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Abstract

This paper presents a highly effective memetic algorithm for the maximum diver-
sity problem based on tabu search. The tabu search component uses a successive
filter candidate list strategy and the solution combination component employs a
combination operator based on identifying strongly determined and consistent vari-
ables. Computational experiments on three sets of 40 popular benchmark instances
indicate that our tabu search/memetic algorithm (TS/MA) can easily obtain the
best known results for all the tested instances (which no previous algorithm has
achieved) as well as improved results for 6 instances. Analysis of comparisons with
state-of-the-art algorithms demonstrate statistically that our TS/MA algorithm
competes very favorably with the best performing algorithms. Key elements and
properties of TS/MA are also analyzed to disclose the benefits of integrating tabu
search (using a successive filter candidate list strategy) and solution combination
(based on critical variables).
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1 Introduction

The maximum diversity problem (MDP) is to identify a subset M of a given
cardinality m from a set of elements N , such that the sum of the pairwise
distance between the elements in M is maximized. More precisely, let N =
{e1, . . . , en} be a set of elements and dij be the distance between elements ei

and ej. The objective of the MDP can be formulated as follows [18]:

Maximize f(x) =
1

2

n
∑

i=1

n
∑

j=1

dij · xi · xj

subject to
n

∑

i=1

xi = m, xi ∈ {0, 1}, i = 1, . . . , n

(1)

where each xi is a binary (zero-one) variable indicating whether an element
ei ∈ N is selected to be a member of the subset M .

The MDP is closely related to the unconstrained binary quadratic program-
ming (UBQP) problem [17,20,30]. Given a symmetric n×n matrix Q = (qij),
the UBQP problem is to identify a binary vector x of length n for the following
function:

Maximize g(x) = x′Qx =
n

∑

i=1

n
∑

j=1

qijxixj (2)

Contrasting the objective functions of the MDP and the UBQP, we observe
that the MDP is a special UBQP with a cardinality constraint.

The MDP is an NP-hard problem and provides practical applications mainly
including location, ecological systems, medical treatment, genetics, ethnicity,
product design, immigration and admissions policies, committee formation,
curriculum design, and so on [16,23].

Due to its theoretical significance and many potential applications, various so-
lution procedures have been devised for the MDP problem. Exact algorithms
are able to solve instances with less than 150 variables in reasonable computing
time [3,22]. However, because of the high computational complexity, heuris-
tic and metaheuristic algorithms are commonly used to produce approximate
solutions to larger problem instances. Examples of these methods include var-
ious GRASP variants [1,2,7,26,27], tabu search based algorithms [4,5,25,29],
variable neighborhood search [5,6], scatter search [5], iterated greedy algo-
rithm [19] and hybrid evolutionary algorithm [8,16]. A comprehensive review
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concerning the MDP and an interesting comparison among the best MDP
algorithms can be found in [23].

Our proposed TS/MA falls within the memetic algorithm classification as laid
out in [24] (and in particular adopts the scatter search template described in
[11]). First, we use tabu search to improve each solution generated initially
or created by combining members of a current population. The TS moves are
simple swaps that flip (or add and drop) solution elements, drawing on the
successive filter candidate list strategy to accelerate the move evaluations. Sec-
ond, we design a solution combination operator to take advantage of solution
properties by reference to the analysis of strongly determined and consistent
variables. Finally, we introduce a population rebuilding strategy that effec-
tively maintains population diversity.

In order to evaluate the performance of TS/MA, we conduct experimental
tests on 3 sets of challenging benchmarks with a total of 40 instances. The
test results indicate that TS/MA yields highly competitive outcomes on these
instances by finding improved best known solutions for 6 instances and match-
ing the best known results for the other instances. Furthermore, we analyze
the influence of some critical components and demonstrate their key roles to
the performance of the proposed TS/MA algorithm.

The rest of the paper is organized as follows. Section 2 describes the proposed
TS/MA algorithm. Section 3 presents experimental results and comparisons
with state-of-the-art algorithms in the literature. Section 3.3 analyzes several
essential components of TS/MA. Concluding remarks are given in Section 4.

2 Tabu Search/Memetic Algorithm

Algorithms that combine improvement methods with population-based solu-
tion combination algorithms, and hence that can be classified as memetic algo-
rithms [24], often prove effective for discrete optimization [13]. By linking the
global character of recombinant search with the more intensive focus typically
provided by local search, the memetic framework offers interesting possibil-
ities to create a balance between intensification and diversification within a
search procedure. Our TS/MA algorithm follows the general memetic frame-
work and is mainly composed of four components: a population initialization
and rebuilding procedure, a tabu search procedure, a specific solution com-
bination operator and a population updating rule. As previously noted, our
procedure more specifically adopts the form of a scatter search procedure, and
utilizes combinations from the structured class proposed for scatter search in
[10].
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2.1 Main scheme

The general architecture of our TS/MA algorithm is described in Algorithm
1. It starts with the creation of an initial population P (line 3, see Sect.
2.3). Then, the solution combination is employed to generate new offspring
solution (line 8, see Sect. 2.5), whereupon a TS procedure (line 9, see Sect.
2.4) is launched to optimize each newly generated solution. Subsequently, the
population updating rule decides whether such an improved solution should be
inserted into the population and which existing individual should be replaced
(line 14, see Sect. 2.6). Finally, if the population is not updated for a certain
number of generations, the population rebuilding procedure is triggered to
build a new population (line 21, see Sect. 2.3). In the following subsections,
the main components of our TS/MA algorithm are described in detail.

Algorithm 1 Pseudo-code of TS/MA for the MDP

1: Input: an n× n matrix (dij), a given cardinality m ≤ n

2: Output: the best solution x∗ found
3: P = {x1, . . . , xq} ← Pop Init() /∗ Section 2.3 ∗/
4: x∗ = arg max{f(xi)|i = 1, . . . , q}
5: while a stop criterion is not satisfied do

6: UpdateNonSucc = 0
7: repeat

8: randomly choose two solutions xi and xj from P

9: x0 ← Combination Operator(xi, xj) /∗ Section 2.5 ∗/
10: x0 ← Tabu Search(x0) /∗ Section 2.4 ∗/
11: if f(x0) > f(x∗) then

12: x∗ = x0

13: end if

14: {x1, . . . , xq} ← Pop Update(x0, x1, . . . , xq) /∗ Section 2.6 ∗/
15: if P does not change then

16: UpdateNonSucc = UpdateNonSucc + 1
17: else

18: UpdateNonSucc = 0
19: end if

20: until UpdateNonSucc > θ

21: P = {x1, . . . , xq} ← Pop Rebuild() /∗ Section 2.3 ∗/
22: end while

2.2 Search space and evaluation function

Given an n element set N = {e1, . . . , en}, the search space Ψ of the MDP
consists of all the m-element subsets of N ; i.e., Ψ = {S|S ⊂ N, |S| = m}.

