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Introduction

In this paper, we investigate the impact of comrmoaton between optimization
algorithms running in parallel. In particular wects on the weighted maximum cut
(WMAXCUT) problem and compare different communioatistrategies between teams
of GES algorithms running in parallel. The impa€tcommunication is analyzed by
comparing the results to the algorithm portfoligpagach, which does not include any
communication between its constituents.

The WMAXCUT problem is NP-hard: the computation&guirements grow
exponentially as the problem size increases. dadd to computational intractability
when dealing with large scale instances or in appbns with strict time constraints.
Parallel computing tools can accelerate optimizasityorithms; however, this potential
Is difficult to unleash due to a variety of issu@ben parallelizing serial search
procedures. Effective utilization of modern highrfpemance computing requires
specialized research in the area of parallel ogaton algorithms.

The weighted maximum cut problem is a classicalblerm of discrete
optimization, which recently gathered a lot intérdse to a number of important
practical applications. An overview of some of gigorithms for this problem is given
in [1]. In recent years, the stochastic methodlobal equilibrium search (GES) [2, 3]
was successfully used for general discrete optimizgroblems, and various instances
of the GES approach [1, 4, 5]) have been develtpsdlve the problem WMAXCUT.



1. Weighted max-cut problem (WMAXCUT)

The weighted maximum cut (WMAXCUT) problem is a sd& discrete
optimization problem with numerous practical apgiions [6, 7]. Given an undirected
graph G = G(V;E), where V is a set of nodes and [ set of weighted edges, the
objective is to partition the set V into two digjpbsubsets, a so-called cut, in such a way
that the sum of weights corresponding to the edbast connect the two subsets is
maximized.

The problem is known to be NP-hard even for the aa@isen all weights have the
same value [8]. The polynomial-time algorithm fanding maximum cuts in planar
graphs was proposed in [9]. In general, exact nistltan handle only small to medium
problem sizes [10]. The approximation algorithm ][1i$ using a semidefinite
programming relaxation to generate a maximum cuh \&i cost that is on average at
least 0.87856 times the optimal value. HoweverCiJ and memory requirements are
not scalable for large problem sizes. Approximageristic methods are successfully
used to solve large scale problems [12-15]. Theb&@ld=quilibrium Search (GES)
method is an efficient meta-heuristic approach ttamonstrates state-of-the-art
performance in many applications, including the WK@UT [1-5].

Consider an undirected graph G =\(X) whereV is a set of vertices artélis the

set of edges. Every eddg j)LE is characterized by a weigIm;j. Given a partition

(V,V5) of the set of verticeg, whereV; endV, are non-overlapping and their union is

equal toV, a cut is defined as a set of edgeg) JE such thai V4 and j[IV,. The

weight of the cut is the sum of the weight of itiyes: w(\V4,V,) = Z WWij -
iDvy, jOV, (i, ) JOE
In the WMAXCUT problem, the objective is to finccat with the maximum weight.
The WMAXCUT problem can be formulated using a mixetger programming
model [16]:
max Zn: Wi ¥

i,j=1i<j



St yij—>g—xjso,i,j=1,...ni<j
Yy tX+tXx <20,j=1..ni<]
x0{0,3".
This model assumes that the weights are non-negaid its solution defines a
graph partition{V,,V,} (if x =1 theny, OV, , otherwisg 0V,) that has the maximum cut

value.
The WMAXCUT problem also can be formulated using tnconstrained Binary

Quadratic Programming model:

2
max § f (x)= W X5 — X

2. Portfolios and Teams of Optimization Algorithms

In this paper, we focus on the parallel optimizaticamework that consists of a set of
algorithms running on different processors in galaEach algorithm undertakes to
solve the same problem, called theget problem

The algorithms in the set can be either independanthey may communicate
certain information about the search space ofdlget problem during their execution.
To distinguish these two cases, we will call a ektindependent algorithms an
algorithm portfolio, and will call the set of algorithmihat communicate &éeam of
algorithms.

