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Introduction 

 
In this paper, we investigate the impact of communication between optimization 

algorithms running in parallel. In particular we focus on the weighted maximum cut 

(WMAXCUT) problem and compare different communication strategies between teams 

of GES algorithms running in parallel. The impact of communication is analyzed by 

comparing the results to the algorithm portfolio approach, which does not include any 

communication between its constituents. 

The WMAXCUT problem is NP-hard: the computational requirements grow 

exponentially as the problem size increases. This leads to computational intractability 

when dealing with large scale instances or in applications with strict time constraints. 

Parallel computing tools can accelerate optimization algorithms; however, this potential 

is difficult to unleash due to a variety of issues when parallelizing serial search 

procedures. Effective utilization of modern high performance computing requires 

specialized research in the area of parallel optimization algorithms.  

The weighted maximum cut problem is a classical problem of discrete 

optimization, which recently gathered a lot interest due to a number of important 

practical applications. An overview of some of the algorithms for this problem is given 

in [1]. In recent years, the stochastic method of global equilibrium search (GES) [2, 3] 

was successfully used for general discrete optimization problems, and various instances 

of the GES approach [1, 4, 5]) have been developed to solve the problem WMAXCUT. 
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1. Weighted max-cut problem (WMAXCUT) 

 

The weighted maximum cut (WMAXCUT) problem is a classic discrete 

optimization problem with numerous practical applications [6, 7]. Given an undirected 

graph G = G(V;E), where V is a set of nodes and E is a set of weighted edges, the 

objective is to partition the set V into two disjoint subsets, a so-called cut, in such a way 

that the sum of weights corresponding to the edges that connect the two subsets is 

maximized.  

The problem is known to be NP-hard even for the case when all weights have the 

same value [8]. The polynomial-time algorithm for finding maximum cuts in planar 

graphs was proposed in [9]. In general, exact methods can handle only small to medium 

problem sizes [10]. The approximation algorithm [11] is using a semidefinite 

programming relaxation to generate a maximum cut with a cost that is on average at 

least 0.87856 times the optimal value. However, its CPU and memory requirements are 

not scalable for large problem sizes. Approximate heuristic methods are successfully 

used to solve large scale problems [12-15]. The Global Equilibrium Search (GES) 

method is an efficient meta-heuristic approach that demonstrates state-of-the-art 

performance in many applications, including the WMAXCUT [1-5].  

Consider an undirected graph G = G(V;E) where V is a set of vertices and E is the 

set of edges. Every edge ( , )i j E∈  is characterized by a weight ijw . Given a partition 

( )1 2,V V   of the set of vertices V, where 1V  end 2V  are non-overlapping and their union is 

equal to V, a cut is defined as a set of edges ( , )i j E∈   such that 1i V∈  and 2j V∈ . The 

weight of the cut is the sum of the weight of its edges: 

1 2

1 2
, ,( , )

( , ) ij
i V j V i j E

w V V w
∈ ∈ ∈

= ∑ . 

In the WMAXCUT problem, the objective is to find a cut with the maximum weight.  

The WMAXCUT problem can be formulated using a mixed integer programming 

model [16]: 

, 1,

max
n

ij ij
i j i j

w y
= <
∑  
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s.t.  0, , 1,..., , ,ij i jy x x i j n i j− − ≤ = <  

  2, , 1,..., , ,ij i jy x x i j n i j+ + ≤ = <  

  { }0,1
n

x∈ . 

This model assumes that the weights are non-negative, and its solution defines a 

graph partition { }( )1 2 1 2, if 1 then ,  otherwise i i iV V x v V v V= ∈ ∈  that has the maximum cut 

value.  

The WMAXCUT problem also can be formulated using the Unconstrained Binary 

Quadratic Programming model: 

  
{ }

( )2
0,1 ( , )

max ( )
i

ij i j
x i j E

f x w x x
∈ ∈

 
 = − 
  

∑   

 

2. Portfolios and Teams of Optimization Algorithms 

 

In this paper, we focus on the parallel optimization framework that consists of a set of 

algorithms running on different processors in parallel. Each algorithm undertakes to 

solve the same problem, called the target problem. 

The algorithms in the set can be either independent, or they may communicate 

certain information about the search space of the target problem during their execution. 

To distinguish these two cases, we will call a set of independent algorithms an 

algorithm portfolio, and will call the set of algorithms that communicate a team of 

algorithms. 

