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We propose several new hybrid heuristics for the differential dispersion problem, the best
of which consists of a GRASP with sampled greedy construction with variable neighbor-
hood search for local improvement. The heuristic maintains an elite set of high-quality
solutions throughout the search. After a fixed number of GRASP iterations, exterior path
relinking is applied between all pairs of elite set solutions and the best solution found is
returned. Exterior path relinking, or path separation, a variant of the more common interior
path relinking, is first applied in this paper. In interior path relinking, paths in the neigh-
borhood solution space connecting good solutions are explored between these solutions
in the search for improvements. Exterior path relinking, as opposed to exploring paths
between pairs of solutions, explores paths beyond those solutions. This is accomplished
by considering an initiating solution and a guiding solution and introducing in the initiat-
ing solution attributes not present in the guiding solution. To complete the process, the
roles of initiating and guiding solutions are exchanged. Extensive computational experi-
ments on 190 instances from the literature demonstrate the competitiveness of this
algorithm.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Equity problems are a family of NP-hard optimization problems that are an actual concern in the context of facility loca-
tion, where the fairness among candidate facility locations is as relevant as the dispersion of the selected locations [36].
Given a set of elements, the main objective of these problems is to find a subset of those elements that minimizes a similarity
measure. These kinds of problems have also applications in the context of urban public facility location [36], selection of
homogeneous groups [3], dense/regular subgraph identification [20], and equity-based measures in network flow problems
[4]. In spite of all these applications, most of the previous works are focused on the opposite family of problems, the disper-
sion problems, in which the objective is to maximize the differences among the selected elements. The dispersion problems
have been widely studied. See Duarte and Martí [7] for a recent review of this problem. However, we have identified only one
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previous metaheuristic-based paper on equitable problems, in which Prokopyev et al. [29] adapt a simple generic GRASP
algorithm to solve several equitable problems.

Let G ¼ ðV ; EÞ be an undirected complete graph, where V is the set of n vertices and E the set of n
2

� �
edges. Each edge

ðu;vÞ 2 E with u; v 2 V has an associated distance duv between u and v. Dispersion, or diversity, problems (DP) consist in find-

ing a subset S # V with m elements, such that an objective function (based on the distances between elements in S) is max-
imized or minimized. According to Prokopyev et al. [29], the objective of a dispersion problem can be either to identify a
subset with (i) maximum distance among its elements (diversity problems), or (ii) with maximum similarity among them
(equity problems). The first class of problems has been intensively studied in the last ten years. For instance, Martí et al.
[24,25] and Gallego et al. [12] present several exact, heuristic, and metaheuristic-based methods for the maximum diversity
problem. Two important variants are, respectively, the sum (Maxsum DP) and minimum (Maxmin DP) of the distances in the
selected set [1].

Prokopyev et al. [29] propose four distinct equity-based functions to balance the diversity among the selected elements:
the mean-dispersion function minimizes the average dispersion of the selected elements; the generalized mean-dispersion
function, which is an extension of the mean-dispersion function, considers vertex-weighted graphs; and the min-sum and
the min-diff dispersion functions that consider the extreme equity values of the selected elements. In this paper we focus
on the last function, whose associated optimization problem is referred to as the Minimum Differential Dispersion Problem
(Min-Diff DP). The Min-Diff DP is strongly NP-hard, and it remains NP-hard even if sign restrictions for distances between
vertices are imposed [29]. Therefore, heuristic procedures emerges as the best option to obtain high quality solutions in
shorter computing time.

A feasible solution of the Min-Diff problem is a set S # V of m elements, where m is a given input parameter. Each feasible
solution has associated with it a cost which can be computed as follows. Let DðvÞ be the sum of distances between a vertex
v 2 S and the remaining elements of S. Formally,
DðvÞ ¼
X
u2S

duv :
The objective function of a solution S, denoted by diff ðSÞ, is then computed as
diff ðSÞ ¼max
u2S

DðuÞ �min
v2S

DðvÞ:
Therefore, the Min-Diff problem consists of finding a solution SH # V with the minimum differential dispersion, i.e.
SH ¼ arg min
S # Vm

diff ðSÞ;
where Vm is the set of all subsets of vertices in V with cardinality m.
Fig. 1a shows an example of a graph with six vertices and 15 edges with their associated distances. Fig. 1b and c depict two

possible solutions for the Min-Diff problem for m ¼ 4. The selected vertices in the solution are shown in black while the edges in
each solution are highlighted by solid lines. The vertices not in the solution are shown in gray while the edges not in the solution
are dashed. To evaluate the quality of each solution, we first compute the DðvÞ value for all the elements in the solution. In par-
ticular, Fig. 1b shows a solution where S ¼ fA;B;D; Eg, DðAÞ ¼ 3þ 12þ 8 ¼ 23;DðBÞ ¼ 3þ 3þ 2 ¼ 8;DðDÞ ¼ 12þ 3þ 6 ¼ 21,
and DðEÞ ¼ 8þ 2þ 6 ¼ 16. The diff-value is calculated by first selecting the vertices having the highest and lowest D-values
and then taking the difference of their D-values. In this solution, these vertices are, respectively, A and B, and therefore
diff ðSÞ ¼ DðAÞ � DðBÞ ¼ 23� 8 ¼ 15. If we now consider the solution S0 ¼ fA;C; E; Fg in Fig. 1c, it is easy to verify that the asso-
ciated objective function value is diff ðS0Þ ¼ 8. Considering that the Min-Diff problem is a minimization problem, solution S0 is
better than solution S. The rationale behind this is that the distances among the elements in S0 are more similar than those
among the elements in S.

