.3)

This measurement could be one of the following forms:
∑ (|xp(ti) − xp(t j)| : p = 1 to k

)
(L1 Norm) (2.4)

or
√∑ (

xp (ti) − xp
(
t j

))2 : p = 1 to k (L2 Norm) (2.5)

Evidently, when k = 2 in (2.5) we have the commonly used Euclidean “distance”.
It may happen that some factor p in x(t) (t = 1, . . . , n) should receive a greater
emphasis than other factors in determining the scores, as where a particular factor
is considered to have a more substantial impact on determining the outcome of the
clustering. To consider this scenario we may associate a weight wp with each factor
in vector x(t), and replace each xp(t) by wpxp(t) (t = 1, . . . , n) before computing
the values of Score(ti , t j).

It should be emphasized that other ways of defining Score(ti , t j) are also possible
in specific applications. The following section gives an approach for pre-calculating
and updating Score(ti , t j) for efficiency.

2.1.2 Evaluating clusters by referencing scores

given the evaluation measures provided by the Score(ti , t j) matrix, we evaluate the
clusters by defining the value of cluster C(s) at two levels. At the first level we define:

V (s) =
∑ (

Score(ti , t j) : ti < t j & ti , t j ∈ C (s)
)

(2.6)

V (s) may be considered as a precursor to identifying an evaluation for cluster
C(s), s = 1 to NS . In order to compare different ways of assigning the elements t
to clusters, we account for the fact that the number of items in the sum composing
V (s) skews the V (s) measure. We want to adjust for the number of these items in
order to more appropriately evaluate C(s).

A cluster C(s) can be considered as a complete graph, whose number of elements
we denote by n(s). Each edge then may be viewed as a “link” between two elements
ti and t j in the same cluster, and the number of these links in cluster C(s) is given by:

NL (s) = n (s) (n (s) − 1) /2 (2.7)

Then the evaluation for clusterC(s) (called theFull Value in the following discussions)
will be defined as follows:

FV (s) = V (s) /NL (s) (2.8)

The use of FV(s) makes it possible to evaluate the entire collection of clusters. How-
ever since we are considering the distributions as well as the similarities of underlying
elements, a situation where two elements are very “close” together doesn’t mean they

123

Author's personal copy

462 B. Cao et al.

are similar. In a related sense, Linoff and Berry (2011) point out that in a “town cluster-
ing” project two towns that possess the similar demographics are not necessarily close
to each other geographically. In order to consider both distributions and similarities
of elements more effectively we consider the variance of a cluster defined as follows.

Based on the fact that FV(s) in (2.8) is actually the average score of cluster C(s),
the variance of cluster C(s) can be determined by:

V AR (s) =
(∑

all ti ,t j

((
Score

(
ti , t j

) − FV (s)
)2)

/NL(s) (2.9)

2.1.3 Objective function

Drawing on the observations of the preceding discussion, the objective function we
propose for clustering is given by

ObjVal = min

(
α1

∑Ns

1
FV (s) + α2

∑Ns

1
V AR(s)

)
(2.10)

where α1 and α2 are adjustable weights for the full value and variance, and provide
flexibility to consider different balances between distributions and similarities of ele-
ments.

2.2 Basic procedures

The goal of our problem, roughly stated, is to create a clustering set to achieve the
objective function stated in (2.11), following. We present some basic components of
our solution methodology in this subsection.

2.2.1 Assigning elements to clusters

The assignment of elements to clusterswill be recorded in twoways. First, wemaintain
a value

C_I D (t) for t = 1 to Np (2.11)

where C_ID(t) = s indicates that cluster C(s) is the unique cluster to which element t
(and its associated attribute vector x(t)) is assigned.

Second, we propose the use of a doubly linked list

B (t) and A(t) for each t = 1 to Np (2.12)

B(t) indicates the element before t and A(t) specifies the element after t in the same
cluster. This is accompanied by an array F(s) for each s, where t = F(s) is the “first”
element of cluster s and successive elements are located by setting t = A(t) until
reaching the dummy element t = 0. The following operation enumerates all elements
in a cluster:

123

Author's personal copy

A tabu search algorithm for cohesive clustering problems 463

//Procedure: loop all elements
t = F(s)
While t > 0

t = A(t)
Endwhile

Initialization occurs by setting F(s) = 0 for all s. Throughout all steps, B(t) = 0
if F(s) = 0, and A(t) = 0 if t is the last element for s, as insured by the following
operations.

