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This paper presents a highly effective memetic algorithm for the maximum diversity problem based on
tabu search. The tabu search component uses a successive filter candidate list strategy and the solution
combination component employs a combination operator based on identifying strongly determined and
consistent variables. Computational experiments on three sets of 40 popular benchmark instances
indicate that our tabu search/memetic algorithm (TS/MA) can easily obtain the best known results for all
the tested instances (where no previous algorithm has achieved) as well as improved results for six
instances. Analysis of comparisons with state-of-the-art algorithms demonstrates statistically that our
TS/MA competes very favorably with the best performing algorithms. Key elements and properties of TS/
MA are also analyzed to disclose the benefits of integrating tabu search (using a successive filter
candidate list strategy) and solution combination (based on critical variables).
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1. Introduction

The maximum diversity problem (MDP) is to identify a subset
M of a given cardinality m from a set of elements N, such that the
sum of the pairwise distance between the elements in M is
maximized. More precisely, let N = {eq, ..., e,} be a set of elements
and dj; be the distance between elements e; and e;. The objective of
the MDP can be formulated as follows (Kuo et al., 1993):

n n
Maximize f(x):% > X di-xi-X;
i=1j=1

subject to i xi=m, x;e{0,1}, i=1,...,n )
i=1
where each x; is a binary (zero-one) variable indicating whether
an element e; e N is selected to be a member of the subset M.
The MDP is closely related to the unconstrained binary quad-
ratic programming (UBQP) problem (Kochenberger et al., 2004;
Lii et al., 2010; Wang et al., 2012). Given a symmetric n x n matrix
Q =(q;), the UBQP problem is to identify a binary vector x of
length n for the following function:

Maximize g(x) =x'Qx = i 2": qjjXiX; 2)

i=1j=1
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Contrasting the objective functions of the MDP and the UBQP,
we observe that the MDP is a special UBQP with a cardinality
constraint.

The MDP is an NP-hard problem and provides practical appli-
cations mainly including location, ecological systems, medical
treatment, genetics, ethnicity, product design, immigration and
admission policies, committee formation, curriculum design, and
so on (Katayama and Narihisa, 2005; Marti et al., 2013).

Due to its theoretical significance and many potential applica-
tions, various solution procedures have been devised for the MDP
problem. Exact algorithms are able to solve instances with less
than 150 variables in reasonable computing time (Aringhieri et al.,
2009; Marti et al., 2010). However, because of the high computa-
tional complexity, heuristic and metaheuristic algorithms are
commonly used to produce approximate solutions for larger
problem instances. Examples of these methods include various
GRASP variants (Andrade et al., 2003, 2005; Duarte and Marti,
2007; Silva et al., 2004, 2007), tabu search based algorithms
(Aringhieri et al, 2008; Aringhieri and Cordone, 2011;
Palubeckis, 2007; Wang et al., 2012), variable neighborhood search
(Aringhieri and Cordone, 2011; Brimberg et al., 2009), scatter
search (Aringhieri and Cordone, 2011), iterated greedy algorithm
(Lozano et al., 2011) and hybrid evolutionary algorithm (Gallego
et al., 2009; Katayama and Narihisa, 2005). A comprehensive
review concerning the MDP and an interesting comparison among
the best MDP algorithms can be found in Marti et al. (2013).

Our proposed TS/MA falls within the memetic algorithm
classification as laid out in Neri et al. (2011) (and in particular
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adopts the scatter search template described in Glover (1997)).
First, we use tabu search to improve each solution generated
initially or created by combining members of a current population.
The TS moves are simple swaps that flip (or add and drop) solution
elements, drawing on the successive filter candidate list strategy to
accelerate the move evaluations. Second, we design a solution
combination operator to take advantage of solution properties by
reference to the analysis of strongly determined and consistent
variables. Finally, we introduce a population rebuilding strategy
that effectively maintains population diversity.

In order to evaluate the performance of TS/MA, we conduct
experimental tests on three sets of challenging benchmarks
with a total of 40 instances. The test results indicate that TS/MA
yields highly competitive outcomes on these instances by finding
improved best known solutions for six instances and matching the
best known results for the other instances. Furthermore, we
analyze the influence of some critical components and demon-
strate their key roles to the performance of the proposed TS/MA.

The rest of the paper is organized as follows. Section 2
describes the proposed TS/MA. Section 3 presents experimental
results and comparisons with state-of-the-art algorithms in the
literature. Section 3.3 analyzes several essential components of TS/
MA. Concluding remarks are given in Section 4.

2. Tabu search/memetic algorithm

Algorithms that combine improvement methods with popu-
lation-based solution combination algorithms, and hence that can
be classified as memetic algorithms (Neri et al., 2011), often prove
to be effective for discrete optimization (Hao, 2012). By linking the
global character of recombinant search with the more intensive
focus typically provided by local search, the memetic framework
offers interesting possibilities to create a balance between inten-
sification and diversification within a search procedure. Our TS/MA
follows the general memetic framework and is mainly composed
of four components: a population initialization and rebuilding
procedure, a tabu search procedure, a specific solution combina-
tion operator and a population updating rule. As previously noted,
our procedure more specifically adopts the form of a scatter search
procedure, and utilizes combinations from the structured class
proposed for scatter search in Glover (1994).

2.1. Main scheme

The general architecture of our TS/MA is described in Algorithm 1.
It starts with the creation of an initial population P (line 3, see Section
2.3). Then, the solution combination is employed to generate new
offspring solution (line 8, see Section 2.5), whereupon a TS proce-
dure (line 9, see Section 2.4) is launched to optimize each newly
generated solution. Subsequently, the population updating rule
decides whether such an improved solution should be inserted into
the population and which existing individual should be replaced
(line 14, see Section 2.6). Finally, if the population is not updated for a
certain number of generations, the population rebuilding procedure
is triggered to build a new population (line 21, see Section 2.3). In the
following subsections, the main components of our TS/MA are
described in detail.

Algorithm 1. Pseudo-code of TS/MA for the MDP.