Prokopyev et al. [29] present a basic mixed linear 0� 1 formulation of the problem. Let Li and Ui be lower and upper
bounds on the value of

P
j2Sdij, i.e. Li ¼

P
j2S minfdij;0g and Ui ¼

P
j2S maxfdij;0g. Then, the mixed linear 0� 1 formulation

of the Min-Diff DP is as follows:
min
t;r;s;x

t

s:t: t P r � s; i ¼ 1; . . . ; n

r P
X
j:j–i

dijxj � Uið1� xiÞ þM�ð1� xiÞ; i ¼ 1; . . . ;n

s 6
X
j:j–i

dijxj � Lið1� xiÞ þMþð1� xiÞ; i ¼ 1; . . . ;n

Xn

i¼1

xi ¼ m x 2 f0;1gn
;

where Mþ is an upper bound on the Ui values, M� is a lower bound on the Li values, and the binary decision variable xi ¼ 1 if
and only if node i 2 S.
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(a) Example of a graph
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(b) Solution S
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(c) Solution S

Fig. 1. Example of two solutions on a graph with six vertices.
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The computational experiments performed in Prokopyev et al. [29] show that a commercial solver using the mathemat-
ical formulation of the problem is only able to solve instances of small size (up to jV j ¼ 40 and m ¼ 15), requiring high CPU
times (more than 2500 s on average). In particular, the authors use IBM ILOG CPLEX Optimizer, version 9.0 (usually known as
CPLEX 9.0), which solves integer programming problems, very large linear programming problems (using either primal or
dual variants of the simplex method or the barrier interior point method), convex and non-convex quadratic programming
problems, and convex quadratically constrained problems (solved via second-order cone programming). We refer the reader
to the original documentation1 for a deeper description of this software. The authors also propose a generic GRASP that can be
applied to different equity problems. Specifically, the method starts by constructing a solution from scratch. In each iteration, a
new element is added to the solution under construction. In particular, the method forms a list of candidate elements to be
added to the solution, ordering them according to its contribution to the objective function value. The method then selects
the corresponding element in a probabilistic way among the top-evaluated ones (the lower the contribution the higher prob-
ability to be added). The authors also present a local search strategy based on random interchanges between vertex already in
the solution and a vertex that is not in it. Only improving moves are accepted (i.e., those that reduce the value of the objective
function). The local search ends when no improvement has been found after performing N interchanges, where N is a parameter
of the algorithm. This two phases are repeated until a fixed number of iterations is reached. The objective of our paper is to
propose a specialized GRASP that obtains high-quality solutions for the Min-Diff problem without requiring long running times.
Additionally, we hybridize GRASP with path relinking for improved outcomes. Specifically, we propose in Section 2 two con-
structive procedures and three local search methods. We also introduce in Section 2.3 an improvement strategy based on
the variable neighborhood search metaheuristic. Finally, in Section 3, we consider two post-processing strategies based on path
relinking. It is worthwhile mentioning that we apply a new variant of path relinking, introduced in Glover [14] and called exte-
rior path relinking, or path separation, and which, for this problem, obtains very promising results. In Section 4, we present com-
putational experience. We first analyze and tune the proposed algorithms and then compare our best proposal with both the
GRASP of Prokopyev et al. [29] and CPLEX 12.5.1 on the integer programming formulation proposed there and described above.
Concluding remarks are outlined in Section 5.

2. GRASP

The greedy randomized adaptive search procedure (GRASP) is a metaheuristic developed in the late 1980s [10] and for-
mally introduced in Feo et al. [11]. Resende and Ribeiro [31,32] present recent and thorough surveys of this method. GRASP is
1 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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a multi-start methodology where each iteration consists of two stages. The first is a greedy, randomized, and adaptive con-
struction of a solution. The second stage applies an improvement method to obtain a local optimum from the constructed
solution. These two phases are repeated until a termination criterion is met. The rest of this section is organized as follows.
Section 2.1 presents two constructive procedures for the Min-Diff problem. Section 2.2 introduces three local search algo-
rithms whose objective is to improve the constructed solution. Finally, Section 2.3 describes a more elaborated improvement
strategy based on the variable neighborhood search (VNS) metaheuristic [26].

2.1. Constructive methods

GRASP constructive procedures apply a greedy function to evaluate the quality of the elements in a candidate list. Given a
partial solution S, we propose the following greedy function to estimate the increment/decrement of the objective function
when an element v 2 V n S is added to S. Given the complexity of the objective function evaluation in the Min-Diff problem,
the definition of such a greedy function is not trivial. For the sake of simplicity, the evaluation of the greedy function consists
of four steps. The first step estimates the D-value of vertex u, denoted by dðuÞ, if it is included in the partial solution:
8u 2 V n S! dðuÞ ¼
X
v2S

duv :
The second step estimates the variation in the D-values of all vertices v 2 S if u is included in S:
8v 2 S! dðvÞ ¼ DðvÞ þ duv :
Once these d values are computed, the third step determines whether the potential inclusion of vertex u 2 V n S in the partial
solution modifies the maximum and/or the minimum d-values. This values are, respectively, denoted as
dmaxðuÞ ¼ max dðuÞ;max
v2S

dðvÞ
� �

;

and
dminðuÞ ¼min dðuÞ;min
v2S

dðvÞ
� �

:

The fourth step finally computes the greedy function g for each element u 2 V n S as
gðuÞ ¼ dmaxðuÞ � dminðuÞ:
Let us illustrate the computation of the greedy function with an example. Fig. 2a shows a partial solution S ¼ fB;D; Eg,
where vertices in S are highlighted in black and the vertices in V n S are shown in gray. If m ¼ 4, we must include one vertex
from V n S in the current partial solution. Fig. 2b shows the evaluations of the candidate vertices A;C, and F. For each candi-
date vertex, we compute its d-value, as well as the d-values for each vertex already in S. For example, if we introduce vertex A
in the current partial solution, then dðAÞ ¼ dAB þ dAD þ dAE ¼ 3þ 12þ 8 ¼ 23. In addition, the inclusion of A would affect ver-
tices B;D, and E as follows: dðBÞ ¼ DðBÞ þ dAB ¼ 5þ 3 ¼ 8; dðDÞ ¼ DðDÞ þ dAD ¼ 9þ 12 ¼ 21; dðEÞ ¼ DðEÞ þ dAE ¼ 8þ 8 ¼ 16.
Then, we identify the dmin and dmax-values (dðBÞ ¼ 8 and dðAÞ ¼ 23, respectively) and finally the greedy function value for
the potential inclusion of A in the partial solution is gðAÞ ¼ dmax � dmin ¼ dðAÞ � dðBÞ ¼ 23� 8 ¼ 15. Fig. 2b shows that the
best option is to include vertex C, with gðCÞ ¼ 11, in the current partial solution since this insertion produces the minimum
increment in the objective function (gðAÞ ¼ 15 and gðEÞ ¼ 12).

