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Abstract The generalized vertex cover problem (GVCP) was recently introduced in
the literature and modeled as a binary linear program. GVCP extends classic vertex
cover problems to include both node and edge weights in the objective function. Due to
reported difficulties in finding good solutions for even modest sized problems via the
use of exact methods (CPLEX), heuristic solutions obtained from a customized genetic
algorithm (GA) were reported by Milanovic (Comput Inf 29:1251–1265, 2010). In this
paper we consider an alternative model representation for GVCP that translates the
constrained linear (binary) form to an unconstrained quadratic binary program and
compare the linear and quadratic models via computations carried out by CPLEX’s
branch-and-cut algorithms. For problems comparable to those previously studied in
the literature, our results indicate that the quadratic model efficiently yields optimal
solutions for many large GVCP problems. Moreover, our quadratic model dramatically
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outperforms the corresponding linear model in terms of time to reach and verify opti-
mality and in terms of the optimality gap for problems where optimality is unattained.

Keywords Vertex cover · Performance evaluation · Combinatorial problems

1 Introduction

The classic form of the vertex cover problem has the goal of finding a subset of nodes
of minimum cardinality such that every edge in the graph has at least one endpoint in
the subset of nodes chosen. A variant of this model that allows for node weights yields
the so-called minimum weight vertex cover problem. Contemporary papers addressing
the challenge of solving these problems and highlighting their importance are given
in references [2–6,9,11–13]. Recently Hassin and Levin [7] and then Milanovic [12]
introduced a further generalization of the vertex cover problem arising in practical
applications that incorporates edge weights as well as node weights, where the cost
associated with a given edge depends on whether one, both or neither end point is in
the subset of nodes chosen. For example, upgrades to telecommunications network
coverage areas involving combinations of node as well as transmission media edge
costs [14]. This most recent version of the vertex cover problem is referred to as the
Generalized Vertex Cover Problem (GVCP).

The paper by Milanovic [12] reports computational experience on some modest
sized problems (up to 500 nodes with 100,000 edges) indicating that the exact method
of CPLEX was unable to solve many of the test problems under consideration but
that a specially crafted GA efficiently produced solutions of higher quality than those
produced by CPLEX (using a reasonable limit on the computation time consumed). In
this paper we re-visit the challenge of finding exact or near-optimal solutions to GVCP
problems similar to those considered by Milanovic [12] as well as much larger GVCP
problems. To this end we propose an alternative formulation for GVCP consisting
of an unconstrained quadratic binary model and compare the linear model of the
literature with our quadratic model on a set of test problems with characteristics
similar to those found in the literature. Testing and comparison of the two models is
carried out using the algorithms available via CPLEX for mixed integer and quadratic
optimization.

In Sect. 2 below we present the linear binary model for GVCP as given by Milanovic
[12] along with our quadratic alternative. Section 3 presents our computational expe-
rience and comparisons, followed by summary and conclusions in Sect. 4.

2 Alternative models for GVCP

Consider an undirected graph G = (V, E) with a vertex set V = {1, 2, 3 .. n}. For
GVCP we seek a minimum cost subset of nodes and edges where the cost structure
consists of: (1) ci = cost of node i;(2) dk(e) = cost contributed by edge e if exactly
k endpoints are in the subset of nodes chosen where d0(e) ≥ d1(e) ≥ d2(e).

In other words, the cost d0(e) for not including an edge e is higher than including
a single endpoint of the edge d1(e). Including both endpoint nodes of an edge, d2(e)
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has the lowest of the three costs. Thus GVCP allows the possibility that a given edge,
at an appropriate cost, can have neither endpoint in the subset of nodes chosen.

2.1 Linear model for GVCP

Following the notation of Milanovic, the linear model for GVCP_Lin is:

min
∑n

i=1
ci xi +

∑n

(i, j)∈E

{
d2(i, j)zi j +d1(i, j) (yi j −zi j )+d0(i, j) (1−yi j )

}

subject to (∀(i, j) ∈ E)

yi j ≤ xi + x j (1)

zi j ≤ xi (2)

zi j ≤ x j (3)

xi , yi j , zi j binary

where xi = 1 if node i is in the subset; 0 otherwise; zi j = 1 if both vertices i and j
are in the subset; 0 otherwise; yi j = 1 if at least one of the vertices i and j are in the
subset; 0 otherwise.