There may be multiple portfolios of algorithms thvedrk independently of each
other (yet which are classified as a single unist jas there may be multiple teams
whose members share information with each otBemsider some set of available

algorithms A={A1,...,Am} that can be executed by any of fhevailable processors.

Each processor should be assigned to an algorittim A, while an algorithm may be
assigned to multiple processors. The latter caskesnaense when dealing with

randomized algorithms, where each copy of the salgerithm uses a distinct seed
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value for initializing its pseudorandom number geanar. In this case, although the
algorithm deployed on different processors is tames, the difference in seed values
leads to different search trajectories.

Teams of algorithms, as well as algorithm portflican be described by a list that

specifies how many processors are assigned toadgahthm from A:

{(mAY).(2A2) - A} Whereini =P

When solving an optimization problem by a team ortfplio of algorithms,
performance is measured with respect to the bgstitim in the team or portfolio, that
is, the one that takes the least time to solvetahget problem. In other words, § is
the computational time elapsed before finding sofuby algorithm on i-th processor,
then the corresponding computational time for tloetfplio or the team, which we

designate asuanit, is measured by, = min
i=1,...P

The theoretical properties of optimal portfolios odéstart algorithms were
considered in [17]. In [18] the authors providedharp upper bound on the maximum
speedup coefficient of the portfolios consistingddferent algorithms when compared
to a single algorithm portfolio. The work of [19}gposes and investigates various

algorithms portfolios

Treatment of same objective values

GES algorithm keeps track of the best found sofutigg , and the best solution
after the last restart of the search procedureheraurrent bestxy,. During the

execution of a given algorithm, upon finding a neslutionx with the same objective

value asxmax Obtained by that algorithm, we have three options:
(St) stay with (retain) the current best solutiaitijout replacingXmax);
(Mv) switch (update) the current best solutiox iy settingXmax= X);

(Mc) switch (update) the current best solutiox (By settingx,4= X) under



some condition.

Similar choices are appropriate for updatings . By choosing different update
rules for Xax and X,et ,» We can define 9 different variations of the skaatgorithm.

For some problems, the number of solutions withsdnme objective value is measured
by hundreds of thousands, thus these strategiedbehave very differently. These
variations together with different search methodeduby GES procedures provide a
wide spectrum of algorithms for composing optim@ateams.

Figure 1 shows a typical example of computationadeteration achieved by
portfolios of 4 identical algorithms. If a time gmlve a problem by a serial algorithm
Ist and the time to solve a problem by a portfolialgforithms onP processors is

serial !

t then the coefficient of acceleration g, /(tportfo,io* P). In particular, this

portfolio ?

graph shows the coefficient of computational acedien for the set of instances G1-
G54 achieved by 4 different algorithm portfoliosnemered in [19]: MvSt1GES,

MvSt2GES, StSt1GES and StSt2GES. The naming coioveaf theses algorithms is
based on the choice of search strategies, thetficstetters refer to the update rule for

Xmax: the third and fourth letters refer to the updatie for Xy, and the following

number identifies which type of tabu search proceds used. The difference between
the tabu procedure 1 and the tabu procedure 2limnviag: the first tabu procedure

performs a fixed number of iterations when attenmgptio improve X5« and in the

second tabu procedure the number of iterationsrikgpen the previous search results
(increased if there was a recent improvement). @&ample, MvStIGES always

updates the current best solutiog,,,, always retains the best solutitx,e, and uses

the first type of tabu search procedure. To cateulae acceleration coefficient for each
instance, we used computational times requirednid tiarget solution objectives (the

target objectives were set to the objectives of khewn high quality solutions).
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Fig. 1. Parallel acceleration achieved by the dillgor portfolios consisting of 4
GES algorithms

In the current paper, we will focus on the GES Haagorithm, which in addition

to the common GES structure, performs oscillatemosind the best recore. , based

on the path-relinking (PR) methodology [20]. Thrbagt this paper we will refer to
this method as GESPR algorithm. In our studies wkefacus on the variation that
always updates the best solutions when locatingisak with the same objectives.