1: Input: an n x n matrix (dy), a given cardinality m<n
2: Output: the best solution x* found

3: P={x!,...,x9) «Pop_Init() /% Section 2.3 %/

4: x* =arg max{f(xX)|i=1,...,q}

5: While a stop criterion is not satisfied do

6: UpdateNonSucc =0

7. repeat

8: randomly choose two solutions x' and ¥’ from P

9 x° —Combination_Operator(x', x) /% Section 2.5 %/

10: x0—Tabu_Search(x?) /% Section 2.4 %/

11: if f(x°) > f(x*) then

12: x*=x0

13: end if

14: (x1,...,x9}) —Pop_Update(x°,x!, ..., x9)/%
Section 2.6 3%/

15: if P does not change then

16: UpdateNonSucc = UpdateNonSucc+ 1

17: else

18: UpdateNonSucc =0

19: end if

20: until UpdateNonSucc > 0
21: P={x',...,x9}<Pop_Rebuild()/* Section 2.3 %/
22: end while

2.2. Search space and evaluation function

Given an n element set N = {eq, ..., ey}, the search space ¥ of
the MDP consists of all the m-element subsets of N; i.e.,
¥ ={SISCN,|S|=m}. Thus the search space size equals ().
A feasible solution of the MDP can be conveniently represented
as an n-vector of binary variables x such that exactly m variables
receive the value of 1 and the other n—m variables receive the
value of 0. Given a solution x e ¥, its quality or fitness is directly
measured by the objective function f{x) of Eq. (1).

2.3. Population initialization and rebuilding

The initial population contains q different local optimal solu-
tions (q is a parameter and called the population size) and is
constructed as follows. First, we randomly generate an initial
feasible solution, i.e., any binary n-vector with exactly m elements
assigned the value of 1. Then this solution is subjected to the tabu
search procedure to obtain an improved solution which is also a
local optimum but not necessarily a first local optimum encoun-
tered (see Section 2.4). Then, the solution improved by tabu search
is added in the population if it does not duplicate any solution in
the population. This procedure is repeated until the population
size reaches the specified value q.

The rationale of this simple strategy is based on the following
experimental observation. Given two local optimal solutions x!
and x?> which are achieved by the TS procedure, the average
distance between x! and x? is generally not less than 10%, the
distance being defined to be equal to 1-c/m where c is the
number of common elements of x! and x*> and m is the given
cardinality.

This procedure is also used by the TS/MA when the population
is not updated for € consecutive generations (€ is a parameter and
called the population rebuilding threshold, see Algorithm 1, line 20).
In this case, the population is recreated as follows. First, the best
solution x* from the old population becomes the first member of
the new population. Second, for each of the remaining solutions in
the old population, we carry out the following steps: (1) randomly
interchange p - m variables with the value of 1 and p - m variables
with the value of 0 where 0 <p <1 (p is a parameter and called
the perturbation fraction); (2) this perturbed solution is subjected
to tabu search to obtain an improved solution; (3) if this refined
solution is not a duplication of any solution in the new population,
it is added in the new population; otherwise, the method returns
to step (1).
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2.4. Tabu search procedure

To improve the quality of a solution, we use a tabu search
procedure which applies a constrained swap operator to exchange
a variable having the value of 1 with a variable having the value of 0.
More formally, given a feasible solution x = {1, ...,X,}, let U and Z
respectively denote the set of variables with the value of 1 and 0 in x.
Then, the neighborhood N(x) of x consists of all the solutions
obtained by swapping two variables x;e U and x;eZ. Since this
swap operator keeps the m cardinality constraint satisfied, the
neighborhood contains only feasible solutions. Clearly, for a given
solution x, its neighborhood N(x) has a size of m - (n—m).

To rapidly determine the move gain (the objective change on
passing from the current solution to its neighboring solution), we
apply the following technique which is similar to the technique
used in Aringhieri et al. (2008).

First, we employ a vector A to record the objective variation of
moving a variable x; from its current subset U/Z into the other
subset Z/U. This vector can be initialized as follows:

Y —dj(x;eU)
jeU

Y2 dijxieZ) 3
jeU

A,‘:

Then, the move gain of interchanging two variables x; e U and
Xj € Z can be calculated using the following formula:

5,‘]‘ :Ai+Aj_dij (4)

Finally, once a move is performed, we just need to update a
subset of move gains affected by the move. Specifically, the
following abbreviated calculation can be performed to update A
upon swapping variables x; and x; (L et al., 2013):

7Ai+dij(k =1)

— Atk =)

Ap+di—dj(k # {i,j}, x € U) 3)
Ay —dy+d(k # {i,]}, xx € Z)

A=

Given the size of the swap neighborhood which is equal to
m - (n—m), it could be computationally costly to identify the best
move at each iteration of tabu search. To overcome this obstacle,
we employ the successive filter candidate list strategy of Glover
and Laguna (1997) that breaks a compound move (like a swap)
into component operations and reduces the set of moves exam-
ined by restricting consideration to those that produce high
quality outcomes for each separate operation.

For the swap move, we first subdivide it into two successive
component operations: (1) move the variable x; from U to Z;
(2) move the variable x; from Z to U. Since the resulting objective
difference of each foregoing operation can be easily obtained
from the vector A, we then pick for each component operation
the top cls variables (cls is a parameter and called the candidate
list size) in terms of their A values recorded in a non-increasing
order to construct the candidate lists UCL and ZCL. Finally, we
restrict consideration to swap moves involving variables from
UCL and ZCL. The benefits of this strategy will be verified in
Section 3.3.

It should be clear that cls impacts the performance of the TS
procedure. A too large cls value may include some non-improving
(unattractive) moves in the neighborhood exploration while a too
small value could exclude some attractive moves. A parameter
sensitivity analysis is provided in Section 3.3.1 where this para-
meter is studied in detail.

We give below a small example to illustrate how this method
works. Suppose we have a matrix D and a solution U = {X1, X3, X5, Xg},
Z = {X2,X4,Xg, X7}, then the best swap move is obtained with the

following steps:

05624216
50426 89 2
6 40536 25
22507 48 4
P=146370322 ®
2 86 4306 7
19282601
6 2542710

Step 1: compute the objective variation of moving a variable
from U to Z according to Eq. (3) and obtain:

Ay=—16, A3;=—14, As=-9, Ag=—13

Likewise, compute the objective variation of moving a variable
from Z to U and obtain:

Ay=17, A4=18, Ag=18, A;=6

Step 2: pick cls variables, say cls=2 with the best objective
variation from U and Z respectively, then the selected candidate
subsets will be UCL = {xs,Xg}, ZCL = {X4, Xg}.

Step 3: compute move gains according to Eq. (4), where a move
consists of swapping two variables from UCL and ZCL.

O54=—9+18-7=2, OJg4=-13+18-4=1,
5562—9—‘1-18—3:6, 5862—13+18—7=—2

Step 4: determine the best move to interchange variables xs
from UCL and xg from ZCL with the largest move gain of 6.