Note that GVCP_Lin is a large 0/1 linear program with two variables (yi j and zi j )

for each edge in the graph. Thus, GVCP_Lin grows rapidly with both node count and
with edge density. Note also that by setting yi j = 1, zi j = 0, and eliminating the edge
costs, GVCP_Lin reduces to the weighted vertex cover problem WVCP. In addition,
if we set all node costs to 1, GVCP_Lin reduces to the classic vertex cover problem.

2.2 Quadratic alternative formulation

Our alternative quadratic model modifies the linear model by making appropriate
quadratic substitutions for yi j and zi j in a manner that allows these edge variables along
with the constraints of (1), (2), and (3) to be eliminated, yielding a compact equivalent
model in the form of an unconstrained quadratic binary program. To illustrate this we
first re-write GVCP_Lin in a slightly more convenient form:

min x0 =
∑n

i=1
ci xi −

∑
(i, j)∈E

ai j zi j −
∑

(i, j)∈E
bi j yi j + C (4)

subject to (∀(i, j) ∈ E)

yi j ≤ xi + x j (5)

zi j ≤ xi (6)

zi j ≤ x j (7)

xi , yi j , zi j binary
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where ai j = d1(i, j) − d2(i, j) ≥ 0; bi j = d0(i, j) − d1(i, j) ≥ 0; C =∑
(i, j)∈E d0(i, j). From (4) we see that both yi j and zi j will tend to be 1 unless

the constraints force them to be zero. The constraints of (5) imply that yi j will equal
0 when both xi and x j are zero which, in turn, means that we can replace yi j with the
quadratic expression:

yi j = xi + x j − xi x j (8)

Furthermore, the constraints of (6) and (7) imply that zi j will be 0 when either or both
xi and x j are equal to 0 which means we can replace zi j with the quadratic expression:

zi j = xi x j (9)

Making the substitutions of (8) and (9) into the objective function of (4) yields

GVCP_xQx : min x0 =
∑n

i=1
ci xi −

∑
(i, j)∈E

ai j xi x j

−
∑

(i, j)∈E
bi j (xi + x j − xi x j ) + C (10)

This provides an unconstrained quadratic binary program of the form: min x0 =
x ′Qx + C where Q is an n-by-n symmetric matrix of constants whose diagonal
elements are the node costs and whose remaining elements are associated edge costs.
A similar approach for reformulations with penalty functions is reported in a recent
study by Hsia and Wang [8].

3 Computational experience

For the purpose of seeking exact solutions, our interest in this section is to see if
either GVCP_Lin or GVCP_xQx has a computational advantage over the other and
whether or not one of these formulations may actually enable an exact method (in
this case CPLEX) to solve instances of GVCP of the size and characteristics found in
the literature in a reasonable amount of time. In addition to comparing the alternative
models with one another, we also provide a comparison of our results to those reported
earlier by Milanovic [12].

3.1 Test problems

Our comparisons are based on three sets of test problems denoted P1, P2, P3. All
problems were created using the procedure adopted from [11] which creates difficult
GVCP problems via node costs that are averaged over one hundred randomly generated
covers. All problems are available electronically from the first author. Set P1 was
designed to mimic the size and characteristics of the problems used by Milanovic
in [12]. To illustrate the effect of node costs on problem difficulty, a second set of
problems, P2, was generated from P1 using the same topology and same edge costs
but with node costs simply being doubled from their P1 values. In addition, a third set
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of larger problems, P3, was generated with up to 5,000 nodes and more than 10 million
edges in order to test whether the types of comparisons we found based on P1 and P2
carried over to larger problem instances.

All problems were solved with CPLEX v12 on a 4-core 3.4 GHz Intel i7-2600 cpu
using 8 threads and Windows 7 with 16 GB RAM. For the purpose of comparing with
previous results from the literature, the same time limit of 7,200 s used by Milanovic
[12] was imposed in all cases. It is customarily recommended that for stability reasons
difficult problems should not be run in hyper-threaded mode. However, with hyper-
threading enabled we obtained a performance increase of about 50 %, as measured
by the number of iterations and nodes explored, and had no computer stability prob-
lems. In all cases, CPLEX default settings were utilized. While CPLEX has many
customizable parameter settings, the default settings allow it to modify parameters in
accordance with the CPLEX presolve and heuristic routines and provide for a legiti-
mate comparison of the quadratic and linear models where performance differences
cannot be attributed to the user’s choice of parameter settings. That said, the CPLEX
working memory parameter was changed from the default 128 MB to 12 GB, without
which the larger problems could not have been attempted.