There may be multiple portfolios of algorithms that work independently of each 

other (yet which are classified as a single unit) just as there may be multiple teams 

whose members share information with each other. Consider some set of available 

algorithms { }1,..., mA A A=  that can be executed by any of the P available processors. 

Each processor should be assigned to an algorithm from A, while an algorithm may be 

assigned to multiple processors. The latter case makes sense when dealing with 

randomized algorithms, where each copy of the same algorithm uses a distinct seed 
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value for initializing its pseudorandom number generator. In this case, although the 

algorithm deployed on different processors is the same, the difference in seed values 

leads to different search trajectories.  

Teams of algorithms, as well as algorithm portfolios, can be described by a list that 

specifies how many processors are assigned to each algorithm from A: 

( ) ( ) ( ){ }1 1 2 2, ,..., m mn A n A n A , where
1

m

i
i

n P
=

=∑ . 

When solving an optimization problem by a team or portfolio of algorithms, 

performance is measured with respect to the best algorithm in the team or portfolio, that 

is, the one that takes the least time to solve the target problem. In other words, if it  is 

the computational time elapsed before finding solution by algorithm on i-th processor, 

then the corresponding computational time for the portfolio or the team, which we 

designate as a unit, is measured by 
1,...,
minunit i

i P
t t

=
=   

The theoretical properties of optimal portfolios of restart algorithms were 

considered in [17]. In [18] the authors provided a sharp upper bound on the maximum 

speedup coefficient of the portfolios consisting of different algorithms when compared 

to a single algorithm portfolio. The work of [19] proposes and investigates various 

algorithms portfolios 

Treatment of same objective values  

 

GES algorithm keeps track of the best found solution, bestx , and the best solution 

after the last restart of the search procedure or the current best, maxx . During the 

execution of a given algorithm, upon finding a new solution x with the same objective 

value as maxx  obtained by that algorithm, we have three options: 

(St) stay with (retain) the current best solution (without replacing maxx ); 

(Mv) switch (update) the current best solution to x (by setting maxx = x); 

(Mc) switch (update) the current best solution to x (by setting maxx = x) under 
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some condition. 

Similar choices are appropriate for updating bestx . By choosing different update 

rules for maxx  and bestx , we can define 9 different variations of the search algorithm. 

For some problems, the number of solutions with the same objective value is measured 

by hundreds of thousands, thus these strategies can behave very differently. These 

variations together with different search methods used by GES procedures provide a 

wide spectrum of algorithms for composing optimization teams.  

Figure 1 shows a typical example of computational acceleration achieved by 

portfolios of 4 identical algorithms. If a time to solve a problem by a serial algorithm 

is serialt , and the time to solve a problem by a portfolio of algorithms on P processors is 

portfoliot , then the coefficient of acceleration is ( )/ *serial portfoliot t P . In particular, this 

graph shows the coefficient of computational acceleration for the set of instances G1-

G54 achieved by 4 different algorithm portfolios considered in [19]: MvSt1GES, 

MvSt2GES, StSt1GES and StSt2GES. The naming convention of theses algorithms is 

based on the choice of search strategies, the first two letters refer to the update rule for 

maxx , the third and fourth letters refer to the update rule for bestx , and the following 

number identifies which type of tabu search procedure is used. The difference between 

the tabu procedure 1 and the tabu procedure 2 is following: the first tabu procedure 

performs a fixed number of iterations when attempting to improve maxx , and in the 

second tabu procedure the number of iterations depends on the previous search results 

(increased if there was a recent improvement).  For example, MvSt1GES always 

updates the current best solution, maxx , always retains the best solution, bestx , and uses 

the first type of tabu search procedure. To calculate the acceleration coefficient for each 

instance, we used computational times required to find target solution objectives (the 

target objectives were set to the objectives of the known high quality solutions). 
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Fig. 1. Parallel acceleration achieved by the algorithm portfolios consisting of 4 

GES algorithms 

 
In the current paper, we will focus on the GES based algorithm, which in addition 

to the common GES structure, performs oscillations around the best record, bestx , based 

on the path-relinking (PR) methodology [20]. Throughout this paper we will refer to 

this method as GESPR algorithm. In our studies we will focus on the variation that 

always updates the best solutions when locating solutions with the same objectives.   