To ensure solutions visited within a certain span of iterations will
not be revisited, tabu search typically incorporates a short-term
memory, known as tabu list (Glover and Laguna, 1997). In our
implementation, each time two variables x; and x; are swapped, two
random integers are taken from an interval tt =[a, b] (where a and b
are chosen integers) as the tabu tenure of variables x; and x; to prevent
any move involving either x; or x; from being selected for a specified
number of iterations. (The integers defining the range of tt are
parameters of our procedure, identified later.) Specifically, our tabu
list is defined by an n-element vector T. When x; and x; are swapped,
we assign the sum of a random integer from tt and the current
iteration count Iter to the ith element TT[i] of T and the sum of another
random integer from tt and Iter to T[j]. Subsequently, for any iteration
Iter, a variable x; is forbidden to take part in a swap move if T[k] > Iter.

Tabu search then restricts consideration to variables not cur-
rently tabu, and each iteration performs a swap move that
produces the best (largest) move gain according to Eq. (4). In the
case that two or more swap moves have the same best move gain,
one of them is chosen at random.

To accompany this rule, a simple aspiration criterion is applied
that permits a move to be selected in spite of being tabu if it leads
to a solution better than the best solution found so far. The tabu
search procedure terminates when the best solution cannot be
improved within a given number « of iterations (& is a parameter
and called the improvement cutoff).

The pseudo-code of the tabu search procedure is shown in
Algorithm 2.

Algorithm 2. Pseudo-code of TS for the MDP.

1: Input: a given solution x and its objective function value f(x)

2: Output: an improved solution x* and its objective function
value f(x*)

3: Initialize vector A according to Eq. (3), initialize tabu list
vector T by assigning each element with value 0, initialize U
and Z composed of variables with value of 1 and 0 in x,
respectively, Iter=0, NonImplter=0, x* = x, f(x*) =f(x)

4: while Nonlmplter < a do
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5: Identify top cls variables from U and top cls variables from
Z in terms of the A value to construct UCL and ZCL

6: Identify the index i}, and ji, of non-tabu variables from
UCL and ZCL that leads to the maximum & value (computed
according to Eq. (4)) by swapping x;: and x;= (break ties
randomly); Similarly identify if and ji for tabu variables

7. if 6i[*j?‘ > 5,-:[ij and f(X*)—Fam«[« >f(X*) then

8: =i =jF
9: else

10: =i =T
11:  end if

120 xp =0,xp =1, f(X) =f(0)+0pp, U=U\{x} U (X},
Z=7ZU (X 1\(x}

13:  Update A according to Eq. (5)

14: Update T by assigning T[i] = Iter +rand(tt),
T[j] = Iter +rand(tt)

15:  if f(x) > f(x*) then

16: X*=x,f(x*) =f(x)

17: Nonlmplter =0

18: else

19: NonImplter = Nonlmplter + 1
20: end if

21:  Iter =Iter+1
22: end while

2.5. Solution combination by reference to critical variables

Our memetic algorithm uses a dedicated solution combination
operator to generate promising offspring solutions. The combina-
tion operator is based on the idea of critical variables which are
given in the name of strongly determined and consistent variables in
Glover (1977). In the context of the MDP, the notion of strongly
determined and consistent variables can be defined as follows.

Definition 1 (Strongly determined variables). Relative to a given
solution x = {x1,X>, ..., Xn}, let U denotes the set of variables with
the value of 1 in x. Then, for a specific variable x; € U, the (objective
function) contribution of x; in relation to x is defined as follows:
VG = X dj (7)
xeU

Obviously, the objective function of the MDP can be computed
with regard to VC as follows:

1
f(X)=§- 2 VCix) ®
xieU
We sort all the variables in a non-increasing order according to
their objective function contribution and select the top f# variables
(f is a parameter) as strongly determined variables SD.

Definition 2 (Consistent variables). Relative to two local optimal
(high quality) solutions x and ¥, let U; and U; respectively denote
the set of variables with the value of 1 in x' and . Then, the
consistent variables are defined as follows:

C={xlxy e Ui N Uj} 9

Given two local optimal solutions x' and ¥’ and a set of variables
N, our critical variable combination operator constructs one off-
spring solution according to the following steps:

(1) Identify strongly determined variables SD; and SD; with regard
to x' and ¥/, respectively.

(2) Select consistent variables that simultaneously emerge in SD;
and SD;; i.e., CS=SD; N SD;.

(3) Randomly pick m-|CS| variables from the set N-CS to satisfy the
cardinality constraint (maintaining the number of variables
with the value of 1 equal to m).

(4) Construct a feasible offspring solution by assigning the value
1 to the variables selected in steps (2) and (3) and assigning
the value O to the remaining variables.

2.6. Population updating

The population updating procedure is invoked in each time a
new offspring solution is generated by the combination operator
and then improved by tabu search. As in a simple version of the
scatter search template of Glover (1997), the improved offspring
solution is added into the population if it is distinct from any
solution in the population and better than the worst solution,
while the worst solution is removed from the population.

3. Experimental results and analysis
3.1. Benchmark instances

Three sets of benchmarks with a total of 40 large instances
(with at least 2000 variables) are utilized to evaluate the perfor-
mance of the proposed approach. Small and medium scale bench-
marks are excluded in our experimentation because these problem
instances can be easily solved by many heuristics in a very short
time and can present no challenge for our TS/MA.

(1) Random type 1 instances (Typel_22): 20 instances with
n=2000, m=200, where d; are integers generated from a
[0,10] uniform distribution. These instances are first intro-
duced in Duarte and Marti (2007) and can be downloaded
from: http://www.uv.es/~rmarti/paper/mdp.html.

ORLIB instances (b2500): 10 instances with n=2500, m=1000,
where dj are integers randomly generated from [—100,100].
They all have a density of 0.1. These instances are derived from
the UBQP problem by ignoring the diagonal elements and are
available from ORLIB.

Palubeckis instances (p3000 and p5000): 5 instances with
n=3000, m=0.5n and 5 instances with n=5000, m=0.5n,
where dj are integers generated from a [0,100] uniform
distribution. The density of the distance matrix is 10%, 30%,
50%, 80% and 100%. The sources of the generator and input
files to replicate these problem instances can be found at:
http://www.soften.ktu.lt/ ~ gintaras/max_div.html.

