Ann Oper Res (2012) 196:611-634
DOI 10.1007/s10479-012-1124-3

Multi-neighborhood tabu search for the maximum
weight clique problem

Qinghua Wu - Jin-Kao Hao - Fred Glover

Published online: 4 April 2012
© Springer Science+Business Media, LLC 2012

Abstract Given an undirected graph G = (V, E) with vertex set V = {1,...,n} and edge
set ECV xV.Letw:V — Z7 be a weighting function that assigns to each vertex i € V a
positive integer. The maximum weight clique problem (MWCP) is to determine a clique of
maximum weight. This paper introduces a tabu search heuristic whose key features include
a combined neighborhood and a dedicated tabu mechanism using a randomized restart strat-
egy for diversification. The proposed algorithm is evaluated on a total of 136 benchmark
instances from different sources (DIMACS, BHOSLIB and set packing). Computational re-
sults disclose that our new tabu search algorithm outperforms the leading algorithm for the
maximum weight clique problem, and in addition rivals the performance of the best methods
for the unweighted version of the problem without being specialized to exploit this problem
class.

Keywords Multi-neighborhood search - Maximum weight clique - Maximum clique -
Tabu search - Heuristics

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V = {1,...,n} and edge set E C
V x V. A clique C of G is a subset of V such that every two vertices are pairwise adjacent,
ie., Vu,v € C,{u,v} € E. A clique is maximal if it is not contained in any other clique,
a clique is maximum if its cardinality is the largest among all the cliques of the graph.

Q. Wu - J.-K. Hao (X))

LERIA, Université d’ Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
e-mail: hao@info.univ-angers.fr

Q. Wu

e-mail: wu@info.univ-angers.fr

F. Glover

OptTek Systems, Inc., 2241 17th Street, Boulder, CO 80302, USA
e-mail: glover@opttek.com

@ Springer

mailto:hao@info.univ-angers.fr
mailto:wu@info.univ-angers.fr
mailto:glover@opttek.com

612 Ann Oper Res (2012) 196:611-634

The maximum clique problem (MCP) asks for a maximum clique. MCP is one of the first
problems shown to be NP-complete in Karp’s seminal paper on computational complexity
(Karp 1972).

An important generalization of MCP is the maximum weight clique problem (MWCP).
Given G = (V, E),letw : V — Z™ be a weighting function that assigns to each vertex i € V
a positive value. For a clique C of G, define its weight as W(C) = >, w;. The MWCP
is to determine a clique C* of maximum weight, i.e., VC € £2, W(C*) > W(C) where §2 is
the set of all possible cliques of the graph. Applications of the MWCP arise in a number of
domains like computer vision, pattern recognition and robotics (Ballard and Brown 1982).

The MCP, also called the unweighted maximum clique problem, can be considered
as a special case of the MWCP where the weight of each vertex is set equal to 1
(i.e., w:V — {1}). It is clear that a maximum clique of the MCP does not necessarily lead
to a maximum weight clique of the MWCP, and the MWCP has at least the same computa-
tional complexity as the MCP.

To solve the MWCP, a number of exact algorithms have been reported in the literature
(see e.g., Babel 1994; Ostergard 2001) which can be applied to instances of small sizes. For
larger problems, various heuristic methods have been proposed to find approximative solu-
tions. For instance, in Pullan (2008), an efficient local search algorithm is presented which
is based on ideas developed for the unweighted case (Pullan and Hoos 2006). Along with
the proposed algorithm, a set of MWCP benchmark instances using the DIMACS graphs
are also introduced (we use these instances in our experiments). In Mannino and Stefanutti
(1999), an augmentation algorithm is described which is based on edge projections for the
equivalent maximum weight stable set problem. Other representative studies include a deter-
ministic iterated greedy construction algorithm using a nonlinear programming formulation
(Busygin 2006), and a distributed computational network algorithm (Bomze et al. 2000).

In this paper, we present a multi-neighborhood tabu search approach (denoted by
MN/TS) for the maximum weight clique problem. In order to effectively explore the search
space, the proposed algorithm combines three neighborhoods induced by three types of
moves. The particularity of the combined neighborhood relies on the union of the underlying
neighborhoods instead of the conventional sequential exploration of basic neighborhoods
(Sects. 2.3 and 2.4). At each iteration of the algorithm, our tabu search approach explores
the union of these three neighborhoods and selects the overall best admissible neighboring
solution. The algorithm integrates a dedicated tabu mechanism (Sect. 2.5) and a randomized
restart strategy (Sect. 2.6).

The performance of the proposed MN/TS algorithm is assessed on a large set of bench-
marks from the well-known DIMACS and BHOSLIB libraries and the set packing problem
(Sect. 4). Extensive experimental tests disclose that the proposed approach finds new best
solutions for 26 DIMACS instances of the maximum weight clique problem, while matching
the best known solution on all but one of the others. For the unweighted maximum clique
problem, MN/TS is able to attain the best known solutions for the 120 tested instances ex-
cept for only two cases, rivaling the performance of the best algorithms for the MCP problem
without specializing our method to exploit the unweighted class. For an additional set of 16
instances derived from the set packing problem, MN/TS is able to attain the current best-
known results while discovering 2 improved results, again without being designed to exploit
the set packing structure (in contrast to the methods that have produced the previous best
results). An analysis is also provided to show the relevance of the union exploration of the
underlying neighborhoods (Sect. 5).

@ Springer

Ann Oper Res (2012) 196:611-634 613

2 Multi-neighborhood tabu search for the MWCP

In this section, we present our multi-neighborhood tabu search (MN/TS) approach for the
general MWCP. MN/TS integrates several features which are responsible for its effective-
ness, including three complementary neighborhoods defined by three basic move operators.
These neighborhoods are explored in a combined manner employing a rule that selects the
most favorable neighboring solution that is admissible subject to the tabu conditions. The
method is driven by a dedicated tabu list strategy employing a restart mechanism for diver-
sification.

2.1 Search space and evaluation function

For a given MWCP instance G = (V, E, w), our MN/TS algorithm explores a search space
£2 composed of all possible cliques of G, i.e., 2 ={C:C C V such that Vi, j € C, i # j,
{i, j} € E}. For any solution C € 2, its quality is evaluated by its weight W(C) =", - w;.
Given two solutions C and C’, C’ is better than C if and only if W(C") > W(C). Our
objective function (to be maximized) is thus givenby: W : 2 — Z*.

2.2 Randomized procedure for initial solutions

Our algorithm starts from an initial clique C € £2 and then uses the tabu search procedure
(Sects. 2.3-2.5) to improve C by maximizing its weights. The initial solution C is con-
structed as follows. We first select randomly a seeding vertex i from the graph and set the
current clique C to the set consisting of this single vertex. We then randomly pick another
vertex v ¢ C subject to the stipulation that v is connected to all the vertices of C (i.e., v
is taken from the set {v: v € V\C, {v,i} € E,Vi € C}). This process is repeated until no
such vertex v exists. This procedure is also used to initialize each restart during a run of
the MN/TS algorithm (see Sect. 2.6). This procedure has the advantage of being simple and
fast, leading to diversified initial solutions for each round of the tabu search procedure.

2.3 Basic move operators and neighborhoods

In local search, a neighborhood is typically defined by a move operator mv, which trans-
forms a given solution C to generate a neighboring solution C’, denoted by C' = C @ mv.
Let M (C) be the set of all possible moves which can be applied to C, then the neighborhood
N of C is defined by: N(C) ={C':C'=C @ mv,mv e M(C)}.

Our MN/TS algorithm explores jointly three neighborhoods which are defined by three
basic move operators (denoted by ADD, SWAP and DROP). These move operators are based
on the definition of two vertex subsets: PA and OM relative to a given clique C.

PA is composed of the vertices that are excluded from the clique C and connected to all
the vertices of C: PA={v:v e V\C,{v,i} € E,Vi € C}.

OM contains the vertices that are excluded from the clique C and connected to all but one
vertex of C: OM ={v:v e V\C,|[A(w)NC|=|C|—1} where A(v)={j:jeV,{j,v}e
E} is the set of vertices adjacent to v.

The relationship between a clique C and the associated subsets PA and OM is illustrated
in Fig. 1.

The two subsets PA and OM just described form the basis for defining the ADD and
SWAP move operators while the DROP move operator is defined independently of these
subsets, as follows.

@ Springer

614 Ann Oper Res (2012) 196:611-634

Fig.1 A clique and its two
associated subsets: PA = {5}
C=1{1,2,3,4}, PA= {5} and
oM = {6,7)

— ADD(i): This move operator (which applies when PA is not empty) consists in adding a
vertex i from the set PA to the current clique C. The neighborhood defined by this move
operator is given by N; = {C’: C @ ADD(i), i € PA}.