The exact notion of a team of algorithms is difficult to formalize, thus prohibiting 

the exact analysis. The algorithms within a team not only communicate with each other 

but may include a meta-algorithm that can restructure the team, modify its 

communication based on the outcomes of the optimization process. In order to be 

efficient, a team of algorithms should consist of procedures that can utilize the external 

information that is being communicated within the team. For example, if the problem is 

solved by a team of standard local search algorithms that are initiated by independently 
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generated  starting solutions, then the exchange of information is useless, unless the 

information that is being communicated can adjust the local search steps. 

The Global Equilibrium Search Method provides excellent computational 

efficiency in many applications, but one of its most important qualities is its ability to 

be an efficient team algorithm. This is achieved through embedded memory structures 

that can process solutions obtained by any other algorithm. Exchanging solutions 

between different copies of the GES algorithm affords an opportunity to strengthen their 

performance by decreasing the computational time to yield a high quality solution. With 

respect to such exchange, the key question is: what information should be exchanged 

and how often should it be communicated. 

The determination of a good communication protocol is not trivial. It is wrong to 

think that any exchange of information is useful. Some algorithms need to forget, or 

restrict the use of certain information. In some cases communication can even be 

detrimental to the team performance and should be avoided. 

 

3. Computational Experiment 
 
In this section, we compare the algorithm portfolio approach to the team approach, 

where the algorithms communicate with each other. In both settings, we will use a set of 

identical GES algorithms running on different processors. In particular, we will consider 

an extremely simple communication strategy, where the best found solution and its 

objective value is the only thing that is being communicated. 

For this experiment, we use the recent family of GES algorithms developed for the 

large WMAXCUT instances. These algorithms implement an oscillation around the best 

found solution based on the path-relinking (PR) methodology [20]. Like in [21], our 

experiments were conducted on a set of 71 benchmark instances that has been widely 

used to evaluate Max-Cut algorithms. These instances can be downloaded from 

http://www.stanford.edu/~yyye/yyye/Gset/ and include toroidal, planar and random 

graphs, with the number of vertices ranging from |V | = 800 to 20,000, and edge weights 

of values 1, 0, or -1. 
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Communication strategies 
 

Let ( )ix t  denote the best solution found by the ith algorithm of the team, and  be 

* ( )x t the best overall solution that is stored in the shared memory and can be accessed 

by all members of the team. Thus ( ) ( )( ){ }* ( ) max i

i A
f x t f x t

∈
= , where A is the set of team 

members. The members of team communicate with each other by reading and updating 

* ( )x t  while solving optimization problems. The following two rules define the 

communication protocol used by Team1:  

(A) Update * ( )x t  whenever some algorithm iA  yields ( )( )if x t  > ( )* ( )f x t  by setting 

* ( )x t  = ( )ix t . 

(B) Periodically, check all algorithms iA  to see if ( )( )if x t < ( )* ( )f x t , and if so, then 

redefine ( )ix t  = * ( )x t . 

In the beginning, we tested the portfolio consisting of 4 copies of GES-PR, where 

none of the algorithms communicated with each other. Additionally, we considered 

three teams consisting of 4 GES-PR algorithms. The algorithms in Team1 exchanged 

the best solutions using the file in the shared memory. The file was used to store the 

best objective ( )* ( )f x t  and the best current solution * ( )x t  obtained by the team. 

Whenever one of the team members improved its current best solution ( )ix t , it read the 

file and compared its best solution to the best solution from the file. If 

( )( ) ( )* ( )if x t f x t> , then the file was updated with the new record value and solution - 

* ( )x t = ( )ix t . Furthermore, each algorithm periodically read the record file to update its 

current best solution ( )ix t , setting ( )ix t = * ( )x t , whenever ( )( ) ( )* ( )if x t f x t< . 

The second team, Team2, used a communication scheme similar to Team1 with 

one distinction. From the computational results of the portfolio approach, for every trial 

we knew which algorithm would find the best solution. We call this algorithm a leader. 

The algorithms in Team2 used the following scheme in each trial. All members of the 
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team read and write to the shared memory file similarly to the algorithms in Team1, 

with the exception of the leader of the trial. The trial leader only writes to the file, but 

never reads from it. Obviously, the results of Team2 were always at least as good as the 

result of the portfolio approach.  