The exact notion of a team of algorithms is diffido formalize, thus prohibiting
the exact analysis. The algorithms within a teatamdy communicate with each other
but may include a meta-algorithm that can restmgctthe team, modify its
communication based on the outcomes of the optirorzgprocess. In order to be
efficient, a team of algorithms should consist migedures that can utilize the external
information that is being communicated within tearh. For example, if the problem is

solved by a team of standard local search algosttirat are initiated by independently



generated starting solutions, then the exchangefofmation is useless, unless the
information that is being communicated can adjostlbcal search steps.

The Global Equilibrium Search Method provides ebergl computational
efficiency in many applications, but one of its mosportant qualities is its ability to
be an efficient team algorithm. This is achievesbtigh embedded memory structures
that can process solutions obtained by any othgorithm. Exchanging solutions
between different copies of the GES algorithm aféoan opportunity to strengthen their
performance by decreasing the computational timaetd a high quality solution. With
respect to such exchange, the key question is: wfaimation should be exchanged
and how often should it be communicated.

The determination of a good communication protasaiot trivial. It is wrong to
think that any exchange of information is usefunte algorithms need to forget, or
restrict the use of certain information. In somesesa communication can even be

detrimental to the team performance and should/brled.

3. Computational Experiment

In this section, we compare the algorithm portf@pgproach to the team approach,
where the algorithms communicate with each otlmeboth settings, we will use a set of
identical GES algorithms running on different premes. In particular, we will consider
an extremely simplecommunication strategy, where the best found swiuéind its
objective value is the only thing that is being coummicated.

For this experiment, we use the recent family oSGligorithms developed for the
large WMAXCUT instances. These algorithms implemamobscillation around the best
found solution based on the path-relinking (PR)hadblogy [20].Like in [21], our
experiments were conducted on a set of 71 benchmsat&nces that has been widely
used to evaluate Max-Cut algorithms. These instancan be downloaded from
http://www.stanford.edu/~yyye/yyye/Gset/ and in@utbroidal, planar and random
graphs, with the number of vertices ranging fronmj $800 to 20,000, and edge weights
of values 1, 0, or -1.



Communication strategies

Let X (t) denote the best solution found by the ith algamitsf the team, and be
X (t)the best overall solution that is stored in therstianemory and can be accessed

by all members of the team. Th f (x* (t)) = max{ f (x‘ (t))} , WhereA is the set of team

i0A

members. The members of team communicate with etier by reading and updating
X (t) while solving optimization problems. The followintyvo rules define the
communication protocol used by Team1:
(A) Updatex (t) whenever some algorithiy yields f (xi (t)) > f(x* (t)) by setting
X (1) = X (t).
(B) Periodically, check all algorithm4, to see il f (x‘ (t))< f (x* (t)), and if so, then
redefinex (t) =x (t).

In the beginning, we tested the portfolio consgstoi 4 copies of GES-PR, where
none of the algorithms communicated with each otAeiditionally, we considered

three teams consisting of 4 GES-PR algorithms. dlgerithms in Teaml1 exchanged

the best solutions using the file in the shared orgmThe file was used to store the

best objective f (x*(t)) and the best current solutiox (t) obtained by the team.

Whenever one of the team members improved its cub@st solutior X (t) it read the
file and compared its best solution to the bestutsm from the file. If

f (xi (t)) > f (x* (t)), then the file was updated with the new recordi@and solution -
X (t)=X (t) Furthermore, each algorithm periodically readrdneord file to update its
current best solutiox (t), settingx' (t)=x (t), wheneve f (xi (t)) <f (x* (t)).

The second team, Team2, used a communication schieniar to Team1 with
one distinction. From the computational resultshef portfolio approach, for every trial
we knew which algorithm would find the best solatiéVe call this algorithm a leader.

The algorithms in Team2 used the following schemeach trial. All members of the
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team read and write to the shared memory file anyilto the algorithms in Teaml,
with the exception of the leader of the trial. Tthal leader only writes to the file, but
never reads from it. Obviously, the results of T2amere always at least as good as the
result of the portfolio approach.