After a ADD(i) move, the change in the clique weight (i.e., the move gain denoted by
A;) is given by the following expression:

A =w; ey

where w; is the weight associated to vertex i. Since the move gain is always positive for
a ADD move, such a move always leads to an improved neighboring solution. The size of
this neighborhood is clearly bounded by O (n).

— SWAP(i, j): This move operator (which applies when OM is not empty) consists in ex-
changing a vertex i from the set OM with the only vertex j of C which is not con-
nected to i in C. The neighborhood defined by this move operator is given by N, = {C":
C @& SWAP(, j),ieOM, jeC,{i,j} ¢ E}.

For a given SWAP(i, j) move, the move gain A;; can be conveniently computed by:

Ajj=w; — w; 2

Since A;; can be either positive or negative, a SWAP move can improve or deteriorate the
quality of the current solution. The size of this neighborhood is bounded by O (n).
— DROP(i): This move operator removes a vertex i from the current clique C. The neigh-
borhood induced by the DROP move can be formally defined by N3 = {C’": C\{i},i € C}.
The move gain A; of dropping vertex i can be calculated by:

Ai = —w; (3)

We can see that a DROP move always leads to a decrease to the objective function.

2.4 Combined neighborhood and neighbor selection strategy

In the case of the unweighted maximum clique problem, ADD moves are always preferable
to other moves (in a local sense) since they invariably increase the clique weight. However,
for the weighted case (MWCP), a SWAP move may lead to a solution better than any solution
that can be obtained by a ADD move. Figure 2 shows an illustrative example where the
current clique C contains three vertices. From Fig. 2, we can see that swapping vertices 6

@ Springer

Ann Oper Res (2012) 196:611-634 615

ONGY

wy =17

ws = 2 e

wy =3

02{1/3.4} AZIS
PA={2} Ngr =4
C = {1,3,4} OM = {5,6} Dgz=—2

w; =2

Fig. 2 From clique C = {1, 3, 4}, the SWAP move between vertices 6 and 1 (SWAP(6, 1)) leads to a solution
C1 = {3, 4, 6}, which is better than the solution C; = {1, 2, 3, 4} obtained by the ADD move (ADD(2))

and 1 (Ag; = wg — wy = 4) leads to the solution C; = {3, 4, 6}, which is better than the
solution C, = {1, 2, 3, 4} obtained by adding vertex 2 (A, = 3) to C.

Moreover, when no ADD move is possible (PA =), a DROP move may lead to a solu-
tion which is better than any solution that can be obtained by a SWAP move (see Fig. 3 for an
illustrative example). To summarize, for the MWCP, there is no absolute dominance of one
move operator (and its neighborhood) over another move operator. The best move operator
to be applied depends on the current search context and should be determined according to
the context.

These observations lead us to create a combined neighborhood A which corresponds
to the union of the three neighborhoods N;, N, and N3, denoted by N/ = N; U N, U N3.
Using this union neighborhood, our tabu search algorithm selects at each iteration the most
favorable move (i.e., with the largest A value) among all the ADD, SWAP and DROP moves
to generate the next solution. Ties are broken at random.

2.5 Tabu list and tabu tenure management

Tabu search (Glover and Laguna 1997) characteristically introduces a tabu list to forbid
recently visited solutions from being revisited. In our MN/TS algorithm, we adopt the fol-
lowing general prohibition rule: a vertex that leaves the current clique C (by a SWAP or
DROP move) is forbidden to move back to C for the next tt iterations (tabu tenure). A ver-
tex that joins the clique C (by an ADD or SWAP move) is free to be removed from C without
restriction.

With this prohibition rule, no tabu list is needed for the ADD moves. This choice can be
intuitively explained by the fact that due to the objective of maximizing the clique weight,

@ Springer

616 Ann Oper Res (2012) 196:611-634

€ ={3,4,6}

w6:6

wy =17

wy =3

C = {3,4,6}
PA=10
OM ={1,2,5}

Ag = —4 AI,G =—4
= 2 A4 = 71 AQY()' = —3
Ag=—6 Ns3=-2

Fig. 3 From clique C = {3, 4, 6}, the DROP move of dropping vertex 4 leads to a neighbor solution ({3, 6})
better than any other neighbor solution obtained by the SWAP moves

an added vertex has little chance to be removed anyway. (As noted in Glover and Laguna
(1997), a tabu tenure to prevent elements from being dropped should typically be smaller
than one to prevent elements from being added. We have simply elected to make the smaller
tenure 0.)

For the SWAP move, when a vertex i € OM is swapped with the only node j € C not
connected to i, j is prohibited to be moved back to C for the next Ty, iterations while no
tabu status is assigned to i. Ty, is tuned dynamically according to the cardinality of OM:

Towap = random(|OM|) + T, 4)

where T is set equal to 7 and random(|OM|) takes a random integer in the range
[1,....|OM]].

For the DROP move, each time a vertex i is removed from C, moving i back to C is
declared tabu for the next 7 iterations where T; = 7.

Our tabu restrictions (like most of those employed by tabu search) apply to attributes of
solutions that are affected by the moves—in this case, the vertices affected by the moves.
‘We call a move tabu if one of its attributes is tabu (hence in this case the vertex that would be
added to C), and employ the common aspiration criterion that permits a move to be accepted

@ Springer

Ann Oper Res (2012) 196:611-634 617

in spite of being tabu if it produces a solution better than any found so far. A move that is
not tabu or that satisfies the aspiration criterion is called admissible.

2.6 Multistart strategy and stop criteria

Our tabu search algorithm examines at each iteration the three neighborhoods and selects
an admissible move that produces the most favorable neighboring solution. The inclusion of
all three neighborhoods allows the algorithm to make a more thorough examination of the
solutions around each solution. On the other hand, the tabu restrictions provide a form of
local diversification by forcing the search to leave the regions already examined. To establish
a more global form of diversification, and thereby reinforce the capacity of the algorithm to
visit unexplored areas in the search space, we employ a multistart strategy to restart the
search from new starting points. A restart is triggered each time the current search is judged
to be trapped in a deep local optimum, a condition that is deemed to occur upon exceeding a
maximum allowable number of consecutive iterations without improving the clique weight.
We call this number the depth of the search (denoted by L).

Basically, our multistart tabu search algorithm iterates the following two steps until the
stop criterion is satisfied:

1. Generate a new start point C (see Sect. 2.2).
2. Apply the tabu search procedure to improve the solution C until the fixed depth L is
reached.

The algorithm stops when it attains a predetermined maximum number of iterations
(Iterqy). The complete MN/TS algorithm is described as Algorithm 1. Each outside while
loop triggers a restart of the tabu search procedure which is realized in the inner while loop.
The variables C and C’ designate respectively the current solution and one of its neighbor-
ing solution. Ciyeqr_pes: 1 the best solution found during one inner while loop while C* is the
overall best solution found by the algorithm.

3 Discussion

The move operators ADD, SWAP and DROP (and particularly ADD and SWAP) have been
widely used in previous studies for both the MMCP and MCP. However, previous studies
have applied these operators independently and sequentially rather than making reference to
their union as done here.

For instance, the PLS approach for the weighted MCP (Pullan 2008) alternates between
a greedy expansion phase during which suitable vertices are added to the current clique
followed by a plateau phase where vertices of the current clique are swapped with some ver-
tices out of the clique. This strategy implicitly causes PLS to give a higher priority to ADD
moves even if a SWAP move may lead to a solution better than any ADD move (see Fig. 2
for an example). Such a sequential application of ADD and SWAP moves can miss favor-
able neighboring solutions. In short, the union neighborhood explored by MN/TS ensures a
more aggressive and intensified examination of the search space, increasing the chance to
find solutions of better quality. In Sect. 5, we give computational evidence of this assertion.
Another difference between our method and PLS is that MN/TS picks the two vertices for a
SWAP(i, j), according to the move gain, while PLS selects a vertex i with the largest weight
w; in OM to exchange with the only vertex not connected to i in C.