Thus the search space size equals
(

n

m

)

. A feasible solution of the MDP can be
conveniently represented as an n-vector of binary variables x such that exactly
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m variables receive the value of 1 and the other n −m variables receive the
value of 0. Given a solution x ∈ Ψ, its quality or fitness is directly measured
by the objective function f(x) of Eq. (1).

2.3 Population initialization and rebuilding

The initial population contains q different local optimal solutions (q is a pa-
rameter and called the population size) and is constructed as follows. First, we
randomly generate an initial feasible solution, i.e., any binary n-vector with
exactly m elements assigned the value of 1. Then this solution is submitted to
the tabu search procedure to obtain an improved solution which is also a local
optimum but not necessarily a first local optimum encountered (see Sect. 2.4).
Then, the solution improved by tabu search is added in the population if it
does not duplicate any solution in the population. This procedure is repeated
until the population size reaches the specified value q.

The rationale of this simple strategy is based on the following experimental
observation. Given two local optimal solutions x1 and x2 which are achieved
by the TS procedure, the average distance between x1 and x2 is generally no
less than 10%, the distance being defined to be equal to 1 − c/m where c is
the number of common elements of x1 and x2 and m the given cardinality.

This procedure is also used by the TS/MA algorithm when the population is
not updated for θ consecutive generations (θ is a parameter and called the
population rebuilding threshold, see Algorithm 1, line 20). In this case, the
population is recreated as follows. First, the best solution x∗ from the old
population becomes the first member of the new population. Second, for each
of the remaining solutions in the old population, we carry out the following
steps: (1) randomly interchange ρ ·m variables with the value of 1 and ρ ·m
variables with the value of 0 where 0 < ρ < 1 (ρ is a parameter and called the
perturbation fraction); (2) this perturbed solution is submitted to tabu search
to obtain an improved solution; (3) if this refined solution is not a duplication
of any solution in the new population, it is added in the new population;
otherwise, the method returns to step (1).

2.4 Tabu search procedure

To improve the quality of a solution, we use a tabu search procedure which
applies a constrained swap operator to exchange a variable having the value
of 1 with a variable having the value of 0. More formally, given a feasible
solution x = {x1, . . . , xn}, let U and Z respectively denote the set of variables
with the value of 1 and 0 in x. Then, the neighborhood N(x) of x consists
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of all the solutions obtained by swapping two variables xi ∈ U and xj ∈
Z. Since this swap operator keeps the m cardinality constraint satisfied, the
neighborhood contains only feasible solutions. Clearly, for a given solution x,
its neighborhood N(x) has a size of m · (n−m).

To rapidly determine the move gain (the objective change on passing from the
current solution to its neighboring solution), we apply the following technique
which is similar to the technique used in [4].

First, we employ a vector ∆ to record the objective variation of moving a
variable xi from its current subset U/Z into the other subset Z/U . This vector
can be initialized as follows:

∆i =







∑

j∈U −dij (xi ∈ U)
∑

j∈U dij (xi ∈ Z)
(3)

Then, the move gain of interchanging two variables xi ∈ U and xj ∈ Z can be
calculated using the following formula:

δij = ∆i + ∆j − dij (4)

Finally, once a move is performed, we just need to update a subset of move
gains affected by the move. Specifically, the following abbreviated calculation
can be performed to update ∆ upon swapping variables xi and xj [21]:

∆k =



























−∆i + dij (k = i)

−∆j + dij (k = j)

∆k + dik − djk (k 6= {i, j}, xk ∈ U)

∆k − dik + djk (k 6= {i, j}, xk ∈ Z)

(5)

Given the size of the swap neighborhood which is equal to m ·(n−m), it could
be computationally costly to identify the best move at each iteration of tabu
search. To overcome this obstacle, we employ the successive filter candidate
list strategy of [12] that breaks a compound move (like a swap) into component
operations and reduces the set of moves examined by restricting consideration
to those that produce high quality outcomes for each separate operation.

For the swap move, we first subdivide it into two successive component oper-
ations: (1) move the variable xi from U to Z; (2) move the variable xj from
Z to U . Since the resulting objective difference of each foregoing operation
can be easily obtained from the vector ∆, we then pick for each component
operation the top cls variables (cls is a parameter and called the candidate list
size) in terms of their ∆ values recorded in a non-increasing order to construct
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the candidate lists UCL and ZCL. Finally, we restrict consideration to swap
moves involving variables from UCL and ZCL. The benefits of this strategy
will be verified in Section 3.3.

It should be clear that cls impacts the performance of the TS procedure.
A too large cls value may include some non-improving (unattractive) moves
in the neighborhood exploration while a too small value could exclude some
attractive moves. A parameter sensitivity analysis is provided in Section 3.3.1
where this parameter is studied in detail.

We give below a small example to illustrate how this method works. Suppose
we have a matrix D and a solution U = {x1, x3, x5, x8}, Z = {x2, x4, x6, x7},
then the best swap move is obtained with the following steps:

D =



















































0 5 6 2 4 2 1 6

5 0 4 2 6 8 9 2

6 4 0 5 3 6 2 5

2 2 5 0 7 4 8 4

4 6 3 7 0 3 2 2

2 8 6 4 3 0 6 7

1 9 2 8 2 6 0 1

6 2 5 4 2 7 1 0



















































(6)

Step1: compute the objective variation of moving a variable from U to Z
according to the Eq. (3) and obtain:

∆1 = −16, ∆3 = −14, ∆5 = −9, ∆8 = −13

Likewise, compute the objective variation of moving a variable from Z to U
and obtain:

∆2 = 17, ∆4 = 18, ∆6 = 18, ∆7 = 6

Step2: pick cls variables, say cls = 2 with the best objective variation from
U and Z respectively, then the selected candidate subsets will be UCL =
{x5, x8}, ZCL = {x4, x6}.

Step3: compute move gains according to Eq. (4), where a move consists in
swapping two variables from UCL and ZCL.