—
N
—

—~
w
~—

3.2. Experimental protocol

Our TS/MA is programmed in C and compiled using GNU g+ +
on a Xeon E5440 with 2.83 GHz CPU and 8 GB RAM.! Following the
DIMACS machine benchmark?, our machine requires 0.43, 2.62
and 9.85 CPU s respectively for graphs r300.5, r400.5, and r500.5
compiled with gcc -02. All computational results were obtained
with the parameter values shown in Table 1 which are identified
with the parameter sensitivity analysis provided in Section 3.3.1.

Given the stochastic nature of our algorithm, we solve each
instance in the Typel_22 and ORLIB benchmarks 30 times, and
solve each instance in the Palubeckis benchmark 15 times. For the
comparative study reported in Section 3.4, TS/MA uses time limit

1 Upon the publication of the paper, the source code of the TS/MA will be made
freely available to the public at: http://www.info.univ-angers.fr/pub/hao/mdp.html
2 dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/
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Table 1 Table 2
Settings of important parameters of the TS/MA algorithm. Post hoc test for solution sets obtained by varying q.
Parameters Section Description Value p= 5 10 20 30 40
q 23 Population size 10 10 0.00057
4 2.3 Population rebuilding threshold 30 20 0.00665 0.98856
P 2.3 Perturbation fraction 0.3 30 0.00954 0.97713 1.00000
tt 24 Tabu tenure interval [15,25] 40 0.67881 0.08822 0.33919 0.40233
a 24 Tabu search improvement cutoff 6-m 50 0.99509 0.00447 0.03686 0.05000 0.93341
cls 24 Candidate list size of each component min(y/m, /n—m)
operation
B 2.5 Number of strongly determined 0.7-m
variables
Table 3

as the stopping condition, as other reference algorithms did. For
this purpose, we use SPEC - Standard Performance Evaluation
Corporation (www.spec.org) to determine the performance differ-
ence between our computer and the reference machine of Wang
et al. (2012). According to SPEC, our computer is slightly faster
with a factor of 1.17. Hence, we set the time limit to 17, 256, 513
and 1538 s respectively for the instances of Typel_22, b2500,
p3000 and p5000, which correspond to the stop condition used in
Wang et al. (2012).

3.3. Analysis of TS/MA parameters and key components

In this section, we conduct a parameter sensitivity analysis of
the proposed TS/MA and study some of its key components.

3.3.1. Parameter sensitivity analysis

We first show a parameter sensitivity analysis based on a
subset of 11 diverse instances. For each TS/MA parameter, we test
a number of possible values while fixing the other parameters to
their default values from Table 1. We test q (population size) in the
range [5, 50], @ (population rebuilding threshold) in the range
[10, 50], p (tabu search perturbation fraction) in the range [0.1,
1.0], a (tabu search improvement cutoff) in the range [m, 10 - m],
cls (candidate list size) in the range [m°®1,m!9] and f (a number of
strongly determined variables) in the range [0.1 - m, m]. Similarly,
for the tabu tenure tt, we try several intervals in the range [1,100].
For each instance and each parameter setting, we conduct experi-
ments under exactly the same conditions.

We use the Friedman test to see whether the performance of
TS/MA varies significantly in terms of its average solution values
when we vary the value of a single parameter as mentioned above.
The Friedman test indicates that the values of p do not signifi-
cantly affect the performance of TS/MA (with p-value = 0.2983).
This means that TS/MA is not very sensitive to the perturbation
fraction when rebuilding the population. However, the Friedman
test reveals a statistical difference in performance to the different
settings of parameters q, 0, tt, a, cls and f (with p-values of
0.000509, 0.004088, 0.0001017, 1.281e-07, 1.735e-11 and 0.002715,
respectively). Hence, we perform the post hoc test to examine the
statistical difference between each pair of settings of these para-
meters and show the results in Tables 2-7.

Take the parameter g (population size) as an example, the
p-value of 0.00057 (smaller than 0.05) of post hoc test for the pair
of parameter settings (5,10) indicates a significant difference
between these two settings. Fig. 1 shows that setting g=10
produces significantly better average results than setting q=5.
On the other hand, the post hoc result for the pair of parameter
settings (10,20) is 0.98856 (greater than 0.05), the difference
between these two settings is thus not statistically significant.
By observing Tables 2-7, we conclude that although certain pairs

Post hoc test for solution sets obtained by varying 6.

0= 10 20 30 40

20 0.94381

30 0.97070 0.99994

40 0.06421 0.32684 0.26205

50 0.00410 0.04573 0.03171 0.90493
Table 4

Post hoc test for solution sets obtained by varying tt.

tt= [115] [15,25] [15,50] [25,50] [25,100]
[15,25] 0.00039
[15,50] 0.03906 0.80788
[25,50] 0.03907 0.80786 1.00000

[25,100] 0.98891 0.00492 0.19158 0.19122

[50,100] 0.99959 0.00009 0.01470 0.01478 0.93517

of settings present significant differences (with p—value < 0.05),
there does not exist a determined setting for each parameter that
is significantly better than all the other settings.

To further investigate the performance of TS/MA with different
settings for each parameter, we show in Fig. 1 the box and whisker
plots which depict the smallest result, lower quartile, median,
upper quartile, and the largest result obtained with each para-
meter value. For the sake of clarity, these results are displayed as
the percentage deviation of the average results from the best-
known results reported in the literature, computed as (BKR—Avg.)/
BKR - 100%.

From the box and whisker plots in Fig. 1, we obtain the follo-
wing observations. First, setting qe {10,20,30}, 6 < {10,20,30},
tte[15,25], a € {6-m,10-m}, cls e {(m®4, m®3}, f{0.6-m,0.7 - m}
seems preferable in terms of both the solution quality and the
variation of solution values. These preferable settings for a para-
meter are actually obtained with the following steps: (1) the
parameter setting in Table 1 is adopted because it produced the
best average quality among all the settings; (2) statistical tests are
conducted to compare the adopted setting with alternative ones in
order to see whether different settings yield statistically different
results; (3) the statistical result suggests the existence of a range of
values which are acceptably good for this parameter, and in which
the choice is partly arbitrary. By the above-mentioned steps, a set of
good values for each parameter can be determined. A second
observation is that varying values of the parameter cls, i.e., candi-
date list size of the swap-based neighborhood mostly affects the
performance of the TS/MA, with deviations ranging from [0, 0.5%]
against deviations ranging from [0, 0.05%] with other parameters.
Finally, we observe that the performance of TS/MA is less sensitive
to the population rebuilding threshold (6) than to other parameters
with deviations less than 0.03% for each setting.
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Table 5
Post hoc test for solution sets obtained by varying a.

a= m 2-m 3-m 4.m 5-m 6-m 7-m 8-m 9-m

2-m 0.85330

3-m 0.40765 0.99961

4-m 0.18981 0.98742 0.99999

5-m 0.07000 0.90758 0.99887 1.00000

6-m 0.00000 0.00091 0.01459 0.05167 0.15025

7-m 0.09187 0.93831 0.99961 1.00000 1.00000 0.11842

8-m 0.56656 0.99999 1.00000 0.99983 0.99200 0.00640 0.99624

9-m 0.00238 0.30550 0.76509 0.93839 0.99371 0.74514 0.98743 0.61304

10-m 0.00033 0.10856 0.45123 0.72441 0.91867 0.94677 0.88215 0.30514 0.99999
Table 6
Post hoc test for solution sets obtained by varying cls.