When an element t0 is added to a cluster C(sA) (“A” stands for “Add”), then t0 is
made the new “first” element of C(sA) through the following procedure:

//Procedure: Insert an element(t0, sA)
tAfter = F(sA)
B(tAfter) = t0
A(t0) = tAfter
F(sA) = t0
C_ID(t0) = sA

The above procedure executes

C (sA) = C (sA) ∪ {t0} (2.13)

2.2.2 Dropping elements from clusters

Once all elements are initially assigned to clusters by the steps described in the above
section, in order to achieve more satisfactory solutions we perform operations that
move selected elements t0 from one cluster to another under the control of a tabu
search process. To handle the “move operations” we identify s0 = C_I D(t0) and
drop t0 from C(s0) by the following procedure:

//Procedure: Drop an element(t0, s0)
tBefore = B(t0)
tAfter = A(t0)
A(tBefore) = tAfter
B(tAfter) = tBefore
If tBefore = 0 then

F(s0) = tAfter
Endif

By the convention ofmaintaining a “dummycluster”C(0) that contains all elements
t not assigned to real cluster. In the case where an element is dropped without being
transferred to another real cluster, we have sA = 0.

Recall that n(s) denote the number of elements in cluster C(s). The preceding
procedure results respectively in setting:

n (sA) = n (sA) + 1 and n (s0) = n (s0) − 1 (2.14)

123

Author's personal copy

464 B. Cao et al.

The procedures discussed so far compose the basic steps for building clusters and
helping evaluate the quality of a cluster built. In the following sections we present
the strategy to evaluate the quality of a cluster and provide guidance to generate good
clusters.

2.2.3 Updates and evaluations

The discussion of this section considers various aspects of the clustering algorithm
that contribute to its efficacy.

The following discussion will be based on evaluating a move that drops an element
t0 from cluster C(s0), where s0 = C_I D(t0), and adding t0 to another C(sA). We
refer to this move as “t0 → sA”.

The move may be viewed as consisting of two parts. First is the operation of adding
t0 to sA. We identify and store the quantity AddVal(t0, sA) so that

AddVal (t0, sA) =
∑

(Score (t0, t) : t ∈ C (sA)) (2.15)

Note that AddVal(t0, sA) is precisely the increase in the sum of the link scores in
cluster C(sA). Hence it is the amount of increase in V (sA) (defined in (2.6)) caused
by the t0 → sA move.

The symbol # is used to denote a new value. Hence, for the indicated move we have

V # (sA) = V (sA) + AddVal (t0, sA) (2.16)

NL# (sA) = NL (sA) + n (sA) (2.17)

FV # (sA) = V # (sA) /NL# (sA) (2.18)

Furthermore, Var_A(t0, sA) is defined as the variance caused by adding t0 to sA,
which is calculated as in (2.10). This allows us to compute the “delta change,” DelA
(“delta for adding”) in terms of the combination of full value and variance due to
adding t0 to sA given by:

Del A = a1
∗ (FV # (sA) − FV (sA)) + a2

∗(Var_A (t0, sA) − Var (sA)) (2.19)

The second part consists of the procedure of dropping t0 from s0, where s0 =
C_I D(t0). We similarly define the value for dropping t0 from cluster s0 by:

AddVal (t0, s0) =
∑

(Score (t0, t) : t ∈ C (s0) and t �= t0) (2.20)

We then have:

V # (s0) = V (s0) − AddVal (t0, s0) (2.21)

NL# (s0) = NL (s0) − (n (s0) − 1) (2.22)

FV # (s0) = V # (s0) /NL# (s0) (2.23)

123

Author's personal copy

A tabu search algorithm for cohesive clustering problems 465

Accordingly we define Var_D(t0, s0) as the variance of cluster s0 or C(s0) after
element t0 is dropped. Thus we have the “delta value,”DelD, for dropping t0 from s0:

DelD = a1
∗ (FV # (s0) − FV (s0)) + a2

∗ (Var_D (t0, s0) − Var (s0)) (2.24)

Based on these values the change in the objective function value,DelObjVal as a result
of both adding t0 to sA and dropping t0 from s0 is given by

DelObjVal = Del A + DelD (2.25)

Under aminimization objective, DelObjVal < 0 identifies an improvingmovewhile
DelObjVal >= 0 identifies a non-improving move, where the new ObjVal resulting
from the move is given by:

ObjVal# = ObjVal + DelObjVal.