δ54 = −9 + 18 − 7 = 2, δ84 = −13 + 18 − 4 = 1, δ56 = −9 + 18 − 3 = 6,
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δ86 = −13 + 18− 7 = −2

Step4: determine the best move to interchange variables x5 from UCL and x6

from ZCL with the largest move gain of 6.

To ensure solutions visited within a certain span of iterations will not be
revisited, tabu search typically incorporates a short-term memory, known as
tabu list [12]. In our implementation, each time two variables xi and xj are
swapped, two random integers are taken from an interval tt = [a, b] (where
a and b are chosen integers) as the tabu tenure of variables xi and xj to
prevent any move involving either xi or xj from being selected for a specified
number of iterations. (The integers defining the range of tt are parameters
of our procedure, identified later.) Specifically, our tabu list is defined by a
n-element vector T . When xi and xj are swapped, we assign the sum of a
random integer from tt and the current iteration count Iter to the ith element
T [i] of T and the sum of another random integer from tt and Iter to T [j].
Subsequently, for any iteration Iter, a variable xk is forbidden to take part in
a swap move if T [k] > Iter.

Tabu search then restricts consideration to variables not currently tabu, and
at each iteration performs a swap move that produces the best (largest) move
gain according to Eq. (4). In the case that two or more swap moves have the
same best move gain, one of them is chosen at random.

To accompany this rule, a simple aspiration criterion is applied that permits a
move to be selected in spite of being tabu if it leads to a solution better than
the best solution found so far. The tabu search procedure terminates when
the best solution cannot be improved within a given number α of iterations
(α is a parameter and called the improvement cutoff ).

The pseudo-code of the tabu search procedure is shown in Algorithm 2.

2.5 Solution combination by reference to critical variables

Our memetic algorithm uses a dedicated solution combination operator to
generate promising offspring solutions. The combination operator is based on
the idea of critical variables which are given the name strongly determined and
consistent variables in [9]. In the context of the MDP, the notion of strongly
determined and consistent variables can be defined as follows.

Definition 1 (Strongly determined variables). Relative to a given solution
x = {x1, x2, ..., xn}, let U denote the set of variables with the value of 1 in x.
Then, for a specific variable xi ∈ U , the (objective function) contribution of
xi in relation to x is defined as:
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Algorithm 2 Pseudo-code of TS for the MDP
1: Input: a given solution x and its objective function value f(x)
2: Output: an improved solution x∗ and its objective function value f(x∗)
3: Initialize vector ∆ according to Eq. (3), initialize tabu list vector T by assigning

each element with value 0, initialize U and Z composed of variables with value of
1 and 0 in x, respectively, Iter = 0, NonImpIter = 0, x∗ = x, f(x∗) = f(x)

4: while NonImpIter < α do

5: Identify top cls variables from U and top cls variables from Z in terms of the ∆
value to construct UCL and ZCL

6: Identify the index i∗nt and j∗nt of non-tabu variables from UCL and ZCL that
leads to the maximum δ value (computed according to Eq. (4)) by swapping xi∗nt

and xj∗nt
(break ties randomly); Similarly identify i∗t and j∗t for tabu variables

7: if δi∗t j∗t
> δi∗ntj

∗

nt
and f(x∗) + δi∗t j∗t

> f(x∗) then

8: i∗ = i∗t , j
∗ = j∗t

9: else

10: i∗ = i∗nt, j
∗ = j∗nt

11: end if

12: xi∗ = 0, xj∗ = 1, f(x) = f(x) + δi∗j∗ , U = U\{xi∗} ∪ {xj∗}, Z = Z ∪
{xi∗}\{xj∗}

13: Update ∆ according to Eq. (5)
14: Update T by assigning T [i] = Iter + rand(tt), T [j] = Iter + rand(tt)
15: if f(x) > f(x∗) then

16: x∗ = x, f(x∗) = f(x)
17: NonImpIter = 0
18: else

19: NonImpIter = NonImpIter + 1
20: end if

21: Iter = Iter + 1

22: end while

V Ci(x) =
∑

xj∈U

dij (7)

Obviously, the objective function of the MDP can be computed with regard
to V C as follows:

f(x) =
1

2
·

∑

xi∈U

V Ci(x) (8)

We sort all the variables in a non-increasing order according to their objective
function contribution and select the top β variables (β is a parameter) as
strongly determined variables SD.

Definition 2 (Consistent variables). Relative to two local optimal (high qual-
ity) solutions xi and xj, let Ui and Uj respectively denote the set of variables
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with the value of 1 in xi and xj. Then, the consistent variables are defined as:

C = {xk|xk ∈ Ui ∩ Uj} (9)

Given two local optimal solutions xi and xj and a set of variables N , our critical
variable combination operator constructs one offspring solution according to
the following steps:

(1) Identify strongly determined variables SDi and SDj with regard to xi

and xj, respectively;
(2) Select consistent variables that simultaneously emerges in SDi and SDj;

i.e., CS = SDi ∩ SDj;
(3) Randomly pick m-|CS| variables from the set N -CS to satisfy the cardi-

nality constraint (maintaining the number of variables with the value of
1 equal to m);

(4) Construct a feasible offspring solution by assigning the value 1 to the
variables selected in steps (2) and(3) and assigning the value 0 to the
remaining variables.

2.6 Population updating

The population updating procedure is invoked each time a new offspring so-
lution is generated by the combination operator and then improved by tabu
search. As in a simple version of the scatter search template of [11], the im-
proved offspring solution is added into the population if it is distinct from any
solution in the population and better than the worst solution, while the worst
solution is removed from the population.

3 Experimental results and analysis

3.1 Benchmark instances

Three sets of benchmarks with a total of 40 large instances (with at least 2000
variables) are utilized to evaluate the performance of the proposed approach.
Small and medium scale benchmarks are excluded in our experimentation
because these problem instances can be easily solved by many heuristics in a
very short time and present no challenge for our TS/MA algorithm.

(1) Random Type 1 instances (Type1 22): 20 instances with n = 2000,m =
200, where dij are integers generated from a [0,10] uniform distribution.
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These instances are first introduced in [7] and can be downloaded from:
http://www.uv.es/∼rmarti/paper/md p.html.

(2) ORLIB instances (b2500): 10 instances with n = 2500,m = 1000, where
dij are integers randomly generated from [-100,100]. They all have a den-
sity of 0.1. These instances are derived from the UBQP problem by ig-
noring the diagonal elements and are available from ORLIB.

