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Abstract The quadratic multiple knapsack problem (QMKP) consists in assigning
a set of objects, which interact through paired profit values, exclusively to different
capacity-constrained knapsacks with the aim of maximising total profit. Its many
applications include the assignment of workmen to different tasks when their ability
to cooperate may affect the results.

Strategic oscillation (SO) is a search strategy that operates in relation to a critical
boundary associated with important solution features (such as feasibility). Originally
proposed in the context of tabu search, it has become widely applied as an efficient
memory-based methodology. We apply strategic oscillation to the quadratic multiple
knapsack problem, disclosing that SO effectively exploits domain-specific knowl-
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edge, and obtains solutions of particularly high quality compared to those obtained
by current state-of-the-art algorithms.

Keywords Strategic oscillation · Tabu search · Quadratic multiple knapsack
problem · Empirical study

1 Introduction

The quadratic multiple knapsack problem (QMKP) [1] consists in assigning a set
of objects disjunctively to a set of capacity-constrained knapsacks for the goal of
maximising the total sum of profits. Profit values are assigned not only to individual
objects but also to pairs of them, which renders traditional approaches (that do not
consider pairwise linkages between objects) unable to effectively address the prob-
lem [2]. The QMKP arises commonly in contexts where resources have to be assigned
to different tasks and the success measure depends on interactions between these re-
sources. Previous efforts to solve QMKP by metaheuristic approaches include local
search methods [1, 3], genetic algorithms [1, 4, 5], swarm intelligence methods [3]
and iterated greedy methods [6].

Strategic oscillation (SO) [7] is a search strategy that operates by moves defined
in relation to a critical boundary that identifies regions of the search space that are
expected to contain solutions of particular interest. Originally proposed in the context
of tabu search as a long term strategy, it now constitutes a well-established method
within the family of memory-based methodologies known as adaptive memory pro-
gramming and has produced competitive results in applications fields such as binary
quadratic programs [8], the multi-resource generalized assignment problem [9], the
maximally diverse grouping problem [10] and the linear ordering problem with cu-
mulative costs [11], among others.

In this paper, we analyse the application of the SO framework to effectively solve
the QMKP. In particular, we exploit capacity and object-individuality constraints of
the QMKP as a source of critical boundaries that SO may explore. Our approach
iteratively applies three stages:

1. An oscillation process explores the feasible and infeasible regions around a current
solution and returns a new candidate;

2. A local optimization operator is applied to every new candidate to get an associ-
ated improved solution from the nearby area of the search space; and

3. An acceptance criterion decides which improved solution is chosen to continue
the search. In addition, we employ a constructor operator to build initial solutions
at the beginning of the run and when stagnation is detected.

We include tests of a variety of heuristics for each operator of our SO frame-
work, such as completely random operators, procedures biased by the objective func-
tion, and tabu search strategies taking advantage of memory structures. The experi-
ments show that the final algorithm, SO-QMKP, is able to effectively exploit domain-
knowledge associated with the problem requirements and outperforms current state-
of-the-art approaches.

Author's personal copy



Strategic oscillation for the quadratic multiple knapsack problem

The rest of the paper is structured as follows. In Sect. 2, we describe the QMKP
model and current state-of-the-art approaches for its solution. In Sect. 3, we introduce
our SO framework for the QMKP and detail several strategic variations that can be
used at each stage. Section 4 presents the findings from our empirical study, which is
designed to: (1) analyse the influence of the supporting strategies, parameters and set-
tings associated with our method, (2) compare the results of our SO-QMKP algorithm
with those of other approaches from the literature, and (3) identify the algorithmic
components that provide the greatest contribution to exploiting the domain knowl-
edge associated with the QMKP. Finally, Sect. 5 discusses conclusions and further
work.

2 The quadratic multiple knapsack problem

The QMKP seeks an optimal assignment of n objects and K knapsacks. Each object
i ∈ {1,2, . . . , n} has a profit pi and a weight wi , each pair of objects (i and j ) has
a profit pij , and each knapsack k ∈ {1,2, . . . ,K} has a capacity Ck . To simplify the
notation, we refer to objects and knapsacks by their index positions. The profit pij

associated with the pair of objects i and j is added to the total profit if both i and j

belong to the same knapsack. The objective is to allocate each object to at most one
knapsack so that the total weight of the objects in each knapsack k does not exceed
its capacity Ck and the total profit of all the objects included into the knapsacks is
maximised. Formally, given the binary variables xik , which indicate whether object i

is included in knapsack k, the QMKP can be formulated as:

Maximise
n∑

i=1

K∑

k=1

xikpi +
n−1∑

i=1

n∑

j=i+1

K∑

k=1

xikxjkpij , (1)

subject to
n∑

i=1

xikwi ≤ Ck, ∀k ∈ {1,2, . . . ,K}, (2)

and
K∑

i=1

xik ≤ 1, ∀i ∈ {1,2, . . . , n}. (3)

The QMKP has many real-world applications in situations where resources with
different levels of interaction have to be distributed among different tasks, for in-
stance, assigning team members to different projects where member contributions are
considered both individually and in pairs. The QMKP is an extension of two well-
known combinatorial optimisation problems, the multiple knapsack problem and the
quadratic knapsack problem, and as in the case of its special instances, the QMKP is
NP-hard [1].

Hiley and Julstrom [1] were the first to study this problem and proposed three
approaches for its solution: a greedy heuristic (discussed in Sect. 3.1), which pro-
vides feasible solutions from scratch, a hill-climbing method that consists in re-
moving some random objects from their corresponding knapsacks and applying the
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greedy heuristic to refill the solution, and a generational genetic algorithm. This
latter comprises a population of solutions that are initialised by assigning objects
iteratively to random knapsacks that can accommodate them. Afterwards, binary
tournament selection is employed, and mutation and crossover operators are exe-
cuted iteratively according to a crossover probability parameter. The tournament se-
lection removes two random objects from their knapsacks and applies the greedy
heuristic, and the crossover operators first copy into each offspring all object assign-
ments common to its two parents and then considers all remaining objects in random
order for the knapsacks that can accommodate them, preserving the best solution
found.