Finally, for the unweighted MCP, most local search methods (such as Battiti and Protasi
2001; Friden et al. 1989; Gendreau et al. 1993; Grosso et al. 2004; Katayama et al. 2005;

@ Springer

618 Ann Oper Res (2012) 196:611-634

Algorithm 1 The multi-neighborhood tabu search approach for MWCP
Require: A weighted graph G = (V, E, w), integer L (search depth), Iter,,,, (max. allowed
iterations)
Ensure: A clique C* with its weight W(C*)
1: Begin
2: Iter = 0 {Iteration counter}
3:C*=¢
{Each loop triggers a restart of the tabu search procedure}
: while (Iter < Iter,,,,) do
C = Initialize() {Sect. 2.2}
Initiate tabu_list {Sect. 2.5}
NI =0 {NI is the consecutive iterations during which W(C) is not improved }
Clocal_best = C {Clocal_pest 15 the best solution during the inner while loop}
{The inner while loop corresponds to a round of the tabu search procedure }
9: while (NI <L)do

AN A

10: Construct neighborhoods Ny, N, and N3 from C {Sect. 2.3}

11: Choose an overall best allowed neighbor C’ € Ny U N, U N3 according to max gain
criterion {Sect. 2.4}

12: C = C’ {Move to the new solution}

13: NI=NI+1

14: Iter = Iter + 1

15: Update tabu_list {Sect. 2.5}

16: if (W(C) > W(Clocal_best)) then

17: NI=0

18: Clocal_best =C

19: end if

20: end while

21: if(W(Cluca[_best) > W(C*)) then
22: Cr= Clocal_bext

23: end if

24: end while

25: End

26: Return (Clique C*))

Pullan and Hoos 2006) use these moves in manner similar to the way they are employed
in PLS. These algorithms differ from each other chiefly in: (1) the strategies for exploring
the neighborhoods, (2) the scheme of vertex selection and (3) the prohibition mechanism
applied to the performed moves.

4 Experimental results
This section is dedicated to an intensive evaluation of the proposed algorithm.' For this

purpose, we present computational results on a large panel of benchmark instances and
show comparisons with state of the art algorithms when such comparisons are possible.

IThe source code of our MN/TS algorithm is publicly available at: http://www.info.univ-angers.fr/pub/hao/
clique.html.

@ Springer

http://www.info.univ-angers.fr/pub/hao/clique.html
http://www.info.univ-angers.fr/pub/hao/clique.html

Ann Oper Res (2012) 196:611-634 619

4.1 Benchmark instances and experimental settings

DIMACS and BHOSLIB unweighted benchmarks These test sets consist of popular bench-
marks frequently used to assess unweighted clique algorithms. The DIMACS benchmark
set was established for the Second DIMACS Implementation Challenge (Johnson and Trick
1996). This set comprises 80 instances from a variety of real applications. The set also in-
cludes graphs generated randomly and graphs whose maximum clique has been hidden by
incorporating low-degree vertices. These problem instances range in size from 50 vertices
and 1000 edges to 3300 vertices and 5000000 edges.

The set of 40 BHOSLIB (Benchmark with Hidden Optimum Solutions) instances arose
from the SAT’04 Competition. The BHOSLIB instances were translated from hard random
SAT instances and have been known to be hard both theoretically and practically for max-
imum clique algorithms. The BHOSLIB benchmarks have been widely used in the recent
literature to test new MCP heuristics. The full BHOSLIB set of instances is available from
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm.

BHOSLIB-W and DIMACS-W weighted benchmarks These test instances consist of bench-
marks used to assess algorithms for the maximum weight clique problem. The weighted
DIMACS-W benchmarks were obtained from the DIMACS benchmark instances by allocat-
ing weights to vertices. There are different ways to define the weighting function. We adopt
the method described in Pullan (2008): for each vertex i, w; is set equal to (i mod 200) + 1.
Similarly, we apply the same weighting function to the (unweighted) BHOSLIB benchmark
instances to obtain the weighted instances (denoted by BHOSLIB-W benchmarks).

Structured benchmarks from set packing These are a set of 16 instances derived from the
set packing problem (Kwon 2005) with sizes ranging from 1000 to 2000.

Experimental settings Our MN/TS algorithm is programmed in C and compiled using
GNU GCC on a PC with 2.83 GHz CPU and 8 G RAM. Like (Pullan 2008) and given the
stochastic nature of the MN/TS algorithm, each instance is solved 100 times independently
by MN/TS with different random seeds. The maximum allowed iterations Iter,,,, (see Algo-
rithm 1) per run and per instance is set equal to 108. For the search depth L (see Sect. 2.6),
we use L = 4000 for the instances of the weighted case (MWCP). For the unweighted case
(MCP), we use L = 10* except for the brock and san families (DIMACS) for which L is
equal to 100.

4.2 Experimental results for the maximum weight clique problem

In Tables 1 and 2, we show respectively the computational results of our algorithm on the
set of 80 DIMACS-W instances and on the set of 40 BHOSLIB-W benchmarks. Columns
2-3 give the features of each tested instance: the number of vertices (Node) and the largest
known clique size for the graph. In columns 4-9, we give the same computational statis-
tics as in (Pullan 2008) (our main reference algorithm): the maximum weight obtained by
MN/TS over the 100 independent trials (Wp,), the cardinality of the obtained maximum
weighted clique (|C]), the average weight over the 100 trials (W,,,), the number of suc-
cessful trials in which MN/TS reached Wy, (Success), the average time (AvgTime) and the
average iterations ({feration) over these successful trials.

For problems in the MWCP class, studies in the literature are often based on DIMACS-W
instances (different weighting functions may be used). We are unaware of studies reporting

@ Springer

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

620 Ann Oper Res (2012) 196:611-634

Table 1 Results obtained by MN/TS on the 80 DIMACS-W benchmarks. The weight w; of each vertex i is
set equal to (i mod 200) + 1 according to Pullan (2008). Statistics are based on 100 executions of MN/TS on
each benchmark instance

Instance Node w Whest |C| Wavg Success AvgTime Iteration

brock200_1 200 21* 2821 19 2821 100 <0.01 2341
brock200_2 200 12* 1428 9 1428 100 <0.01 2120
brock200_3 200 15% 2062 13 2062 100 <0.01 2025
brock200_4 200 17* 2107 13 2107 100 <0.01 2482
brock400_1 400 27* 3422 21 3422 100 0.03 7283
brock400_2 400 29* 3350 21 3350 100 0.03 7601
brock400_3 400 31* 3471 23 3471 100 0.03 7887
brock400_4 400 33* 3626 33 3626 100 4.70 1955245
brock800_1 800 23* 3121 20 3121 100 0.05 7658
brock800_2 800 24* 3043 18 3043 100 0.20 28159
brock800_3 800 25% 3076 20 3076 100 0.08 14002
brock800_4 800 26* 2971 26 2971 100 49.70 9033704
C125.9 125 34* 2529 30 2529 100 0.02 15579
C250.9 250 44* 5092 40 5092 100 0.06 23974
C500.9 500 57 6955 48 6955 100 0.07 21806
C1000.9 1000 68 9254 61 9254 100 8.9 3378709
C2000.5 2000 16 2466 14 2466 100 1.84 62469
C2000.9 2000 80 10999 72 10971.92 22 168.11 36667727
C4000.5 4000 18 2792 16 2792 100 80.56 1344781
DSJC500.5 500 13* 1725 12 1725 100 0.04 5471
DSJC1000.5 1000 15% 2186 13 2186 100 0.20 14184
keller4 171 11* 1153 11 1153 100 0.03 10257
keller5 776 27 3317 27 3317 100 3.17 445956
keller6 3361 59 8062 56 7939.49 5 606.15 53687525
MANN_a9 45 16* 372 16 372 100 <0.01 2813
MANN_a27 378 126* 12281 126 12273.28 1 88.28 15724873
MANN_a45 1035 345% 34192 340 34172.9 1 390.58 25104191
MANN_a81 3321 1100 111128 1094 111108.31 1 832.24 18550423
hamming6-2 64 32% 1072 32 1072 100 <0.01 2305
hamming6-4 64 4% 134 4 134 100 < 0.01 2011
hamming8-2 256 128* 10976 128 10976 100 <0.01 10742
hamming8-4 256 16* 1472 16 1472 100 <0.01 2086
hamming10-2 1024 512% 50512 512 50512 100 0.92 118180
hamming10-4 1024 40 5129 35 5129 100 221 407528
gen200_p0.9_44 200 44%* 5043 37 5043 100 <0.01 3203
gen200_p0.9_55 200 55%* 5416 52 5416 100 0.33 146200
gen400_p0.9_55 400 55 6718 47 6718 100 0.15 47748
gen400_p0.9_65 400 65 6940 48 6940 100 0.04 12861
gen400_p0.9_75 400 75 8006 75 8006 100 0.88 264342

@ Springer

Ann Oper Res (2012) 196:611-634

621

Table 1 (Continued)