Despite of the unrealistic assumption of this scheme (knowing the leader in 

advance), the results of Team2 can provide some insight into what can be achieved by 

improving the exchange of information. Furthermore, if there is some guessing 

mechanism to predict the leader, then this scheme becomes implementable. For 

example, when solving problem G81 we've noticed that usually the algorithm that is 

first to find a solution bestx  with ( )bestf x =14030, eventually becomes a leader, and 

this takes less than an hour. Tables 1 and 2 present the results of 20 trial runs by 

algorithm portfolio (where port f and port t correspond to the best found solution in a 

given trial and the corresponding computational time), and the results of Team1, Team2 

and Team3 (where team1 f, team2 f and team3 f represent the best found objectives, 

while team1 t, team2 t and team3 t present the corresponding computational times). 

Every trial was limited to 3600 seconds. 

The computational experiment was conducted using the PC Intel CoreTM i7-3770 

CPU @ 3.40 GHz 3.40 GHz and 8.0GB RAM in real time. In other words, all 

algorithms were running at the same time. 

Computationally, the GES-PR algorithm reveals strong intensification properties, 

but less satisfactory diversification behavior. The algorithms can be trapped in a basin 

of attraction populated by "bad" solutions leading to unnecessary computations (such 

attractors will be called traps). The communication between GES-PR algorithms in turn 

can lead to an entrapment of the whole team. Therefore, it is necessary to introduce 

special measures to prevent such situations and to enable escape from such traps. 

The analysis of the computational experiments leads to the conclusion that the 

optimization process is similar to a chess game. It also can be divided into three phases: 

a search over poor solutions, a search over average solutions and the search for good 

solutions, which in chess corresponds (roughly) to the opening game, middle game and 
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end game. In the first phase, when there is no danger of falling into the trap of poor 

quality solutions, we can promote an active exchange of information between the team 

members. Such exchange will help to transition rapidly into the second phase, where 

there is a higher probability of getting trapped. To avoid this and to provide better 

diversification, on the second stage we reduce the exchange of information. Finally, in 

the third phase we again promote frequent communication to enable intensification of 

the search for high quality solutions.  

An attempt to incorporate the foregoing entrapment considerations was 

implemented in the team of algorithms Team3. The algorithm GES-PR quickly moves 

from poor solutions to good solutions entering the middle game stage. Therefore, the 

time interval [0,3600] was divided according to the golden ratio. The smaller 

part of it (1368 sec.)  was allocated to the middle game stage, where we prohibited any 

communication with one exception: the exchange is allowed only if the solution 

significantly improves the best record: ( ) ( )( )* ( ) 10i
bestf x t f x t≥ + . In the third stage 

(time interval [1368,3600], the communication patterns followed the same rules as in 

Team1. Since the algorithms check for the stopping criterion only periodically, some 

trials report the time to find the best solution that is larger than 3600 seconds. In the last 

row, we present average values for the data in each column. 

Table 1 

# trial port_f port_t team1_f team1_t team2_f team2_t team3_f team3_t 
1 9930 3216,63 9928 3293,67 9934 2899,35 9930 2887,94 

2 9926 3504,89 9932 2426,67 9930 2727,25 9934 2506,52 

3 9926 1074,06 9930 1486,31 9928 1482,94 9930 2576,57 

4 9926 1245,83 9930 2827,41 9926 1211,97 9928 1910,21 

5 9926 2896,41 9930 2580,06 9926 2913,74 9926 3619,86 

6 9926 2974,16 9926 3761,95 9928 3163,91 9930 2885,93 

7 9930 2654,45 9932 2183,11 9930 1446,33 9932 3616,34 

8 9926 3576,21 9932 1999,03 9930 3580,24 9932 3305,58 

9 9930 3385,39 9928 766,46 9930 3379,75 9928 1988,41 

10 9926 2458,83 9934 2027,45 9930 2262,94 9930 2232,4 

11 9930 2602,61 9930 3713,95 9930 2657,11 9930 3522,78 

12 9928 3107,28 9930 1953,98 9930 2384,53 9930 3209,05 

13 9926 1532,79 9928 1063,14 9928 2162,46 9936 3293,55 
14 9932 2161,77 9932 2098,63 9934 3670,48 9930 1732,96 
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15 9930 2467,04 9928 2933,07 9930 2685,22 9932 2811,37 