Since (2.25) is able to recognize if a move produces an improved solution, we refer
to the quantity identified in (2.25) as the move value which is used to evaluate a move
t0 → sA and denote this quantity for a given pair (t0, sA) by MoveVal(t0, sA).

2.2.4 Implementation of move value

When all elements are assigned to clusters (according to criteria discussed later),FV(s)
and VAR(s) will be available for all s, having been computed incrementally while the
clusters are being built. Based upon the calculation for MoveVal(t0, sA) discussed
above, we pre-compute and store AddVal(t0, sA) and AddVal(t0, s0) for all t0, sA,
and s0. To evaluate a move t0 → sA i, where element t0 is dropped from cluster
C(s0) and added to cluster C(sA), the following procedure yields the corresponding
MoveVal(t0, sA).

//Procedure: Updating move value
For t = 1 to Np

//consider dropping t from s0 (to select t = t0)
tmpVal = AddVal(t,s0) – Score(t, t0)
AddVal(t, s0) = tmpVal
// consider adding t to sA (to select t = t0)
tmpVal = AddVal(t, sA) + Score(t, t0)
AddVal(t, sA) = tmpVal
Update MoveVal(t, s0) and MoveVal(t, sA) by (2.25)

Endfor
// Note: the foregoing holds for t = t0 since Score(t0, t0)=0.
Update MoveVal(t0, s) by (2.25), s = 1… Ns.

123

Author's personal copy

466 B. Cao et al.

2.3 Build initial solution

For a given set of elements and a given number of clusters to be built, we now describe
how to construct the initial solution, i.e., to assign all elements to the clusters while
achieving a reasonable value of (2.11). The procedure to build the initial solution
sets α2 to be zero in order to eliminate some undesirable scenarios, as where some
elements “far away” from each other might be grouped into the same cluster due to a
small variance. The variance is instead introduced during the improvement phase.

2.3.1 Creating 2-element clusters

As discussed above the first portion of the objective function relies on the value of
Score(t0, t1) for any t0, t1 in the same cluster. In order to pick two elements (called
seeds) quickly and still create initial clusters with good quality, the following strategy
called 2-element selection is employed.

For each t0 that is not clustered we identify the 3 best (minimum) scoring
matches Score(t0, ta), Score(t0, tb), and Score(t0, tc) (which can be pre-calculated
and arranged), where t0, ta, tb, and tc are all distinct. Then two elements t1 and
t2 will be selected that minimize (2.26) over the three options, i.e., (t1, t2) =
(ta, tb), (ta, tc), (tb, tc). Finally we select t1 to form a cluster with the first pair of
elements (t0, t1), where Score(t0, t1) = min(Score(t0, t1), Score(t0, t2)).

Score (t0, ti) + Score
(
t0, t j

) + Score
(
ti , t j

)
(2.26)

// Procedure : Create 2-element clusters
For s = 1 to Ns

bestVal = BIG
For each t0 in C(0)

select t1 and t2 using the 2-element selection strategy
tmpVal = Score(t0,t1) + Score(t0,t2) + Score(t1,t2)
If (tmpVal <bextVal)

bestElem1 = t0
bestElem2 = t1

Endif
Endfor
Insert an element(bestElem1, s)
Insert an element(bestElem2, s)
Drop an element(bestElem1, 0)
Drop an element(bestElem2, 0)

Endfor

The number of elements n(s) in each cluster C(s) is required to satisfy lower
and upper bounds denoted by LB(s) and UB(s). The procedure to generate the initial
solution may be described as follows.

123

Author's personal copy

A tabu search algorithm for cohesive clustering problems 467

//Procedure: Create initial solution
Create 2-element clusters
//fill elements to attain the low bound of each cluster
For s = 1 to Ns

If (n(s) < LB(s))
Do

Find an element t0 that minimizes MoveVal(t0, s)
Insert an element(t0, s)
Drop an element (t0, 0)

Until (n(s) >= LB(s))
Endif

Endif
t0 = F(0)
While (t0 is not null)

bestVal = BIG
For s = 1 to Ns

If (n(s) < UB(s))
If (MoveVal(t0, s) < bestVal)

bestVal = moveVal(t0, s)
bestCluster = s

Endif
Endif

Endfor
Insert an element(t0, bestCluster)
Drop an element(t0, 0)
t0 = A(t0)

Endwhile
For all cluster computing (2.8) and (2.10) with original α1 and α2
Computing (2.11)

Although not explicitly stated, the solver dynamically updates AddVal(t, s) for each
element t and cluster C(s), and uses AddVal(t, s) to obtain MoveVal(t, s). After the
initial solution procedure, all elements will be assigned (we assume that the total
capacity of all clusters is big enough to permit this).