ClS: mO,l m042 m0.3 m0.4 mO.S m0.6 m0,7 mO,S m0.9

m°2 054620

m°? 0.00009 0.20682

mO* 0.00000 0.00069 0.80485

mo* 0.00000 0.00001 0.27148 0.99846

m°® 0.00000 0.00400 0.96156 0.99999 0.96747

m°7 0.00006 0.16582 1.00000 0.85461 0.32774 0.97735

mo8 0.02148 0.93895 0.96158 0.09351 0.00663 0.25356 0.93893

m®?° 0.36772 1.00000 0.34752 0.00210 0.00003 0.01062 0.28899 0.98470

m'0 0.99005 0.99004 0.00952 0.00000 0.00000 0.00003 0.00676 0.32694 0.95488
Table 7
Post hoc test for solution sets obtained by varying j.

p= 01-m 02-m 03-m 04-m 05-m 06-m 0.7-m 08-m 09-m

02-m 1.00000

03-m 0.89398 0.91762

04-m 0.40401 0.44709 0.99885

05-m 0.08163 0.09732 0.89377 0.99942

06-m 0.02051 0.02487 0.63285 0.97663 0.99999

0.7-m 0.00309 0.00376 0.28305 0.80029 0.99359 1.00000

08-m 0.93734 0.95360 1.00000 0.99617 0.83526 0.54017 0.21556

09-m 0.99999 1.00000 0.95358 0.53992 0.13699 0.03792 0.00602 0.97662

1.0-m 1.00000 1.00000 0.93739 0.49383 0.11605 0.03077 0.00497 0.96654 1.00000

3.3.2. Tabu search analysis

In this section, we provide experiments to demonstrate the
successive filter candidate list strategy implemented in our tabu
search procedure, denoted as FastBestImp, plays an important role
to the performance of the TS/MA. For this purpose, we test the
following three other tabu search procedures within our TS/MA.

Successive 1-flip based tabu search (1-flip): This approach
starts from an initial feasible solution x and at each iteration first
picks a variable x; from Z such that flipping x; to the value of
1 would increase the objective function value of the current
solution x by the greatest amount. Next, given the selected first
flip, we pick a variable x; from U such that flipping x; to the value of
0 creates the least loss in the objective function value of x. These two
successive 1-flip moves assure the resulting solution is always
feasible with |U| = m. In addition, each time a variable is flipped, a
tabu tenure is assigned to the variable to prevent it from being
flipped again for the next A iterations (where A is drawn randomly
from the interval tt; see Table 1). Finally, a move leading to a
new solution better than the best solution found so far is always
selected even if it is classified tabu. The above procedure repeats until
the solution cannot be improved for consecutive m/4 iterations.
Additional details can be found in Lii et al. (2010) and Wang
et al. (2012).

First Improvement based tabu search (Firstlmp): Starting from an
initial feasible solution, each iteration sequentially fetches a variable
x; from U and then scans each variable x; from Z. If swapping x; and x;

improves the current solution, then we perform this move to obtain
a new solution. If there is no improved move by interchanging the
unit-value of x; with the zero-value of any variable from Z, we
fetch the next variable from U and so on. If no improved move is
found by interchanging each variable from U and each variable
from Z, the best move among them (which does not improve the
current solution) is then performed. The selected variables x; and x;
become tabu active and thus neither can be involved in a new
move during the next B iterations (where B is drawn randomly
from tt; see Table 1). However, if a move improves the best
solution found so far, it is always performed even if it is tabu
active. The method continues until the best solution found so far
cannot be improved for & consecutive iterations (see Table 1).

Best Improvement based tabu search (BestImp): The only
difference between BestImp and our FastBestImp approach is
that BestImp identifies a best neighborhood solution within the
complete swap neighborhood, without employing the succes-
sive filter candidate list strategy described in Section 2.4.
Several algorithms in the literature (e.g., Aringhieri and
Cordone, 2011; Ghosh, 1996; Palubeckis, 2007) are based on
Bestimp.

We carry out experiments for the TS/MA with FastBestImp
replaced by 1-flip, Firstimp and Bestimp while keeping other
components unchanged. All the three sets of benchmarks with a
total of 40 instances (see Section 3.1) are used for each TS/MA
variant. The experimental results are shown in Fig. 2, in which the
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Fig. 1. Box and whisker plot of the results obtained with different settings for each sensitive parameter. (a) Varying population size g, (b) varying population rebuilding
threshold 6, (c) varying tabu tenure tt, (d) varying tabu search improvement cutoff a, (e) varying candidate list size of each component operation cls, (f) varying number of

strongly determined variables g.

left portion and the right portion respectively present the best gap
and the average gap, for each tested instance, to the best known
result.

As shown in the left portion of Fig. 2, FastBestlmp achieves the
best performance with a smaller gap between the best solution
value and the best known result than 1-flip, Firstimp and BestImp
for each instance, except for several Typel_22 instances where
both FastBestimp and 1-flip can reach the best known results.

In addition, 1-flip basically outperforms Firstimp and BestImp for
the Typel_22 instances while Bestimp outperforms 1-flip and
Firstimp for the ORLIB and Palubeckis instances.

When it comes to the average gap to the best known result, the
right portion of Fig. 2 clearly shows that once again FastBestimp
achieves the best performance among the compared strategies for
all the tested instances. In addition, the comparison among 1-flip,
Firstimp and BestImp indicates that 1-flip generally performs better
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Fig. 2. Best and average solution gaps to the best known result for three sets of benchmark instances.
Table 8
TS/MA versus TS/MA, using Wilcoxon's test (at the 0.05 level).
Problem R+TS/MA R—TS/MA,x p-Value Diff.? TS/MA TS/MA,x
AD-B AD-Av AD-B AD-Av
Typel_22 190 0 0.000143 Yes 0 9.57 0.40 27.38
ORLIB 55 0 0.001953 Yes 0 67.21 0 267.39
Palubeckis 55 0 0.001953 Yes —212.10 —151.51 —194.50 3848

for the Type1_22 and ORLIB instances while Bestlmp performs
better for the Palubeckis instances.