Despite of the unrealistic assumption of this saolefknowing the leader in
advance), the results of Team2 can provide somghingto what can be achieved by
improving the exchange of information. Furthermork,there is some guessing
mechanism to predict the leader, then this schem®orbes implementable. For

example, when solving problem G81 we've noticed tlsaally the algorithm that is

first to find a solutionXbest with f(xbest):14030, eventually becomes a leader, and
this takes less than an hour. Tables 1 and 2 preésenresults of 20 trial runs by
algorithm portfolio (where port f and port t compesid to the best found solution in a
given trial and the corresponding computationak)inand the results of Teaml1, Team?2
and Team3 (where teaml f, team2 f and team3 f septehe best found objectives,
while teaml t, team2 t and team3 t present theespanding computational times).
Every trial was limited to 3600 seconds.

The computational experiment was conducted usiad”t@ Intel CoreTM i7-3770
CPU @ 3.40 GHz 3.40 GHz and 8.0GB RAM in real tine.other words, all
algorithms were running at the same time.

Computationally, the GES-PR algorithm reveals gjrontensification properties,
but less satisfactory diversification behavior. Eigorithms can be trapped in a basin
of attraction populated by "bad" solutions leadtogunnecessary computations (such
attractors will be called traps). The communicati@ween GES-PR algorithms in turn
can lead to an entrapment of the whole team. Toergeift is necessary to introduce
special measures to prevent such situations aedaile escape from such traps.

The analysis of the computational experiments lgadthe conclusion that the
optimization process is similar to a chess gamalsti can be divided into three phases:
a search over poor solutions, a search over aveegédons and the search for good

solutions, which in chess corresponds (roughlythtoopening game, middle game and



end game. In the first phase, when there is no etaofyfalling into the trap of poor
guality solutions, we can promote an active exckasfginformation between the team
members. Such exchange will help to transitiondigpinto the second phase, where
there is a higher probability of getting trapped dvoid this and to provide better
diversification, on the second stage we reduceeohange of information. Finally, in
the third phase we again promote frequent commtiarcéo enable intensification of
the search for high quality solutions.

An attempt to incorporate the foregoing entrapmemnsiderations was
implemented in the team of algorithms Team3. Tigerthm GES-PR quickly moves
from poor solutions to good solutions entering thieldle game stage. Therefore, the
time interval [0,3600] was divided according to tigelden ratio. The smaller
part of it (1368 sec.) was allocated to the midgiene stage, where we prohibited any

communication with one exception: the exchange liswad only if the solution

significantly improves the best record:(x*(t))z f(xfm(t))+10. In the third stage

(time interval [1368,3600], the communication pattefollowed the same rules as in
Teaml. Since the algorithms check for the stoppuirigrion only periodically, some
trials report the time to find the best solutioattls larger than 3600 seconds. In the last
row, we present average values for the data in ealcimn.

Table 1

# trial port f |port t |teaml f| teaml t team2|f team2 |t tedmBam3 t
1 9930 |3216,63| 9928 3293,60934 2899,35 |9930 2887,94
2 9926 |3504,89| 9932 2426,6/7 9930 2727,25 9934 230¢
3 9926 |1074,06| 9930 1486,31 9928 1482,94 993C 287(
4 9926 |1245,83| 9930 2827,401 9926 1211,97 9928 291(
5 9926 |2896,41| 9930 2580,06 9926 2913,74 9926 861
6 5 1
7 1 3
8 3 A
9 5

9926 |2974,16| 9926 3761,95 9928 3163,9 9930 288!
9930 |2654,45| 9932 2183,11 9930 1446,3 9937 361(
9926 |3576,21| 9932 1999,08 9930 3580,2 9937 380}
9930 |3385,39| 9928 766,46/ 9930 3379,7 9928 1988
10 9926 | 2458,83/9934 2027,45 | 9930 2262,94 | 9930 2232,4
11 9930 | 2602,61] 9930 3713,95 9930 2657,11 9930 , 882
12 19928 | 3107,28| 9930 1953,98 9930 2384,53 9930 ,620
13 9926 |1532,79| 9928 1063,14 9928 2162,48936 3293,55