2.4 Tabu Search based improvement procedure

To achieve the best value of (2.10), we introduce an improvement procedure applied to
the initial solution created in the previous section, which incorporates the move t0 →
sA. MoveVal(t0, sA) defined in (2.26) is used to judge whether a move is worthwhile.

Because the underlying problem does not require results in real time, we have the
luxury to devote more time with the improvement procedure to obtain better solutions.
We apply the tabu Search (TS) metaheuristic to guide the improvement procedure.

123

Author's personal copy

468 B. Cao et al.

(See, e.g., Glover 1986; Glover and Laguna 1997, 2013; Kochenberger et al. 2013;
Wu et al. 2013.)

The following subsections discuss the tabu lists, candidate list strategy and inten-
sification and diversification strategies used in our algorithm.

2.4.1 Tabu tenures

The tabu search used in this paper incorporates a simple design focusing on the use of
recency based memory. A two-dimensional array TabuEnd(t, s) is employed to define
the tabu status of a move t → s. We define two types of tabu tenures as follows:

Small Tabu Tenure: Ts_si ze refers to TabuEnd(t0, s0) for t0 in C(s0). (How to set
up TabuEnd(t0, s0) will be explained later.) If TabuEnd(t0, s0) ≥ i ter , where iter
denotes the current iteration, then t0 is tabu and cannot be dropped from cluster C(s0).
This small tabu tenure value is defined as follows:

Ts_si ze = Min(3, Ns/3),

Ts_si ze = Max(Ts_si ze, 1).

Tabu Tenure: Tsize, refers to TabuEnd(t0, sA) for an element t0 not in clusterC(sA).
In this case each t0 can be added to NS − 1 different clusters other than cluster C(sA).
Similarly, TabuEnd(t0, sA) ≥ i ter indicates that t0 is tabu and cannot be added to
cluster C(sA).

Let Ncand be the number of elements in the candidate list. Then the possible number
of move options will be Ncand * (NS −1) excluding the case where t0 is not permitted
to drop from its cluster. Therefore we have total (Ncand − Ts_si ze) * (NS − 1) move
options. We will make at most 50% (and preferably at most 30%) of these options
tabu. Tsize(Lim) and Tsize(Pre f) are integers used to define Tsize, which are given by:

Tsize(Lim) = 1 + (Ncand − Ts_si ze)
∗(NS − 1)

Tsize(Pre f) = 1 + (Ncand − Ts_si ze)
∗(NS − 1)

Tabu tenure is then determined by:

Tsize = Max(Tsize(Pre f), 15)

Tsize = Min (Tsize, Tsize(Lim))

Aspiration criterion: at times when a move t → s is tabu it may be able to yield a
better solution than those previously found. In this case we allow the tabu status of
this move to be overridden and thus permit the move to be performed. We define the
aspiration criterion as follows:

Let bestObjVal be the current best value of the objective function (2.11) and curOb-
jVal be the value obtained due to the move t → s. If curObjVal < bestObjVal,
then we declare that the aspiration criterion is met and override the move’s tabu status.

2.4.2 Elite Candidate list

If all eligible elements are examined in order to find the best t → s move, the number
of moves to be evaluated will be huge. Thus it is worthwhile to identify candidates

123

Author's personal copy

A tabu search algorithm for cohesive clustering problems 469

0
10
20
30
40
50
60
70
80
90

100

TP100 TP300_3 TP400_4 TP400_2 TP500

O
pe

ra
�o

n
Ti

m
e

(s
)

DataFile&Size

Compressed Candidates Uncompressed Candidates

Fig. 1 The benefit of using the elite candidate list

that provide promising moves, i.e., that potentially generate good outcomes. A variety
of candidate list strategies are described in Glover and Laguna (1997, 2013). Here we
adopt a variation on one of these to prevent examining “poor quality” assignments for
a certain number of iterations. We focus on two components, namely, (1) an element
to move, and (2) the target cluster. Therefore, we use the following criterion to select
candidates to be evaluated for move t → s. If

AddVal (t0, sA)

n (sA)
<

∑ (
AddVal(t0, s)

/
n(s)

)

Ns
(2.27)

then move t0 → sA is added to an elite candidate list denoted by candList. Otherwise
the corresponding move is bypassed. The underlying logic is to try to find the element
for which the resulting increase in the average “distance” is smaller than the overall
average increase relative tomoves involving element t0. SinceAddVal(t, s) is computed
incrementally, the value of (2.27) may be obtained quickly.

