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This paper presents two algorithms combining GRASP and Tabu Search for solving the Unconstrained

Binary Quadratic Programming (UBQP) problem. We first propose a simple GRASP-Tabu Search

algorithm working with a single solution and then reinforce it by introducing a population manage-

ment strategy. Both algorithms are based on a dedicated randomized greedy construction heuristic and

a tabu search procedure. We show extensive computational results on two sets of 31 large random

UBQP instances and one set of 54 structured instances derived from the MaxCut problem. Comparisons

with state-of-the-art algorithms demonstrate the efficacy of our proposed algorithms in terms of both

solution quality and computational efficiency. It is noteworthy that the reinforced GRASP-Tabu Search

algorithm is able to improve the previous best known results for 19 MaxCut instances.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of the unconstrained binary quadratic program-
ming problem is to maximize the function:

f ðxÞ ¼ x0Qx¼
Xn

i ¼ 1

Xn

j ¼ 1

qijxixj ð1Þ

where Q ¼ ðqijÞ is an n�n matrix of constants and x is an n-vector
of binary (zero-one) variables, i.e., xiAf0;1g, i¼ 1, . . . ,n.

The UBQP is notable for its ability to formulate a wide range of
important problems, including those from financial analysis [23],
social psychology [16], machine scheduling [1], computer aided
design [20] and cellular radio channel allocation [9]. Besides, due
to the ability to incorporate quadratic infeasibility constraints
into the objective function in an explicit manner, UBQP enables
itself to serve as a common model for a wide range of combina-
torial optimization problems. A review of additional applications
and the re-formulation procedures can be found in Kochenberger
et al. [19] demonstrating the utility of UBQP for a variety of
applications.

During the last two decades, a large number of procedures for
solving the UBQP have been reported in the literature. Among
them are several exact methods using branch and bound or
branch and cut (see, e.g., [6,17,30]). Due to the fact that the exact

methods become prohibitively expensive to apply for solving
large instances, various metaheuristic algorithms have been
extensively used to find high-quality solutions to large UBQP
instances in an acceptable time. Some representative metaheur-
istic methods include local search heuristics [7], Simulated
Annealing [4,18], adaptive memory approaches based on Tabu
Search [14,15,27,29]; population-based approaches such as Evo-
lutionary Algorithms [5,21,25], Scatter Search [2] and Memetic
Algorithms [22,26].

This paper presents two algorithms for the UBQP that combine
GRASP and Tabu Search. The first, GRASP-TS, uses a basic GRASP
algorithm with single solution search while the other, GRASP-TS/
PM, launches each tabu search by introducing a population
management strategy based on an elite reference set. In GRASP-
TS/PM we pick a single solution at a time from the reference set,
and operate on it, utilizing the ideas of ‘‘elite solution recovery’’
and ‘‘probabilistic evaluation’’ proposed in Glover et al. [12] and
Xu et al. [37]. Our experimental testing discloses that GRASP-TS/
PM yields very competitive outcomes on a large range of both
random and structured problem instances.

To assess the performance and the competitiveness of our
algorithms inn terms of both solution quality and efficiency, we
provide computational results on 31 large random benchmark
instances with up to 7000 variables as well as 54 instances
derived from the MaxCut problem.

The remaining part of the paper is organized as follows.
Sections 2 and 3 describe respectively the basic GRASP-Tabu
Search algorithm and the GRASP-Tabu Search algorithm
with Population Management. Section 4 is dedicated to the
computational results and detailed comparisons with other
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state-of-the-art algorithms in the literature. Finally, concluding
remarks are given in Section 5.

2. GRASP-Tabu Search

2.1. General GRASP-TS procedure

The GRASP algorithm is usually implemented as a multistart
procedure [31,32], consisting of a randomized greedy solution
construction phase and a sequel local search phase to optimize
the objective function as far as possible. These two phases are
carried out iteratively until a stopping condition is satisfied.

Our basic GRASP-Tabu Search algorithm (denoted by GRASP-TS)
for the UBQP follows this general scheme (see Algorithm 1) and
uses a dedicated greedy heuristic for solution construction (see
Section 2.2) as well as tabu search [13] (see Section 2.3) as its local
optimizer.

Algorithm 1. Pseudo-code of GRASP-TS for UBQP.