(3) Palubeckis instances (p3000 and p5000): 5 instances with n = 3000,m =
0.5n and 5 instances with n = 5000,m = 0.5n, where dij are integers
generated from a [0,100] uniform distribution. The density of the distance
matrix is 10%, 30%, 50%, 80% and 100%. The sources of the generator
and input files to replicate these problem instances can be found at:
http://www.soften.ktu.lt/∼gintaras/max div.html.

3.2 Experimental Protocol

Our TS/MA algorithm is programmed in C and compiled using GNU g++ on
a Xeon E5440 with 2.83GHz CPU and 8GB RAM 1 . Following the DIMACS
machine benchmark 2 , our machine requires 0.43, 2.62 and 9.85 CPU seconds
respectively for graphs r300.5, r400.5, and r500.5 compiled with gcc -O2. All
computational results were obtained with the parameter values shown in Ta-
ble 1 which are identified with the parameter sensitivity analysis provided in
Section 3.3.1.

Given the stochastic nature of our algorithm, we solve each instance in the
Type1 22 and ORLIB benchmarks 30 times, and solve each instance in the
Palubeckis benchmark 15 times. For the comparative study reported in Section
3.5, TS/MA uses time limit as the stopping condition, as other reference algo-
rithms did. For this purpose, we use SPEC - Standard Performance Evaluation
Corporation (www.spec.org) to determine the performance difference between
our computer and the reference machine of [29]. According to SPEC, our com-
puter is slightly faster with a factor of 1.17. Hence, we set the time limit to 17,
256, 513 and 1538 seconds respectively for the instances of Type1 22, b2500,
p3000 and p5000, which correspond to the stop condition used in [29].

1 Upon the publication of the paper, the source code of the TS/MA algorithm will
be made freely available to the public at: http://www.info.univ-angers.fr/pub/
hao/mdp.html
2 dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/
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Table 1
Settings of important parameters of the TS/MA algorithm

Parameters Section Description Value

q 2.3 population size 10
θ 2.3 population rebuilding threshold 30
ρ 2.3 perturbation fraction 0.3
tt 2.4 tabu tenure interval [15,25]
α 2.4 tabu search improvement cutoff 6 · m
cls 2.4 candidate list size of each component operation min(

√
m,

√
n − m)

β 2.5 number of strongly determined variables 0.7 · m

Table 2
Post-hoc test for solution sets obtained by varying q

p = 5 10 20 30 40

10 0.00057
20 0.00665 0.98856
30 0.00954 0.97713 1.00000
40 0.67881 0.08822 0.33919 0.40233
50 0.99509 0.00447 0.03686 0.05000 0.93341

Table 3
Post-hoc test for solution sets obtained by varying θ

θ = 10 20 30 40

20 0.94381
30 0.97070 0.99994
40 0.06421 0.32684 0.26205
50 0.00410 0.04573 0.03171 0.90493

Table 4
Post-hoc test for solution sets obtained by varying tt

tt = [1,15] [15,25] [15,50] [25,50] [25,100]

[15,25] 0.00039
[15,50] 0.03906 0.80788
[25,50] 0.03907 0.80786 1.00000
[25,100] 0.98891 0.00492 0.19158 0.19122
[50,100] 0.99959 0.00009 0.01470 0.01478 0.93517

Table 5
Post-hoc test for solution sets obtained by varying α

α = m 2 · m 3 · m 4· m 5· m 6· m 7· m 8· m 9 · m
2 · m 0.85330
3 · m 0.40765 0.99961
4 · m 0.18981 0.98742 0.99999
5 · m 0.07000 0.90758 0.99887 1.00000
6 · m 0.00000 0.00091 0.01459 0.05167 0.15025
7 · m 0.09187 0.93831 0.99961 1.00000 1.00000 0.11842
8 · m 0.56656 0.99999 1.00000 0.99983 0.99200 0.00640 0.99624
9 · m 0.00238 0.30550 0.76509 0.93839 0.99371 0.74514 0.98743 0.61304
10 · m 0.00033 0.10856 0.45123 0.72441 0.91867 0.94677 0.88215 0.30514 0.99999

3.3 Analysis of TS/MA parameters and key components

In this section, we conduct an parameter sensitivity analysis of the proposed
TS/MA algorithm and study some of its key components.

3.3.1 Parameter sensitivity analysis

We first show a parameter sensitivity analysis based on a subset of 11 diverse
instances. For each TS/MA parameter, we test a number of possible values
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Table 6
Post-hoc test for solution sets obtained by varying cls

cls = m0.1 m0.2 m0.3 m0.4 m0.5 m0.6 m0.7 m0.8 m0.9

m0.2 0.54620
m0.3 0.00009 0.20682
m0.4 0.00000 0.00069 0.80485
m0.5 0.00000 0.00001 0.27148 0.99846
m0.6 0.00000 0.00400 0.96156 0.99999 0.96747
m0.7 0.00006 0.16582 1.00000 0.85461 0.32774 0.97735
m0.8 0.02148 0.93895 0.96158 0.09351 0.00663 0.25356 0.93893
m0.9 0.36772 1.00000 0.34752 0.00210 0.00003 0.01062 0.28899 0.98470
m1.0 0.99005 0.99004 0.00952 0.00000 0.00000 0.00003 0.00676 0.32694 0.95488

Table 7
Post-hoc test for solution sets obtained by varying β

β = 0.1 · m 0.2 · m 0.3 · m 0.4 · m 0.5 · m 0.6 · m 0.7 · m 0.8 · m 0.9 · m
0.2 · m 1.00000
0.3 · m 0.89398 0.91762
0.4 · m 0.40401 0.44709 0.99885
0.5 · m 0.08163 0.09732 0.89377 0.99942
0.6 · m 0.02051 0.02487 0.63285 0.97663 0.99999
0.7 · m 0.00309 0.00376 0.28305 0.80029 0.99359 1.00000
0.8 · m 0.93734 0.95360 1.00000 0.99617 0.83526 0.54017 0.21556
0.9 · m 0.99999 1.00000 0.95358 0.53992 0.13699 0.03792 0.00602 0.97662
1.0 · m 1.00000 1.00000 0.93739 0.49383 0.11605 0.03077 0.00497 0.96654 1.00000

while fixing the other parameters to their default values from Table 1. We test
q (population size) in the range [5, 50], θ (population rebuilding threshold) in
the range [10, 50], ρ (tabu search perturbation fraction) in the range [0.1, 1.0],
α (tabu search improvement cutoff) in the range [m, 10 ·m], cls (candidate list
size) in the range [m0.1,m1.0] and β (number of strongly determined variables)
in the range [0.1·m,m]. Similarly, for the tabu tenure tt, we try several intervals
in the range [1,100]. For each instance and each parameter setting, we conduct
experiments under exactly the same conditions.