Our computational experiments disclose this strategy reduces computational time
by about 50% without causing a significant difference in the solution quality. The
following picture demonstrates the benefit of applying the elite candidate list strategy,
where “compressed candidates” refers to the application of the elite candidate list and
TPxxx_y indicates the number of elements to be clustered in y groups (Fig. 1):

2.4.3 Intensification and diversification

During the intensification phase, the algorithm examines the moves (t → s) that look
promising according to the candidate list.

In order to obtain better solutions it is worthwhile to explore a broader solution
space by means of a diversification strategy which we identify as follows:

Diversification: let NP/NS be the “baseline” number of elements in any cluster. The
algorithm randomly picks elements from clusters called source clusterswhose number
of elements exceeds NP/NS and assigns them to clusters called target clusters whose

123

Author's personal copy

470 B. Cao et al.

number of elements is less than NP/NS . A source clusterC(s)with n(s) > NP/NS is
randomly selected and an element t0 is randomly selected from C(s). A target cluster
C(sA) with n(sA) < NP/NS is then randomly chosen as a basis for executing a move
t0 → sA. We assume the bounds for the number of elements in the source and target
clusters are compatible with making this move. An alternative version of this approach
whichwe plan to test in the futuremakes a given number of suchmoves, and thereafter,
each time an element t0 is chosen, selects the target cluster by sampling a specified
number of candidates satisfying n(sA) < NP/NS and choosing the one that gives the
best evaluation for making the move t0 → sA.

2.4.4 Overall algorithm

In the following descriptionwe define amove to be feasible if thismove doesn’t violate
the lower bound of the source cluster and the upper bound of the target cluster. The
tabu search based improvement procedure can then be described as follows:

//Procedure: Tabu Search procedure(bestObjVal)
//initialization phase
TabuEnd(t, s) = 0 for all elements t and clusters C(s)
Compute AddVal(t, s) for all elements t and clusters C(s)
curObjVal = bestObjVal
Ts_size and Tsize upon the methodology described in the above section.
candList = 20% of total moves (t�s) that are randomly selected
For iter = 1 to loopLimit

While (tabuIter < tabuLoopLimit)
bestVal = BIG
For i = 1 to SizeOf(candList)

t0�sA = candList[i]
If (t0�sA is feasible)

If (DelObjVal < bestVal)
If (t0�sA is not tabu)

best_t = t0, best_s = sA, best_s0 = s0
Else

If (DelObjVal + curObjVal < bestObjVal)
//override tabu status

best_t = t0, best_s = sA, best_s0 = s0
EndIf

EndIf
bestVal = DelObjVal

EndIf
EndIf

EndFor
If (bestVal < BIG)

Insert an element(best_t, best_s)

123

Author's personal copy

A tabu search algorithm for cohesive clustering problems 471

Drop an element(best_t, best_s0)
curObjVal = DelObjVal + curObjVal
If (curObjVal < bestObjVal)

bestObjVal = curObjVal, tabuIter = 0
EndIf
Updating move value for impacted clusters and elements

EndIf
tabuIter ++
candList = moves selected upon (2.27)

EndWhile
//diversification procedure
Perform Diversification procedure describe above
TabuEnd(t, s) = 0 for all elements t and clusters C(s)

EndFor

loopLimit and tabuLoopLimit are set to be 1,000 and 100 respectively.
The overall tabu Search algorithm for solving cohesive cluster problems can then

be summarized in the following simple form:

//Algorithm for solving cohesive clustering problems
Create initial solution
Tabu Search procedure

3 Computational experiment

We have implemented the algorithm of Sect. 2 using the C# programming language.
The computational environment for all computational experiments mentioned below
is a desktop with Windows 7 Enterprise operating system, CPU speed 2.7 GHz, and 4
GB of RAM.

Different datasets are used to validate the objective function listed in (2.10) which
we repeat here for clarity:

ObjVal = min

(
α1

∑Ns

1
FV (s) + α2

∑Ns

1
V AR(s)

)
(3.1)

An interesting finding emerged while investigating the impacts of parameters a1
and a2 on the overall solution quality. Figure 2 depicts the scenario where α1 = 0.99
and α2 = 0.01while Fig. 3 displays the result when α1 = 0.4 and α2 = 0.6 (TheFV(s)
and VAR(s) values show in the figures are normalized. The X-axis identifies iterations
while the Y-axis values are for

∑Ns
1 FV (s) and

∑Ns
1 V AR(s) respectively.)