Algorithm 1 shows pseudo-code for C1, the first constructive algorithm. It follows the standard GRASP template, by
initially creating a list of candidates (CL) which contains the elements that can be added to the partial solution under
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(a) Partial solution.

v A C F
δ(v) 23 17 15
δ(B) 8 8 6
δ(D) 21 19 18
δ(E) 16 12 13

δmin(v) 8 8 6
δmax(v) 23 19 18

g(v) 15 11 12

(b) Greedy function evaluation

Fig. 2. Example of computation of the greedy function.
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construction. At this point, the CL contains all the vertices of the graph (step 2). Then, the method randomly selects the first
vertex from CL (step 3) and includes it in the partial solution (step 4). The method thus iterates until it obtains a solution
with m vertices (steps 6–13). In each iteration, C1 calculates the maximum (gmax) and minimum (gmin) values of the greedy
function (steps 7–8). After that, C1 constructs a restricted candidate list (RCL) with all the candidates whose greedy value
does not exceed a percentage a of the best greedy value (step 9). Finally, in the last step of the iteration the method selects
at random one vertex from the RCL and adds it to the solution, updating CL (steps 10–12).

Algorithm 1. C1

1: S ;
2: CL V
3: v0  SelectRandomðCLÞ
4: S S [ v0f g
5: CL CL n v0f g
6: while jSj < m do
7: gmin  minu2CL gðuÞ
8: gmax  maxu2CL gðuÞ
9: RCL v 2 CLjgðvÞ 6 gmin þ a � gmax � gminð Þf g

10: u SelectRandomðRCLÞ
11: S S [ uf g
12: CL CL n fug
13: end while
14: return S

We now consider C2, a second constructive procedure based on a different strategy introduced in Resende and Werneck
[33]. Specifically, this alternative construction swaps the greedy and random stages of a standard GRASP construction. This
construction template has been recently applied with success in other papers [5,30,28,8].

Algorithm 2 shows the pseudo-code of the proposed method whose first steps are similar to the ones of Algorithm 1. The
differences between these constructive procedures are limited to the main loop (steps 6–11). In particular, C2 constructs the
RCL by selecting a� jCLj elements from CL at random (step 7). Then, all the elements in the RCL are evaluated with the
greedy function, selecting the one which presents the minimum greedy value (step 8). Finally, the solution and the associ-
ated candidate list are updated (steps 9 and 10). The method ends when the solution becomes feasible (i.e., jSj ¼ m).

Algorithm 2. C2

1: S ;
2: CL V
3: v0  SelectRandomðCLÞ
4: S S [ v0f g
5: CL CL n v0f g
6: while jSj < m do
7: RCL ConstructRandomðCL;aÞ
8: u arg min

v2RCL
gðvÞ

9: S S [ uf g
10: CL CL n fug
11: end while
12: return S

The a parameter controls the greediness/randomness of the GRASP constructive procedures. Specifically, if a ¼ 0 the cor-
responding methods are purely greedy algorithms, while if a ¼ 1 they are totally random procedures. In Section 4 we inves-
tigate the influence of a.
2.2. Local search procedures

The second stage of a GRASP algorithm consists in improving the constructed solutions using a local search method,
which will guide the search process to a local optimum. One of the key elements in designing an effective local search
method is the definition of the move and the associated move value (change in the objective function value). In particular,
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for the Min-Diff problem we define moveðS;u;vÞ as the move that interchanges vertex u 2 S with vertex v 2 V n S. This move
usually produces a variation in the objective function, denoted as move valueðS;u;vÞ. As with the definition of the greedy
function, the computation of this quantity is not trivial if we want to update the value of the objective function in an incre-
mental way. Specifically, we need to identify the subset of edges of u (associated with the removed vertex) that no longer
contribute to the objective function and the subset of edges of v (associated with the inserted vertex) which will be included
in the computation of the objective function. Even without performing the move, we can estimate the D-values of the ele-
ments in S. We denote this estimate as d (to be consistent with the notation introduced earlier). Therefore, if we were to
remove vertex u and include vertex v in the solution S, the variation of the D-values would be computed as
8w 2 S n fug ! dðwÞ ¼ DðwÞ � dwu þ dwv :
We additionally must consider the estimation of including v in S, denoted as
dðvÞ ¼
X

w2Snfug
dvw:
The estimation of the objective function value if we would perform the move is computed as
dmin ¼min dðvÞ; min
w2Snfug

dðwÞ
� �

;

dmax ¼ max dðvÞ; max
w2Snfug

dðwÞ
� �

:

and
MinDiff ðS n fug [ fvgÞ ¼ dmax � dmin:
Therefore, the move value would be finally defined as
move valueðS;u;vÞ ¼ MinDiff ðS n fug [ fvgÞ �MinDiff ðSÞ:
This way, we can quickly compute the value of the move without computing the value of the objective function from scratch.
In fact, we do not really perform the move to estimate the increment/decrement of the objective function. Starting from the
solution depicted in Fig. 1b, we show in Fig. 3a the resulting solution after performing moveðS;B; FÞ. Fig. 3b shows a table
with the computation of the d-values defined above. Taking these values into account, the minimum and maximum values
are respectively dmin ¼ 15 for F and dmax ¼ 27 for D, resulting in a potential solution with MinDiff ðS n fBg [ fFgÞ ¼ dmax�
dmin ¼ 27� 15 ¼ 12. This move is accepted since it improves the current solution (move valueðS;B; FÞ ¼ 12� 15 ¼ �3).

In a straightforward implementation, the complexity of computing the MinDiff -value is Oðm2Þ because the method should
compute, for each one of the m vertices in S, the distance to remaining m� 1 vertices in S. However, using the proposed
updating strategy defined above, the complexity reduces to OðmÞ since it is only necessary to explore the m� 1 vertices
in S adjacent to the removed vertex and the m� 1 vertices in S adjacent to the included vertex.

In this paper, we propose three local search procedures, denoted by LS1, LS2, and LS3, based on the move defined above.
These three methods mainly differ in how the vertices are scanned. LS1 follows a best improvement template, resulting in an
exhaustive search. Specifically, the method explores the vertices in the current solution S and those in V n S. Then, it selects
the best move between a vertex in S and a vertex in V n S (evaluating the aforementioned move_value). Finally, if the best
move found improves the current solution, the move is made, updating the solution. The second local search method,
denoted LS2, follows a first improvement template. The algorithm is similar to LS1, but instead of exploring all possible
moves, it performs the first move that improves the current solution. Vertices in S and V n S are randomly explored to avoid
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(a) Resulting solution after performing
move(S, B, F ).

v δ(v)
A 23 - 3 + 1 = 21
D 21 - 3 + 9 = 27
E 16 - 2 + 5 = 19
F 1 + 5 + 9 = 15

δmin 15
δmax 27

MinDiff 12

(b) Estimation of the δ-values for each
vertex in the solution.