Singh and Baghel [5] addressed the QMKP with a grouping genetic algorithm, im-
plementing a steady-state model where crossover and mutation produce a single child
at each iteration (in a mutually exclusive manner), which replaces the least fit member
of the population. Solutions are encoded as a set of knapsacks and multiple copies of
the same solution are avoided by checking new ones against the existing population
members. Initial solutions are created by the aforementioned greedy heuristic [1], but
initially assigning a random object to an arbitrary knapsack. Binary tournament se-
lection is applied. The crossover operator iteratively selects one of the two parents,
assigns the knapsack with largest profit value to the child, and updates the remain-
ing knapsacks in both parents. Unassigned objects are then included randomly in the
knapsacks where this is possible without violating the capacity constraints. Mutation
removes some objects from knapsacks and refills them randomly.

Saraç and Sipahioglu [4] proposed another genetic algorithm in which initial so-
lutions are generated by assigning random objects whose weights are smaller than
the remaining capacity of the current knapsack, proceeding from the knapsack with
the smallest capacity to the largest. Binary tournament selection is applied to allow
solutions to be copied to the next generation. The crossover operator interchanges
the object assignments between two randomly selected parents. When a knapsack ca-
pacity is exceeded because of this interchange, the newly added object causing the
violation is removed from the knapsack. Subsequently, unassigned objects are con-
sidered according to the heuristic rule of [1]. Two mutation operators are included,
the first one removing four objects from their knapsacks and refilling the solution,
and the second one interchanging objects assigned to different knapsacks. Elitism is
applied to maintain the best solution from one generation to another.

Sundar and Singh [3] proposed an artificial bee colony algorithm (SS-ABC) com-
bined with local search. In the ABC terminology, bees are classified as workers,
scouts and onlookers, which exploit food sources representing solutions of the prob-
lem at hand. Initially, each worker bee is associated with a randomly generated food
source (candidate solution) generated in a way similar to [5]. Then, during each it-
eration, each worker bee determines a new food source in the neighbourhood of its
currently associated food source and computes the nectar amount (fitness or solu-
tion value) of this new one to apply or discard the associated move. Subsequently,
onlookers choose one of the food sources associated with worker bees by means of
binary tournament selection, and determine a new food source in the neighbourhood
that replaces the selected one if it is better. When a food source is not improved for
a predetermined number of iterations, then, the associated worker bee abandons it to

Author's personal copy



Strategic oscillation for the quadratic multiple knapsack problem

become a scout. This scout draws a new random solution and becomes a worker bee
associated with it. An improvement method based on swapping unassigned objects
with those already in a knapsack is also applied. The authors report computational
experiments to assess the superiority of this procedure with respect to the previous
approaches described above.

Finally, iterated greedy has recently been applied to the QMKP [6]. This method,
TIG-QMKP, alternates constructive and destructive phases linked by an improvement
process. Specifically, after an initial construction, a destruction mechanism (enhanced
by a short-term tabu search memory) removes different objects from the knapsacks,
and then reconstructs the partial solution with a greedy method. This latter method is
partially based on a previous heuristic [5], plus a local optimization. The authors per-
form extensive experimentation and show that this method and the previous ABC re-
ported above are able to obtain the best known solutions for the QMKP. We therefore
include both methods, SS-ABC and TIG-QMKP, in our computational comparison
reported in Sect. 4.

3 Strategic oscillation for the QMKP

The SO methodology, first introduced in [12], operates by orienting moves in relation
to a critical level, as identified by a stage of construction or a chosen interval of
functional values. As summarized in [7], such a critical level or oscillation boundary
often represents a point where the method would normally stop. Instead of stopping
when this boundary is reached, however, the rules for selecting moves are modified,
either to retreat some distance in the reverse direction or to permit the region defined
by the critical level to be crossed.

In this study, we analyse the combination of different strategies, leading the search
process to traverse the oscillation boundary defined by the constraints in QMKP:

– Maximal knapsack capacities: The sum of the weights of the objects in each knap-
sack must be inferior or equal to its capacity (Eq. (2)). On the other hand, when
profit and weight values are positive, which is the general case, then moves are se-
lected so as not to miss the opportunity of including another available object when
there is room for it. Knapsack capacities become critical levels where effective
solutions are distributed and strategic oscillation are performed that approach the
critical levels from both sides.

– Indivisibility: Objects must be assigned to no more than one knapsack (Eq. (3)).
When this constraint is relaxed, the algorithm is allowed to include the same ob-
ject in different knapsacks. Then, the presence of more than one knapsack offers
another opportunity to perform oscillations around the aforementioned critical lev-
els.

We consider the SO framework shown in Fig. 1. Initially, a complete solution is
built by the constructive procedure (described in Sect. 3.1), which is subsequently
refined by the improvement method operator (described in Sect. 3.2). Afterwards,
the algorithm iteratively applies first, the oscillation method (described in Sect. 3.3),
which performs moves around the critical levels defined by previous constraints and
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Input:
maxfails: Number of failed internal iterations before

reinitiating
maxK: Number of span bounds
σ1, . . . , σmax: Span bounds for the oscillation method

Output:
Sb: Best solution generated

1 while (stop-condition is not reached) do
2 S′ ← constructive procedure();
3 S← improvement method(S′);
4 Sb ← S, k← 1, numfails ← 0;

5 while (numfails < maxfails and stopping-condition is not
reached) do

6 {S′} ← oscillation method(S, σk);
7 S′′ ← improvement method(S′);
8 if (S′′ is better than Sb) then
9 Sb ← S′′, k← 1, numfails ← 0;

10 else

11 if (k== maxK) then
12 k← 1, numfails ← numfails + 1;
13 else
14 k← k+ 1;
15 end
16 end

17 S← acceptance-criterion(S,S′′);
18 end
19 end

20 return Sb;

Fig. 1 Pseudocode of the SO framework

the current solution according to a span parameter σ . The oscillation method also ap-
plies an improvement method to refine the new solution and an acceptance-criterion
(described in Sect. 3.4) that decides which configuration becomes the new current
solution, until a maximum number of fails (iterations without improving the best so-
lution) is reached. Note that the parameter k for the oscillation method is strategically
updated according to whether the best overall solution is improved or not (lines 8–16
in Fig. 1). The entire procedure is repeated until a stopping condition is reached and
the best solution generated is returned at the end. Additionally, Sect. 3.5 describes
several enhanced code implementations to reduce the computational effort associated
with evaluating solutions.