We use the Friedman test to see whether the performance of TS/MA varies
significantly in terms of its average solution values when we vary the value
of a single parameter as mentioned above. The Friedman test indicates that
the values of ρ do not significantly affect the performance of TS/MA (with
p-value=0.2983). This means that TS/MA is not very sensitive to the pertur-
bation fraction when rebuilding the population. However, the Friedman test
reveals a statistical difference in performance to the different settings of pa-
rameters q, θ, tt, α, cls and β (with p-values of 0.000509, 0.004088, 0.0001017,
1.281e-07, 1.735e-11 and 0.002715, respectively). Hence, we perform the Post-
hoc test to examine the statistical difference between each pair of settings of
these parameters and show the results in Tables 2 to 7.

Take the parameter q (population size) as an example, the p-value of 0.00057
(smaller than 0.05) of Post-hoc test for the pair of parameter settings (5, 10)
indicates a significant difference between these two settings. Figure 1 shows
that setting q = 10 produces significantly better average results than setting
q = 5. On the other hand, the Post-hoc result for the pair of parameter settings
(10, 20) is 0.98856 (greater than 0.05), the difference between these two settings
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are thus not statistically significant. By observing Tables 2 to 7, we conclude
that although certain pairs of settings present significant differences (with p-
value<0.05), there does not exist a determined setting for each parameter that
is significantly better than all the other settings.

To further investigate the performance of TS/MA with different settings for
each parameter, we show in Figure 1 the box and whisker plots which depict
the smallest result, lower quartile, median, upper quartile, and the largest
result obtained with each parameter value. For the sake of clarity, these results
are displayed as the percentage deviation of the average results from the best-
known results reported in the literature, computed as BKR−Avg.

BKR
· 100%.

From the box and whisker plots in Figure 1, we obtain the following ob-
servations. First, setting q ∈ {10, 20, 30}, θ ∈ {10, 20, 30}, tt ∈ [15, 25],
α ∈ {6 ·m, 10 ·m}, cls ∈ {m0.4,m0.5}, β ∈ {0.6 ·m, 0.7 ·m} seems preferable in
terms of both the solution quality and the variation of solution values. These
preferable settings for a parameter are actually obtained with the following
steps: (1) the parameter setting in Table 1 is adopted because it produced
the best average quality among all the settings; (2) statistical tests are con-
ducted to compare the adopted setting with alternative ones in order to see
whether different settings yield statistically different results; (3) the statistical
result suggests the existence of a range of values which are acceptably good
for this parameter, and in which the choice is partly arbitrary. By the above-
mentioned steps, a set of good values for each parameter can be determined. A
second observation is that varying values of the parameter cls, i.e., candidate
list size of the swap-based neighborhood mostly affects the performance of the
TS/MA algorithm, with deviations ranging from [0,0.5%] against deviations
ranging from [0,0.05%] with other parameters. Finally, we observe that the
performance of TS/MA is less sensitive to the population rebuilding threshold
(θ) than to other parameters with deviations less than 0.03% for each setting.

3.3.2 Tabu search analysis

In this section, we provide experiments to demonstrate the successive filter
candidate list strategy implemented in our tabu search procedure, denoted
as FastBestImp, plays an important role to the performance of the TS/MA
algorithm. For this purpose, we test the following three other tabu search
procedures within our TS/MA algorithm.

Successive 1-flip based tabu search (1-flip): This approach starts from an initial
feasible solution x and at each iteration first picks a variable xi from Z such
that flipping xi to the value of 1 would increase the objective function value
of the current solution x by the greatest amount. Next, given the selected
first flip, we pick a variable xj from U such that flipping xj to the value of 0
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Fig. 1. Box and whisker plot of the results obtained with different settings for each
sensitive parameter
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creates the least loss in the objective function value of x. These two successive
1-flip moves assure the resulting solution is always feasible with |U | = m.
In addition, each time a variable is flipped, a tabu tenure is assigned to the
variable to prevent it from being flipped again for the next A iterations (where
A is drawn randomly from the interval tt; see Table 1). Finally, a move leading
to a new solution better than the best solution found so far is always selected
even if it is classified tabu. The above procedure repeats until the solution
cannot be improved for consecutive m/4 iterations. Additional details can be
found in [20,29].

First Improvement based tabu search (FirstImp): Starting from an initial fea-
sible solution, each iteration sequentially fetches a variable xi from U and
then scans each variable xj from Z. If swapping xi and xj improves the cur-
rent solution, then we perform this move to obtain a new solution. If there is
no improved move by interchanging the unit-value of xi with the zero-value
of any variable from Z, we fetch the next variable from U and so on. If no
improved move is found by interchanging each variable from U and each vari-
able from Z, the best move among them (which does not improve the current
solution) is then performed. The selected variables xi and xj become tabu
active and thus neither can be involved in a new move during the next B
iterations (where B is drawn randomly from tt; see Table 1). However, if a
move improves the best solution found so far, it is always performed even if
it is tabu active. The method continues until the best solution found so far
cannot be improved for α consecutive iterations (see Table 1).

Best Improvement based tabu search (BestImp): The only difference between
BestImp and our FastBestImp approach is that BestImp identifies a best neigh-
borhood solution within the complete swap neighborhood, without employing
the successive filter candidate list strategy described in Section 2.4. Several
algorithms in the literature (e.g.,[5,14,25]) are based on BestImp.

We carry out experiments for the TS/MA algorithm with FastBestImp re-
placed by 1-flip, FirstImp and BestImp while keeping other components un-
changed. All the 3 sets of benchmarks with a total of 40 instances (see Section
3.1) are used for each TS/MA variant. The experimental results are shown in
Figure 2, in which the left portion and the right portion respectively present
the best gap and the average gap, for each tested instance, to the best known
result.

As shown in the left portion of Figure 2, FastBestImp achieves the best per-
formance with a smaller gap between the best solution value and the best
known result than 1-flip, FirstImp and BestImp for each instance, except for
several Type1 22 instances where both FastBestImp and 1-flip can reach the
best known results. In addition, 1-flip basically outperforms FirstImp and
BestImp for the Type1 22 instances while BestImp outperforms 1-flip and
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Fig. 2. Best and average solution gaps to the best known result for 3 sets of bench-
mark instances

FirstImp for the ORLIB and Palubeckis instances.