Fig. 3. Example of the computation of move valueðS;B; FÞ.
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focusing on the same subset of vertices. The third local search, LS3, also performs a first improvement strategy but ordering
the vertices before exploring them. In order to start exploring the most promising moves, LS3 scans the vertices in S in
descending order according to their D-values, while the vertices in V n S are scanned in ascending order according to their
d-values. Then, LS3 traverses both S and V n S performing the first move which improves the value of the current solution.
The three local search methods end when no improvement is found after exploring all possible moves, returning the best
solution found.

2.3. Variable neighborhood search

Variable neighborhood search (VNS) is a metaheuristic proposed by Mladenović and Hansen [26] as a general framework
to solve hard optimization problems. It is based on the idea of performing systematic changes of neighborhood structures
within the search procedure. Heuristics based on this metaheuristic have been successfully applied to a large variety of opti-
mization problems. See for instance Duarte et al. [9], Sánchez-Oro et al. [34], Duarte et al. [6], and Lozano et al. [23]. We refer
the reader to Mladenović [18] for a recent survey of VNS.

In this paper, we propose the use of a Basic VNS variant with a Jump Neighborhood Change strategy [19] in place of the
standard local search used in GRASP. Algorithm 3 shows the pseudo-code of the VNS. It has three input arguments: the initial
solution (S), the maximum neighborhood to be explored (kmax), and the jump magnitude (kstep). The initial solution is built
with one of the constructive procedures described in Section 2.1. The best constructive procedure as well as the values of
kmax and kstep will be experimentally determined in Section 4.

The algorithm mainly consists in executing three strategies: shake, local search, and neighborhood change. First, given a
solution S, the shake method generates a new solution, S0, in the k-th neighborhood of the current solution (step 3). In the
context of the Min-Diff problem, it consists in performing k moves at random. Then, S0 is improved using a local search
method, producing a new improved solution S00 (step 4). We will experimentally determine the best local search among
the three proposed in this paper.

Algorithm 3. BasicVNS S; kstep; kmax
� �

1: k kstep

2: repeat
3: S0  ShakeðS; kÞ
4: S00  LocalSearchðS0Þ
5: NeighborhoodChangeðS; S00; kÞ
6: until k ¼ kmax

7: return S

The NeighborhoodChange function typically employed in a VNS compares the new solution S00 with the incumbent solu-
tion S obtained in the k-th neighborhood. If an improvement is obtained, k is reset to its original value (usually k ¼ 1) and the
solution S is updated with S00. Otherwise, the next neighborhood is considered for a further exploration (usually k ¼ kþ 1)
without updating S. In this paper, we investigate the effect on the search of the so-called jump neighborhood search, where
the NeighborhoodChange function considers the parameter kstep to control the change of the neighborhood. Specifically,
when the VNS method performs an improving move, it sets k ¼ kstep instead of k ¼ 1. Similarly, in non-improving moves,
it sets k ¼ kþ kstep instead of k ¼ kþ 1. As customary in VNS, the search ends when k reaches or surpasses kmax, returning
the best solution found. Note that the jumping strategy of this method skips some neighborhoods in the perturbation, which
performs well on this type of nested neighborhoods of the same type of moves.
3. Path relinking

Path relinking (PR) is a metaheuristic introduced in Glover [13] and Glover and Laguna [16], originally proposed as a
methodology to integrate intensification and diversification strategies in the context of tabu search. This metaheuristic
explores trajectories that connect high-quality solutions, generating intermediate solutions that can eventually be better
than the high-quality solutions being connected. Laguna and Martí [21] adapted PR in the context of GRASP as a form of
intensification. The PR algorithm operates on a set of solutions, called the elite set (ES), typically sorted from best (first solu-
tion in ES) to worst (last solution in ES). In this paper, we limit ourselves to consider only a quality criterion to populate the
elite set. Therefore, the ES consists of the best b solutions generated with GRASP. This design is usually referred to as static
[30], since we first apply GRASP to construct the elite set and then we apply PR to explore trajectories between all pairs of
solutions in the ES.

Given two solutions in ES, S and S0, the standard implementation of path relinking, which in this paper we call Interior Path
Relinking (IPR), starts from the initiating solution S and gradually transforms it into the guiding solution S0. This transformation
is accomplished by swapping out elements selected in S with elements in S0, generating a set of intermediate solutions. The
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elements present in both solutions (S \ S0) remain selected in solutions generated in the path between them. The set of ele-
ments in S and not in S0 is S n S0. Symmetrically, S0 n S is the set of elements selected in S0 and not selected in S. To obtain the
first intermediate solution in this path, we remove a single element u 2 S n S0 and include a single element v 2 S0 n S, thus
obtaining S1 ¼ S n fug [ fvg. Notice that S1 can be trivially generated with the move described above. For the sake of simplic-
ity, we denote this move as S1 ¼ moveðS;u;vÞ. In general, the k + 1-th intermediate solution is constructed from the previous
solution as Skþ1 ¼ moveðSk;u; vÞ with u 2 Sk n S0 and v 2 S0 n Sk.

Given a graph with 12 vertices (labeled fA;B; . . . ; Lg) and m ¼ 6, let S ¼ fA;B;C;D; E; Fg and S0 ¼ fA;B;C;G;H; Ig. Fig. 4 illus-
trates the construction of two interior paths, one from S to S0 and another from S0 to S. As it was aforementioned, common
vertices between both solutions appear in all intermediate solutions. Solution S1 is obtained from S by performing
moveðS;D;GÞ. Similarly, S2 is obtained after applying moveðS1; E;HÞ. Notice that the reverse path is similarly constructed.
In all cases, the introduced vertices are highlighted in gray.

The election of vertices u and v can be performed in a greedy or a random fashion. In particular, the greedy strategy
obtains Skþ1 from Sk by evaluating all the possibilities for v 2 Sk n S0 to be unselected and u 2 S0 n Sk to be selected, and per-
forms the best move. On the other hand, the random strategy constructs Skþ1 by randomly selecting a vertex v 2 Sk n S0 to be
unselected and a vertex u 2 S0 n Sk to be selected. In this paper, we propose two interior path relinking methods: IPRG which
constructs the paths between each pair of solutions in the ES using a greedy strategy, and IPRR, which follows the random
strategy. The best solution generated in each path is subjected to the improvement method described in Section 2.3. The
algorithm terminates when all pairs of solutions in the ES have been relinked, each pair by two paths. The best overall solu-
tion is returned.