1: Input: matrix Q

2: Output: the best binary n-vector xn found so far and its
objective value fn

3: f n ¼�1

4: repeat

5: Construct a greedy randomized solution x0 /n Section 2.2 n/
6: x0’ Tabu_Search(x0) /n Section 2.3 n/

7: if fðx0Þ4 fn then

8: xn ¼ x0, fn ¼ fðx0Þ

9: end if

10: until a stopping criterion is met

2.2. Solution construction

GRASP-TS constructs a new solution at each step according to
a greedy random construction heuristic, which was originally
used in probabilistic Tabu Search (PTS) [12,36,37] and motivated
by the fact that the GRASP construction resembles this PTS
approach.

The construction procedure consists of two phases: one is to
adaptively and iteratively select some variables to receive the
value 1; the other is to assign the value 0 to the left variables.
Starting with an empty solution, a variable xi with the maximum
qii is picked as the first element of the partial solution.

Given the partial solution px¼ fxk1
,xk2

, . . . ,xka g, indexed by
pi¼ fk1,k2, . . . ,kag, we calculate its objective function value (OFV)
as

OFVðpxÞ ¼
X

iApi,xi ¼ 1

qiiþ
X

jApi,ja i

qij � xj

0
@

1
A ð2Þ

At each iteration of the first phase we choose one unassigned
variable according to a greedy function and then assign value 1 to
it. Specifically, we calculate the objective function increment (OFI)
to the partial solution px if one unassigned variable xj (jAN\pi) is
added into px with value 1

OFIjðpxÞ ¼ qjjþ
X
iApi

ðqij � xiÞ ð3Þ

At each step, all the unassigned variables are sorted in an non-
increasing order according to their OFI values. Note that we only
consider the first rcl variables having non-negative OFI values,
where rcl is called the restricted candidate list size. The rth ranked
variable is associated with a bias br ¼ 1=er . Therefore, the rth

ranked variable is selected with probability p(r) that is calculated
as follows:

pðrÞ ¼ br

Xrcl

j ¼ 1

bj

,
ð4Þ

Once a variable xj is selected and added into the partial
solution px with the assignment value 1, the partial solution px

and its index pi, its objective function value OFV(px) and the left
variables’ OFI values are updated correspondingly as follows:

px0 ¼ px [ fxjg, pi0 ¼ pi [ fjg ð5Þ

OFVðpx0Þ ¼OFVðpxÞþOFIjðpxÞ ð6Þ

For any variable xk ðkAN\pi0Þ

OFIkðpx0Þ ¼ OFIkðpxÞþqjk ð7Þ

This procedure repeats until all the OFI values of the unas-
signed variables are negative. Then, the new solution is completed
by assigning the value 0 to all the left variables.

2.3. Tabu Search procedure

When a new solution is fully constructed, we apply the tabu
search procedure described in Lü et al. [22] to optimize this
solution. Our TS algorithm is based on a simple one-flip move

neighborhood, which consists of changing (flipping) the value of a
single variable xi to its complementary value 1�xi. Each time a
move is carried out, the reverse move is forbidden for the next
TabuTenure iterations. In our implementation, we selected to set
the tabu tenure by the assignment TabuTenureðiÞ ¼ ttcþrandð10Þ,
where ttc is a given constant and rand(10) takes a random value
from 1 to 10. Once a move is performed, one needs just to update
a subset of move values affected by the move. Accompanying this
rule, a simple aspiration criterion is applied that permits a move
to be selected in spite of being tabu if it leads to a solution better
than the current best solution. Our TS method stops when the
best solution cannot be improved within a given number m of
moves and we call this number the improvement cutoff. Interested
readers are referred to [22] for more details.

3. GRASP-Tabu Search with population management

3.1. General GRASP-TS/PM procedure

Starting from the basic GRASP-TS algorithm, we introduce
additional enhancements using the idea of maintaining a pool of
elite solutions. By combining GRASP-TS with the population
management strategy, our reinforced GRASP-TS/PM algorithm
offers a better balance between intensification and diversification
as a means of exploiting the search space. The general architec-
ture of the GRASP-TS/PM algorithm is described in Algorithm 2,
which is composed of four main components: a reference set
construction procedure (lines 4, 23 in Algorithm 2, Section 3.2), a
randomized greedy solution reconstruction operator (line 11 in
Algorithm 2, Section 3.3), a tabu search procedure (line 12 in
Algorithm 2, Section 2.3) and a reference set updating rule (lines
16–21 in Algorithm 2, Section 3.4).