When it comes to the average gap to the best known result, the right por-
tion of Figure 2 clearly shows that once again FastBestImp achieves the best
performance among the compared strategies for all the tested instances. In
addition, the comparison among 1-flip, FirstImp and BestImp indicates that
1-flip generally performs better for the Type1 22 and ORLIB instances while
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Table 8
TS/MAcx versus TS/MAux using Wilcoxon’s test (at the 0.05 level)

TS/MAcx TS/MAux

Problem R+

TS/MAcx

R-

TS/MAux

p-value Diff.?
AD-B AD-Av AD-B AD-Av

Type1 22 190 0 0.000143 Yes 0 9.57 0.40 27.38

ORLIB 55 0 0.001953 Yes 0 67.21 0 267.39

Palubeckis 55 0 0.001953 Yes -212.10 -151.51 -194.50 38.48

BestImp performs better for the Palubeckis instances.

3.3.3 Solution combination operator analysis

In order to assess the role of the operator described in Section 2.5 for combining
solutions, we conduct additional experiments to compare it with a traditional
uniform crossover operator for combining solutions [28]. For the MDP, uniform
crossover consists in identifying variables that have the value of 1 in both
parents and keeping this value unchanged for these variables in the offspring
solution. Then the remaining variables are randomly assigned the value 0 or
1 subject to the cardinality constraint, i.e., the total number of variables with
the value of 1 equals m in the offspring solution.

We compare this modified TS/MA algorithm with the uniform crossover, de-
noted by TS/MAux, and the original TS/MA with the critical variable solution
combination operator, denoted by TS/MAcx under the same experimental con-
ditions (see Section 3.2). In order to detect the difference between TS/MAux

and TS/MAcx, we also conduct the Wilcoxon nonparametric statistical test
and summarize the results in Table 8. In this table, columns 2 to 5 report the
results from the Wilcoxon test in terms of the average quality. Column AD-
B reports the average gap over each set of benchmark instances of the best
solution value to the best known result. Column AD-AV reports the average
gap over each set of benchmark instances of the average solution values to the
best known results.

The following observations can be made from Table 8. First, the results from
the Wilcoxon test indicate that TS/MAcx is significantly better than TS/MAux

for each set of benchmark instances. Second, in terms of AD-B, TS/MAcx

performs better than TS/MAux for both Type1 22 (0 for TS/MAcx versus 0.40
for TS/MAux) and Palubeckis benchmarks (-212.1 for TS/MAcx versus -194.50
for TS/MAux). TS/MAcx performs the same as TS/MAux for the ORLIB
benchmark considering that both can reach the best known results for each
instance. Notice that although inferior to TS/MAcx, TS/MAux is still able to
improve the best known results over the Palubeckis benchmark. Finally, in
terms of AD-Av, TS/MAcx always outperforms TS/MAux.
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Table 9
Computational results obtained by TS/MA for Type1 22 instances

TS/MA
Instance BKR

Best Succ. Avg. σ Tbest Tavg.

Type1 22.1 114271 114271(0) 17/30 114260.63(10.37) 15.96 11.64 11.91
Type1 22.2 114327 114327(0) 28/30 114318.20(8.80) 32.93 8.89 9.25
Type1 22.3 114195 114195(0) 16/30 114186.47(8.53) 13.14 9.34 9.84
Type1 22.4 114093 114093(0) 3/30 114073.10(19.90) 17.91 12.68 10.39
Type1 22.5 114196 114196(0) 7/30 114166.50(29.50) 33.24 12.48 11.92
Type1 22.6 114265 114265(0) 9/30 114249.40(15.60) 12.08 9.81 10.83
Type1 22.7 114361 114361(0) 30/30 114361.00(0.00) 0.00 7.16 7.16
Type1 22.8 114327 114327(0) 21/30 114301.77(25.23) 39.69 6.88 6.76
Type1 22.9 114199 114199(0) 8/30 114191.17(7.83) 11.03 9.07 10.04
Type1 22.10 114229 114229(0) 21/30 114224.90(4.10) 12.08 10.16 9.71
Type1 22.11 114214 114214(0) 8/30 114189.70(24.30) 18.10 11.85 11.56
Type1 22.12 114214 114214(0) 6/30 114192.50(21.50) 18.23 10.10 10.31
Type1 22.13 114233 114233(0) 28/30 114231.77(1.23) 5.94 10.37 10.39
Type1 22.14 114216 114216(0) 28/30 114212.43(3.57) 19.02 7.70 8.05
Type1 22.15 114240 114240(0) 6/30 114238.27(1.73) 2.02 9.72 10.35
Type1 22.16 114335 114335(0) 17/30 114327.73(7.27) 10.51 7.64 9.65
Type1 22.17 114255 114255(0) 13/30 114243.27(11.73) 12.18 8.69 10.01
Type1 22.18 114408 114408(0) 15/30 114407.00(1.00) 1.00 4.41 6.13
Type1 22.19 114201 114201(0) 24/30 114197.00(4.00) 8.00 7.10 6.81
Type1 22.20 114349 114349(0) 21/30 114333.40(15.60) 28.49 8.76 9.66

Av. (0) 15.3/30 (11.09) 15.58 9.22 9.54

Table 10
Computational results obtained by TS/MA for ORLIB instances

TS/MA
Instance BKR

Best Succ. Avg. σ Tbest Tavg.

b2500-1 1153068 1153068(0) 30/30 1153068.00(0.00) 0.00 66.50 66.50
b2500-2 1129310 1129310(0) 25/30 1129236.13(73.87) 179.60 109.20 114.68
b2500-3 1115538 1115538(0) 22/30 1115353.27(184.73) 306.35 94.70 104.00
b2500-4 1147840 1147840(0) 15/30 1147681.00(159.00) 159.11 79.10 87.30
b2500-5 1144756 1144756(0) 22/30 1144710.80(45.20) 76.58 51.92 51.00
b2500-6 1133572 1133572(0) 24/30 1133517.60(54.40) 108.80 78.90 81.39
b2500-7 1149064 1149064(0) 17/30 1148999.00(65.00) 74.33 109.29 89.10
b2500-8 1142762 1142762(0) 21/30 1142760.80(1.20) 1.83 96.74 95.28
b2500-9 1138866 1138866(0) 30/30 1138866.00(0.00) 0.00 80.08 80.08
b2500-10 1153936 1153936(0) 30/30 1153936.00(0.00) 0.00 98.04 98.04