The relationships shown are quite consistent for all datasets used for the com-
putational experiments, disclosing that the introduction of variance in the objective
function indeed helps to generate cohesive clusters. The use of variance appears to
eliminate a lot of “nearly equal” move evaluations and makes it easier to pinpoint the

123

Author's personal copy

472 B. Cao et al.

Fig. 2 Less consideration of variance

Fig. 3 Consideration of variance

123

Author's personal copy

A tabu search algorithm for cohesive clustering problems 473

truly relevant moves. During the computational experiment procedure, we divided the
datasets into two parts: a trial set and a data application set. The trial set was used to
tune the parameters α1 and α2 in the objective function. Based upon the experiments,
it turned out that the results with α1 = 0.4 and α2 = 0.6 consistently outperformed
the results obtained with other settings. We decided that this setting to be used for the
data application dataset when the algorithm is compared to the well-known K-means.
Accordingly, in the following computational experiments, α1 is set to 0.4 and α2 is set
to 0.6 respectively, and these values don’t vary from one run to the other.

In order to evaluate the algorithm more comprehensively we use two datasets to
conduct the computational experiments:

• Experiment 1: data randomly generated and comparison to K-means’ result.
• Experiment 2: data collected from a real cloud platform where data records need
to be clustered or classified upon certain characteristics. The results are compared
to the ones obtained by K-means.

K-means is the most popular clustering algorithm and is included in the open source
package called R. In the following experiments we use the K-means algorithm in R
to solve various clustering problems for the purposes of computational comparisons.

Experiment 1 In this computational experiment, we created the corresponding
dataset by generating elements (points) randomly distributed on a plane. In order
to determine and validate the capability of our algorithm to detect patterns embedded
in the data, we also created a dataset that has certain patterns. The example of data
with patterns is shown in the following picture:

The computational results of this dataset are shown in Table 1 where α1 and α2
in objective function (2.10) are set to 0.4 and 0.6 respectively. We used different
coordinate systems to generate different data sets containing data with patterns as
well as data in which points are randomly distributed on a plane. Therefore the value
scales listed in the table are different.

In the table we define:

• NP: number of points (elements) to be clustered
• NS: number of clusters
• CPT: compactness of clusters, i.e.

∑Ns
1 FV (s)

• SV: similarity value, i.e.
∑Ns

1 V AR(s)
• TS: our tabu search based clustering algorithm

From the computational results listed in Table 1, we are able to conclude that the
computational times of K-means do not increase dramatically while those of our algo-
rithm increase with the size of the problems to be solved, which is expected as our
introduction of variance (to produce a refined guidance mechanism for achieving sim-
ilarity and compactness) consumes additional time. Nevertheless in terms of solution
quality, our algorithm beats K-means in both compactness and similarity of resultant
clusters for all tested data instances except one. For the data instance that was the
single exception, K-means is able to achieve better similarities of the elements within
a cluster, but our algorithm is able to build more compact clusters.

123

Author's personal copy

474 B. Cao et al.

Table 1 Results for dataset 1

Data type NP NS Total time (mm:ss:ms) CPT SV

K-means TS K-means TS K-means TS

Data without patterns 31 3 00:01:51 00:01:12 5.241 5.241 1.26 1.26

100 3 00:01:51 00:01:23 238.29 219.81 4,443.88 2,460.81

150 4 00:01:53 00:02:52 256.21 204.5 4,508.25 3,746.31

300 3 00:01:59 00:04:67 153.87 153.28 3,473.55 3,414.28

300 4 00:01:55 00:05:16 193.42 191.1 5,145.99 4,815.6

350 7 00:01:55 00:10:91 357.41 334.79 4,224.7 3,591.15

400 8 00:01:56 00:13:76 271.17 230.12 3,453.77 2,613.9

400 9 00:01:56 00:12:45 334.24 251.35 3,591.43 3,787.1

500 9 00:01:58 00:26:72 405.39 365.18 4,383.33 3,775.46

Data with patterns 300 3 00:01:54 00:05:13 35.31 35.09 95.22 92.99

300 4 00:01:54 00:05:48 36.99 36.99 76.95 76.95

300 5 00:01:63 00:09:32 31.57 30.69 64.07 61.96

500 3 00:01:55 00:35:43 35.91 35.88 141.6 140.49

500 4 00:01:54 00:30:12 26.12 26 46.76 46.36

500 5 00:01:53 00:39:17 31.53 30.53 54.64 51.01

Fig. 4 Data with patterns

Based upon the computational results, we can also conclude that our algorithm has
the capability of detecting the patterns embedded in a dataset. For the data shown in
Fig. 4, the result depicted in the following picture (Fig. 5) confirms that our algorithm
identifies the patterns properly in the dataset.