3.1 Constructive procedure

In the context of our SO framework, the constructive procedure is in charge of pro-
viding an initial solution to attain the critical levels associated with the QMKP con-
straints, i.e., configurations where several objects have been assigned to one knapsack
and there is no room for another object in any of them. From the different alternatives
for pursuing this goal, we have considered the following five constructive methods,
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which iteratively introduce objects in knapsacks until there is no room in any knap-
sack for another unassigned object:

– Random procedure: Introduces a randomly chosen object, currently not assigned
to any knapsack, into a randomly chosen knapsack with sufficient room for it.

– Greedy procedure: Hiley and Julstrom [1] describe a greedy constructive algo-
rithm, which may be used to build feasible solutions for the QMKP. In order to do
this, we firstly define the contribution (Δ(i, k)) and density (D(i, k)) of an object i

with regards to knapsack k > 0, as the sum of profit values associated to the object
i and those already in the knapsack k, and its division by the weight of object i,
respectively:

Δ(i, k) = pi +
∑

j∈k

pij , (4)

D(i, k) = Δ(i, k)/wi. (5)

We note that D(i, k) is the classic bang-for-buck ratio used to evaluate assignments
in a simple knapsack problem setting, where the numerator is adjusted here to
reflect the full profit of the assignment in view of the quadratic objective. The
greedy construction algorithm consists in performing the iterative assignment of
the still unassigned object i to knapsack k that maximizes the value D(i, k), subject
to wi + ∑

j∈k wj ≤ Ck .
– Infrequent solution sampling: A common element of tabu search and SO is the

application of memory structures that record statistics of the visited solutions in
order to promote either intensification or diversification in future samplings [7].
Employing this idea, the infrequent solution sampling operator uses a long-term
memory, updated after each iteration of the improvement method, that registers
the number of times that two objects were assigned to the same knapsack. Then,
when this method is applied to a new complete solution, the long-term memory
structure is accessed in the search for the assignment of an unselected object i into
a knapsack k such that the sum of frequencies of object i and those already in k is
minimal.

– Frequent non-tabu assignments: In contrast to the preceding heuristic, this method
exploits long-term memory to build solutions similar to those already visited, by
selecting assignments that make the sum of frequencies maximal. However, a
short-term memory is included as well in order to enhance the diversity of gener-
ated solutions. In particular, the short-term memory keeps track of the assignments
(objects and knapsacks) of recent improved solutions, which are avoided when
building a new complete solution. These assignments remain tabu during a num-
ber of SO iterations that is randomly chosen from the interval [0,maxT ], where
maxT is a parameter of the operator.

– Greedy non-tabu assignments: This operator looks for assignments that maximise
the aforementioned heuristic value D(i, k), but exploits as well a short-term mem-
ory in order to enhance the diversity of generated solutions. This memory is up-
dated and employed as described above.
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3.2 Refining solutions: improvement method

The improvement method of our SO operates on solutions passed to it by exploring
local modifications that lead to increased objective values. We analyse two alterna-
tives, one from the literature and another proposed in this work:

– Swap Moves: García-Martínez et al. [6] introduce a local search operator that seeks
profitable exchanges of two assigned objects from different knapsacks, or of one
assigned object with an unassigned object. Their results showed that this strategy
provides better results than one that considers only swaps of the second kind (as
proposed in [3]).

– Reallocations + swaps: The swap moves previously discussed may result in a sit-
uation where some knapsack winds up with sufficient room to receive new objects
or objects from other knapsacks. Therefore, we propose a multiple neighbourhood
strategy, as commonly employed with SO and tabu search methods [13–15]. In our
present design we first seek profitable allocations of objects to knapsacks by draw-
ing on objects already assigned to other knapsacks or on objects currently unas-
signed. When no profitable allocation of this type exists, we then examine swaps
until none remains that increases the objective value. At this point we return to start
again by examining the first type of move. As soon as two consecutive stages fail
to find an improved solution, the process stops. This approach constitutes a special
instance of the multiple neighbourhood SO approach of [13] and hence we call it
the strategic oscillation multi-neighbourhood (SOM) method. (For a comparative
analysis of several types of multiple neighbourhood strategies, see [15].)

Two choice rules are analysed in combination with the previous strategies: a first-
improvement rule, which selects the first move that improves the objective value, and
the best-improvement rule, which selects the move that produces the largest improve-
ment in the objective value.

3.3 Exploiting critical levels: oscillation method

For the QMKP, our oscillation method explores the critical levels associated with
the problem constraints (Sect. 3) to generate effective solutions by paths that are
launched from different points of departure and that traverse different regions. We
analyse several oscillation heuristics based on applying two specific steps every time
they are invoked:

1. Divergent step: The solution is induced to diverge (move away) from the critical
level defined by its current state and the constraints defining feasibility (Sect. 3).
In this stage, operations are performed until reaching a parametrized span bound
(σ ∈ [0,1]) described below.

2. Convergent step: The solution is induced to converge to (move toward) the critical
level where constraints are satisfied and there is no room for another unassigned
object in any knapsack.