Instance Node Whest |C] Wavg Success AvgTime Iteration

c-fat200-1 200 12% 1284 12 1284 100 0.14 74106
c-fat200-2 200 24* 2411 23 2411 100 0.06 33207
c-fat200-5 200 58%* 5887 58 5887 100 0.02 13569
c-fat500-1 500 14* 1354 12 1354 100 0.73 162912
c-fat500-2 500 26* 2628 24 2628 100 0.33 71620
c-fat500-5 500 64* 5841 62 5841 100 0.14 34146
c-fat500-10 500 126* 11586 124 11586 100 0.06 18163
johnson8-2-4 28 4% 66 4 66 100 <0.01 3762
johnson8-4-4 70 14%* 511 14 511 100 <0.01 2038
johnson16-2-4 120 8* 548 8 548 100 0.23 101807
johnson32-2-4 496 16* 2033 16 2033 100 0.53 113880
p_hat300-1 300 8% 1057 7 1057 100 0.02 2986
p_hat300-2 300 25% 2487 20 2487 100 <0.01 3141
p_hat300-3 300 36* 3774 29 3774 100 0.02 6862
p_hat500-1 500 9% 1231 8 1231 100 0.03 2707
p_hat500-2 500 36* 3920 31 3920 100 <0.01 732
p_hat500-3 500 50 5375 42 5375 100 0.10 28840
p_hat700-1 700 11* 1441 9 1441 100 0.03 2446
p_hat700-2 700 44* 5290 40 5290 100 0.02 3542
p_hat700-3 700 62 7565 58 7565 100 0.38 90841
p_hat1000-1 1000 10 1514 9 1514 100 0.08 6153
p_hat1000-2 1000 46 5777 40 5777 100 0.11 13405
p_hat1000-3 1000 68 8111 58 8111 100 1.23 235604
p_hat1500-1 1500 12% 1619 10 1619 100 0.06 3271
p_hat1500-2 1500 65 7360 58 7360 100 0.82 75206
p_hat1500-3 1500 94 10321 84 10319.92 96 188.38 18432419
san200_0.7_1 200 30%* 3370 30 3370 100 0.17 44988
san200_0.7_2 200 18* 2422 14 2422 100 0.02 4127
san200_0.9_1 200 70* 6825 70 6825 100 0.13 57024
san200_0.9_2 200 60* 6082 60 6082 100 0.21 79785
san200_0.9_3 200 44%* 4748 34 4748 100 <0.01 5745
san400_0.5_1 400 13%* 1455 8 1455 100 0.06 5685
san400_0.7_1 400 40* 3941 40 3941 100 13.68 1688081
san400_0.7_2 400 30% 3110 30 3110 100 43.34 5330560
san400_0.7_3 400 22% 2771 18 2771 100 0.05 9267
san400_0.9_1 400 100* 9776 100 9776 100 1.29 306069
san1000 1000 15% 1716 9 1716 100 13.01 471338
sanr200-0.7 200 18* 2325 15 2325 100 <0.01 2049
sanr200-0.9 200 42%* 5126 36 5126 100 <0.01 2168
sanr400-0.5 400 13* 1835 11 1835 100 0.02 2941
sanr400-0.7 400 21 2992 18 2992 100 <0.01 2745

@ Springer

622

Ann Oper Res (2012) 196:611-634

Table 2 Results obtained by MN/TS on the 40 BHOSLIB-W benchmarks. The weight w; of each vertex i
is set equal to (i mod 200) + 1 according to Pullan (2008). Statistics are based on 100 executions of MN/TS
on each benchmark instance

Instance Node [0} Whest |C| Wavg Success AvgTime Iteration

frb30-15-1 450 30* 2990 27 2990 100 0.35 162927
frb30-15-2 450 30* 3006 28 3006 100 3.45 1628915
frb30-15-3 450 30* 2995 27 2995 100 4.72 2147505
frb30-15-4 450 30* 3032 28 3032 100 0.12 53148
frb30-15-5 450 30* 3011 27 3011 100 3.01 1404617
frb35-17-1 595 35% 3650 33 3650 100 25.80 10949043
frb35-17-2 595 35% 3738 33 3736.84 96 72.09 36780076
frb35-17-3 595 35* 3716 33 3716 100 7.72 3208297
frb35-17-4 595 35* 3683 35 3678.31 77 94.03 46627497
frb35-17-5 595 35* 3686 33 3686 100 8.09 3306241
frb40-19-1 760 40* 4063 37 4062.15 83 85.57 12557557
frb40-19-2 760 40* 4112 36 4111.16 87 134.58 29716520
frb40-19-3 760 40* 4115 36 4108.30 19 215.98 44792105
frb40-19-4 760 40* 4136 37 4135.56 89 96.65 13321879
frb40-19-5 760 40* 4118 36 4117.6 90 178.89 31692738
frb45-21-1 945 45* 4760 41 4748.66 44 126.26 41702954
frb45-21-2 945 45* 4784 42 4775.86 47 228.03 42332553
frb45-21-3 945 45* 4765 43 4756.90 26 125.35 42132692
frb45-21-4 945 45* 4799 42 4772.41 43 174.73 34953953
frb45-21-5 945 45* 4779 43 4777.38 82 193.82 35802284
frb50-23-1 1150 50* 5494 47 5484.74 6 186.62 52803333
frb50-23-2 1150 50* 5462 47 5434.14 3 149.66 45053333
frb50-23-3 1150 50* 5486 47 5480.29 53 158.71 45289811
frb50-23-4 1150 50* 5454 46 5451.69 9 176.41 49915555
frb50-23-5 1150 50* 5498 47 5495.70 89 110.85 36065699
frb53-24-1 1272 53* 5670 50 5637.94 5 233.22 54638030
frb53-24-2 1272 53* 5707 48 5676.56 6 145.22 40515069
frb53-24-3 1272 53* 5640 49 5610.79 15 215.79 62672666
frb53-24-4 1272 53* 5714 50 5645.61 7 449.39 73105032
frb53-24-5 1272 53* 5659 49 5628.77 5 294.00 47012340
frb56-25-1 1400 56* 5916 53 5836.85 3 308.90 49212581
frb56-25-2 1400 56* 5872 52 5807.70 1 73.25 17174823
frb56-25-3 1400 56* 5859 51 5799.38 1 181.93 47664235
frb56-25-4 1400 56* 5892 51 5839.16 3 104.58 28605284
frb56-25-5 1400 56* 5839 52 5768.39 1 322.70 91502378
frb59-26-1 1534 59* 6591 55 6547.53 3 166.20 42284765
frb59-26-2 1534 59* 6645 56 6567.07 3 212.49 54746666
frb59-26-3 1534 59* 6608 55 6514.18 1 232.77 60188544
frb59-26-4 1534 59* 6592 54 6498.37 1 318.39 47624522
frb59-26-5 1534 59* 6584 53 6522.57 1 161.47 30820580

@ Springer

Ann Oper Res (2012) 196:611-634 623

computational results on the BHOSLIB-W benchmarks. For this reason, our comparisons
reported in the next section are based on DIMACS-W benchmarks (as well as a set of in-
stances from the set packing problem) while our results on the BHOSLIB-W benchmarks
can serve as a basis for performance assessment of other MWCP algorithms.

4.3 Comparative results for the weighted maximum clique problem

In order to show the relative effectiveness of our MN/TS for the MWCP, we first compare
MN/TS with two state of the art algorithms from the literature (Pullan 2008; Mannino and
Stefanutti 1999). The main comparison criterion is the quality of the solutions found. Due
to the differences among the programming languages, data structures, compiler options and
computers, computing times are provided only for indicative purposes. Since the reference
algorithms report results only for DIMCAS-W benchmarks, our first comparisons are based
on this set of instances.

Table 3 summarizes the comparative results between our MN/TS and the well-known
PLS algorithm (Pullan 2008). For both algorithms, the number of the trials devoted to solv-
ing each instance was 100. In Table 3, we indicate the largest weights obtained by the two
algorithms for each graph over the 100 independent trials (W,), the number of successful
trials where an algorithm reached W, (Success), the average time (CPU) over these suc-
cessful trials. Finally, column 8 indicates the difference in the largest weights obtained by
MN/TS and PLS.

Table 3 discloses that, over the 80 instances tested, the quality of solutions obtained by
our MN/TS algorithm matches or exceeds that of solutions obtained by the PLS algorithm
except in one case (p_hat500-2) where our method obtained a slightly worse solution. By
contrast, the MN/TS method obtained strictly superior solutions on 13 out of the 80 instances
(C500.9, C1000.9, C2000.9, keller6, MANN_a27, MANN_a45, MANN_a81, hamming10-
4, gen400_p0.9_65, p_hat500-3, p_hat1000-3, p_hat1500-2, p_hat1500-3). For all of the
remaining 66 instances on which the two algorithms attain the same largest weight (W),
MN/TS has a success rate of 100 %, while PLS has a 100 % success rate on 52 of these
instances.