3.2 Results for problem sets P1 and P2

Tables 1 and 2 summarize the average results obtained for problem sets P1 and P2,
respectively. The results in our tables do not include the additive constant, C. For all 28
P1 problem instances, both the GVCP_xQx and the GVCP_Lin quickly found optimal
solutions. The linear model was able to quickly prove optimality for all 28 problems in
P1 while the quadratic model proved optimality in the allotted time on 26 of the 28 prob-
lems. In the 26 cases where both models yielded proven optimal solutions, the quadratic
model did so in an average of 5 s while the linear model took an average of 11 s.

The problems of set P1 were designed to be as comparable as possible to the prob-
lems reported in the paper by Milanovic [12] which reported using CPLEX v10 on a
2.5 GHz single threaded machine with 1 GB RAM. The work reported in [12] suc-
ceeded in exactly solving only 10 small and/or sparse problems out of 28 and reported
the average time to solution of 4,488 s, while our corresponding average time for
the linear model was 10.5 s (about 420 times faster) to solve all problems to proven
optimality. This difference in the performance of CPLEX can be largely attributed to
the difference in computers and in our use of parallel hyper-threading, as well as to
the difference in alternative versions of CPLEX.

Table 1 Average results from problem set P1 categorized by number of edges

# edges Time to opt solution Time to prove opt [12] time to solution

xQx LIN xQx LIN GA

Small 0.01 0.02 0.09 0.03 0.5

Medium 7 1.5 14 2 5

Large 0.02 39.5 0.02 40 47
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Table 2 Average results from
problem set P2 categorized by
number of edges

# edges Time to opt solution Time to prove opt

xQx LIN xQx LIN

Small 0.02 0.03 0.07 0.03

Medium 40 3 538 3

Large 0.2 1252 13 1321

Milanovic also reported results for a genetic algorithm (GA) heuristic applied to
the 28 problems [12]. With the GA, each problem was run 20 times yielding results
that matched the optimal solution for 5 small problems, found best known solutions,
perhaps not optimal, on 15 problems, and failed to match best known solutions on 8
problems. Across all 28 problems, the average time to reach the best solution found
was 13 s. In comparison, our average times to find the known optimal solutions were
0.1 and 7.6 s for GVCP_xQx and GVCP_Lin respectively. Our average time to prove
that the solutions found were optimal was 5 s for GVCP_xQx and 11 s for GVCP_Lin.

Table 1 illustrates the effects of the number of edges on problem difficulty for P1,
where small problems are up to 500 edges, medium up to 5,000 edges and large prob-
lems having up to over 100,000 edges. The 28 problems in P1 consist of seven sets of
problems having from 30 to 500 nodes, each with 4 variations of edge density rang-
ing from 1 to 84 %. A similar table was presented in [12] and representative results
from that paper for the genetic algorithm tested are included in the last column. The
table shows that for the dense problems the quadratic form clearly outperforms the
linear form. One of the 28 problems, a 300 node 1,081 edge graph proved difficult
for GVCP_xQx, taking 121 seconds to find the optimal solution and affecting the
overall average reported. However, all other problems in that category GVCP_xQx
found the optimal solution in under 0.2 s and in general the time to find and the time
to prove exact solutions using GVCP_xQx compare very favorably with the heuristic
GA results reported in [12].

Table 2 illustrates that doubling the node costs made the P1 problems more difficult
for both the quadratic and the linear binary representations. Doubling the node costs
changes the relative magnitude distribution between the diagonal and off-diagonal
elements of Q, a relationship that is known to affect problem difficulty as we see in the
table. Table 2 also shows that GVCP_xQx did not perform as well on problems with
a medium number of edges, with the majority of these problems being edge sparse
300, 400 and 500 node problems, where edge sparse indicates that only about 10 %
of all possible edges are enumerated in the problem. In all problem sets, GVCP_xQx
outperforms on edge dense problems (>30 %). The average time taken to prove opti-
mality was 6× longer for the problems in P2 than for those in P1. Average time to
find the optimal solution for all 28 problems in the more difficult P2 set was 16 s for
GVCP_xQx and 279 s for GVCP_Lin.