Accordingly, two basic types of operations are used to execute these steps. The
conditions for employing these operations depend on whether either the divergent
step or convergent step is being applied:
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– Insertion: An object i is inserted into a knapsack k. For a divergent step, knapsacks
are permitted to be overloaded by a maximum factor equal to σ , and objects are
allowed to be inserted into more than one knapsack until a maximum number of
over-assignments is reached, computed as σ times the average number of objects
than can be allocated to the knapsacks (as specified in Eq. (6)). For a convergent
step, unassigned objects are allowed to be inserted into knapsacks with sufficient
space for them.

maxoverassignments = σ · n · min

(
1,

∑n
i=1 wi∑K
k=1 Ck

)
. (6)

– Extraction: An object i is removed from knapsack k. A divergent step allows a
percentage (σ ) of the assigned objects to be removed from their knapsacks. On
the other hand, during a convergent step the successive application of this opera-
tion is used to produce feasible solutions from infeasible ones. When performing
extractions during a convergent step, objects assigned to more than one knapsack
are dropped first. Then, objects from overloaded knapsacks are selected. These
operations are repeated until the problem constraints are satisfied.

Note that operation types are paired in the sense that a divergent step on the feasi-
ble side of the critical boundary employs extractions (to make the solution feasible by
an increasing margin) and is then followed by a convergent step that employs inser-
tions to move back toward the boundary. By contrast, a divergent step that is carried
out on the infeasible side of the critical boundary employs insertions (to make the
solution infeasible by an increasing margin), and is then followed by a convergent
step that employs extractions to move back toward (and cross) the boundary. In par-
ticular, our oscillation method randomly decides which set of operations to apply at
every invocation, launched upon reaching a critical level, selecting divergent step in-
sertions before proceeding to convergent step extractions with probability pI−E and
selecting divergent step extractions before proceeding to convergent step insertions
with probability (pE−I = 1 − pI−E).

Considering the four possibilities, resulting from the combination of type of step
(divergent step and convergent step) and basic operation (insertion and extraction),
different heuristics can be implemented to select the object to be inserted in, or ex-
tracted from a knapsack. In this study, we analyse the following options:

– Random heuristic: The object to be inserted or extracted is selected at random from
the different possibilities.

– Greedy heuristic: The best (or the least bad) operation is chosen from the different
possibilities available, according to the density values (Eq. (5)).

– Tabu heuristic: A short-term memory structure is implemented, which keeps track
of the objects recently inserted into or extracted from a knapsack. This heuristic
looks for the best non-tabu operation, according to the density values (Eq. (5)).
Then, recently affected objects remain tabu for a number of iterations ahead which
is computed randomly in the set {0, . . . , n · tenuremax}, where tenuremax is a param-
eter of the method. This general description requires particular adaptations for two
special cases:
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Table 1 SO analysed combinations

Convergent step

Random Greedy Tabu Short-term

Divergent step Random – RGRG RTRT –

Greedy GRGR – GTGT GMGM

Tabu TRTR TGTG TTTT TMTM

Short-term – MGMG MTMT MMMM

– For convergent step insertions, a short-term memory tracking objects could po-
tentially make the heuristic produce solutions falling short of the critical level
when there was room in the knapsacks for more objects, but the possibilities
were tabu. Therefore, in this case the implemented short-term memory keeps
track of the object and knapsack pair that composes the proposed operation.
This way, tabu objects are prevented from being inserted in the knapsacks they
belonged to in the recent past, but can still be associated with other knapsacks.

– For convergent step extractions, the short-term memory could potentially pre-
vent the heuristic from reaching a feasible solution if extractions either of over-
assigned objects or from overloaded knapsacks are tabu. When this situation
appears, the greedy (best) option is chosen regardless of its tabu condition (this
is a form of aspiration criterion for overriding tabu status).

– Random short-term memory heuristic: This alternative implements the previously
described short-term memory and strategies with the exception that random non-
tabu moves, instead of best non-tabu moves, are selected.

Therefore, a wide range of possibilities is brought into the scene. In order to reduce
the set of alternatives, we analyse the combinations that apply the same heuristic for
each type of step (the divergent step and the convergent step). These combinations are
presented in Table 1 in which the methods are denoted with a four letter name that
stands for <divergent step insertions> <convergent step extractions> <divergent
step extractions> <convergent step insertions> according to ‘R’ for the random
heuristic, ‘G’ for greedy, ‘T’ for tabu, and ‘M’ for random short-term memory. For
example, the cell labelled ‘RTRT’ represents an oscillation method that applies the
random heuristic for divergent step operations (whether insertions or extractions),
and the tabu heuristic for convergent step operations.

Empty cells represent combinations that have not been analysed because they
introduced too much randomness (RRRR, RMRM, and MRMR), or not enough
(GGGG), in the search process.

3.4 The acceptance criterion

The acceptance-criterion of our SO establishes the rules by which the algorithm wan-
ders over the regions of the search space in the quest for better solutions. We analyse
the following criteria from the literature:

– Replace if better: The new solution is accepted only if it attains a better objective
function value [8, 10].
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– Random walk: Several authors have pointed out that the foregoing acceptance cri-
terion may lead the method to stagnation, because of getting trapped in a local
optimum [11, 16]. By contrast, the random walk criterion always selects the new
solution, regardless of its objective function value, which prevents the method from
being confined in the area of one local optimum. This approach is a special case of
applying tabu search with a tabu tenure of 0, proposed as an option for probabilistic
tabu search [7].

3.5 Move evaluations

In this section, we describe several improvements that allow an efficient evaluation of
new solutions, which were generated by means of insertion and extraction operations
(Sects. 3.1 and 3.3) or reallocations and swaps (Sect. 3.2), for the QMKP. These en-
hancements accelerate the execution of our algorithm without altering its outcomes.

Define the raw objective value of a solution to be the sum of individual and paired
profits of the objects included in the knapsacks (Eq. (1)) regardless of whether con-
straints (2) and (3) are satisfied. Then, given a solution S, feasible or not, the insertion
of object i into the knapsack k, which does not contain i, produces a new solution
whose raw objective value is that of S plus the corresponding contribution value
Δ(i, k) (defined by Eq. (4)):

f
(
S′) = f (S) + Δ(i, k). (7)

Conversely, the extraction of object i from knapsack k, which contains i, produces
another solution with a raw objective value reduced by the same quantity. There-
fore, new solutions generated by insertion and extraction operations need not be com-
pletely evaluated by the objective function f (·), which saves computational effort.