Despite the widespread application of path relinking in combinatorial optimization, almost all PR implementations only
consider the between-form of PR (Interior Path Relinking). This paper discusses the beyond-form of path relinking, intro-
duced in Glover [14] and called Exterior Path Relinking (EPR), and focuses on its relevance for effectively solving the MinDiff
problem. Instead of introducing into the initiating solution characteristics present in the guiding solution, this new strategy
introduces in the initiating solution characteristics not present in the guiding solution. Specifically, it removes from the ini-
tiating solution those elements which also belong to the guiding solution, obtaining intermediate solutions which are further
away from both the initiating the guiding solutions.

The relevance of paths that go beyond the initiating and guiding solutions was broached in Glover [13] as follows: the
scope of strategies made available by path relinking is significantly affected by the fact that the term neighborhood has a
broader meaning in tabu search than it typically receives in the popular literature on search methods. Often, the neighbor-
hood terminology refers solely to methods that progressively transform one solution into another. Such neighborhoods are
called transition neighborhoods in tabu search, and are considered as merely one component of a collection of neighbor-
hoods that also include those operating in regions beyond solutions previously visited.

Given the initiating (S) and guiding (S0) solutions for the MinDiff problem, the first intermediate solution in the exterior
path beyond S is generated by removing a single element u 2 S \ S0 and adding a single element v 2 V n ðS0 [ SÞ, thus obtain-
ing S1 ¼ S n fug [ fvg. Again, this solution can be directly obtained with the move operator described in Section 2.2. The
kþ 1-th intermediate solution is constructed from Sk, the previous solution, as Skþ1 ¼ moveðSk;u;vÞ with u 2 Sk \ S0 and
v 2 V n ðS0 [ SkÞ. As for IPR, we propose two methods: EPRG and EPRR. EPRG constructs the paths using a greedy strategy while
EPRR follows the random strategy. Again, the best solution generated in each path is subjected to the improvement method
described in Section 2.3. The algorithm terminates when all pairs of solutions in the ES have been relinked, each pair by two
paths, one beyond S and the other beyond S0.
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We illustrate in Fig. 5 the construction of the exterior paths by considering the same graph with 12 vertices labeled
fA;B; . . . ; Lg introduced earlier, with m ¼ 6 and the same initiating and guiding solutions. As it can be seen, the exterior path
generates solutions S1 and S2 by performing moveðS;A; JÞ and moveðS1;B;KÞ, respectively. It is easy to see that those interme-
diate solutions (i.e., S1 and S2 are further from S0 than S). The other exterior path (starting from S0 and finishing in S02) is con-
structed in a similar way. As in the previous example, the introduced vertex is highlighted in gray.
4. Computational results

In this section, we report on the computational experiments performed to test the efficiency and effectiveness of the pro-
posed strategies. All algorithms were implemented in Java 7 and the experiments were conducted on an Intel Core i7 2600
CPU (3.4 GHz) with 4 GB of RAM. We have used a comprehensive set of representative instances previously used for com-
putational experiments in equity/diversity problems [25]. This benchmark is usually referred to as MDPLIB and it is publicly
available at http://www.optsicom.es/mdp/mdplib_2010.zip. It is considered a standard for the comparison of equity/diver-
sity methods, indeed more than 15 papers have used this benchmark in their computational experimentation. The MDPLIB is
divided into three sets of instances:

� SOM: This data set consists of 20 inter-node distance matrices of sizes ranging from n ¼ 25 and m ¼ 2 to n ¼ 500 and
m ¼ 200 and were collected by Duarte and Martí [7]. They were created with a generator developed by Silva et al.
[35] and have been used in most of the previous papers dealing with the maximum diversity problem (see for example
[2]).
� GKD: This data set consists of 70 inter-node distance matrices for which distance values were calculated as the Euclidean

distance between pairs of randomly generated points with coordinates in the ½0;10� � ½0;10� square. The sizes of these
instances range from n ¼ 10 and m ¼ 2 to n ¼ 500 and m ¼ 50. These instances were introduced in Glover et al. [15]
and generated in Duarte and Martí [7] and Martí et al.[24].
� MDG: This data set consists of 100 inter-node distance matrices with real numbers randomly selected between 0 and 10

from a uniform distribution and size varying from n ¼ 500 and m ¼ 50 to n ¼ 3000 and m ¼ 600. These instances are
extensively described in Duarte and Martí [7], Palubeckis [27], and Martí et al. [25].

The original MDPLIB contains 315 instances. We have excluded the smallest and/or easiest ones from our computational
experience, since those instances are not really a challenge for modern heuristics. In particular, we have removed 75
instances of from GKD set (with size ranging from n ¼ 10 to n ¼ 30) and 50 instances of SOM (with size ranging from
n ¼ 25 to n ¼ 150).

The experiment has two parts. In the first part, we adjust the parameters of the methods and select the best variants of the
proposed algorithms on a subset of 25 (10 from SOM, 5 from MDG and 10 from GKD) instances from the MDPLIB. We have
selected these instances from the three subsets with different values of n ¼ 25; . . . ;500 and m ¼ 15; . . . ;200, since these vari-
ations in the value of n;m and original subset allow us to construct a representative subset of the benchmark. The second
part is devoted to a comparison of our best proposal with the current state of the art for this problem, including the solution
of the mixed linear 0� 1 formulation of Prokopyev et al. [29] with the commercial MIP solver CPLEX 12.5.1. The number of
iterations indicated in the paper determines the stopping criterion of all heuristic methods tested in this section. However,
considering that we are solving large instances (up to 3000 vertices) we impose a maximum computing time of n seconds (n
being the number of vertices) to avoid extremely large computing times. After that time limit, the heuristic algorithm is
interrupted, returning the best solution found.

4.1. Algorithm configuration

The first experiment compares the two constructive methods described in Section 2.1. For GRASP, both the quality and
variability of the constructed solutions are important for the success of local search. Ideally, we want to construct good solu-
tions that are scattered about the solution space. For the Min-Diff problem we compute variability as the average number of
steps in the neighborhood space among the constructed solutions. In other words, the variability between two solutions S
and S0 is defined as the cardinality of the set difference of the two solutions. Then, the variability of the set C of constructed
solutions is defined as
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variabilityðCÞ ¼
P

S2C

P
S02C jS n S0j
jCj :
This experiment compares the quality and variability of the solutions produced by the constructive methods C1 and C2 by
considering 100 independent constructions of each. The a parameter value is set to random;0:25;0:50;0:75, where random
indicates that the method randomly selects an a value in the range ½0;1� for each construction. Notice that the greater the
value of a, the greater will be the expected variability of the constructed solutions. Fig. 6 shows the result of this comparison
where the values of quality and variability have been normalized to fall between 0 and 1. This figure shows that C2(0.50)
attains the largest quality but with relatively low variability. On the other hand, one of the most randomized methods,
C1(0.75), produces poor-quality solutions, but having the largest variability among all methods. Finally, C2(0.25) shows a
balance between quality and variability. Specifically, it presents slightly worse quality than the best method, but consider-
ably larger variability.