GRASP-TS/PM starts from an initial reference set (RefSet)
consisting of b local optimum solutions (line 4), from which the
worst solution xw in terms of the objective value is identified
(line 6). Then, ExamineðxÞ ¼ True indicates that solution x is to be
examined (line 7). At each GRASP-TS/PM iteration, one solution x0

is randomly chosen from the solutions to be examined in RefSet

(Examineðx0Þ ¼ True), reconstructed according to the randomized
greedy heuristic and optimized by the tabu search procedure to
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local optimality (lines 9–12). If the improved solution x0 meets the
criterion of updating RefSet, the worst solution xw is replaced by x0

in RefSet and Examineðx0Þ is set to be True (lines 16–19). Then, the
new worst solution xw is identified (line 20). This procedure
repeats until all the solutions in RefSet have been examined.
When this happens, RefSet is rebuilt as the initial reference set
construction except that the best solution xn becomes a member
of the new RefSet (line 23).

Algorithm 2. Pseudo-code of GRASP-TS/PM for UBQP.

1: Input: matrix Q

2: Output: the best binary n-vector xn found so far and its
objective value fn

3: fn ¼�1

4: RefSet ’ Initialize_RefSet() /n Section 3.2 n/
5: while The stopping criterion is not satisfied do

6: Find the worst solution xw in RefSet in terms of the
objective value

7: LetExamineðxiÞ ¼ True, i¼ 1, . . . ,bð9RefSet9¼ bÞ

8: repeat

9: Randomly choose one individual x0 from RefSet with

Examineðx0Þ ¼ True

10: Examineðx0Þ ¼ False

11: x0’ Reconstruct_Solution(x0) /n Section 3.3 n/
12: x0’ Tabu_Search(x0) /n Section 2.3 n/

13: if fðx0Þ4 fn then

14: xn ¼ x0, fn ¼ fðx0Þ

15: end if

16: UpdateSucc’ Update_RefSet(RefSet,x0) /n Section3.4 n/
17: ifUpdateSucc is TRUE then

18: RefSet’RefSet [ fx0g\fxwg

19: Examineðx0Þ ¼ True

20: Record the new worst solution xw in RefSet

21: end if

22: until (8xARefSet, ExamineðxÞ ¼ False)
23: RefSet’ Reconstruct_RefSet(RefSet) /n Section 3.2 n/
24: end while

3.2. RefSet initialization and reconstruction

The initial reference set contains b different local optimum
solutions and is constructed as follows. Starting from scratch, we
randomly generate a solution, improve it to local optimality by
our tabu search procedure (Section 2.3) and then add it into the
reference set if this solution does not occur in RefSet. The
procedure repeats until the size of RefSet reaches b.

As shown in Algorithm 2, the reference set is recreated when
all the solutions in RefSet have been examined. In this case, the
best solution xn becomes a member of the new RefSet and the
remaining solutions are generated in the same way as in con-
structing the initial RefSet.

The initial or the renewed reference set can also be obtained by
applying the randomized greedy construction heuristic described in
Section 2.2. However, experimental studies showed although there
are no significant performance differences, random generation
generally leads to slightly better results. For this reason, we adopt
random generation of reference sets in this paper.

3.3. Solution reconstruction

In GRASP-TS/PM, a new solution is reconstructed based on an
elite solution, borrowing the idea of elite solution recovery
strategy described in Glover et al. [12] and Xu et al. [37]. More
specifically, GRASP-TS/PM creates a new solution by first

inheriting parts of the ‘‘good’’ assignments of one elite solution
in RefSet to form a partial solution and then completing the
remaining parts as GRASP-TS does. We describe how the partial
elite assignments are inherited as follows.

Given an elite solution x in RefSet, we reconstruct a new
solution by the strategic oscillation, which was proposed in the
early literature [11] in a multi-start role to replace the customary
multi-start design by using a destructive/constructive process
that dismantles only part of a selected solution and rebuilds the
remaining portion. Specifically, it exploits critical variables iden-
tified as strongly determined, and has come to be one of the basic
strategies associated with tabu search. This idea has also been
used in our recent work [34].