According to Pullan (2008), the experiments of PLS were performed on a computer that,
when executing the DIMACS MC Machine Benchmark program (ftp://dimacs.rutgers.edu
in directory /pub/dsj/clique), required respectively 0.31, 1.93 and 7.35 CPU seconds for the
graphs 1r300.5, r400.5 and r500.5. Running this benchmark program on our computer leads
to respectively 0.46, 2.79 and 10.44 CPU seconds for these three graphs. In other words,
the computer used by PLS is slightly faster than the computer we used for our experiments.
Table 3 shows that our MN/TS algorithm required in most cases less computing time to
obtain solutions of the same or better quality.

To augment the above comparison, Table 4 contrasts the results of our MN/TS with those
of the AugSearch algorithm reported in (Mannino and Stefanutti 1999). The authors of the
AugSearch algorithm used a subset of 36 DIMACS graphs with weighting function in which
the weight w; of vertex i is set equal to (i mod 10) + 1. We have run our algorithm 100
times to solve each of these instances and report the computational statistics in Table 4.
As demonstrated, our MN/TS algorithm attains easily all the best objective values W,
reported in (Mannino and Stefanutti 1999) with a short computing time ranging from less
than 1 second to 13 minutes. (The computing times of AugSearch are based on an IBM-
RISC SYSTEM 6000 POWER station 375.) In addition, MN/TS obtains solutions better
than those found by AugSearch in 11 cases out of the 36 instances.

@ Springer

ftp://dimacs.rutgers.edu

624 Ann Oper Res (2012) 196:611-634

Table 3 Comparative results between MN/TS and PLS (Pullan 2008) on the set of 80 DIMACS-W bench-
marks. The weight of each vertex i is set equal to (i mod 200) + 1. Statistics are based on 100 trials of each
algorithm. An entry with “~” for PLS means that PLS was terminated because of excessive CPU time. An
entry with “< €” signifies that the average CPU time required by PLS was less than 0.01 seconds. MN/TS
finds improved solutions for 13 instances (in bold)

Instance MS/TS PLS (Pullan 2008) A(MS/TS —PLS)
Whest Success CPU(s) Wpegt Success CPU(s)

brock200_1 2821 100 <0.01 2821 100 0.19 0
brock200_2 1428 100 <0.01 1428 100 0.02 0
brock200_3 2062 100 <0.01 2062 100 0.01 0
brock200_4 2107 100 <0.01 2107 100 0.70 0
brock400_1 3422 100 0.03 3422 32 437.19 0
brock400_2 3350 100 0.03 3350 61 415.95 0
brock400_3 3471 100 0.03 3471 100 12.04 0
brock400_4 3626 100 4.70 3626 100 0.05 0
brock800_1 3121 100 0.05 3121 100 31.46 0
brock800_2 3043 100 0.20 3043 69 893.42 0
brock800_3 3076 100 0.08 3076 100 3.35 0
brock800_4 2971 100 49.70 2971 100 3.77 0
C125.9 2529 100 0.02 2529 100 8.08 0
C250.9 5092 100 0.06 5092 17 247.69 0
C500.9 6955 100 0.07 6822 — — 133
C1000.9 9254 100 8.90 8965 5 344.74 289
C2000.5 2466 100 1.84 2466 18 711.27 0
C2000.9 10999 22 168.11 10028 — — 971
C4000.5 2792 100 80.56 2792 — — 0
DSJC500.5 1725 100 0.04 1725 100 0.95 0
DSJC1000.5 2186 100 0.20 2186 100 47.76 0
keller4 1153 100 0.03 1153 100 0.02 0
keller5 3317 100 3.17 3317 100 119.24 0
keller6 8062 5 606.15 7382 - - 680
MANN_a9 372 100 <0.01 372 100 <€ 0
MANN_a27 12281 1 88.28 12264 — — 17
MANN_a45 34192 1 390.58 34129 — — 63
MANN_a81 111128 1 832.24 110564 — — 564
hamming6-2 1072 100 < 0.01 1072 100 <€ 0
hamming6-4 134 100 < 0.01 134 100 <€ 0
hamming8-2 10976 100 <0.01 10976 100 <€ 0
hamming8-4 1472 100 < 0.01 1472 100 <€ 0
hamming10-2 50512 100 0.92 50512 100 <€ 0
hamming10-4 5129 100 2.21 5086 1 1433.07 43
gen200_p0.9_44 5043 100 <0.01 5043 100 4.44 0
gen200_p0.9_55 5416 100 0.33 5416 100 0.05 0
gend00_p0.9_55 6718 100 0.15 6718 2 340.11 0
gend400_p0.9_65 6940 100 0.04 6935 4 200.79 5
gend400_p0.9_75 8006 100 0.88 8006 100 <e€ 0

@ Springer

Ann Oper Res (2012) 196:611-634

625

Table 3 (Continued)

Instance MS/TS PLS (Pullan 2008) A(MS/TS — PLS)
Whest Success CPU(s) Whest Success CPU(s)
c-fat200-1 1284 100 0.14 1284 100 <€ 0
c-fat200-2 2411 100 0.06 2411 100 <€ 0
c-fat200-5 5887 100 0.02 5887 100 <€ 0
c-fat500-1 1354 100 0.73 1354 100 <€ 0
c-fat500-2 2628 100 0.33 2628 100 0.01 0
c-fat500-5 5841 100 0.14 5841 100 <e€ 0
c-fat500-10 11586 100 0.06 11586 100 <e€ 0
johnson8-2-4 66 100 <0.01 66 100 <€ 0
johnson8-4-4 511 100 <0.01 511 100 <€ 0
johnsonl6-2-4 548 100 0.23 548 100 <€ 0
johnson32-2-4 2033 100 0.53 2033 100 44.68 0
p_hat300-1 1057 100 0.02 1057 100 0.01 0
p_hat300-2 2487 100 <0.01 2487 100 19.36 0
p_hat300-3 3774 100 0.02 3774 47 418.11 0
p_hat500-1 1231 100 0.03 1231 100 0.42 0
p_hat500-2 3920 100 <0.01 3925 — — -5
p_hat500-3 5375 100 0.10 5361 — — 14
p_hat700-1 1441 100 0.03 1441 100 0.20 0
p_hat700-2 5290 100 0.02 5290 100 78.51 0
p_hat700-3 7565 100 0.38 7565 12 718.40 0
p_hat1000-1 1514 100 0.08 1514 100 7.61 0
p_hat1000-2 5777 100 0.11 5777 87 940.62 0
p_hat1000-3 8111 100 1.23 7986 - - 125
p_hat1500-1 1619 100 0.06 1619 100 48.91 0
p_hat1500-2 7360 100 0.82 7328 4 1056.19 32
p_hat1500-3 10321 96 188.38 10014 — — 307
san200_0.7_1 3370 100 0.17 3370 100 <€ 0
san200_0.7_2 2422 100 0.02 2422 66 397.38 0
san200_0.9_1 6825 100 0.13 6825 100 <€ 0
san200_0.9_2 6082 100 0.21 6082 100 <€ 0
san200_0.9_3 4748 100 < 0.01 4748 72 219.68 0
san400_0.5_1 1455 100 0.06 1455 100 200.44 0
san400_0.7_1 3941 100 13.68 3941 100 0.03 0
san400_0.7_2 3110 100 43.34 3110 100 0.05 0
san400_0.7_3 2771 100 0.05 2771 100 4.41 0
san400_0.9_1 9776 100 1.29 9776 100 <e€ 0
san1000 1716 100 13.01 1716 - — 0
sanr200-0.7 2325 100 <0.01 2325 100 0.62 0
sanr200-0.9 5126 100 < 0.01 5126 5 182.54 0
sanr400-0.5 1835 100 0.02 1835 100 0.67 0
sanr400-0.7 2992 100 < 0.01 2992 100 141.50 0

@ Springer

626

Ann Oper Res (2012) 196:611-634

Table 4 Comparative results between MN/TS and AugSearch on 36 DIMACS weighted instances. The
weight of each vertex i is set equal to (i mod 10) + 1 according to Mannino and Stefanutti (1999). No-
tice that the results reported in Mannino and Stefanutti (1999) for two instances (MANN_a81 and keller6)
are wrong since their respective W, values are superior to their respective upper bounds (11000 and 590).
MN/TS finds improved solutions for 11 instances (in bold)