It is noted that the computational times for the datasets with patterns are bit longer.
We realize that there is some room for improvement in the step that constructs initial
clusters, and we plan to enhance this step in order to find better initial solutions. We

123

Author's personal copy

A tabu search algorithm for cohesive clustering problems 475

Fig. 5 Result of clustering dataset in Fig. 4

anticipate this will reduce the time spent in the improvement procedure to achieve
solutions of high quality.

Experiment 2 This computational experiment employs the datasets (job data) col-
lected from the cloud platform of one of the world’s largest e-commerce companies,
as noted in the Introduction. As we explained earlier the purpose of job clustering is to
help create business rules to detect exceptions of certain jobs more effectively. Based
upon the company analysis and business practice, a job can be characterized by: CPU
times (in seconds), Memory required (in GB), and I/O size (in KB). The “distance”
or score of any pair of jobs (elements) can be determined by applying the L2 Norm
presented in (2.5). Of course all attributes will be normalized in order to reduce the
data skew. The jobs involved in the computational experiment are selected randomly
from the data set. The computational results for experiment 2 are presented in Table 2
(the symbols used this table are the same as those in Table 1).

Here it is obvious that our algorithm obtains much better solutions than K-means
in terms of both the compactness of the resulting clusters and the similarity of their
elements (jobs).While our computational times are longer than those of K-means, they
are well within the acceptable range for our originally stated purpose of creating an
algorithmic design inwhich our algorithmwill be used off-line during a large part of its
execution to conduct data preparation. Furthermore, our computational experiments
also disclose that the jobs on the node where the experiment data was collected can be
grouped into three or four major groups according to the evaluations provided by our
similarity criteria. The relationships underlying this discovery have been verified to
be more widely applicable by running additional tests on data outside of the training
data used to build clusters in the tests reported above. Indeed our algorithm plays an
important role for the company in preparing data and creating business rules to detect
abnormal jobs associated with a node.

123

Author's personal copy

476 B. Cao et al.

Table 2 Results for dataset 2

NP NS Total time (mm:ss:ms) CPT SV

K-means TS K-means TS K-means TS

100 3 00:01: 54 00:01:38 2.28 0.84 2.74 1.26

100 4 00:01:52 00:01:81 2.37 0.77 2.74 1.23

200 3 00:01:55 00:02:87 8.38 1.05 26.52 8.65

200 4 00:01:56 00:03:19 8.48 1.12 26.55 9.39

200 8 00:01:54 00:04:39 8.55 1.57 26.57 12.87

300 3 00:01:57 00:04:93 0.79 0.28 0.19 0.12

350 4 00:01:81 00:09:54 5.19 0.93 14.87 4.85

400 4 00:01:58 00:10:54 7.53 0.62 12.74 4.27

500 3 00:01:64 00:17:97 5.11 0.89 12.96 4.54

500 5 00:01:61 00:17:26 6.04 0.93 13.06 4.76

500 10 00:01:56 00:19:89 6.39 0.93 13.11 4.76

800 3 00:01:74 01:32:33 6.11 0.89 12.45 5.39

800 4 00:01:77 01:33:12 24.02 1.58 139.51 15.54

1000 8 00:01:74 03:35:94 6.72 0.96 12.45 5.31

4 Conclusions

In this paper we propose a mathematical model that simultaneously accounts for com-
pactness and similarity in creating clusters, and present a tabu search based algorithm
to solve the corresponding formulation. Our new algorithm considers the compact-
ness and similarity of clusters effectively, as demonstrated by computational tests on
randomly generated datasets and also on datasets drawn from real world applications.
The parameterized variance component introduced in the objective function proves
effective for generating higher quality solutions. The elite candidate strategy employed
in the tabu search improvement procedure has cut computational time significantly
while providing good quality solutions. Our computational outcomes further disclose
the algorithm’s robustness, which enables a user to apply the algorithm without exten-
sive tuning and without having to change parameter values to solve problems. These
features afford significant advantages in preprocessing the datasets and creating busi-
ness rules for detecting abnormally of a cloud platform in the practice.