Av. (0) 23.6/30 (58.34) 90.66 86.45 86.74

Table 11
Computational results obtained by TS/MA for Palubeckis instances

TS/MA
Instance BKR

Best Succ. Avg. σ Tbest Tavg.

p3000-1 6502308 6502330(-22) 5/15 6502272.93(35.07) 41.86 243.52 301.49
p3000-2 18272568 18272568(0) 15/15 18272568.00(0.00) 0.00 172.12 172.12
p3000-3 29867138 29867138(0) 15/15 29867138.00(0.00) 0.00 73.72 73.72
p3000-4 46915044 46915044(0) 14/15 46915042.80(1.20) 4.49 289.64 302.48
p3000-5 58095467 58095467(0) 13/15 58095464.73(2.27) 5.78 123.13 132.00
p5000-1 17509215 17509369(-154) 12/15 17509336.60(-121.60) 95.56 945.58 984.86
p5000-2 50102729 50103071(-342) 4/15 50103044.40(-315.40) 23.13 730.26 993.07
p5000-3 82039686 82040316(-630) 2/15 82040144.67(-458.67) 69.32 1079.56 965.99
p5000-4 129413112 129413710(-598) 5/15 129413511.87(-399.87) 151.40 1063.31 1055.73
p5000-5 160597781 160598156(-375) 2/15 160598016.87(-235.87) 82.06 792.20 771.47

Av. (-212.1) 8.7/15 (-149.29) 47.36 551.30 575.29

3.4 Computational results for TS/MA

Tables 9, 10 and 11 respectively show the computational statistics of the
TS/MA algorithm on the 20 Type1 22 instances, 10 ORLIB instances and
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10 Palubeckis instances. In each table, columns 1 and 2 give the instance
names (Instance) and the best known results (BKR) reported in the liter-
ature [6,19,25,29]. As indicated in [29] (see its tables 4-6 and 11), some of
these best known results are obtained with a relaxed time limit, around 20
to 60 times longer than in a typical setting. The columns under the heading
TS/MA report the best solution values (Best) along with the gap of Best to
BKR shown in parenthesis (BKR-Best), the success rate (Succ.) for reaching
Best, the average solution values (Avg.) along with the gap of Avg. to BKR
shown in parenthesis (BKR-Avg.), the standard deviation (σ), the average
time (Tbest) required over the runs which actually reach the value Best and
the average time (Tavg.) required to reach the best solution value found in each
run (in seconds). To calculate Tbest and Tavg., we use a pair of elements (fi, ti)
to record the best solution value obtained in the ith run and the time needed
to reach this value. Then we sort the pairs obtained over all N runs according
to their solution values, say f1 ≥ . . . ≥ fu ≥ Best > fv . . . ≥ fN . Finally, we
set Tbest =

∑u
i=1 ti/u and Tavg. =

∑N
i=1 ti/N . Results marked in bold indicate

that TS/MA matches BKR and if also marked in italic indicate that TS/MA
improves BKR. Furthermore, the last row Av. summarizes TS/MA’s average
performance over the whole set of benchmark instances. Notice that the rea-
son we show both Tbest and Tavg. lies in the fact that the proposed algorithm
does not necessarily lead to the same best value in each run because of its
stochastic nature. Only if all the runs for solving a specific instance reach the
BKR, the Tavg. and Tbest will be completely the same.

From Tables 9, 10 and 11, we observe that TS/MA can easily reach the best
known results for all the tested instances within the given time limit, which
none of current state-of-the-art algorithms can compete with. In particular,
TS/MA improves the best known results for 6 Palubeckis instances and even
its average quality is better than the best known results previously reported in
the literature. Finally, we mention that for these 6 Palubeckis instances, similar
improved best known results were reported very recently and independently
in [31].

3.5 Comparison with state-of-the-art algorithms

In order to further evaluate our TS/MA algorithm, we compare it with four
best performing algorithms recently proposed in the literature. These reference
methods are Iterated Tabu Search (ITS) [25], Variable Neighborhood Search
(VNS) [6], Tuned Iterated Greedy (TIG) [19] and Learnable Tabu Search with
Estimation of Distribution Algorithm (LTS-EDA) [29]. The results of these
reference algorithms are directly extracted from [29]. Notice that the BKR
values are the best values compiled from Tables 4-6 and 11 of [29] which were
obtained within the typical and longer time limit. This study is carried out
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Table 12
Comparison among TS/MA and other state-of-the-art algorithms for Type1 22 in-
stances

ITS[2007] VNS[2009] TIG[2011] LTS-EDA[2012] TS/MA
Instance BKR

Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.

Type1 22.1 114271 65 209.87 48 150.60 48 101.57 5 60.73 0 10.37
Type1 22.2 114327 29 262.27 0 168.87 0 69.90 0 89.87 0 8.80
Type1 22.3 114195 69 201.40 19 110.83 5 117.77 0 98.97 0 8.53
Type1 22.4 114093 22 200.53 70 188.13 58 141.93 0 79.87 0 19.90
Type1 22.5 114196 95 273.27 87 184.10 99 194.70 51 134.47 0 29.50
Type1 22.6 114265 41 168.17 30 99.30 9 96.20 0 40.17 0 15.60
Type1 22.7 114361 12 167.47 0 56.30 0 71.27 0 18.20 0 0.00
Type1 22.8 114327 25 256.40 0 163.33 0 193.60 0 159.10 0 25.23
Type1 22.9 114199 9 139.83 16 78.47 16 80.37 0 70.97 0 7.83
Type1 22.10 114229 24 204.93 7 139.33 35 121.43 0 56.20 0 4.10
Type1 22.11 114214 74 237.77 42 145.13 59 139.57 3 69.87 0 24.30
Type1 22.12 114214 55 249.53 95 143.30 88 156.00 15 84.93 0 21.50
Type1 22.13 114233 93 279.87 22 168.07 42 167.40 6 85.30 0 1.23
Type1 22.14 114216 92 248.50 117 194.30 64 202.80 0 81.00 0 3.57
Type1 22.15 114240 11 117.50 1 62.87 6 80.53 0 22.03 0 1.73
Type1 22.16 114335 11 225.40 42 215.43 35 67.90 0 36.47 0 7.27
Type1 22.17 114255 56 217.53 0 170.00 18 144.53 6 57.07 0 11.73
Type1 22.18 114408 46 169.97 0 57.10 2 117.37 2 22.83 0 1.00
Type1 22.19 114201 34 243.20 0 124.60 0 144.37 0 35.87 0 4.00
Type1 22.20 114349 151 270.67 65 159.43 45 187.23 0 95.40 0 15.60