3.3.3. Solution combination operator analysis

In order to assess the role of the operator described in Section 2.5
for combining solutions, we conduct additional experiments to
compare it with a traditional uniform crossover operator for combin-
ing solutions (Syswerda, 1989). For the MDP, uniform crossover
consists of identifying variables that have the value of 1 in both

parents and keeping this value unchanged for these variables in
the offspring solution. Then the remaining variables are randomly
assigned the value 0 or 1 and subject to the cardinality constraint, i.e.,
the total number of variables with the value of 1 equals m in the
offspring solution.

We compare this modified TS/MA with the uniform crossover,
denoted by TS/MA,, and the original TS/MA with the critical
variable solution combination operator, denoted by TS/MA., under
the same experimental conditions (see Section 3.2). In order to
detect the difference between TS/MA,y and TS/MA., we also
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Table 9
Computational results obtained by TS/MA for Typel_22 instances.

Instance BKR TS/MA
Best Succ. Avg. ¢ Tpest Tavg

Typel_22.1 114,271 114,271(0) 17/30 114,260.63(10.37) 15.96 11.64 11.91
Typel_22.2 114,327 114,327(0) 28/30 114,318.20(8.80) 32.93 8.89 9.25
Typel_22.3 114,195 114,195(0) 16/30 114,186.47(8.53) 13.14 9.34 9.84
Typel_22.4 114,093 114,093(0) 3/30 114,073.10(19.90) 17.91 12.68 10.39
Typel_22.5 114,196 114,196(0) 7/30 114,166.50(29.50) 33.24 12.48 11.92
Typel_22.6 114,265 114,265(0) 9/30 114,249.40(15.60) 12.08 9.81 10.83
Typel_22.7 114,361 114,361(0) 30/30 114,361.00(0.00) 0.00 7.16 7.16
Typel_22.8 114,327 114,327(0) 21/30 114,301.77(25.23) 39.69 6.88 6.76
Typel_22.9 114,199 114,199(0) 8/30 114,191.17(7.83) 11.03 9.07 10.04
Type1_22.10 114,229 114,229(0) 21/30 114,224.90(4.10) 12.08 10.16 9.71
Typel_22.11 114,214 114,214(0) 8/30 114,189.70(24.30) 18.10 11.85 11.56
Typel_22.12 114,214 114,214(0) 6/30 114,192.50(21.50) 18.23 10.10 10.31
Typel_22.13 114,233 114,233(0) 28/30 114,231.77(1.23) 5.94 10.37 10.39
Typel_22.14 114,216 114,216(0) 28/30 114,212.43(3.57) 19.02 7.70 8.05
Typel_22.15 114,240 114,240(0) 6/30 114,238.27(1.73) 2.02 9.72 10.35
Typel_22.16 114,335 114,335(0) 17/30 114,327.73(7.27) 10.51 7.64 9.65
Typel_22.17 114,255 114,255(0) 13/30 114,243.27(11.73) 12.18 8.69 10.01
Typel_22.18 114,408 114,408(0) 15/30 114,407.00(1.00) 1.00 441 6.13
Typel_22.19 114,201 114,201(0) 24/30 114,197.00(4.00) 8.00 7.10 6.81
Typel_22.20 114,349 114,349(0) 21/30 114,333.40(15.60) 28.49 8.76 9.66
Av. (0) 15.3/30 (11.09) 15.58 9.22 9.54

Table 10

Computational results obtained by TS/MA for ORLIB instances.
Instance BKR TS/MA

Best Succ. Avg. c Thest Tavg.

b2500-1 1,153,068 1,153,068(0) 30/30 1,153,068.00(0.00) 0.00 66.50 66.50
b2500-2 1,129,310 1,129,310(0) 25/30 1,129,236.13(73.87) 179.60 109.20 114.68
b2500-3 1,115,538 1,115,538(0) 22/30 1,115,353.27(184.73) 306.35 94.70 104.00
b2500-4 1,147,840 1,147,840(0) 15/30 1,147,681.00(159.00) 159.11 79.10 87.30
b2500-5 1,144,756 1,144,756(0) 22/30 1,144,710.80(45.20) 76.58 51.92 51.00
b2500-6 1,133,572 1,133,572(0) 24/30 1,133,517.60(54.40) 108.80 78.90 81.39
b2500-7 1,149,064 1,149,064(0) 17/30 1,148,999.00(65.00) 74.33 109.29 89.10
b2500-8 1,142,762 1,142,762(0) 21/30 1,142,760.80(1.20) 1.83 96.74 95.28
b2500-9 1,138,866 1,138,866(0) 30/30 1,138,866.00(0.00) 0.00 80.08 80.08
b2500-10 1,153,936 1,153,936(0) 30/30 1,153,936.00(0.00) 0.00 98.04 98.04
Av. (0) 23.6/30 (58.34) 90.66 86.45 86.74

Table 11

Computational results obtained by TS/MA for Palubeckis instances.
Instance BKR TS/MA

Best Succ. Avg. o Tpest Tavg.

p3000-1 6,502,308 6502330(—22) 5/15 6,502,272.93(35.07) 41.86 243.52 301.49
p3000-2 18,272,568 18,272,568(0) 15/15 18,272,568.00(0.00) 0.00 17212 17212
p3000-3 29,867,138 29,867,138(0) 15/15 29,867,138.00(0.00) 0.00 73.72 73.72
p3000-4 46,915,044 46,915,044(0) 14/15 46,915,042.80(1.20) 449 289.64 302.48
p3000-5 58,095,467 58,095,467(0) 13/15 58,095,464.73(2.27) 5.78 123.13 132.00
p5000-1 17,509,215 17,509, 369(— 154) 12/15 17,509,336.60( — 121.60) 95.56 945.58 984.86
p5000-2 50,102,729 50,103,071(-342) 4/15 50,103,044.40( —315.40) 2313 730.26 993.07
p5000-3 82,039,686 82,040,316(— 630) 2/15 82,040,144.67(—458.67) 69.32 1079.56 965.99
p5000-4 129,413,112 129,413,710(—598) 5/15 129,413,511.87(—399.87) 151.40 1063.31 1055.73
p5000-5 160,597,781 160,598, 156( — 375) 2/15 160,598,016.87( —235.87) 82.06 792.20 771.47
Av. (—-212.1) 8.7/15 (—149.29) 47.36 551.30 575.29

conduct the Wilcoxon nonparametric statistical test and summar-
ize the results in Table 8. In this table, columns 2-5 report the
results from the Wilcoxon test in terms of the average quality.
Column AD-B reports the average gap over each set of benchmark
instances of the best solution value to the best known result.
Column AD-AV reports the average gap over each set of bench-
mark instances of the average solution values to the best known
results.