Future research will focus on enhancements in order to solve problems more effi-
ciently, including (1) enhancing the initial solution step to detect patternsmore quickly;
(2) employing a more advanced elite candidate strategy to reduce computational time
further; (3) utilizing a multi-core CPU to speed up the algorithm. The successful out-
comes of our current algorithmic design give a useful foundation for pursuing such
enhancements.

Acknowledgments The authors would like to thank our student team including Aro Lee, Zheng Xu, and
Jiayao Gao for their efforts in implementing the algorithm, data preparations, and partial computational
experiments. We would also like to express our gratitude to two anonymous referees for their valuable

123

Author's personal copy

A tabu search algorithm for cohesive clustering problems 477

criticisms and suggestions to improve ourmanuscript. This research is partially supported by project contract
CIUC20140004.

References

April, J., Better, M., Glover, F., Kelly, J.P., Kochenberger, G.: Strategic workforce optimization: ensuring
workforce readiness with OptForce. Ann. Optim. (2014, in press)

Bae, E., Bailey, J., Dong, G.: A clustering comparison measure using density profiles and its application to
the discovery of alternate clusterings. Data Min. Knowl. Discov. 21, 427–477 (2010)

Brusco, M.J., Steinley, D., Cradit, J.D., Singh, R.: Emergent clustering methods for empirical OM research.
J. Oper. Manag. 30, 454–466 (2012)

Cao, B., Glover, F.: Creating balanced and connected clusters for improved service delivery routes in
logistics planning. J. Syst. Sci. Syst. Eng. 19, 453–480 (2010)

Datta, S., Giannella, C.R., Kargupta, H.: Approximate distributed K-means clustering over a peer-to-peer
network. IEEE Trans. Knowl. Data Eng. 21(10), 1372–1388 (2009)

Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13,
533–549 (1986)

Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)
Glover, F., Laguna, M.: Tabu search: effective strategies for hard problems in analytics and computational

science. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization,
2nd ed, vol. XXI, pp. 3261–3362. Springer, New York (2013)

Grabmeier, J., Rudolph, A.: Techniques of cluster algorithms in data mining. Data Min. Knowl. Discov. 6,
303–360 (2002)

Kochenberger, Glover, F., Alidaee, B., Wang, H.: Clustering of microarray data via clique partitioning. J.
Comb. Optim. 10, 77–92 (2005)

Kochenberger, G.A., Hao, J.K., Lü, Z., Wang, H., Glover, F.: Solving large scale Max Cut problems via
tabu search. J. Heuristics 19(4), 565–571 (2013)

Linoff, G.S., Berry, M.J.: Data Mining Techniques, 3rd edn. Wiley Publishing Inc, Indianapolis, IN (2011)
Liu, C.M.: Clustering techniques for stock location and order-picking in a distribution center. Comput.

Oper. Res. 26, 989–1002 (1999)
Provost, F., Fawcett, T.: Data Science for Business. O’Reilly Media, Inc., Sebastopol, CA (2013)
Strehl, A., Ghosh, J.: Relationship-based clustering and visualization for high-dimensional data mining.

INFORMS J. Comput. 15, 1–23 (2002)
Trappey,C.V., Trappey,A.J.C., Chang,A.C.,Huang,A.Y.L.: Clustering analysis prioritization of automobile

logistics services. Ind. Manag. Data Syst. 110(5), 731–743 (2010)
Wu, Q., Hao, J.K., Glover, F.: Multi-neighborhood tabu search for the maximum weight clique problem.

Ann. Oper. Res. 196(1), 611–634 (2013)
Wu, H., Wang, X., Peng, Z., Li, Q.: Div-clustering: exploring active users for social collaborative recom-

mendation. J. Netw. Comput. Appl. 36(6), 1642–1650 (2013)

123

Author's personal copy

	A tabu search algorithm for cohesive clustering problems
	Abstract
	1 Introduction
	2 Model and algorithms
	2.1 Problem description and model
	2.1.1 Calibration of the scores
	2.1.2 Evaluating clusters by referencing scores
	2.1.3 Objective function

	2.2 Basic procedures
	2.2.1 Assigning elements to clusters
	2.2.2 Dropping elements from clusters
	2.2.3 Updates and evaluations
	2.2.4 Implementation of move value

	2.3 Build initial solution
	2.3.1 Creating 2-element clusters

	2.4 Tabu Search based improvement procedure
	2.4.1 Tabu tenures
	2.4.2 Elite Candidate list
	2.4.3 Intensification and diversification
	2.4.4 Overall algorithm

	3 Computational experiment
	4 Conclusions
	Acknowledgments
	References