Let x¼ fx1,x2, . . . ,xng, indexed by N¼ f1, . . . ,ng. The objective

function contribution of a given variable xi relative to x is defined as

VCiðxÞ ¼ ð1�2xiÞ qiiþ
X

jAN\fig

qijxj

0
@

1
A ð8Þ

As noted in Glover et al. [14] and in a more general context in
Glover et al. [15], VCi(x) identifies the change in f(x) that results
from changing the value of xi to 1�xi; i.e.

VCiðxÞ ¼ f ðx0Þ�f ðxÞ ð9Þ

where x0j ¼ xj for jAN\fig and x0i ¼ 1�xi. We observe that under a
maximization objective if x is a locally optimal solution, as will
typically be the case when we select x to be a high quality
solution, then VCiðxÞr0 for all iAN, and the current assignment
of xi will be more strongly determined as VCi(x) is ‘‘more
negative’’.

After calculating each variable’s VC value, we sort all variables
in a non-decreasing order according to their VC values. Then the
top a variables are selected and assigned the same values as in x.
Thus, the assignments of these a strongly determined variables
form a partial solution. Note that, instead of using the ‘‘strongly
determined’’ move evaluations described above, an alternative
way to make the probabilistic assignments can be based on the
‘‘consistent variables’’ evaluations given by the population of elite
solutions as shown in Glover [11]. In addition, a combination of the
population-based determination and the move value-based deter-
mination would also be possible, as shown in Wang et al. [35].

With the partial elite solution, we fix the remaining variables
of the new solution using the randomized greedy heuristic as in
GRASP-TS (see Section 2.2). Note that GRASP-TS starts with an
empty solution to construct an initial solution.

3.4. RefSet updating

The updating procedure of RefSet is invoked each time a newly
constructed solution is improved by tabu search. Specifically, the
improved solution is added into RefSet if it is distinct from any
solution in the RefSet and better than the worst solution xw in
RefSet in terms of the objective function value. Under this
circumstance, xw is replaced and thus RefSet is updated.

3.5. Relations between GRASP-TS/PM and HMA [22]

The proposed GRASP-TS/PM algorithm shares some similari-
ties with the leading HMA algorithm [22] in the sense that both
algorithms manage a pool of solutions and use tabu search as
their local optimization procedure. However, there are notable
differences between them concerning the other key components.

First, GRASP-TS/PM uses a dedicated method to reconstruct,
from one elite solution, a new solution with a randomized greedy
heuristic while HMA recombines two solutions with two
crossover operators. Second, HMA updates its population by

Y. Wang et al. / Computers & Operations Research 40 (2013) 3100–31073102
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considering both quality and distance while the GRASP-TS/PM
uses a simpler rule by considering only the quality criterion.
Third, GRASP-TS/PM and HMA employ different rules to generate
the initial population. Fourth, GRASP-TS/PM renews its popula-
tion once each of its solutions has been used for reconstruction
while HMA has no corresponding operation. In summary, the
proposed algorithm is simpler than HMA in its design and
implementation. Yet, as we see below, GRASP-TS/PM is able to
achieve a very competitive performance.

4. Computational results

4.1. Test instances

Three sets of test problems are considered in the experiments.
Two of them are random UBQP problems and the other one is
derived from the MaxCut problem. The two sets of random UBQP
benchmarks are composed of 10 instances with size of 2500 from
ORLIB [3] and 21 larger instances with size ranging from n¼3000
to 7000 from http://www.soften.ktu.lt/� gintaras/ubqop_its.
html. Experiments reported in Glover et al. [15], Lü et al. [22],
Palubeckis [27], Palubeckis [29] showed that the large instances
with more than 5000 variables are particularly challenging.

The MaxCut benchmarks used contain 54 instances named
G1, . . .,G54 with size ranging from n¼800 to 3000 which are
available at http://www.stanford.edu/�yyye/yyye/Gset. These
instances are created by using a machine-independent graph
generator, comprising of toroidal, planar and random weighted
graphs with weight values 1, 0 or �1. Many authors including
[8,10,24,28,33] employ these instances to test their algorithms.
Note that we use the UBQP model to solve the MaxCut problem
through a simple transformation according to [19].