14 19932 [2161,77 | 9932 2098,639934 3670,48 | 9930 1732,96
10

~

O N0 — W Uro)yur o o Uy O)




15 9930 | 2467,04] 9928 2933,07 9930 2685,22 9932 ,381
16 9926 | 1201,13] 9930 2898,75 9926 1326,44 9928 ,881
17 19928 |3421,4 | 9932 2001,59 9930 1683,2 9932 321
18 9930 |1809,27| 9928 1538,20 9932 2709,57 9937 @391
19 19930 |3271,39] 9930 3576,82 9930 2992,98 9930 , 882
20 19928 931,82 | 9930 2909,12 9930 1408,25 9937 3374
Mean 9928 |2474,67| 9930 240197 9929,6 2437,433 9930,660,38

Ul

= O W W IUTHF

Considering these computational results, it is se&g/ to point out the high
computational efficiency of the GES-PR algorithime portfolio and teams of GES-PR
algorithms found solutions that are better tharnvipresly known records (9926 for
problem G77 and 14030 for problem G81) [21]. Mormportantly, all 3 versions of
team algorithms outperformed the portfolio approacherms of solution quality. As
mentioned earlier, in the worst case Team2 woultivseame results as the portfolio
approach. However, if we look at trials 4, 9, 18,ahd 16 when solving G77 and trials
11, 12, 16 and 19 when solving G81, Team2 imprdledbest found objective values.
In some trials, when Team2 found the same soluaierthe portfolio, the reported
computational times are different, since all theocpssors belong to the same
computational node and might interfere with eadrent Because of this interference
the results of the team make it difficult to repte the trials by fixing the seeds of
random number generator.

Table 2.

#trial |port f |port t |teaml f teaml |
14038 | 3251,84] 14042 | 3103,72 14038 2178,55 140482,88
14030 |3480,69 14032 | 3373,46 14040 471258 1403:18,61

t team2 f teamZeam3 f| team3 {
2
6
14030 |2131,45 14036 | 3528,37 14036 272844 14035%6,83
9
5

14038 | 2267,64 14044 | 2324,39 14044 222424  14038,64
14034 | 3535,53 14038 | 3724,05 14038 3608,4 1404098, 36
14036 | 3841,05 14036 | 2910,4 14036 2753,26 1403®3,83
14038 | 3509,7 | 14040 | 4220,32 14038 233849 1403818,38
14044 [2905,24 | 14044 | 3303,9| 14044| 2612,4614046 | 3323,57
14030 |1371,69 14038 | 3548,84 14038 3605,7/6 1403B19,35
10 14036 | 3942,49 14042 | 3130,61 1404( 2350,18 140886,26
11 14038 | 2511,59 14034 | 2382,19 1403:¢ 2569,45 14BWr4,32
12 14038 | 3313,16 14036 | 4074,08 1403 3336,2 1403183,22
13 14034 | 3441,66 14034 | 2286,94 1403( 2742,39 143Bb2,15

Al IR I~ = B o B~ B I~ =

O[O [N[O|UIR[W[N][F

O/ T W T T OOV

11



14 14038 | 3185,49 14040, 2834,1/6 14038 2679,3 1404885,26
15 14036 | 2732,64 14042 | 3562,49 14040 2688,35 14@BUAN1,32
16 14040 | 3413,63 14034 | 2911,64 14040 2968,99 148 /7,64
17 14038 | 3441,18 14036 | 3462,01 14040 4119,84 14(B01b4,89
18 14038 | 3358,61 14040 | 2127,68 14044 2697,95 14044/7,57
19 14044 [2885,46 | 14042 | 3208,98 14044 3021,08 14038 2673,94
20 14032 | 3117,9614046 [3082,6 (14046 |3988,78 | 14044 2986,49
Mean |14036.5| 3081,9364038.8 | 3155,1174039.8 | 2996,24| 14038,3072,123

In our experiments, the teams consisted of 4 dlgos running in parallel. In
such a setup, Team2 discarded 25% of the soluttogsnerated, whenever the best
solution of the leader was improved by the reghefteam. With more algorithms, the
disposal of the leader would have a much smallpatton the performance.