In the experiments that follow, we limit ourselves to the constructive procedures identified above as having produced the
best quality, C2(0.50), the best variability, C1(0.75), and a good tradeoff between quality and variability, C2(0.25).

We next study the efficiency of the three local search methods proposed in Section 2.2 when coupled with C2(0.50),
C1(0.75), and C2(0.25), the three constructive procedure chosen above. Recall that these local search procedures are:
LS1 – best improvement strategy; LS2 – first improvement with random selection; and LS3 – first improvement with ordered
selection. We embed them in a GRASP algorithm, constructing and improving 100 solutions. We report, for each algorithm,
the average objective function value, Avg., and the average CPU time in seconds, Time (s). In each experiment, we also
compute for each instance the overall best solution value, BestValue, which is obtained by the executions of all methods
considered in the corresponding experiment. Then, for each method, we compute the relative percentage deviation between
the best solution value obtained with that method and BestValue for that instance. We then report the average of this relative
percentage deviation, Dev(%), across all the instances considered in each particular experiment. We finally report, for each
method, the number of instances (#Best) in which the value of the best solution obtained with this method matches Best-
Value. For the sake of clarity, we highlight in bold font the best combination of methods. Table 1 shows the results obtained
by the different combinations of constructive and local search procedures.

In this experiment C2(0.50) coupled with LS2 emerges as the best GRASP variant. It obtains the smallest deviation
(11.10%) and the largest number of best solutions (7 out of 25). It is important to remark that this method ranks second (very
close to the fastest algorithm) when comparing CPU times of the nine variants tested. This experiment confirms that the
compromise between quality and variability is crucial in a GRASP design. We therefore select C2(0.50) with LS2 as the best
variant and use it in the remaining experiments.

Next, we analyze the effect of replacing the local search component of a GRASP by a VNS (see Section 2.3). Specifically, we
compare the best algorithm identified above with nine variants of GRASP with VNS local search. These VNS procedures differ
in the kstep and kmax parameters. We tested the values kmax ¼ f0:1n; 0:2n;0:3ng and kstep ¼ f0:01n;0:025n;0:05ng, where
n ¼ jV j, and denote the method by VNS(kstep; kmax). Table 2 shows that including a VNS in a GRASP procedure considerably
improves the quality of the results. As a comparison of Tables 1 and 2 shows, the average objective function for constructive
with local search varies from 162.65 to 184.11, while that average for constructive with VNS in place of local search varies
from 136.56 to 155.11. However, as expected, the running time of the VNS grows with large values of kmax and/or with small
values of kstep. To find a compromise between CPU time and quality, we select VNS(0.01, 0.1) for the next experiments, since
it presents the best results in terms of average objective function (136.56) and number of best solutions found (9 out of 25).
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Table 1
Three local search methods coupled with three constructive procedures.

Avg. Time (s) Dev. (%) #Best

C1(0.75)
LS1 163.51 77.09 17.52 6
LS2 162.65 16.95 12.18 6
LS3 166.87 88.30 16.06 2

C2(0.25)
LS1 184.11 30.23 18.65 3
LS2 180.16 13.08 14.72 3
LS3 181.53 63.57 13.38 4

C2(0.50)
LS1 172.21 30.24 14.74 3
LS2 171.49 14.08 11.10 7
LS3 173.23 60.59 12.28 4
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Additionally, it ranks third (out of 9 methods) when considering the average deviation (8.80%) but taking about half the CPU
time (156.64 s) of VNS(0.01, 0.2) and VNS(0.01, 0.3) whose computing times are 226.90 and 300.81 s, respectively.

To single out the contribution of the VNS we conduct an additional experiment. In particular, we compare the GRASP
method in which construction is C2(0.50) and improvement is LS2 with the GRASP method in which LS2 is replaced by
VNS, allowing both algorithms to run for 150 s, on average, which is the average running time taken by the best variant with
VNS. The algorithm with VNS consistently produces better outcomes. Specifically, it obtains a lower average objective func-
tion value (136.48 versus 156.41), a lower average deviation (0.56% versus 6.89%) and a larger number of best solutions
found (20 and 9).

We next compare the four path relinking algorithms described in Section 3 by incorporating them into the GRASP with
VNS local search. As it is documented in Laguna and Martí [22], the size of the elite set must have a relatively small size
(around 10). We have performed several preliminary experiments to test the impact of this parameter in the performance
of the whole algorithm. These results show that augmenting the size of the elite set also increases the computing time, but
barely improving the quality. Therefore, we select the best 10 solutions (among the solutions generated by GRASP with VNS)
to conform the elite set. Then, each path relinking variant creates a path between each pair of solutions in the elite set. Table 3
compares the methods with interior path relinking with greedy (IPRG) and random (IPRR) construction of the path, as well as
the exterior path relinking with the same two strategies of exploring the path (EPRG;EPRR). We can observe that the random
and the greedy strategy obtain similar results in the case of Interior Path Relinking. Specifically, IPRG obtains slightly better
deviation, while IPRR gets one more best solution. In the case of exterior path relinking, the greedy strategy consistently pro-
duces better outcomes. In fact, the greedy exploration of the path barely affects the computing time. This is true mainly
because we use the move strategy described in Section 2.2. Another relevant observation is that the two exterior versions
of PR clearly outperform the interior variants. With this, the GRASP with VNS using the EPRG strategy emerges as the best
algorithm for all statistics. We believe that this result could be an important lesson for future implementations of path
relinking.

We conduct an additional experiment to single out the actual contribution of PR in final design of the algorithm. In par-
ticular we compare EPRG with the best GRASP algorithm executed for the same computing time (about 150 s on average).
EPRG obtains a lower average deviation (0.71 % versus 5.69 %) and a larger number of best solutions found (23 versus 14).