4.2. Experimental protocol and parameter setting

Our GRASP-Tabu Search algorithms are programmed in C and
compiled using GNU GCC on a PC running Windows XP with
Pentium 2.83 GHz CPU and 2 GB RAM. All computational results
were obtained without special tuning of the parameters, i.e., all
the parameters used in our algorithm are fixed (constant) for all
instances considered. Table 1 gives the descriptions and settings
of the parameters used in the two proposed algorithms, where the
last two columns respectively denote the settings for the set of 31
random UBQP instances and the set of 54 MaxCut instances.

These parameter values were determined based on prelimin-
ary experiments. For instance, we experimented with selecting rcl

A {50, 0:1 � n, 0:2 � n, 0:3 � n, 0:4 � n, 0:5 � n, 1:0 � n} on a preliminary
set of problem instances and observed that rcl ¼ 50 is a good
compromise in terms of the best objective value, average objec-
tive value, standard deviation and CPU time. The size of RefSet
(parameter b) was fixed similarly. Better parameter values would
be possible in some cases, but as we see below, the proposed

algorithms with the given parameter values are able to achieve a
highly competitive performance.

Our GRASP-TS algorithm uses the CPU clocks as the stop
condition while the GRASP-TS/PM algorithm requires the com-
pletion of at least one round of the GRASP-TS/PM process. The
time limit for the 10 ORLIB instances for a single run is set to be
1 min and for the 21 larger random instances with 3000, 4000,
5000, 6000 and 7000 variables is 5, 10, 20, 30 and 50 min,
respectively. Note that this time cutoff is the same as in Lü
et al. [22]. In addition, we set 30 min as the stop condition for the
54 MaxCut instances, which is comparable with the time reported
in Marti et al. [24].

Given the stochastic nature of our GRASP-Tabu Search algo-
rithms, we solve each problem instance independently 20 times
and show statistics over these 20 runs.

4.3. Computational results on the random UBQP instances

Table 2 shows the computational statistics of the GRASP-TS
and GRASP-TS/PM algorithms on the 31 UBQP instances. Columns
1 and 2 respectively give the instances names and the best known
objective values fprev in the literature. Note that these best values
were first reported in Palubeckis [27], Palubeckis [29] and
recently improved in Glover et al. [15] and Lu et al. [22]. The
columns under headings ‘‘GRASP-TS’’ and ‘‘GRASP-TS/PM’’ list
the best objective value fbest, the average objective value favr, the
standard variance of the objective value s and the average CPU
time time (seconds) for reaching fbest over the 20 runs. Further-
more, the last row ‘‘Average’’ indicates the summary of average
performances of our algorithms.

Table 2 discloses that generally GRASP-TS/PM performs better
than GRASP-TS on these UBQP benchmarks. First, we notice that
both GRASP-TS and GRASP-TS/PM can reach all the previous best
objective values for the 31 UBQP instances within the given time
limit, demonstrating their very good performance in finding the
best solution. However, GRASP-TS/PM is superior to GRASP-TS
when it comes to the average gap to the previous best objective
values gavr on these instances, 316.9 versus 509.6, although the
CPU time to obtain the best solution is slightly longer. Moreover,
the average variance of GRASP-TS/PM is 252.0, which is much
smaller than 386.4 of GRASP-TS.

In order to further evaluate our GRASP-TS and GRASP-TS/PM
algorithms, we compare our results with some best performing
algorithms in the literature. Notice that a completely fair compar-
ison is impossible since the reference algorithms are implemen-
ted by different authors and run under different conditions. Our
comparison here on the UBQP instances as well as that on the
MaxCut problem are thus presented only for indicative purposes
and should be interpreted with caution. Nevertheless, our experi-
ments provide an indication of the performance of the proposed
algorithms relative to the state-of-the-art algorithms.

For this purpose, we restrict our attention to comparisons in
terms of quality with six methods that have reported the best
results for the most challenging problems. These methods are
respectively named ITS [29], MST1 [27], MST2 [27], SA [18], D2TS
[15] and HMA [22]. Moreover, we focus only on the 11 largest and
most difficult instances with variables from 5000 to 7000 since
the best results for instances with size smaller than 5000 can be
easily reached by all these state-of-the art algorithms.

Table 3 shows the gap to the best known objective value of our
GRASP-TS and GRASP-TS/PM algorithms compared with the
reference algorithms. The last row presents the averaged results
over the 11 instances. The results of the first four reference
algorithms are directly extracted from Palubeckis [29], the
results of D2TS are from [15] and the results of HMA come from

Table 1
Settings of important parameters.