The results obtained by Teaml and Team3 encouregedvelopment of team
algorithms. They were not only better compared#rio communication approach, but
also surpassed the results of Team2 on G77.

Figures 2 and 3 show the average performance wbkmg G77 and G81,
respectively. Each point on these graphs showsavleeage computational time until
finding a solution with the given objective value lwetter. The bold horizontal lines
show the previously known records [21]. These Itesshow an impressive boost in

performance when introducing communication to tbefplio approach.
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While in the current paper we focused on compadifferent communication
strategies, our experiments have resulted in swistthat improve the current best-
known record for G55-G81 benchmark instances, whiehsummarized in Table 3. In
addition to the new records found by GES-PR, we ptesent the best solutions found
by the Breakout Local Search (BLS) approach [2&jich provides excellent
computational performance on the set of standamthyearks compared to other
approaches in the literature. The first and seamidmns in Table 3 provide problem
names and the number of vertexes in the correspgngliaphs, while the third and
fourth columns provide the best solution out oftél@ls for the BLS. The interacting
algorithms GES-PR found new records for all of i&tances in Table 3, suggesting
that this form of interactiors a good choice for studying the potential of tham

approach to algorithm design.

Table 3

Name | |V| BLS | GESPR
G55 | 5000| 10294 10299
G56 | 5000 4012] 4017
G57 | 5000 3492] 3494
G58 | 5000| 19263 19293
G59 | 5000 6078 6086
G60 | 7000| 14176 14188
G61 | 7000 5789 5796
G62 | 7000 4868 4870
G63 | 7000| 26997 27045

G64 /7000 8735 8751
G65 8000 5558| 5562
G66 9000 6360 6364
G67 | 10000 6940 6950

G70 | 10000 9541 9591

G72 | 10000 6998 7006

G77 | 14000 9926 9938
G81 | 20000 14030 14048

Figure 4 shows a run of Teaml that resulted inrgoerd for the problem G81
(14048). This trial is not included in Table 2,@rthe record solution was found after
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3600 seconds. In addition, we show a full protamiolnformation exchange between

algorithms in Teaml.

14048 — ' L - p— S
14044 - — a|g1 ;r
14040 4 — algz alg2 | 489.84 14008 <= 1
4. +a|g3 alg2 | 625.6314016.<= 1
14036 — — algal 6727514002 <= 1
]| ——alg4 alg2 7591614020 < 1
14032 I l al‘gs /oU.oU 14U 1V <3 i B
S8 g algd | 807.22 14022 <5 14028 alg1
= 7] alg2 | 893.53114028 <= 14030 algl
L 14004 J alg3| 915.51 14028 < 14030 :lﬂlsl
2 J algd | 941.84 14028 <= 14030 algl
= 14020 - alg2 11545.57.14030 <= 14034 alg3
© 7 algl-{-1660:7514030-<=14038alg3
S, 14016 alg2{1682:98 14034-<—14038-alg3
S s algd1706.49 14030 <= 140387413
o TR algl [ 1795.16 14038 £ 14040 a1g3
T 14008 alg2 | 1821.81/14038 <F 14040 alg3
= ] algd | 1842.64 14038 <k 14040 alg3
14004 - alg3 | 2367.39 14040 <E 14042 alg1
= nlgﬂ 2395 32.14040.<=.14042 Ig1
14000 alg2 | 2574-6214040<~14042-algl
- alg2{3869:16 14042 <= 14044-alg3
13996 ] digl | 3515.406 14042 <F 14U4b algd
e ] alg3(3937.53 14044 <F 14046 algh
] alg2 | 4014.77 14044 <E 14046 algd
13988 - [ T T T T T T T T T T T T T
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200