To achieve this savings in effort, we maintain the current Δ(i, k) values for a given
solution S in a memory structure which is updated every time an insertion or extrac-
tion operation is performed. These values in the memory structure will be referred to
as Δmem

S (i, k) to differentiate them from the mathematical definition of the contribu-
tion of object j to knapsack k (Eq. 4). In particular, given a null solution S, where no
object is assigned to any knapsack, the contribution of any object for any knapsack is
initialised to its profit value (Δmem

S (i, k) ← pi , k ∈ {1, . . . ,K}). Thereafter, inserting
object i into knapsack k, which does not contain i, increments the contribution of
each other object j , whether or not included in k, with the quadratic profit for the
corresponding object j and i (Eq. (8)). Similarly, extracting object i from knapsack
k, which contains i, reduces the contribution of any object j , whether or not included
in k, by the same quantity (Eq. (9)).

Δmem
S (j, k) ← Δmem

S (j, k) + pij , ∀j �= i, j ∈ {1, . . . , n}, (8)

Δmem
S (j, k) ← Δmem

S (j, k) − pij , ∀j �= i, j ∈ {1, . . . , n}. (9)

Reallocation and swap operations (Sect. 3.2) are applied only to feasible solutions,
employing the following equations according to whether one object i is transferred
from knapsack k to knapsack k′ (10), two objects i and j are exchanged between
their respective knapsacks ki and kj (11), or an object i assigned to knapsack ki
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is exchanged with an unassigned object j (12). Notice that the use of the memory
structure in (10), (11), (12) allows their computational complexities to be O(1).

f
(
S : k i→ k′) = f (S) − Δmem

S (i, k) + Δmem
S

(
i, k′), (10)

f (S : iki ↔ jkj ) = f (S) − Δmem
S

(
i, ki

) + Δmem
S

(
i, kj

)

− Δmem
S

(
j, kj

) + Δmem
S

(
j, ki

) − 2pij , (11)

f (S : iki ↔ j0) = f (S) − Δmem
S

(
i, ki

) + Δmem
S

(
j, ki

) − pij . (12)

To our knowledge, the exploitation of (8) through (12) to efficiently update the ob-
jective function contribution of assigning objects to knapsacks has not been exploited
for the QMKP in previous work.

Finally, we should mention that we have implemented another memory structure
that stores the sum of the weights of the objects in each knapsack, which is accord-
ingly updated after applying any operation, in order to check capacity constraints
efficiently.

4 Experiments

In this section, we present the experiments carried out in order to analyse the perfor-
mance of our SO framework. The experimental setup and comparison methodology
are described in Sect. 4.1. The remaining sections report our computational experi-
ments to analyse the influence of parameters and settings in order to obtain a tuned
and robust instance of our SO algorithm (Sect. 4.2), compare the results obtained
with our algorithm with those of previous proposals (Sect. 4.3), and analyse the ex-
ploitation of domain-knowledge that allows our strategies to deal effectively with the
QMKP (Sect. 4.4).

4.1 Experimental framework

All algorithms were implemented in C++ and compiled with gcc 4.6.31. The ex-
periments were conducted on a computer with a 2.8 GHz Intel(R) Core(TM) i7-930
processor (8 MB cache, 4 cores and 8 threads) with 12 GB of RAM running Fe-
dora(TM) Linux 15. Each execution of an algorithm is performed sequentially, using
a unique thread. We have developed experiments on the same 60 QMKP instances
used in [1, 3–6]1, which are characterised by the density d (proportion of non-zero
profits pij ∈ {0.25,0.75}), the number of objects n ∈ {100,200}, and the number of
knapsacks K ∈ {3,5,10} (5 instances per combination). Knapsack capacities are set
to 80 % of the sum of the instances objects weights divided by the number of knap-
sacks, as in the aforementioned studies.

For parameter tuning, our SO algorithm variants were executed 10 times only on
two out of the five QMKP instances per combination of characteristics (Sect. 4.2), in

1They were obtained by adapting those at http://cedric.cnam.fr/~soutif/QKP/ according to the guidelines
in [1].
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order to avoid overtuning and to reduce the computational cost of the study. Each run
consumed a maximum of 5 seconds for problems with 100 objects and 30 seconds
for problems with 200 objects, which are similar to the computational time values
provided in [3] and [6]. For the comparison study, all the problem instances and 40
runs were used (Sect. 4.3), which is in line with the previous QMKP studies in [3]
and [6]. Additionally, the same computational time values provided in [3] and [6]
were assigned to these SO runs.

Non-parametric tests have been used to compare the results of different search
algorithms [17–19]. It is customarily recommended that non-parametric tests be per-
formed by applying the same criterion for sampling results to each method tested.
Consequently, we compute the same aggregation (based on the average of the best ob-
jective function value in each run) over the same number of runs for each algorithm
and problem. More specifically, we employ two alternative non-parametric tests to
analyse the experimental results:

– The Iman and Davenport test [20] with Holm’s method [21] employed as a post
hoc procedure. The first test may be used to see whether there are significant statis-
tical differences among the results of a certain group of algorithms. If differences
are detected, then Holm’s test is employed to compare the best algorithm (control
algorithm) against the remaining methods. These two methods are based on the
Friedman ranking procedure [18] of the algorithms on the considered problems.
This measure computes, for each problem, the ranking rj of the observed result
for algorithm j , assigning to the best of them the ranking 1, and to the worst the
ranking J (J is the number of algorithms). Then, an average measure is obtained
from the rankings of this method for all the test problems.

– The Wilcoxon matched-pairs signed-ranks test [22]. With this test, the results of
two algorithms may be directly compared. In order to avoid the bias introduced
by the ranges of the different problems, we have normalised the results of every
algorithm on each test function by mapping them into the interval [0,1] taking into
consideration the highest and the lowest values achieved by the set of algorithms
considered in this type of statistical analysis.