Parameters Section Description Values

UBQP MaxCut

b 3.2 RefSet size 10 10

a 3.3 Elite inheritance variables 0:25 � n 0:25 � n

rcl 2.2 Restricted candidate list 50 50

ttc 2.3 Tabu tenure constant n/100 n/10

m 2.3 Improvement cutoff of TS 5 � n 10,000

Y. Wang et al. / Computers & Operations Research 40 (2013) 3100–3107 3103
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Lü et al. [22]. Note that the results of all these algorithms are
obtained almost under the same time limit.

From Table 3 it is observed that both GRASP-TS and GRASP-TS/
PM outperform the five reference algorithms (ITS, MST1, MST2, SA
and D2TS) and are also competitive with our HMA algorithm in
terms of the quality of the best solution, demonstrating the
efficacy of the two GRASP-Tabu Search algorithms in finding the
best objective values. In order to further discriminate between
GRASP-TS, GRASP-TS/PM and HMA, we compare the average
solution gaps (20 independent runs) to the best known objective

values over 31 instances. We find that GRASP-TS/PM is slightly
better than HMA with a gap of 316.9 against 332.2. Also GRASP-TS
is inferior to both GRASP-TS/PM and HMA with a gap of 509.6.

We also apply the Friedman non-parametric statistical test
followed by the Post-hoc test to the results in Table 3 to see
whether there exists significant performance differences between
our proposed algorithms and the reference methods. Firstly, we
observe from the Friedman test that there is a significant
difference among the compared algorithms (with a p-value of
3.737e�06). Furthermore, the Post-hoc analysis shows that

Table 2
Computational results on UBQP instances.