3.3 Large problem set (P3)

Larger problem instances (P3) were investigated to determine if GVCP_xQx, would
continue to dominate GVCP_Lin in solution time and in solution quality, as measured
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Table 3 Performance on larger problem instances (P3)

Nodes Edges Time to Sol MIP gap Best solution

Quad Linear Quad (%) Linear (%)

750 2,0725 4 113 0.19 0.00 −239,815

506,95 1 1,020 0.15 0.04 −668,695

103,160 1 7,100 0.09 0.94 −1,363,015

235,146 0.5 7,000 0.06 21.20 −3,074,643

1,000 50,139 1 916 0.28 0.05 −639,205

150,086 0.7 5,000 0.12 18.00 −2,000,200

299,952 1 7,000 0.07 21.00 −3,946,731

417,802 0.5 4,000 0.05 24.00 −5,4645,02

2,000 200,255 3 7,000 0.14 11.86 −2,641,880

400,224 5 6,000 0.12 24.00 −5,267,672

800,100 4 a 0.06 a −10,486,869

1,672,728 6 a 0.03 a −21,618,900

3,000 3,688,461 14 a 0.02 a −47,476,288

5,000 10,454,451 60 a 0.02 a −134,149,816

Averages 7.3 4217 0.1 12.1

a Unable to find a feasible solution in 7,200 s time limit

by the optimality gap. Results for problems ranging from 750 nodes to 5,000 nodes are
shown in Table 3. The table shows the problem size and solution time for the optimality
gap indicated, subject to a 7,200 s time limit. GVCP_xQx, always found a solution as
good as, or better than, the one found by GVCP_Lin. For the problems containing from
750 to 2,000 nodes, GVCP_xQx consistently yielded high quality solutions within an
average optimality gap of 0.1 % in 2 s. Conversely, GVCP_Lin yielded lower quality
solutions within an average optimality gap of 12 % in about 4,400 s (more than 2,000
times slower). This performance difference is explained in large part due to the vast
difference in size between the problem representations generated by GVCP_Lin and
GVCP_xQx.

Table 3 also provides a comparison of the two models on the largest and densest
instances reported in the literature, 3,000 node 82 % dense and 5,000 node 84 %
dense problems. The mere size of these problems creates a computational challenge
for GVCP_Lin. For example, the 5,000 node problem has over 18 million columns
and 26 million rows after CPLEX presolve eliminated over 5 million rows and close to
3 million columns. The corresponding reduced MIQP of GVCP_xQx for this problem
had only 2,509 binary variables. As shown in Table 3, GVCP_xQx, enabled high qual-
ity solutions to be quickly found for both of these large problems while GVCP_Lin
failed to produce a feasible solution in the allotted time limit of 7,200 s.

Experiments with CPLEX parameters designed to emphasize optimality and
improve best bound were tested on GVCP_xQx with little effect on either the opti-
mality gap or the number of nodes explored.
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4 Summary and conclusions

In this paper we show how the standard linear model for the Generalized Vertex Cover
Problem, GVCP_Lin, can be reformulated as an equivalent, more compact quadratic
model (GVCP_xQx). Computational comparisons carried out using the branch-and-
cut optimizers available from CPLEX reveal the superiority of the new, quadratic
model.

Comparisons, based on time to optimality and solution quality as measured by
optimality gap, were made on a set of test problems that included instances similar in
size and characteristics to those previously studied in the literature [12] for the linear
model GVCP_Lin. We tested the two models on 70 problems ranging in size from
30 to 5,000 nodes (largest GVCP reported in literature) with varying edge densities.
Across all problems, the quadratic model, GVCP_xQx, outperformed the linear model,
GVCP_Lin, by a wide margin, producing exact or quantifiably high quality solutions
in just a few seconds. The superiority of GVCP_xQx was particularly evident on the
denser problem instances. We note that the exact GVCP_xQx results we report here,
even allowing for differences in computers used, compare nicely with the heuristically
produced (GA) results reported in [12] for the comparable problems.

These results highlight that the quadratic formulation allows much larger problem
instances than previously considered in the literature to be solved exactly by off-the-
shelf methods like CPLEX. All told, the quadratic model, for the class of problems
considered here, exhibits a substantial computational advantage over the competing
linear representation. This advantage derives from the fact that the quadratic model is
substantially smaller than the linear model and represents a practical way to circumvent
the combinatorial explosion associated with the much larger linear model.

Moreover, the results we report here for the Generalized Vertex Cover Problem are
consistent with results we have found for other classes of problems where the standard
linear model was compared with an equivalent quadratic alternative. For instance, see
the paper “Computationally Attractive Non-Linear Models for Combinatorial Opti-
mization,” by Alidaee, et al. [1]. The results reported here add to the mounting evidence
that quadratic alternatives to standard linear models, for many problem classes, can
not only be computationally attractive but may enable high quality solutions to be
found by commercial products (like CPLEX) for problem instances that are too large
to solve in the more common linear form.

As part of our on-going research, we plan to extend the type of comparisons made
here on GVCP to other forms of vertex cover problems. Results from these extensions
will be reported in future papers.
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