Instance MN/TS AugSearch A(MN/TS — AugSearch)
(Mannino and
Stefanutti 1999)
Whest Time Whest Time

C125.9 215 <0.01 215 5.28 0
C250.9 304 0.01 304 12.93 0
C500.9 390 0.08 385 3363.74 5
C1000.9 491 6.08 470 553.53 21
C2000.9 585 15.21 531 2430.77 54
C2000.5 129 243 113 324.07 16
DSJC500.5 98 0.05 94 19.19 4
DSJC1000.5 114 0.87 102 732.74 12
MANN_a27 867 0.50 867 0.01 0
MANN_a45 2403 100.23 2403 0.01 0
MANN_a81 7794 327.22 (18250) 0.01 -
brock200_2 77 < 0.01 76 0.19 1
brock200_4 114 <0.01 114 114 0
brock400_2 178 <0.01 178 1255.78 0
brock400_4 175 <0.01 175 113.50 0
brock800_2 159 0.16 155 1841 4
brock800_4 158 0.13 153 803.11 5
gen200_p0.9_44 277 <0.01 277 48.20 0
gen200_p0.9_55 293 0.57 293 37.26 0
gen400_p0.9_55 374 0.06 374 2220.10 0
gen400_p0.9_65 391 0.65 391 208.30 0
gen400_p0.9_75 401 88.88 401 2578.57 0
hamming8-4 106 <0.01 106 0.1 0
hamming10-4 294 0.03 291 1499.09 3
keller4 87 <0.01 87 2.48 0
keller5 201 0.21 195 1307.16 6
keller6 445 821.4 (1205) 922.18 -
p_hat300-1 71 <0.01 71 2.38 0
p_hat300-2 180 <0.01 180 0.40 0
p_hat300-3 260 <0.01 260 6.60 0
p_hat700-1 77 0.02 77 36.17 0
p_hat700-2 284 0.01 284 200.45 0
p_hat700-3 418 <0.01 418 42.95 0
p_hat1500-1 89 <0.01 89 1113.43 0
p_hat1500-2 416 6.50 416 758.03 0
p_hat1500-3 595 1.46 595 517.60 0

@ Springer

Ann Oper Res (2012) 196:611-634 627

Table 5 Computational results on the 16 weighted maximum clique instances from the set packing problem.
The best known results (BKR) are published in Alidaee et al. (2008) and Delorme et al. (2004). MN/TS finds
improved solutions for 2 instances (in bold)

Instance n m BKR MN/TS
(Alidaee et al. 2008;
Delorme et al. 2004) Whesr Wavg Success AvgTime Iteration
1 1000 5000 67 67 67 100 <0.01 987
2 1000 5000 4 4 4 100 < 0.01 2466
3 1000 5000 661 661 661 100 0.05 14412
4 1000 5000 48 48 48 100 0.05 11367
5 1000 1000 222 222 222 100 0.02 2160
6 1000 1000 15 15 15 100 0.09 9794
7 1000 1000 2260 2260 2259.38 63 164.12 54803313
8 1000 1000 175 175 175 100 0.53 81249
9 2000 10000 40 40 40 100 <0.01 40
10 2000 10000 2 2 2 100 < 0.01 4
11 2000 10000 478 478 478 100 2.02 116784
12 2000 10000 32 32 32 100 4.17 229540
13 2000 2000 140 140 140 100 0.07 3136
14 2000 2000 9 9 9 100 0.06 1333
15 2000 2000 1784 1811 1806.81 6 304.52 51346666
16 2000 2000 131 135 135 100 4.96 1111260

4.4 Computational results on structured instances from set packing

In this section, we report the outcomes of testing the MN/TS algorithm on the set of 16
structured instances derived from the set packing problem (Delorme et al. 2004; Alidaee
et al. 2008), which have sizes ranging from 1000 to 2000. In Alidaee et al. (2008), the set
packing problem is solved via a unconstrained quadratic formulation while in Delorme et
al. (2004), a dedicated GRASP heuristic was used. For the approach to convert a set packing
problem into a maximum weight independent set problem, interested readers are referred to
Kwon (2005). (A maximum weight independent set in a graph corresponds to a maximum
weight clique in the complement of the graph.)

The results of this experiment are summarized in Table 5. Columns 1-3 give the prob-
lem identification (Alidaee et al. 2008). Column 4 gives the previous best known results
reported in Alidaee et al. (2008) and Delorme et al. (2004), and columns 5-9 show the com-
putational statistics of the MN/T'S algorithm. Table 5 shows that MN/TS attains the previous
best known results for all these 16 tested instances. Moreover, our algorithm discovers new
best results for two instances (ID15 and ID16). This performance is surprising given that
our MN/TS algorithm is not specifically designed for the set packing problem.

4.5 Experimental results for the unweighted maximum clique problem

The results on the weighted instances have shown the efficacy of the MN/TS algorithm
for the maximum weight clique problem. In this section, we additionally test the MN/TS
algorithm on the unweighted maximum clique problem, using the DIMACS and BHOSLIB
benchmark instances. For this experiment, the search depth L is set equal to 10* except for
the brock and san graphs (DIMACS) for which L is set equal to 100.

@ Springer

628 Ann Oper Res (2012) 196:611-634

Table 6 shows the performance of MN/TS on the 80 DIMACS benchmarks. The different
columns have the same interpretation as before. W, (column 4) identifies the largest clique
found by MN/TS. For 78 of the 80 instances, MN/TS finds the previous best known results
in less than seven minutes. This performance matches the current best MCP algorithms like
(Cai et al. 2011; Pullan and Hoos 2006; Wu and Hao 2012) and dominates other methods.

The outcomes of applying MN/TS to the BHOSLIB benchmark instances are displayed
in Table 7, reinforcing these findings. In particular, for all of these 40 instances, MN/TS
successfully obtains the known optimal solutions. In addition, for 23 instances, MN/TS finds
optimal solutions with a success rate of 100 %.

In sum, Tables 1 to 7 together demonstrate that our MN/TS algorithm is not only very
effective for the maximum weight clique problem, but also very competitive for the conven-
tional unweighted case for which it was not specially designed.

5 Influence of neighborhood combination

One of the most important features of a local search algorithm is certainly the definition
of its neighborhood. When several neighborhoods are available, the issue of effective ways
for using these neighborhoods becomes relevant (Di Gaspero and Schaerf 2006; Lii et al.
2011). As previously noted, the three neighborhoods N;, N, and N3 induced respectively
by the ADD, SWAP and DROP moves are natural components to embody in an overall
choice strategy. In our case, at each iteration of our tabu search approach, we have elected
to employ the combined neighborhood Ny U N, U N3, from which we select the admissible
move (non-tabu or globally improving) yielding the largest move gain.

For traditional approaches which have been previously applied to the unweighted maxi-
mum clique problem, the basic moves consist of the addition or removal of a single vertex
from the current clique. (Swap moves thus trivially decompose into two separate moves
(Battiti and Mascia 2010).) Within this setting of traditional methods for the MCP, the ADD
moves are applied whenever possible as they are the only moves that augment the cur-
rent clique. DROP moves are considered only when no ADD or SWAP move exists. In this
section, we perform tests to apply this traditional way of combining neighborhoods to the
MWCP: When admissible ADD moves are present, we select the one yielding the largest
move gain (i.e., drawing the move from N;). Otherwise, if admissible SWAP moves are
present, we similarly select one of these moves with the largest gain (drawing the move
from neighborhood N,). If none of these two types of moves is available, a DROP move is
applied to remove from C the vertex with the minimum weight (N3). In this approach, the
neighborhoods are explored sequentially, as denoted by Ny — N, — Ns.

We apply our MN/TS algorithm to 10 MWCP instances from the DIMACS-W and
BHOSLIB-W benchmarks to compare our Ny U N, U N3 neighborhood combination with
the Ny — N, — N3 combination. Each version of the algorithm was run 100 times on each
instance with Ifer,,,, = 10%. Table 8 shows that on all these 10 instances, MN/TS with
N; U N, U N3 matches or outperforms MN/TS with N; — N, — Njs. For three instances
(C2000.9, Keller6 and frb59-26-4), MN/TS with Ny U N, U N3 achieves a better weight
(Wpes:) than MN/TS with Ny — N, — N3. One also observes that MN/TS with Ny U N, U N3
requires significantly fewer iterations to reach the same W,.