In the remainder of the paper we refer to this GRASP with VNS and Greedy exterior path relinking algorithm simply as
EPR.
Table 2
Influence of the kstep and kmax parameters in the VNS algorithm.

kstep Avg. Time (s) Dev. (%) #Best

0.01 136.56 156.64 8.80 9
0.1 0.025 149.09 93.22 15.82 5

0.05 155.11 59.16 17.68 6

0.01 143.20 226.90 8.20 5
0.2 0.025 142.02 141.40 10.16 7

0.05 150.79 92.54 17.38 3

0.01 141.54 300.81 7.01 8
0.3 0.025 143.74 172.98 12.38 4

0.05 151.47 122.31 13.72 6

The best parameters configuration is highlighted in bold font.



Table 3
Comparison among the proposed path relinking algorithms.

Avg. Time (s) Dev (%) #Best

IPRG 136.81 151.22 4.32 13
IPRR 137.01 150.81 4.60 14
EPRG 136.23 156.05 0.80 20
EPRR 137.09 162.73 3.28 14

The best variants is highlighted in bold font.
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4.2. Algorithm evaluation

In Section 4.1, we identified EPR as being our best proposed procedure. We next compare it with the current state-of-the-
art methods for the Min-Diff problem. These methods are a GRASP proposed by Prokopyev et al. [29] and the commercial MIP
solver CPLEX 12.5.1 on their exact formulation.

Our evaluation consists of two experiments. In the first, we compare EPR with two variants of the GRASP of Prokopyev
et al. [29], one denoted as GRASP1 which runs for 500 iterations and the other, GRASP2, which runs for 1000 iterations.
In the second experiment, we compare EPR with CPLEX on all instances that fit in memory.

For the first experiment, we have implemented all of the algorithms in Java. In order to have a fair comparison, both
GRASP1 and GRASP2 use the partial evaluations described in Section 2.1. The experiments are run on the same computer.
Table 4 summarizes the results of this experiment, where we consider the three sets of instances (GKD, MDG, and SOM)
and the three algorithms (EPR, GRASP1, and GRASP2). The table is organized in three groups of rows (one for each type of
instance). For each pair of instance type and algorithm, the table lists average solution value over all instances in the set,
the average CPU time in seconds, the average percent deviation from the best known solution, and the number of times that
the methods matches the best known solution. We also provide the average number of evaluations needed by each algo-
rithm to reach their best result (#EvalsToBest) and the average number of evaluations performed (#TotalEvals).

Each algorithm is run a single time on each instance. With respect to solution quality, EPR clearly outperforms both
GRASP1 and GRASP2. It should be noted that the GRASP proposed by Prokopyev et al. [29] was designed to work on a number
of equitable dispersion problems and not specifically on the MinDiff problem as EPR is designed for.

EPR finds the best known solution in 188 of 190 instances, while GRASP1 and GRASP2 do so for only 12 and 18 instances,
respectively. The instances for which GRASP1 and GRASP2 find the best known solution are all in the class GKD, which has
Table 4
EPR compared with the GRASP algorithms of Prokopyev et al. [29].

Instance set EPR GRASP1 GRASP2

GKD
Avg. 52.57 107.82 90.19
Time (s) 56.99 76.03 152.07
Dev (%) 0.00 74.19 69.69
#Best 68 12 18
#EvalsToBest 2:84 � 105 2:01 � 106 5:2 � 106

#TotalEvals 2:84 � 105 4:50 � 106 9:1 � 106

MDG
Avg. 3567.63 5981.61 5981.80
Time (s) 1472.35 1421.10 2793.23
Dev (%) 0.00 81.51 79.57
#Best 100 0 0
#EvalsToBest 1:02 � 106 5:83 � 107 6:94 � 107

#TotalEvals 1:68 � 106 1:15 � 108 1:40 � 108

SOM
Avg. 23.35 37.90 37.25
Time (s) 173.41 124.40 198.82
Dev (%) 0.00 61.54 58.18
#Best 20 0 0
#EvalsToBest 4:87 � 105 6:69 � 106 1:32 � 107

#TotalEvals 5:73 � 105 1:20 � 107 2:40 � 107

ALL
Avg. 1899.53 3200.00 3189.18
Time (s) 814.17 789.05 1547.07
Dev (%) 0.00 76.71 73.68
#Best 188 12 18
#EvalsToBest 5:98 � 105 2:23 � 107 2:93 � 107

#TotalEvals 8:47 � 105 4:37 � 107 5:97 � 107
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the smallest instances as well as Euclidean distances, making them easier to solve as we will see later in this section in the
experiments with CPLEX. In addition to not finding many best known solutions, both GRASP1 and GRASP2 find solutions that
have a high percent deviation from the best known solutions, varying, on average, from 58% for GRASP2 on SOM to 81% for
GRASP1 on MDG. As expected, running times for EPR are comparable to those of GRASP1, which, also as expected, are about
one half of those of GRASP2. If we now analyze the number of evaluations needed by each algorithm to reach their best
results and the total number of evaluations performed, we can see that EPR clearly requires less evaluations to reach the best
solution, in all the set of instances. Specifically, EPR needs roughly 2.5% of the evaluations needed by GRASP1 and GRASP2 to
reach the best result. Even more, the total number of evaluations performed by EPR is considerably lower than the evalua-
tions needed by GRASP1 and GRASP2, with EPR requiring less than 2.0% of evaluations needed by GRASP1 and GRASP2.

We apply the Friedman test to the raw data obtained in the previous experiment. This test ranks each method for each
instance in the data set. That is, for each instance, the method that performs the best is assigned the number 1, followed by
the second best (assigned number 2), and finally the worst method receives the number 3. Then, an average ranking is cal-
culated for each method. A small p-value associated with this test indicates that the averages are indeed significantly differ-
ent. We obtain a p-value lower than 0.001 indicating significant difference among the methods. Additionally, the test
provides the ranking in which the best method is EPR with an average ranking of 1.10, followed by GRASP2 (average ranking
of 2.31), followed by GRASP1 (average ranking of 2.60).

Finally, we compare EPR with GRASP2 by considering two well-known non-parametric tests for pairwise comparisons:
the Wilcoxon test and the Sign test. The former answers the question: Do the two samples (in our case, solutions obtained
with EPR and GRASP2) represent two different populations? The resulting p-value lower than 0.001 indicates that the values
compared come from different algorithms and there are significant differences between both methods. On the other hand,
the Sign test computes the number of instances on which an algorithm supersedes another. The resulting p-value lower than
0.001 again indicates that there are significant differences between EPR and GRASP2, confirming the superiority of the
method proposed in this paper.