16 9926 1201,13 9930 2898,75 9926 1326,44 9928 2815,68 

17 9928 3421,4 9932 2001,59 9930 1683,2 9932 3213,52 

18 9930 1809,27 9928 1538,2 9932 2709,57 9932 2393,6 

19 9930 3271,39 9930 3576,82 9930 2992,98 9930 3420,75 

20 9928 931,82 9930 2909,12 9930 1408,25 9932 3274,53 

Mean 9928 2474,67 9930 2401,97 9929,6 2437,433 9930,6 2860,88 
 

Considering these computational results, it is necessary to point out the high 

computational efficiency of the GES-PR algorithm: the portfolio and teams of GES-PR 

algorithms found solutions that are better than previously known records (9926 for 

problem G77 and 14030 for problem G81) [21].  More importantly, all 3 versions of 

team algorithms outperformed the portfolio approach in terms of solution quality. As 

mentioned earlier, in the worst case Team2 would show same results as the portfolio 

approach. However, if we look at trials 4, 9, 11, 15 and 16 when solving G77 and trials 

11, 12, 16 and 19 when solving G81, Team2 improved the best found objective values. 

In some trials, when Team2 found the same solution as the portfolio, the reported 

computational times are different, since all the processors belong to the same 

computational node and might interfere with each other.  Because of this interference 

the results of the team make it difficult to replicate the trials by fixing the seeds of 

random number generator. 

Table 2. 

# trial port_f port_t team1_f team1_t team2_f team2_t team3_f team3_t 

1 14038 3251,84 14042 3103,72 14038 2178,55 14040 3432,88 
2 14030 3480,69 14032 3373,46 14040 4712,58 14032 3438,01 
3 14030 2131,45 14036 3528,37 14036 2728,44 14036 2456,63 
4 14038 2267,64 14044 2324,39 14044 2224,24 14038 1948,64 
5 14034 3535,53 14038 3724,05 14038 3608,4 14040 3698,1 

6 14036 3841,05 14036 2910,7 14036 2753,26 14038 3593,83 
7 14038 3509,7 14040 4220,32 14038 2338,49 14038 3148,18 
8 14044 2905,24 14044 3303,9 14044 2612,46 14046 3323,57 
9 14030 1371,69 14038 3548,84 14038 3605,76 14036 3149,75 
10 14036 3942,49 14042 3130,61 14040 2350,18 14038 2606,26 
11 14038 2511,59 14034 2382,79 14038 2569,45 14040 3774,32 
12 14038 3313,16 14036 4074,08 14038 3336,2 14034 2483,22 
13 14034 3441,66 14034 2286,94 14036 2742,39 14034 3352,15 
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14 14038 3185,49 14040 2834,76 14038 2679,3 14040 2885,26 
15 14036 2732,64 14042 3562,49 14040 2688,35 14040 3141,32 
16 14040 3413,63 14034 2911,64 14040 2968,99 14038 3517,64 
17 14038 3441,18 14036 3462,01 14040 4119,84 14040 3054,89 
18 14038 3358,61 14040 2127,68 14044 2697,95 14044 2777,57 
19 14044 2885,46 14042 3208,98 14044 3021,08 14038 2673,94 

20 14032 3117,96 14046 3082,6 14046 3988,78 14044 2986,29 

Mean 14036.5 3081,935 14038.8 3155,117 14039.8 2996,24 14038,7 3072,123 
 

In our experiments, the teams consisted of 4 algorithms running in parallel.  In 

such a setup, Team2 discarded 25% of the solutions it generated, whenever the best 

solution of the leader was improved by the rest of the team. With more algorithms, the 

disposal of the leader would have a much smaller impact on the performance. 

The results obtained by Team1 and Team3 encourage the development of team 

algorithms. They were not only better compared to the no communication approach, but 

also surpassed the results of Team2 on G77. 

Figures 2 and 3 show the average performance when solving G77 and G81, 

respectively.  Each point on these graphs shows the average computational time until 

finding a solution with the given objective value or better.  The bold horizontal lines 

show the previously known records [21].  These results show an impressive boost in 

performance when introducing communication to the portfolio approach. 
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Fig. 2. 

Average dynamics of the solving process of the benchmark G77 

 

Fig. 3. Average dynamics of the solving process of the benchmark G81. 
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While in the current paper we focused on comparing different communication 

strategies, our experiments have resulted in solutions that improve the current best-

known record for G55-G81 benchmark instances, which are summarized in Table 3. In 

addition to the new records found by GES-PR, we also present the best solutions found 

by the Breakout Local Search (BLS) approach [21] which provides excellent 

computational performance on the set of standard benchmarks compared to other 

approaches in the literature. The first and second columns in Table 3 provide problem 

names and the number of vertexes in the corresponding graphs, while the third and 

fourth columns provide the best solution out of 20 trials for the BLS. The interacting  

algorithms GES-PR found new records for all of the instances in Table 3, suggesting 

that this form of interaction is a good choice for studying the potential of the team 

approach to algorithm design. 