To augment these observations, we show in Fig. 4 the running profiles of our algorithms
with N; U N, U N3 and N; — N, — N3 on the instances C1000.9 and brock800_1. A run-
ning profile is defined by the function i — f,(i) where i is the number of iterations and

@ Springer

Ann Oper Res (2012) 196:611-634

629

Table 6 The computational results obtained by MN/TS on the 80 unweighted DIMACS benchmarks. For 78
of the 80 instances, MN/TS finds the previous best known results in less than 10 minutes

Instance Node [0} Whest Wavg Success AvgTime Iteration

brock200_1 200 21% 21 21 100 <0.01 3639
brock200_2 200 12% 12 12 100 0.06 27460
brock200_3 200 15% 15 15 100 0.07 37184
brock200_4 200 17* 17 17 100 0.09 53893
brock400_1 400 27* 27 27 100 10.27 2571929
brock400_2 400 20% 29 29 100 1.34 551643
brock400_3 400 31%* 31 31 100 0.63 259892
brock400_4 400 33% 33 33 100 0.28 121510
brock800_1 800 23% 23 22.72 86 188.14 29580466
brock800_2 800 24%* 24 23.88 96 156.47 26960764
brock800_3 800 25% 25 25 100 118.57 20949527
brock800_4 800 26%* 26 26 100 62.38 10861330
C125.9 125 34* 34 34 100 < 0.01 114
C250.9 250 44%* 44 44 100 <0.01 706
C500.9 500 57 57 57 100 0.06 28868
C1000.9 1000 68 68 68 100 0.63 197084
C2000.5 2000 16 16 16 100 0.07 3355
C2000.9 2000 80 80 78.37 1 563.70 99176504
C4000.5 4000 18 18 18 100 144.37 3779319
DSJC500.5 500 13%* 13 13 100 0.24 30471
DSJC1000.5 1000 15% 15 15 100 0.61 44184
keller4 171 11%* 11 11 100 < 0.01 123
keller5 776 27 27 27 100 0.05 10431
keller6 3361 59 59 59 100 97.87 7407809
MANN_a9 45 16* 16 16 100 <0.01 1853
MANN_a27 378 126* 126 126 100 3.42 564530
MANN_a45 1035 345% 340 340 6 90.58 2510419
MANN_a81 3321 1100 1090 1090 8 632.24 8550423
hamming6-2 64 32% 32 32 100 <0.01 128
hamming6-4 64 4% 4 4 100 <0.01 4
hamming8-2 256 128* 128 128 100 <0.01 222
hamming8-4 256 16* 16 16 100 <0.01 23
hamming10-2 1024 S512% 512 512 100 <0.01 1400
hamming10-4 1024 40 40 40 100 <0.01 795
gen200_p0.9_44 200 44% 44 44 100 < 0.01 1116
gen200_p0.9_55 200 55% 55 55 100 <0.01 396
gen400_p0.9_55 400 55 55 55 100 0.03 13285
gen400_p0.9_65 400 65 65 65 100 <0.01 852
gen400_p0.9_75 400 75 75 75 100 <0.01 511

@ Springer

630

Ann Oper Res (2012) 196:611-634

Table 6 (Continued)

Instance Node w Whest Wavg Success AvgTime Iteration

c-fat200-1 200 12% 12 12 100 < 0.01 861
c-fat200-2 200 24 24 24 100 0.07 35744
c-fat200-5 200 58%* 58 58 100 < 0.01 2698
c-fat500-1 500 14%* 14 14 100 0.02 4638
c-fat500-2 500 26%* 26 26 100 <0.01 1586
c-fat500-5 500 64 64 64 100 0.02 6764
c-fat500-10 500 126* 126 126 100 <0.01 3666
johnson8-2-4 28 4% 4 4 100 <0.01 4
johnson8-4-4 70 14 14 14 100 <0.01 14
johnson16-2-4 120 8* 8 8 100 <0.01 8
johnson32-2-4 496 16* 16 16 100 < 0.01 16
p_hat300-1 300 8* 8 8 100 < 0.01 94
p_hat300-2 300 25% 25 25 100 <0.01 71
p_hat300-3 300 36* 36 36 100 <0.01 346
p_hat500-1 500 9% 9 9 100 <0.01 84
p_hat500-2 500 36%* 36 36 100 <0.01 124
p_hat500-3 500 50 50 50 100 <0.01 616
p_hat700-1 700 11%* 11 11 100 < 0.01 1071
p_hat700-2 700 44% 44 44 100 <0.01 143
p_hat700-3 700 62 62 62 100 <0.01 249
p_hat1000-1 1000 10 10 10 100 < 0.01 180
p_hat1000-2 1000 46 46 46 100 < 0.01 216
p_hat1000-3 1000 68 68 68 100 < 0.01 1630
p_hat1500-1 1500 12% 12 12 100 1.42 75661
p_hat1500-2 1500 65 65 65 100 <0.01 998
p_hat1500-3 1500 94 94 94 100 <0.01 1029
san200_0.7_1 200 30% 30 30 100 <0.01 2716
$an200_0.7_2 200 18%* 18 18 100 0.05 16594
san200_0.9_1 200 70% 70 70 100 <0.01 838
san200_0.9_2 200 60%* 60 60 100 <0.01 731
$an200_0.9_3 200 44%* 44 44 100 < 0.01 1749
san400_0.5_1 400 13%* 13 13 100 0.34 37789
san400_0.7_1 400 40* 40 40 100 0.21 37048
san400_0.7_2 400 30%* 30 30 100 0.35 61817
san400_0.7_3 400 22% 22 22 100 0.17 39006
san400_0.9_1 400 100* 100 100 100 <0.01 2728
san1000 1000 15% 15 15 100 54.30 2215110
sanr200-0.7 200 18%* 18 18 100 <0.01 292
sanr200-0.9 200 42% 42 42 100 <0.01 1251
sanr400-0.5 400 13%* 13 13 100 <0.01 3351
sanr400-0.7 400 21 21 21 100 < 0.01 1609

@ Springer

Ann Oper Res (2012) 196:611-634 631

Table 7 The computational results obtained by MN/TS on the 40 unweighted BHOSLIB benchmark in-
stances. For all the instances, MN/TS attains the known optimal solutions in less than 7 minutes

Instance Node w* Whest Wayg Success AvgTime Iteration

frb30-15-1 450 30 30 30 100 0.04 11933
frb30-15-2 450 30 30 30 100 0.06 16148
frb30-15-3 450 30 30 30 100 0.57 157523
frb30-15-4 450 30 30 30 100 0.03 8366
frb30-15-5 450 30 30 30 100 0.37 103338
frb35-17-1 595 35 35 35 100 1.56 600704
frb35-17-2 595 35 35 35 100 0.55 215200
frb35-17-3 595 35 35 35 100 0.08 28925
frb35-17-4 595 35 35 35 100 2.08 821830
frb35-17-5 595 35 35 35 100 0.02 88714
frb40-19-1 760 40 40 40 100 0.32 111699
frb40-19-2 760 40 40 40 100 9.15 3146725
frb40-19-3 760 40 40 40 100 1.63 560773
frb40-19-4 760 40 40 40 100 6.72 2267514
frb40-19-5 760 40 40 40 100 45.17 14755785
frb45-21-1 945 45 45 45 100 7.89 2223000
frb45-21-2 945 45 45 45 100 21.71 5824014
frb45-21-3 945 45 45 45 100 53.67 15251125
frb45-21-4 945 45 45 45 100 10.40 2867683
frb45-21-5 945 45 45 45 100 37.22 10616570
frb50-23-1 1150 50 50 49.84 84 116.92 30626106
frb50-23-2 1150 50 50 49.47 47 161.77 43081194
frb50-23-3 1150 50 50 49.15 15 214.58 55481196
frb50-23-4 1150 50 50 50 100 11.91 3136579
frb50-23-5 1150 50 50 50 100 50.90 8056548
frb53-24-1 1272 53 53 52.03 3 240.36 56242252
frb53-24-2 1272 53 53 52.30 30 209.89 48183139
frb53-24-3 1272 53 53 5291 91 253.96 33611417
frb53-24-4 1272 53 53 52.45 45 178.01 42556535
frb53-24-5 1272 53 53 52.90 90 278.31 39408553
frb56-25-1 1400 56 56 55.22 22 174.02 40273969
frb56-25-2 1400 56 56 55.12 12 127.16 30201302
frb56-25-3 1400 56 56 55.25 25 209.48 47435029
frb56-25-4 1400 56 56 55.85 85 158.14 36531402
frb56-25-5 1400 56 56 56 100 85.57 18921353
frb59-26-1 1534 59 59 58.05 5 242.75 53070428
frb59-26-2 1534 59 59 58.01 1 396.38 86144885
frb59-26-3 1534 59 59 58.23 23 197.36 43876938
frb59-26-4 1534 59 59 58.10 11 192.45 41319157
frb59-26-5 1534 59 59 58.99 99 96.09 20416819

@ Springer

632 Ann Oper Res (2012) 196:611-634

Table 8 The comparative results between two neighborhood combinations

Instance N1 UNy U N3 Ni — Ny — N3
Whest Wavg Success Iteration Whest Wavg Success Iteration

brock800_1 3121 3121 100 7658 3121 3121 100 28550
C1000.9 9254 9254 100 3378709 9254 9187.99 43 49203658
C2000.5 2466 2466 100 62469 2466 2466 100 324754
C2000.9 10999 10971.92 22 36667727 10891 10758.24 1 96090684
keller6 8062 7939.49 5 53687525 7706 7456.32 1 68412368
hamming10-4 5129 5129 100 407528 5129 5128.96 97 30752818
p_hat500-2 3920 3920 100 732 3290 3290 100 10702
p_hat1000-3 8111 8111 100 235604 8111 8111 100 8255957
frb59-26-1 6591 6547.53 3 42284765 6591 6556.92 9 53125555
frb59-26-4 6592 6498.37 1 47624522 6575 6534.39 18 35506666

[« (i) is the best value of the objective function (averaged over 100 runs) known at itera-
tion i. Such a profile gives a natural way to observe the evolution of the best values of the
objective function during a search.