4.2 Parameter Study and Analysis

The goal of this section is to investigate the effect of the parameters and strategies
applied in our proposal, in order to provide a tuned SO algorithm. We have under-
taken the study to find the most effective combination(s), under a full factorial design,
summarized in Table 2, with the following elements:

– the set of values for the span bound parameter σ (Sect. 3), consisting of a variable
set V = {0.025,0.05,0.1,0.15,0.2}, or a constant set C = {0.1,0.1,0.1,0.1,0.1};

– the maximum number of fails to generate a new solution (maxfails ∈ {1,20,∞});
– the constructor heuristic (Sect. 3.1) consisting of random (R), greedy (G), infre-

quent (I), frequent (F) or greedy non-tabu (GT);
– the improvement heuristic (Sect. 3.2) consisting of first-improvement swaps

(FS), best-improvement swaps (BS), first-improvement SOM (FSOM), best-
improvement SOM (BSOM);
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Table 2 SO parameters and
strategies tested Elements Alternatives

σ V, C

maxfails 1, 20, ∞
constructive procedure R, G, I, F, GT

improvement method FS, BS, FSOM, BSOM

oscillation method Table 1 (12 designs)

pI−E 0.5

tenuremax 0.1

acceptance criterion RB, RW

Table 3 Rankings of the best
ten SO variants Algorithm Ranking

1 SO-SV-F20-CR-IFVND-OMTMT-RW 101.46

2 SO-SV-F20-CR-IFVND-ORBRB-RW 112.5

3 SO-SV-F20-CI-IFVND-ORBRB-RW 115.1

4 SO-SC-F20-CR-IFVND-OMBMB-RW 116.17

5 SO-SV-F20-CI-IFVND-ORTRT-RW 117.19

6 SO-SC-F20-CR-IFVND-OMTMT-RW 117.81

7 SO-SV-F20-CI-IFVND-OMBMB-RW 119.08

8 SO-SV-F20-CR-IFVND-OMTMT-RW 120.02

9 SO-SV-F20-CR-IFVND-OMBMB-RW 121.81

10 SO-SC-F20-CI-IFVND-OMTMT-RW 123.31

. . . . . . . . .

– oscillation methods (see Table 1) with pI−E = 0.5 and tenuremax = 0.1; and
– the acceptance-criterion (Sect. 3.4) consisting of Replace if better (RB), and Ran-

dom walk (RW).

Table 3 shows the Friedman rankings of the best ten SO algorithm variants
(out of 1728 tested), which are denoted as SO-S<span set type>-F< maxfails >-
C<constructor>-I<improvement>-O<oscillation>-<acceptance>. For instance,
using the indicated order, the best SO algorithm applies the variable set of span
bounds, maxfails = 20, the random constructor, the SOM optimiser with the first-
improvement strategy, the random short-term memory alternative for divergent step
oscillation operations and the tabu alternative for convergent step operations and ran-
dom walk as the acceptance criterion. Iman and Davenport’s and Holm’s analyses are
not reported because they do not find significant differences between these leading
ten algorithms (which rank in the upper 0.5 % of the algorithmic variants tested).

From the results in Table 3 we may remark that:

– All of the ten best SO algorithm variants have the maxfails parameter set to 20,
apply the SOM improvement method with the first-improvement strategy, and em-
ploy the random walk (0 tabu tenure) acceptance criterion.

– Most of the ten best variants apply the variable set of span bounds.
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Table 4 Best SO variants in the second tuning phase

Algorithm Ranking R+ R− Wilcoxon

1 SO-F50-P0.25-T0.2 7.67

2 SO-F50-P0.25-T0.1 7.85 162 138 ∼
3 SO-F50-P0.25-T0.05 7.85 150.5 149.5 ∼
4 SO-F50-P0.5-T0.2 9.15 249 51 +
5 SO-F20-P0.25-T0.1 9.17 205 95 ∼
6 SO-F20-P0.25-T0.05 9.17 207 93 ∼
7 SO-F20-P0.25-T0.2 9.23 208 92 ∼
8 SO-F50-P0.5-T0.05 9.60 253 47 +
9 SO-F50-P0.5-T0.1 9.88 252 48 +

10 SO-F20-P0.5-T0.05 11.92 248 52 +
. . . . . . . . . . . . . . . . . .

– There is a very slight preference for the random constructor heuristic over the in-
frequent sampling heuristic. In any case, these two approaches yield better results
than the other alternatives for this component of the algorithm (i.e., the greedy con-
structor, the frequent non-tabu assignment, and the greedy non-tabu assignment).

– While there is a modest variety of combinations for the oscillation heuristic that
produce the best results, very interestingly all of them apply a divergent step that is
not biased by the objective function (the random and random short-term memory
approaches) and a convergent step that, on the contrary, is biased by the objective
(the greedy and tabu approaches). In particular, the divergent step applying the
short-term memory is the one used most commonly by the best algorithms, and is
most often paired with the tabu convergent step.

With the aim of further tuning our proposal, we analyse some other settings un-
der a full factorial design for three parameters of the best SO variant (SO-SV-F20-
CR-IFSOM-OMTMT-RW, which is in accordance with previous remarks for the
best results): the maximum number of fails (maxfails ∈ {10,20,50}); the probabil-
ity for applying the first divergent step insertion and second convergent step extrac-
tion operations pI−E ∈ {0.25,0.5,0.75}; and the maximum tenure value (tenuremax ∈
{0.05,0.1,0.2}). Table 4 shows the ten best combinations (out of 27) with the notation
SO-F< maxfails >-P< pI−E >-T< tenuremax >. Iman and Davenport’s and Holm’s
analysis are not reported because they do not find significant differences between
these ten algorithms. In contrast, the R+ and R− values of Wilcoxon’s test (respec-
tively associated with the best ranked algorithm and an alternative algorithm being
compared with it) are presented together with the test’s result: when the R-value is
inferior to the critical value at significance factor 0.05 (81), this test finds signifi-
cant differences in favour of the best ranked algorithm (+); if neither R+ nor R− is
inferior to the critical value, it does not find significant differences (∼).