The following observations can be made from Table 8. First, the
results from the Wilcoxon test indicate that TS/MA. is signifi-
cantly better than TS/MA , for each set of benchmark instances.
Second, in terms of AD-B, TS/MA., performs better than TS/MA,
for both Typel1_22 (0 for TS/MA. versus 0.40 for TS/MA,,) and
Palubeckis benchmarks (—212.1 for TS/MA. versus —194.50 for
TS/MA,x). TSIMA, performs the same as TS/MA,, for the ORLIB
benchmark considering that both can reach the best known results
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Comparison among TS/MA and other state-of-the-art algorithms for Type1_22 instances.

Instance BKR ITS[2007] VNS[2009] TIG[2011] LTS-EDA[2012] TS/MA
Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.
Typel_22.1 114,271 65 209.87 48 150.60 48 101.57 5 60.73 0 10.37
Typel_22.2 114,327 29 262.27 0 168.87 0 69.90 0 89.87 0 8.80
Typel_22.3 114,195 69 201.40 19 110.83 5 117.77 0 98.97 0 8.53
Typel_22.4 114,093 22 200.53 70 188.13 58 141.93 0 79.87 0 19.90
Typel_22.5 114,196 95 273.27 87 184.10 99 194.70 51 134.47 0 29.50
Typel_22.6 114,265 41 168.17 30 99.30 9 96.20 0 40.17 0 15.60
Typel_22.7 114,361 12 167.47 0 56.30 0 71.27 0 18.20 0 0.00
Typel_22.8 114,327 25 256.40 0 163.33 0 193.60 0 159.10 0 25.23
Typel_22.9 114,199 9 139.83 16 78.47 16 80.37 0 70.97 0 7.83
Typel_22.10 114,229 24 204.93 7 139.33 35 12143 0 56.20 0 4.10
Typel_22.11 114,214 74 237.77 42 145.13 59 139.57 3 69.87 0 24.30
Typel_22.12 114,214 55 249.53 95 143.30 88 156.00 15 84.93 0 21.50
Typel_22.13 114,233 93 279.87 22 168.07 42 167.40 6 85.30 0 1.23
Typel_22.14 114,216 92 248.50 117 194.30 64 202.80 0 81.00 0 3.57
Typel_22.15 114,240 1 117.50 1 62.87 6 80.53 0 22.03 0 1.73
Typel_22.16 114,335 11 225.40 42 215.43 35 67.90 0 36.47 0 7.27
Typel_22.17 114,255 56 217.53 0 170.00 18 144.53 6 57.07 0 11.73
Typel_22.18 114,408 46 169.97 0 57.10 2 117.37 2 22.83 0 1.00
Typel_22.19 114,201 34 243.20 0 124.60 0 144.37 0 35.87 0 4.00
Typel_22.20 114,349 151 270.67 65 159.43 45 187.23 0 95.40 0 15.60
Av. 50.7 217.20 33.05 138.97 31.45 129.82 4.40 69.97 0 11.09
Table 13
Comparison among TS/MA and other state-of-the-art algorithms for ORLIB instances.
Instance BKR ITS[2007] VNS[2009] TIG[2011] LTS-EDA[2012] TS/MA
Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.

b2500-1 1,153,068 624 3677.33 96 1911.93 42 1960.33 0 369.20 0 0.00
b2500-2 1,129,310 128 3677.33 88 1034.33 1096 1958.47 154 453.53 0 73.87
b2500-3 1,115,538 316 3281.93 332 1503.67 34 2647.87 0 290.40 0 184.73
b2500-4 1,147,840 870 2547.93 436 1521.07 910 1937.13 0 461.73 0 159.00
b2500-5 1,144,756 356 1800.27 0 749.40 674 1655.87 0 286.07 0 45.20
b2500-6 1,133,572 250 2173.47 0 1283.53 964 1807.60 80 218.00 0 54.40
b2500-7 1,149,064 306 1512.60 116 775.47 76 1338.73 44 264.60 0 65.00
b2500-8 1,142,762 0 247.73 96 862.47 588 1421.53 22 146.47 0 1.20
b2500-9 1,138,866 642 2944.67 54 837.07 658 1020.60 6 206.33 0 0.00
b2500-10 1,153,936 598 2024.60 278 1069.40 448 1808.73 94 305.27 0 0.00
Av. 409 2388.79 149.6 1154.83 549 1755.69 40 300.16 0 58.34

for each instance. Notice that although inferior to TS/MA.,

solution values, say f; > --- > f,, > Best > f - > fy. Finally, we set

TS/MA,y is still able to improve the best known results over the
Palubeckis benchmark. Finally, in terms of AD-Av, TS/MA., always
outperforms TS/MA,.

Tables 9-11 respectively show the computational statistics of
the TS/MA on the 20 Typel_22 instances, 10 ORLIB instances and
10 Palubeckis instances. In each table, columns 1 and 2 give the
instance names (Instance) and the best known results (BKR)
respectively reported in the literature (Brimberg et al., 2009;
Lozano et al., 2011; Palubeckis, 2007; Wang et al, 2012).
As indicated in Wang et al. (2012) (see its Tables 4-6 and 11),
some of these best known results are obtained with a relaxed time
limit, around 20 to 60 times longer than in a typical setting. The
columns under the heading TS/MA report the best solution values
(Best) along with the gap of Best to BKR shown in parentheses
(BKR-Best), the success rate (Succ.) for reaching Best, the average
solution values (Avg.) along with the gap of Avg. to BKR shown in
parentheses (BKR-Avg.), the standard deviation (o), the average
time (Tpes) required over the runs which actually reach the value
Best and the average time (T, ) required to reach the best solution
value found in each run (in s). To calculate Tpes and Tgyg, We use a
pair of elements (f;, t;) to record the best solution value obtained
in the ith run and the time needed to reach this value. Then
we sort the pairs obtained over all N runs according to their

Tpese = 2V ti/u and Tag = YN ,t;/N. Results marked in bold
indicate that TS/MA matches BKR and if also marked in italic
indicate that TS/MA improves BKR. Furthermore, the last row Av.
summarizes TS/MA's average performance over the whole set of
benchmark instances. Notice that the reason we show that both
Tpes: and T,y lie in the fact that the proposed algorithm does not
necessarily lead to the same best value in each run because of its
stochastic nature. Only if all the runs for solving a specific instance
reach the BKR, the T, and Tpese Will be completely the same.