Table 3 

Name |V| BLS GESPR 
G55 5000 10294 10299 
G56 5000 4012 4017 
G57 5000 3492 3494 
G58 5000 19263 19293 
G59 5000 6078 6086 
G60 7000 14176 14188 
G61 7000 5789 5796 
G62 7000 4868 4870 
G63 7000 26997 27045 
G64 7000 8735 8751 
G65 8000 5558 5562 
G66 9000 6360 6364 
G67 10000 6940 6950 
G70 10000 9541 9591 
G72 10000 6998 7006 
G77 14000 9926 9938 
G81 20000 14030 14048 

 

Figure 4 shows a run of Team1 that resulted in the record for the problem G81 

(14048). This trial is not included in Table 2, since the record solution was found after 
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3600 seconds. In addition, we show a full protocol of information exchange between 

algorithms in Team1. 

 

Fig. 4 Trial of Team1 that resulted in the record for the problem G81 

 

4. Conclusions and Future Trends 

The results suggest that the communication between algorithms running in parallel 

is a promising research direction. Our algorithms produced new best solutions for the 

classical benchmark problems from G55 to G81, and in just 1 hour, the teams of 

algorithms were able to obtain solutions whose quality established new records for the 

large scale instances G77 and G81 (14000 and 20000 vertices, respectively). In addition 

to improving the algorithms in the team, future research can beneficially make use of 

large scale computing systems to address communication patterns, communication 

protocols, content of information exchange, and communication management. The 

results in this paper suggest that in the near future we will be able to solve WMAXCUT 

problems with up to 50,000 vertices through the capabilities offered by parallel 
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computing – a prospect which seemed impossible in the recent past. 
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УДК 519.854 

Команда алгоритмів глобального рівноважного пошуку для паралельного 
розв'язання задачі про максимальний зважений розріз графу / Шило В.П., 
Гловер Ф., Сергієнко І.В.// Кибернетика и системный анализ. – 2015. – № .– С. –. 

 

У роботі досліджується обмін інформацією між оптимізаційними 

алгоритмами, працюючими паралельно над однією задачею. Вивчалась задача про 

максимальний зважений розріз графу (WMAXCUT) і порівняння різних стратегій 

взаємодії між командами алгоритмів GES. Отримані результати свідчать про те, 

що обмін інформацією між алгоритмами, працюючими паралельно, є 

перспективним напрямом дослідження. Іл.: 4. Табл.: 3. Бібліогр.: 21 назва. 

 

УДК 519.854 

Команда алгоритмов глобального равновесного поиска для параллельного 
решения задачи о максимальном взвешенном разрезе графа / Шило В.П., 
Гловер Ф., Сергиенко И.В. // Кибернетика и системный анализ.– 2015.– №.– С. –. 

 

В работе исследуется обмен информацией между оптимизационными 

алгоритмами, параллельно решающими задачу. Изучалась задача о максимальном 

взвешенном разрезе графа (WMAXCUT) и сравнение различных стратегий 

взаимодействия между командами алгоритмов GES. Полученные результаты 

свидетельствуют о том, что обмен информацией между алгоритмами, 

работающими параллельно, является перспективным направлением исследований. 

Рис.: 4. Табл.: 3. Библиогр.: 21 назв. 
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UDC 519.854 

Team of Global Equilibrium Search Algorithms for Solving Weighted Maximum 
Cut Problem in Parallel / Shylo V.P., Glover F., Sergienko I.V. // Kibernetika i 
sistemny analiz. – 2015. – № . – С. –. 

 

In this paper, we investigate the impact of communication between optimization 

algorithms running in parallel. In particular we focus on the weighted maximum cut 

(WMAXCUT) problem and compare different communication strategies between teams 

of GES algorithms running in parallel. The results obtained by teams encourage the 

development of team algorithms. They were significantly better than the algorithmic 

portfolio (no communication) approach and suggest that the communication between 

algorithms running in parallel is a promising research direction. 

Fig.: 4. Tabl.: 3. Refs.: 21 titles. 
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