Instance fprev GRASP-TS GRASP-TS/PM

fbest favr s Time fbest favr s Time

b2500.1 1,515,944 1,515,944 1,515,944 0 12 1,515,944 1,515,944 0 12

b2500.2 1,471,392 1,471,392 1,471,138 218 38 1,471,392 1,471,257 154 52

b2500.3 1,414,192 1,414,192 1,414,179 58 34 1,414,192 1,414,192 0 33

b2500.4 1,507,701 1,507,701 1,507,701 0 11 1,507,701 1,507,701 0 10

b2500.5 1,491,816 1,491,816 1,491,816 0 13 1,491,816 1,491,816 0 17

b2500.6 1,469,162 1,469,162 1,469,162 0 24 1,469,162 1,469,162 0 20

b2500.7 1,479,040 1,479,040 1,479,014 63 34 1,479,040 1,479,039 3 60

b2500.8 1,484,199 1,484,199 1,484,198 4 27 1,484,199 1,484,199 0 25

b2500.9 1,482,413 1,482,413 1,482,407 6 30 1,482,413 1,482,412 4 42

b2500.10 1,483,355 1,483,355 1,483,308 142 31 1,483,355 1,483,355 0 56

p3000.1 3,931,583 3,931,583 3,931,573 44 103 3,931,583 3,931,583 0 113

p3000.2 5,193,073 5,193,073 5,193,073 0 47 5,193,073 5,193,073 0 63

p3000.3 5,111,533 5,111,533 5,111,501 86 103 5,111,533 5,111,533 0 153

p3000.4 5,761,822 5,761,822 5,761,822 0 78 5,761,822 5,761,822 0 53

p3000.5 5,675,625 5,675,625 5,675,514 162 160 5,675,625 5,675,573 180 172

p4000.1 6,181,830 6,181,830 6,181,830 0 128 6,181,830 6,181,830 0 141

p4000.2 7,801,355 7,801,355 7,801,098 709 316 7,801,355 7,801,332 47 363

p4000.3 7,741,685 7,741,685 7,741,679 19 232 7,741,685 7,741,685 0 253

p4000.4 8,711,822 8,711,822 8,711,783 72 357 8,711,822 8,711,812 30 321

p4000.5 8,908,979 8,908,979 8,908,376 985 206 8,908,979 8,908,643 726 385

p5000.1 8,559,680 8,559,680 8,558,628 554 893 8,559,680 8,558,895 422 530

p5000.2 10,836,019 10,836,019 10,835,517 469 553 10,836,019 10,835,858 288 760

p5000.3 10,489,137 10,489,137 10,488,369 722 86 10,489,137 10,488,780 321 570

p5000.4 12,252,318 12,252,318 12,250,975 635 662 12,252,318 12,251,098 641 960

p5000.5 12,731,803 12,731,803 12,731,151 509 478 12,731,803 12,731,710 221 804

p6000.1 11,384,976 11,384,976 11,384,218 476 1314 11,384,976 11,384,613 205 1415

p6000.2 14,333,855 14,333,855 14,332,637 786 1255 14,333,855 14,333,119 843 229

p6000.3 16,132,915 16,132,915 16,130,966 1254 371 16,132,915 16,131,166 1224 1350

p7000.1 14,478,676 14,478,676 14,476,478 1128 2798 14,478,676 14,477,110 881 2540

p7000.2 18,249,948 18,249,948 18,247,495 1566 2178 18,249,948 18,248,499 901 1938

p7000.3 20,446,407 20,446,407 20,444,906 1310 1704 20,446,407 20,445,621 720 2809

Average 0a 509.6a 386.4 460.5 0a 316.9a 252.0 524.2

a The gaps to the previous best result (f prev�f best , f prev�f avr) are calculated.

Table 3
Best results comparison on larger UBQP instances.

Instance fprev Best solution gap (i.e., f prev�f best)

ITS MST1 MST2 SA D2TS HMA GRASP-TS GRASP-TS/PM

p5000.1 8,559,680 700 3016 325 1432 325 0 0 0

p5000.2 10,836,019 0 0 582 582 0 0 0 0

p5000.3 10,489,137 0 3277 0 354 0 0 0 0

p5000.4 12,252,318 934 3785 1643 444 0 0 0 0

p5000.5 12,731,803 0 5150 0 1025 0 0 0 0

p6000.1 11,384,976 0 3198 0 430 0 0 0 0

p6000.2 14,333,855 88 10,001 0 675 0 0 0 0

p6000.3 16,132,915 2729 11,658 0 0 0 0 0 0

p7000.1 14,478,676 340 7118 1607 2579 0 0 0 0

p7000.2 18,249,948 1651 8902 2330 5552 104 0 0 0

p7000.3 20,446,407 0 17,652 0 2264 0 0 0 0

Average 585.6 6705.2 589.7 1394.3 39 0 0 0
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GRASP-TS is significantly better than MST1 and SA (with p-values
of 5.330108e�06 and 3.622423e�03, respectively) but is not
significantly better than ITS, MST2 and D2TS (with p-values of
5.347580e�01, 5.347227e�01 and 9.995954e�01, respectively).

Since the best solution values obtained by GRASP-TS, GRASP-TS/
PM and HMA are the same, we carry out the above statistical tests
with regard to the average solution values. Notice that 31 UBQP
instances are considered in this experiment. Firstly, from the Fried-
man test, we confirm that there exists a significant performance
difference between GRASP-TS, GRASP-TS/PM and HMA (with a p-
value of 4.267e�06). Furthermore, the Post-hoc analysis shows that

both GRASP-TS/PM and HMA are significantly better than GRASP
(with p-values of 4.089688e�06 and 3.296903e�04, respectively).
However, we cannot conclude whether GRASP-TS/PM or HMA per-
forms significantly better than the other (with a p-value of
5.999315e�01).

4.4. Computational results on the MaxCut instances

In this section, we test GRASP-TS and GRASP-TS/PM on the 54
MaxCut instances and the results of this experiment are

Table 4
Computational results on MaxCut instances.