Av. 50.7 217.20 33.05 138.97 31.45 129.82 4.40 69.97 0 11.09

Table 13
Comparison among TS/MA and other state-of-the-art algorithms for ORLIB in-
stances

ITS[2007] VNS[2009] TIG[2011] LTS-EDA[2012] TS/MA
Instance BKR

Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.

b2500-1 1153068 624 3677.33 96 1911.93 42 1960.33 0 369.20 0 0.00
b2500-2 1129310 128 3677.33 88 1034.33 1096 1958.47 154 453.53 0 73.87
b2500-3 1115538 316 3281.93 332 1503.67 34 2647.87 0 290.40 0 184.73
b2500-4 1147840 870 2547.93 436 1521.07 910 1937.13 0 461.73 0 159.00
b2500-5 1144756 356 1800.27 0 749.40 674 1655.87 0 286.07 0 45.20
b2500-6 1133572 250 2173.47 0 1283.53 964 1807.60 80 218.00 0 54.40
b2500-7 1149064 306 1512.60 116 775.47 76 1338.73 44 264.60 0 65.00
b2500-8 1142762 0 247.73 96 862.47 588 1421.53 22 146.47 0 1.20
b2500-9 1138866 642 2944.67 54 837.07 658 1020.60 6 206.33 0 0.00
b2500-10 1153936 598 2024.60 278 1069.40 448 1808.73 94 305.27 0 0.00

Av. 409 2388.79 149.6 1154.83 549 1755.69 40 300.16 0 58.34

Table 14
Comparison among TS/MA and other state-of-the-art algorithms for Palubeckis
instances

ITS[2007] VNS[2009] TIG[2011] LTS-EDA[2012] TS/MA
Instance BKR

Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.

p3000-1 6502308 466 1487.53 273 909.80 136 714.67 96 294.07 -22 35.07
p3000-2 18272568 0 1321.60 0 924.20 0 991.07 140 387.00 0 0.00
p3000-3 29867138 1442 2214.73 328 963.53 820 1166.13 0 304.33 0 0.00
p3000-4 46915044 1311 2243.93 254 1068.47 426 2482.20 130 317.07 0 1.20
p3000-5 58095467 423 1521.60 0 663.00 278 1353.27 0 370.40 0 2.27
p5000-1 17509215 2200 3564.93 1002 1971.27 1154 2545.80 191 571.00 -154 -121.60
p5000-2 50102729 2910 4786.80 1478 2619.00 528 2511.73 526 892.80 -342 -315.40
p5000-3 82039686 5452 8242.33 1914 3694.40 2156 6007.13 704 1458.53 -630 -458.67
p5000-4 129413112 1630 5076.90 1513 2965.90 1696 3874.80 858 1275.20 -598 -399.87
p5000-5 160597781 2057 4433.90 1191 2278.30 1289 2128.90 579 1017.90 -375 -235.87

Av. 1789.1 3489.43 795.3 1805.79 848.3 2377.57 322.4 688.83 -212.1 -149.29
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Table 15
TS/MA versus ITS, VNS, TIG and LTS-EDA (Wilcoxon’s test at the 0.05 level)

Type1 22 ORLIB Palubeckis
p-value Diff.? p-value Diff.? p-value Diff.?

ITS 1.91e-06 Yes 0.002 Yes 0.002 Yes
VNS 1.91e-06 Yes 0.002 Yes 0.002 Yes
TIG 1.91e-06 Yes 0.002 Yes 0.002 Yes

LTS-EDA 1.91e-06 Yes 0.002 Yes 0.002 Yes

under the same time condition as that used in [29] (see Section 3.2).

Tables 12, 13 and 14 display the best and average solution values obtained
by ITS, VNS, TIG, LTS-EDA and our TS/MA algorithm. Since the absolute
solution values are very large, we report the gap of best and average solution
values to the best known results. Smaller gaps indicate better performances.
Negative gaps represent improved results. The best performances among the 5
compared algorithms are highlighted in bold. In addition, the averaged results
over the whole set of instances are presented in the last row.

As we can observe from Tables 12, 13 and 14, our TS/MA algorithm out-
performs the four reference algorithms in terms of both the best and average
solution values. Specifically, TS/MA is able to match or surpass the best
known results for all the 40 instances, while ITS, VNS TIG and LTS-EDA
can only match 2, 10, 5 and 19 out of 40 instances, respectively. Furthermore,
the average gap to the best known results of TS/MA is much smaller than
that of each reference algorithm.

We also conduct nonparametric statistical tests to verify the observed dif-
ferences between TS/MA and the reference algorithms in terms of solution
quality are statistically significant. Table 15 summarizes the results by means
of the Wilcoxon signed-ranked test, where p-value<0.05 indicates that there
is significant difference between our TS/MA algorithm and a reference algo-
rithm. We observe that TS/MA is significantly better than all these reference
algorithms for each set of benchmark.

In sum, this comparison demonstrates the efficacy of our TS/MA algorithm
in attaining the best and average solution values.

4 Conclusion

In this paper, we have proposed an effective memetic algorithm for the max-
imum diversity problem based on tabu search. The tabu search component
utilizes successive filter candidate list strategy and is joined with a solution
combination strategy based on identifying strongly determined and consistent
variables.
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Computational experiments on three sets of 40 popular benchmark instances
have demonstrated that the proposed TS/MA algorithm is capable of easily
attaining all the previous best known results and improving the best known
results for 6 instances. Moreover, statistical tests have confirmed that our pro-
posed algorithm performs significantly better than several recently proposed
state-of-the-art algorithms.

In addition to a parameter sensitivity analysis, we have studied the effects
of the dedicated tabu search procedure based on the swap move combined
with the successive filter candidate list strategy and the specific combination
operator based on the concept of strongly determined and consistent variables.
These studies have confirmed the importance of these two key components for
the high performance of the proposed algorithm.

Finally, even if some best-known results could further be improved for the
tested benchmark instances, unfortunately it is unknown how far these results
are away from the optimal solutions given that these instances are too large
to be solved to optimality by the existing exact methods. An interesting issue
would be to devise methods which are able to deliver tight upper bounds.
Another research direction is to characterize the hardness of the existing in-
stances and design a parameterable model for generating new benchmarks
whose difficulty could be controlled.
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