Figure 4 shows that MN/TS with N} U N, U N3 strongly dominates MN/TS with N} —
N, — Nj on these two test instances by obtaining a faster and better convergence to the best
result.

6 Conclusion

A natural concern in local search is to identify how to exploit several different neighbor-
hoods so as to increase the ability of the algorithm to explore the search space more effec-
tively. In this work, we have presented a tabu search algorithm for the maximum weight
clique problem based on a combined neighborhood induced by three types of moves. The
algorithm explores all these moves at each iteration and selects the best admissible (non-tabu
or globally improving) solution that yields the largest weight gain. The tabu mechanism cre-
ates an effective local diversification and a multistart strategy is employed to create a global
diversification.

Our proposed algorithm is evaluated on a large number of WMCP benchmarks from the
BHOSLIB-W and DIMACS-W test sets (containing 40 instances and 80 instances, respec-
tively) and is also applied to 16 instances derived from the set partitioning problem. Com-
pared with leading reference algorithms from the literature, our MN/TS algorithm finds new
best solutions in 26 cases (24 DIMACS-W instances and 2 set packing instances). Moreover,
our MN/TS approach exhibits an excellent performance when applied to the classical max-
imum clique problem, obtaining the best-known solutions for all the BHOSLIB instances
and for 78 out of the 80 DIMACS instances. All these results are achieved with a computing
time ranging from less than one second to 15 minutes on a standard laptop.

We also provided an analysis to show the relevance of the union combination of the
underlying neighborhoods by comparing it to the sequential exploration of these neighbor-
hoods. The outcomes suggest that the union combination of neighborhoods plays a key role
in contributing to the effectiveness of the proposed algorithm.

@ Springer

Ann Oper Res (2012) 196:611-634

633

3000

Weight

2800

2600 [~ AT A
—o— N UN:UN;
—x—— N; — Ny — N3
. | . | . | . | . | . | . | . | . | .
0 100 200 300 400 500 600 700 800 900
Iterations x 100 (brock800_1)
9250 //‘/' — T T T T T T T T T T T T T T ?
¥
9000 [~ *
S
I
8750 |- *
—%—— N} — Ny — N3
. | . | . | . | . | . | . | . | . | .
0 100 200 300 400 500 600 700 800 900

Tterations x 100000 (C'1000.9)

Fig. 4 Running profile of the two algorithms base on Ny U N, U N3 and N| — Ny — N3 on C1000.9 and

brock800_1

@ Springer

634 Ann Oper Res (2012) 196:611-634

Acknowledgements We are grateful to the referees for their suggestions. The work is partially supported
by the “Pays de la Loire” Region (France) within the RaDaPop (2009-2013) and LigeRO (2010-2013)
projects.

References

Alidaee, B., Kochenberger, G. A., Lewis, K., Lewis, M., & Wang, H. (2008). A new approach for modelling
and solving set packing problems. European Journal of Operational Research, 86(2), 504-512.

Babel, L. (1994). A fast algorithm for the maximum weight clique problem. Computing, 52, 31-38.

Ballard, D., & Brown, C. (1982). Computer vision. Englewood Cliffs: Prentice-Hall.

Battiti, R., & Mascia, F. (2010). Reactive and dynamic local search for the Max-Clique problem: engineering
effective building blocks. Computers & Operations Research, 37, 534-542.

Battiti, R., & Protasi, M. (2001). Reactive local search for the maximum clique problem. Algorithmica, 29(4),
610-637.

Bomze, 1. M., Pelillo, M., & Stix, V. (2000). Approximating the maximum weight clique using replicator
dynamics. IEEE Transactions on Neural Networks, 11, 1228-1241.

Busygin, S. (2006). A new trust region technique for the maximum weight clique problem. Discrete Applied
Mathematics, 154, 2080-2096.

Cai, S., Su, K., & Chen, Q. (2011). Local search with edge weighting and configuration checking heuristics
for minimum vertex cover. Artificial Intelligence, 175(9-10), 1672—-1696.

Delorme, X., Gandibleux, X., & Rodriguez, J. (2004). GRASP for set packing problems. European Journal
of Operational Research, 153, 564-580.

Di Gaspero, L., & Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to
timetabling problems. Journal of Mathematical Modelling and Algorithms, 5(1), 65-89.

Friden, C., Hertz, A., & de Werra, D. (1989). Stabulus: a technique for finding stable sets in large graphs with
tabu search. Computing, 42, 35-44.

Gendreau, M., Soriano, P., & Salvail, L. (1993). Solving the maximum clique problem using a tabu search
approach. Annals of Operations Research, 41, 385-403.

Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic.

Grosso, A., Locatelli, M., & Croce, F. D. (2004). Combining swaps and node weights in an adaptive greedy
approach for the maximum clique problem. Journal of Heuristics, 10, 135-152.

Johnson, D. S., & Trick, M. A. (Eds.) (1996). Cliques, coloring, and satisfiability: second DIMACS Implemen-
tation Challenge. DIMACS series in discrete mathematics and theoretical computer science (Vol. 26).
Providence: AMS.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.),
Complexity of computer computations (pp. 85-103). New York: Plenum Press.

Katayama, K., Hamamoto, A., & Narihisa, H. (2005). An effective local search for the maximum clique
problem. Information Processing Letters, 95, 503-511.

Kwon, R. H. (2005). Data dependent worst case bounds for weighted set packing. European Journal of
Operational Research, 167(1), 68-76.

Li, Z., Hao, J. K., & Glover, F. (2011). Neighborhood analysis: a case study on curriculum-based course
timetabling. Journal of Heuristics, 17(2), 97-118.

Mannino, C., & Stefanutti, E. (1999). An augmentation algorithm for the maximum weighted stable set
problem. Computational Optimization and Applications, 14, 367-381.

Ostergérd, P. R. J. (2001). A new algorithm for the maximum weight clique problem. Nordic Journal of
Computing, 8, 424-436.

Pullan, W. (2008). Approximating the maximum vertex/edge weighted clique using local search. Journal of
Heuristics, 14(2), 117-134.

Pullan, W., & Hoos, H. H. (2006). Dynamic local search for the maximum clique problem. The Journal of
Artificial Intelligence Research, 25, 159-185.

Wu, Q., & Hao, J. K. (2012). An adaptive multistart tabu search approach to solve the maximum clique
problem. Journal of Combinatorial Optimization. doi:10.1007/s10878-011-9437-8.

@ Springer

http://dx.doi.org/10.1007/s10878-011-9437-8

	Multi-neighborhood tabu search for the maximum weight clique problem
	Abstract
	Introduction
	Multi-neighborhood tabu search for the MWCP
	Search space and evaluation function
	Randomized procedure for initial solutions
	Basic move operators and neighborhoods
	Combined neighborhood and neighbor selection strategy
	Tabu list and tabu tenure management
	Multistart strategy and stop criteria

	Discussion
	Experimental results
	Benchmark instances and experimental settings
	DIMACS and BHOSLIB unweighted benchmarks
	BHOSLIB-W and DIMACS-W weighted benchmarks
	Structured benchmarks from set packing
	Experimental settings

	Experimental results for the maximum weight clique problem
	Comparative results for the weighted maximum clique problem
	Computational results on structured instances from set packing
	Experimental results for the unweighted maximum clique problem

	Influence of neighborhood combination
	Conclusion
	Acknowledgements
	References