From the results in Table 4, we observe that, though these algorithms perform
almost equally well, there is a slight preference for maxfails = 50 and pI−E = 0.25.
We do not find any indication of a preferred tenuremax value (from among those
tested) that yields better results. From now on, the experiments are carried out only
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Table 5 Comparison of best methods on 60 instances

Type SS-ABC TIG-QMKP SO-QMKP

Avg. Dev. #Best Avg. Dev. #Best Avg. Dev. #Best

100, 25, 3 27705.006 2.03 0 28063.925 0.76 2 28232.775 0.16 5

100, 25, 5 21351.048 2.27 0 21602.395 1.11 1 21716.3 0.59 5

100, 25, 10 14854.166 4.48 0 15385.86 1.05 5 15369.845 1.15 0

200, 25, 3 102281.2 0.72 2 102429.105 0.6 0 102640.735 0.39 3

200, 25, 5 75667.804 0.72 3 75760.675 0.71 1 75895.72 0.53 1

200, 25, 10 50372.774 3.6 0 51779.055 0.9 4 51772.69 0.91 1

100, 75, 3 69039.64 0.82 0 69569.635 0.05 4 69569.86 0.05 3

100, 75, 5 48829.54 0.82 0 49022.54 0.43 3 49060.195 0.35 4

100, 75, 10 30013.22 1.58 1 30229.925 0.91 1 30289.635 0.71 3

200, 75, 3 261867.42 1.13 0 264638.745 0.09 4 264692.07 0.07 4

200, 75, 5 178872.298 1.27 0 180756.55 0.22 3 180776.27 0.21 3

200, 75, 10 106641.482 2.38 0 108746.83 0.44 2 108788.665 0.4 3

Summary 82291.3 1.82 6 83165.44 0.61 30 83233.73 0.46 35

with SO-F50-P0.25-T0.2, the best ranked algorithm, which in the rest of the paper
we simply denote as SO-QMKP.

4.3 Comparison with other metaheuristics for the QMKP

In this section, we compare SO-QMKP with the two current state-of-the-art methods,
SS-ABC [3] and TIG-QMKP [6], described in Sect. 2. We include in this study the
five instances per problem type described in Sect. 4.1, totalling 60 instances. The
three methods were run 40 times per problem instance and for the same CPU time, as
reported in [3, 6]. Table 5 summarizes the results per type of instance characterized
by three values: n, d , and K . We compute in each run the value obtained with each
method on each instance. Then we compute the average value, Avg, across the 40
runs, and the average percentage deviation, Dev, of theses values with respect to the
best known values on each instance. Table 5 reports, for each type of instance (in
each row), the average of the Avg. and Dev. values of the 5 instances. It also reports
the number of instances, out of the 5 in each type, in which the method is able to find
the best solution known, #Best. The last row summarizes the results over the entire
set of 60 instances, reporting the average of the Avg. and Dev. values and the sum of
the number of best founds.

Tables 7 and 8 in the appendix show the individual results for each instance in
this experiment. Specifically, Table 7 reports the Avg. values of the three methods on
the 30 instances with d = 0.25, the best solution found on the 40 runs, Best, and the
standard deviation of the values in the 40 runs, SD. Table 8 reports these statistics for
the 30 instances with d = 0.75.

Table 5 shows that SO-QMKP presents a 0.46 % average deviation from the best
known solution and is able to obtain 35 out of 60 best solutions, which compares

Author's personal copy



Strategic oscillation for the quadratic multiple knapsack problem

Table 6 Wilcoxon’s test for
SO-QMKP vs. state-of-the-art
algorithms

R+ R− Wilcoxon

SO-QMKP vs SS-ABC 1830 0 +
SO-QMKP vs TIG-QMKP 1437 393 +

Fig. 2 Search profile

Fig. 3 Evolution of the
Friedman ranking distributions

favourably with the 0.61 % average deviation and 30 best solutions obtained with
TIG-QMKP and with the 1.82 % average deviation and 6 best solutions obtained
with SS-ABC. In line with this, Tables 7 and 8 show that SO-QMKP often obtains
better average results than the other algorithms (42 out of 60 problem instances) and
its standard deviations are usually the smallest ones. Table 6 summarises the results
of Wilcoxon’s test between our proposal and the other two algorithms with 0.05 as
the significance level. This test finds significant differences between SO-QMKP and
the other two algorithms, confirming the superiority of our method.

Additionally, we compare in Figs. 2 and 3 the evolution of the objective func-
tion and Friedman ranking distributions respectively, of the two leading methods,
SO-QMKP and TIG-QMKP, according to the previous experiments. In Fig. 2 all ob-
jective values have been normalised to lie in the interval [0,1]. Averaged results of
the algorithms over the different problem instances are indicated by lines and the as-
sociated 95 % confidence intervals (normal estimation) of their results are indicated
by the shaded areas. Notice that the ranking distribution graphs, unlike the conver-
gence graphs, are not monotonic. That is because the Friedman ranking is a relative
performance measure, and thus, if one algorithm improves its results, then, the rank-
ing of the other may deteriorate. In addition, while variations in convergence graphs
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may be strongly affected by distant objective values on few instances, rankings are
robust with regard to distant values but susceptible to small relative changes on many
functions.

Figure 2 shows that SO-QMKP is able to get good results faster than TIG-QMKP,
because its mean values are superior for running times lower than 10 milliseconds.
Moreover, it also supersedes TIG-QMKP on a lover term horizon (for running times
larger than 0.1 seconds). It is particularly significant that the distribution of SO-
QMKP is narrower than that one of TIG-QMKP, which means that SO-QMKP per-
forms more robustly over the different problem instances. The abrupt temporary im-
provement in the TIG-QMKP performance that starts just after the first 0.01 seconds
can be partially explained by the fact the first call to the local optimizers occurs at
this time. Then, since the SOM process of SO-QMKP is slower than the local search
in TIG-QMKP (because of the use of more than one neighbourhood structure), an
extra time is required for the contribution of this process. Once this happens, the per-
formance of the SO-QMKP approach overtakes that of the TIG-QMKP approach to
produce superior outcomes.