time

Fig. 4 Trial of Teaml that resulted in the recardthe problem G81

4. Conclusions and Future Trends

The results suggest that the communication betatggwithms running in parallel
IS a promising research direction. Our algorithmmlpced new best solutions for the
classical benchmark problems from G55 to G81, andst 1 hour, the teams of
algorithms were able to obtain solutions whoseiguastablished new records for the
large scale instances G77 and G81 (14000 and 2@)€i6es, respectively). In addition
to improving the algorithms in the team, futuresiaagh can beneficially make use of
large scale computing systems to address commiongadtterns, communication
protocols, content of information exchange, and momication management. The
results in this paper suggest that in the neardutte will be able to solve WMAXCUT
problems with up to 50,000 vertices through theatdpies offered by parallel
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computing — a prospect which seemed impossibleanécent past.
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Komanna anropurmiB rio0ajbHOr0 pPiBHOBAKHOIO NMOUIYKY /JIfl NMapajejbHOro
PO3B'si3aHHA 3a/1a4i NP0 MaKCHMAJIbHUIl 3BaxkeHuii po3pi3 rpady / umo B.IL.,
I'aoBep @., Ceprienko 1.B.// Kubepaeruka u cuctemubiii ananus. — 2015, Ne .—C. —.

Y  pobotri gochimkyerbcs OOMIH 1HQOpMAI€l0 MDK ONTHUMI3aliHHUMHU
JITOPUTMaMHU, MPALIOIYMMU TapalieIbHO HaJl OJHI€I0 3a1a4eto. BuByanace 3agaya npo
MaKcuMallbHU# 3BaxkeHwid po3pi3 rpady (WMAXCUT) i nmopiBHSHHS pi3HUX CTpaTteriii
B3aeMOJIl Mk koMmaHaamu anroputMmiB GES.Otpumani pesyiabTaTd CBiI4aTh Ipo TE,
mo oOMiH iHQoOpMali€l0 MDK aNropuTMaMy, NPALIOIYMMU —[apayiefbHO, €

NEPCTIIEKTUBHUM HANpsiMOM Jociipkenns. [n.: 4. Tabn.: 3. bibmorp.: 21Ha3Ba.
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Komanna anropurmMoB rjio0ajJibHOr0 PaBHOBECHOIO0 NMOMUCKA /UIS NMapaLIeIbHOI0
pellieHHs1 3a]a4d 0 MaKCHMMAJIbHOM B3BellleHHOM pa3pe3e rpaga / Illuao B.IL.,
I'soBep @., Cepruenko U.B. // KuGepreruka u cucremubiit anamus.— 2015.Ne.—C. —.

B pabGote wucciemyercs oOMeH uHpopMamMend MeEXIy ONTUMH3AIMOHHBIMU
JITOPUTMaMHU, TTapaJUIeTIbHO PEIIAOIINME 3a1ady. M3ydanack 3a1a4a 0 MaKCHMaJIbHOM
B3BemeHHOM paszpe3e rpada (WMAXCUT) u cpaBHEHHE pas3IUYHBIX CTpaTerui
B3aUMOJICHCTBUS Mexay KomaHmamu anroputMoB GES. IlonydeHHble pe3yabTaThl
CBUJCTEILCTBYIOT O TOM, YTOo OOMeH wuHpoOpMaIUell MEXIy aJroOpuTMaMH,
paboTANMMMHK MAPAUICITBHO, SBISETCS MEPCIIEKTUBHBIM HAIPABICHUEM HCCIICIOBAHU.
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sistemny analiz. — 2015.N . —C. —.

In this paper, we investigate the impact of commoation between optimization
algorithms running in parallel. In particular weefs on the weighted maximum cut
(WMAXCUT) problem and compare different communioatstrategies between teams
of GES algorithms running in parallel. The resolained by teams encourage the
development of team algorithms. They were signifilyabetter than the algorithmic
portfolio (no communication) approach and sugdest the communication between
algorithms running in parallel is a promising resbalirection.
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