From Tables 9-11, we observe that TS/MA can easily reach the
best known results for all the tested instances within the given
time limit, which none of current state-of-the-art algorithms can
compete with. In particular, TS/MA improves the best known
results for six Palubeckis instances and even its average quality
is better than the best known results previously reported in the
literature. Finally, we mention that for these six Palubeckis
instances, similar improved best known results were reported
very recently and independently in Wu and Hao (2013).

3.4. Comparison with state-of-the-art algorithms

In order to further evaluate our TS/MA, we compare it with four
best performing algorithms recently proposed in the literature.
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Table 14
Comparison among TS/MA and other state-of-the-art algorithms for Palubeckis instances.
Instance BKR ITS[2007] VNS[2009] TIG[2011] LTS-EDA[2012] TS/MA
Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.
p3000-1 6,502,308 466 1487.53 273 909.80 136 714.67 96 294.07 -22 35.07
p3000-2 18,272,568 0 1321.60 0 924.20 0 991.07 140 387.00 0 0.00
p3000-3 29,867,138 1442 2214.73 328 963.53 820 1166.13 0 304.33 0 0.00
p3000-4 46,915,044 1311 2243.93 254 1068.47 426 2482.20 130 317.07 0 1.20
p3000-5 58,095,467 423 1521.60 0 663.00 278 1353.27 0 370.40 0 227
p5000-1 17,509,215 2200 3564.93 1002 1971.27 1154 2545.80 191 571.00 —-154 —~121.60
p5000-2 50,102,729 2910 4786.80 1478 2619.00 528 2511.73 526 892.80 —~342 —315.40
p5000-3 82,039,686 5452 8242.33 1914 3694.40 2156 6007.13 704 1458.53 —-630 —458.67
p5000-4 129,413,112 1630 5076.90 1513 2965.90 1696 3874.80 858 1275.20 —598 —399.87
p5000-5 160,597,781 2057 4433.90 1191 2278.30 1289 2128.90 579 1017.90 —-375 —235.87
Av. 1789.1 3489.43 795.3 1805.79 848.3 2377.57 3224 688.83 2121 —~149.29
Table 15 4. Conclusion
TS/MA versus ITS, VNS, TIG and LTS-EDA (Wilcoxon's test at the 0.05 level).
Algorithms ~ Typel_22 ORLIB Palubeckis In this paper, we have proposed an effective memetic algorithm
for the maximum diversity problem based on tabu search. The
p-Value Diff?  p-value  Diff?  p-value  Diff.? tabu search component utilizes a successive filter candidate list
strategy and is joined with a solution combination strategy based
ITS 191e-06  Yes 0.002 Yes 0.002 Yes dentifvi " lv determined and istent variabl
VNS 1916-06  Yes 0.002 Yes 0.002 Yes on identifying strongly determined and consistent variables.
TIG 191e-06  Yes 0.002 Yes 0.002 Yes Computational experiments on three sets of 40 popular bench-
LTS-EDA 191e-06  Yes 0.002 Yes 0.002 Yes mark instances have demonstrated that the proposed TS/MA is

These reference methods are Iterated Tabu Search (ITS) (Palubeckis,
2007), Variable Neighborhood Search (VNS) (Brimberg et al., 2009),
Tuned Iterated Greedy (TIG) (Lozano et al., 2011) and Learnable
Tabu Search with Estimation of Distribution Algorithm (LTS-EDA)
(Wang et al., 2012). The results of these reference algorithms are
directly extracted from Wang et al. (2012). Notice that the BKR
values are the best values compiled from Tables 4-6 and 11 of Wang
et al. (2012) which were obtained within the typical and longer
time limit. This study is carried out under the same time condition
as that used in Wang et al. (2012) (see Section 3.2).

Tables 12-14 display the best and average solution values
obtained by ITS, VNS, TIG, LTS-EDA and our TS/MA. Since the absolute
solution values are very large, we report the gap of best and average
solution values to the best known results. Smaller gaps indicate
better performances. Negative gaps represent improved results. The
best performances among the five compared algorithms are high-
lighted in bold. In addition, the averaged results over the whole set of
instances are presented in the last row.

As we can observe from Tables 12-14, our TS/MA outperforms
the four reference algorithms in terms of both the best and
average solution values. Specifically, TS/MA is able to match or
surpass the best known results for all the 40 instances, while ITS,
VNS TIG and LTS-EDA can only match 2, 10, 5 and 19 out of 40
instances, respectively. Furthermore, the average gap to the best
known results of TS/MA is much smaller than that of each
reference algorithm.

We also conduct nonparametric statistical tests to verify the
observed differences between TS/MA and the reference algorithms
in terms of solution quality that are statistically significant.
Table 15 summarizes the results by means of the Wilcoxon
signed-ranked test, where p—value < 0.05 indicates that there is
a significant difference between our TS/MA and a reference
algorithm. We observe that TS/MA is significantly better than all
these reference algorithms for each set of benchmarks.

In summary, this comparison demonstrates the efficacy of our
TS/MA in attaining the best and average solution values.

capable of easily attaining all the previous best known results and
improving the best known results for six instances. Moreover,
statistical tests have confirmed that our proposed algorithm per-
forms significantly better than several recently proposed state-of-
the-art algorithms.

In addition to a parameter sensitivity analysis, we have studied
the effects of the dedicated tabu search procedure based on the
swap move combined with the successive filter candidate list
strategy and the specific combination operator based on the
concept of strongly determined and consistent variables. These
studies have confirmed the importance of these two key compo-
nents for the high performance of the proposed algorithm.

Finally, even if some best-known results could further be
improved for the tested benchmark instances, unfortunately it is
unknown how far these results are away from the optimal
solutions given that these instances are too large to be solved to
optimality by the existing exact methods. An interesting issue
would be to devise methods which are able to deliver tight upper
bounds. Another research direction is to characterize the hardness
of the existing instances and design a parameterable model for
generating new benchmarks whose difficulty could be controlled.
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