Figure 3 confirms the performance described above, and the differences between
both methods become now more evident and explained by the fact that SO-QMKP
overcomes TIG-QMKP on most of the problem instances (objective value differences
are not considered in the ranking distributions, where the lower the ranking values the
better the method). The greatest performance difference is attained at 0.2 seconds of
the run approximately. After that point, TIG-QMKP tends to obtain results similar to
those of SO-QMKP in quality.

4.4 Knowledge exploitation

We analyse in this section whether the algorithmic components of SO-QMKP ade-
quately suit the QMKP characteristics, showing profitable problem-knowledge ex-
ploitation with regards to other heuristics and general-purpose approaches that do not
combine all of them. Concretely, the following characteristics are studied along the
optimisation process:

– Both sides of the search space exploration: We want to analyse the benefits of ad-
dressing the QMKP from the two fronts of action considered by SO-QMKP, feasi-
ble and infeasible regions of the search space. To carry out this goal, we include in
this study two SO variants that tackle the problem from only one of these fronts.
Concretely, SO-feasible will explore only the feasible region by means of diver-
gent step extractions and convergent step insertions, whereas SO-infeasible will
wander through the infeasible side with divergent step insertions and convergent
step extractions. In this latter approach, the last convergent step always generates
a feasible solution.

– Solution optimisation by FSOM: The application of local search methods usually
consumes a considerable portion of the computational resources allotted to the
complete method [23, 24]. Practitioners often have to evaluate the trade-off be-
tween improvement and consumption imposed by these methods. Thus, we com-
pare the performance of SO-QMKP with an SO variant that does not apply any

Author's personal copy



Strategic oscillation for the quadratic multiple knapsack problem

Fig. 4 Friedman ranking distributions of the algorithms

local search mechanism (SO-NoLS). In Sect. 4.2 we noticed that the SO algorithm
that applied FSOM was better than the one that did not at the end of the run. In this
occasion we analyse the effect along the whole run.

– Iterative generation of candidate solutions from low and overloaded configura-
tions: In contrast to our SO strategy, many metaheuristics explore the search space
by sampling complete solutions, i.e., feasible configurations where no or little
room would be available in knapsacks for more objects. Most general-purpose
approaches employ such a strategy. In this study, we will consider as well two
(almost-)general-purpose algorithms for the QMKP. As observed in [25], our SO
algorithm specifically designed for this problem should perform better than that
of other algorithms not explicitly configured for the QMKP. In this case, we con-
sider a tabu search method that starts from a greedy solution (GTabu) (which ob-
tained the best results in [6] among the analysed general-purpose algorithms), and
a multi-start approach that repeatedly applies our FSOM procedure to random ini-
tial solutions.

Figure 4 shows the Friedman ranking distributions of these five algorithms and
our final variant, SO-QMKP, over the runtime. Lines represent the averaged ranking
values of the algorithms over the 60 problem instances and areas depict the associated
95 % confidence intervals.

From the graphics shown in Fig. 4, we can conclude the following:

– SO-QMKP is the algorithm that attains the best (lowest) ranking values from
10 ms. Therefore, the combination of its mechanisms clearly produces a profitable
synergy.

– Regarding the use of the optimiser FSOM, SO-NoLS gets the worst ranking val-
ues from 10 ms and MSLS-FSOM achieves the second position along most of the
run. Therefore, we conclude that the improvement procedure makes a clear con-
tribution to compensate for the computational resources it requires. Remarkably,
SO-NoLS gets the best ranking values at the beginning of the run. This is due to the
fact that the absence of the improvement procedure allows the algorithm begin the
discovery of new solutions earlier in the computational process, and hence initially
to obtain better results.

Author's personal copy



C. García-Martínez et al.

– SO-infeasible and SO-feasible appear to perform similarly but much worse than
SO-QMKP. This result shows the benefits of addressing the problem from both
fronts of action.

– Finally, the comparison between the almost general-purpose approaches, GTabu
and MSLS-FSOM, and the SO variants shows that the iterative generation of can-
didate solutions from incomplete or infeasible configurations is only advantageous
when both sides of the search space are considered. This suggests that the oper-
ations we have chosen to embed in the SO framework achieve insufficient diver-
sification, when only one side of the search space is considered (SO-feasible and
SO-infeasible). However, the progress when both sides are visited (SO-QMKP) is
much more advantageous compared to the progress of the general-purpose algo-
rithms.

5 Conclusions

In this work, we have addressed the QMKP with the SO methodology. We have de-
fined critical levels for this problem and have designed specific strategies to exploit
the constraint structure by means of effective explorations of solutions in feasible and
infeasible regions close to these levels. In addition, we make use of a strategic oscil-
lation multi-neighbourhood (SOM) component that has proved more advantageous
than previously proposed local search methods for this problem, and have described
code implementations that allow a fast evaluation of new solutions built from inser-
tion, extraction, reallocation and swap operations.

We have empirically analysed a wide variety of heuristics and parameter settings
for each of the stages of our SO framework (initial construction, improvement, oscil-
lation, and acceptance), obtaining an algorithm that outperforms the state-of-the-art
approaches for this problem. Finally, we have analysed the algorithmic components
of the proposal, examining other SO variants and competitive general-purpose meth-
ods, to establish that SO-QMKP effectively exploits the domain-knowledge associ-
ated with QMKP.

Three interesting avenues present themselves for future research: (1) incorporat-
ing tabu search strategies to guide the decisions currently handled by choice rules
designed for search paths that terminate at local optimality; (2) adapting our SO
framework and methodology to other challenging combinatorial problems, such as
the demand-constrained multi-dimensional knapsack problem, and (3) building hy-
brid metaheuristics combining the proposed SO framework with other approaches
that have not previously been joined with strategic oscillation (e.g., artificial bee
colony algorithms).
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