We compare EPR with CPLEX 12.5.1 only on the 30 instances which fit in memory for CPLEX. Most of these instances are
from the GKD set. Three are from SOM and none were from MDG (the smallest instance in MDG has 500 vertices). Running
times for CPLEX are limited to 1800 s. We provide a different stopping criterion since CPLEX is an exact procedure that typ-
ically requires larger computing time (even in instances with moderate size) than heuristic procedures. EPR again do 100
GRASP iterations, followed by exterior path relinking between all pairs of the 10 elite set solutions. Table 5 summarizes these
Table 5
Comparison of EPR and CPLEX (limited to 1800 s).

Instance EPR CPLEX

MinDiff Time (s) UB LB Time (s) Opt

GKD-b_10_n25_m7 23.26523 0.312 23.26523 23.26523 1.014 1
GKD-b_11_n50_m5 1.9261 0.187 1.9261 1.9261 8.814 1
GKD-b_12_n50_m5 2.12104 0.171 2.0513 2.0513 9.044 1
GKD-b_13_n50_m5 2.36231 0.187 2.36231 2.36231 6.668 1
GKD-b_14_n50_m5 1.6632 0.188 1.6632 1.6632 6.428 1
GKD-b_15_n50_m5 2.85313 0.187 2.85313 2.85313 8.3 1
GKD-b_16_n50_m15 42.74578 1.389 42.74578 42.74578 54.937 1
GKD-b_17_n50_m15 48.10761 1.608 48.10761 48.10761 36.853 1
GKD-b_18_n50_m15 43.19609 1.343 43.19609 43.19609 441.016 1
GKD-b_19_n50_m15 46.41245 1.358 46.41245 46.41245 347.622 1
GKD-b_1_n25_m2 0 0 0 0 0.012 1
GKD-b_20_n50_m15 47.71511 1.265 47.71511 47.71511 599.622 1
GKD-b_21_n100_m10 13.83202 1.171 12.30384 0 1330.461 0
GKD-b_24_n100_m10 8.64064 1.202 9.81926 0 1500.213 0
GKD-b_26_n100_m30 168.72959 9.439 176.86238 0 1104.597 0
GKD-b_27_n100_m30 127.09726 9.72 205.76481 0 1099.519 0
GKD-b_28_n100_m30 106.37919 10.422 148.59098 0 1212.293 0
GKD-b_29_n100_m30 137.45316 10.048 176.75614 0 1091.947 0
GKD-b_2_n25_m2 0 0 0 0 0.018 1
GKD-b_30_n100_m30 127.47974 9.283 134.10651 0 1140.244 0
GKD-b_3_n25_m2 0 0.017 0 0 0.016 1
GKD-b_4_n25_m2 0 0.016 0 0 0.016 1
GKD-b_5_n25_m2 0 0.015 0 0 0.016 1
GKD-b_6_n25_m7 12.71796 0.173 12.71796 12.71796 0.468 1
GKD-b_7_n25_m7 14.09875 0.156 14.09875 14.09875 1.732 1
GKD-b_8_n25_m7 16.76119 0.156 16.76119 16.76119 1.186 1
GKD-b_9_n25_m7 17.06921 0.172 17.06921 17.06921 0.173 1
SOM-b_2_n100_m20 6 3.042 6 0 663.937 0
SOM-b_3_n100_m30 10 5.796 12 0 99.342 0
SOM-b_4_n100_m40 13 8.715 14 0 121.602 0

Instances where CPLEX finds the optimal solution are highlighted in bold font.
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runs. For each instance, the table lists the solution values and CPU times in seconds for EPR, as well as the upper and lower
bounds found by CPLEX and the time taken by CPLEX. The last column in the table indicates whether CPLEX was able to prove
optimality. Though CPLEX is limited to 1800 s, it often terminated before that, even when it cannot prove optimality. This
occurs because its search tree could no longer fit in memory. CPLEX is able to prove optimality in 20 of the 30 instances,
which are highlighted in bold font in Table 5. In 19 of those 20 instances, EPR is able to match the value of the optimal solu-
tion in a single run. In the remaining ten instances, EPR is able to improve the upper bound found by CPLEX in eight of them,
match it in one, and do worse in only one. Running times for EPR are comparable to those of CPLEX on the smaller instances
and, as expected, are orders of magnitude smaller than those of CPLEX on the larger instances.

5. Conclusions

This paper proposed several new hybrid heuristics for the minimum differential dispersion problem. The heuristics used
components of GRASP, variable neighborhood search (VNS), and path relinking. To find a good configuration for our best heu-
ristic, we considered two constructive procedures (four variants of each one, varying the alpha parameter), four local search
procedures, including one based on VNS, and four path relinking strategies. The best configuration consisted of a GRASP with
sampled greedy construction and VNS for local search. As opposed to the standard way of applying VNS where the starting
solution is random, the sampled greedy constructed solution is used. During the search, and elite set of the best solutions
found (with no repetition allowed) is built and maintained. After performing all the GRASP iterations, exterior path relinking
is applied as a post optimization strategy, by combining all pairs of elite set solutions. Finally, the best solution found is
returned.

Exterior path relinking, or path separation, introduced in Glover [14] and first used here, is a variant of the more common
interior path relinking. In interior path relinking, paths in the neighborhood solution space connecting good solutions are
explored between the solutions in the search for improvements. Exterior path relinking, as opposed to exploring paths
between pairs of solutions, explores paths beyond those solutions. This is accomplished by considering an initiating solution
and a guiding solution and introducing in the initiating solution attributes not present in the guiding solution. To complete
the process, the roles of initiating and guiding solutions are exchanged.

Extensive computational experiments on 190 instances from the literature demonstrated the competitiveness of this
algorithm. Not only was it able to outperform the GRASP heuristic of Prokopyev et al. [29] and find optimal solutions to
all but one of the instances that CPLEX is able to solve, it improved the CPLEX upper bound on all but one of the instances
that CPLEX failed to solve.

For future research, we note the possibility of applying a form of multiple neighborhood search different from VNS by
reference to the strategic oscillation (oscillating assignment) framework as implemented in Glover et al. [17] and elaborated
in Glover and Laguna [16]. We also observe the relevance of additional variants of exterior path relinking suggested in Glover
[14]. These variants open the door to a wide variety of possibilities that invite closer examination and that may give an inter-
esting basis for future research.
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