Instance fprev GRASP-TS GRASP-TS/PM

fbest favr s Time fbest favr s Time

G1 11,624 11,624 11,624.0 0.0 100 11,624 11,624.0 0.0 47

G2 11,620 11,620 11,619.6 0.7 677 11,620 11,620.0 0.0 210

G3 11,622 11,620 11,619.9 0.5 854 11,620 11,620.0 0.0 297

G4 11,646 11,646 11,646.0 0.0 155 11,646 11,646.0 0.0 49

G5 11,631 11,631 11,631.0 0.0 235 11,631 11,631.0 0.0 232

G6 2178 2178 2177.4 0.6 453 2178 2177.9 0.2 518

G7 2003 2006 2005.9 0.3 304 2006 2006.0 0.0 203

G8 2003 2005 2004.7 0.5 565 2005 2004.9 0.3 596

G9 2048 2054 2053.4 0.7 581 2054 2053.6 0.7 559

G10 1994 2000 1999.3 0.6 845 2000 1999.3 0.7 709

G11 564 564 564.0 0.0 18 564 564.0 0.0 10

G12 556 556 555.5 0.9 723 556 556.0 0.0 233

G13 582 582 581.1 1.0 842 582 581.8 0.6 516

G14 3064 3062 3061.6 0.5 812 3063 3062.1 0.4 1465

G15 3050 3040 3037.7 1.0 419 3050 3049.1 0.2 1245

G16 3052 3049 3044.4 1.2 1763 3052 3050.9 0.7 335

G17 3043 3043 3040.6 0.8 1670 3047 3045.8 1.1 776

G18 988 992 989.3 1.3 977 992 992.0 0.0 81

G19 903 906 904.4 1.0 490 906 906.0 0.2 144

G20 941 941 941.0 0.0 578 941 941.0 0.0 80

G21 931 927 925.7 0.8 484 931 930.6 0.5 667

G22 13,359 13,346 13,336.1 4.9 983 13,349 13,342.4 3.0 1276

G23 13,342 13,318 13,311.7 3.7 1668 13,332 13,322.4 4.4 326

G24 13,337 13,313 13,306.0 4.5 643 13,324 13,317.3 3.7 1592

G25 13,326 13,315 13,306.9 3.8 767 13,326 13,318.1 3.3 979

G26 13,314 13,306 13,294.8 4.9 1483 13,313 13,303.3 4.2 1684

G27 3318 3316 3304.2 4.5 256 3325 3318.1 3.7 832

G28 3285 3275 3267.8 3.5 82 3287 3277.4 3.8 1033

G29 3389 3386 3370.9 7.1 21 3394 3384.5 6.0 993

G30 3403 3395 3383.3 4.4 1375 3402 3393.4 4.1 1733

G31 3288 3286 3279.4 3.7 904 3299 3287.7 4.2 888

G32 1410 1394 1391.8 1.4 903 1406 1397.3 3.1 1232

G33 1382 1368 1365.6 1.0 1501 1374 1369.1 2.1 506

G34 1384 1376 1371.3 1.7 1724 1376 1372.5 2.2 1315

G35 7684 7653 7648.6 2.6 1124 7661 7657.4 2.7 1403

G36 7677 7646 7641.1 2.4 543 7660 7652.1 5.1 1292

G37 7689 7664 7657.1 2.4 983 7670 7662.0 4.1 1847

G38 7681 7653 7644.3 4.0 667 7670 7659.8 4.8 1296

G39 2395 2388 2381.9 2.5 911 2397 2387.1 5.0 742

G40 2387 2378 2359.6 5.8 134 2392 2384.3 5.8 1206

G41 2398 2367 2355.3 6.9 612 2398 2383.7 8.2 1490

G42 2469 2453 2447.5 2.9 1300 2474 2461.7 5.6 1438

G43 6660 6660 6658.3 1.0 969 6660 6659.4 0.7 931

G44 6650 6649 6647.1 1.1 929 6649 6647.7 0.8 917

G45 6654 6654 6652.5 0.8 1244 6654 6652.6 0.7 1791

G46 6645 6648 6645.4 1.4 702 6649 6646.0 1.7 405

G47 6656 6656 6654.5 1.0 1071 6656 6655.4 0.7 725

G48 6000 6000 6000.0 0.0 13 6000 6000.0 0.0 4

G49 6000 6000 6000.0 0.0 27 6000 6000.0 0.0 6

G50 5880 5880 5880.0 0.0 80 5880 5880.0 0.0 14

G51 3846 3843 3839.3 1.9 628 3847 3843.8 1.5 701

G52 3849 3844 3840.6 1.5 1274 3850 3846.8 1.9 1228

G53 3846 3847 3844.3 1.3 1317 3848 3845.8 1.0 1419

G54 3846 3848 3845.6 1.2 1231 3850 3847.8 1.9 1215

Average 5.76a 9.68a 1.89 770.6 0.78a 4.50a 1.96 804.3

a The gars to the previous best result (f prev�f best , f prev�f avr) are calculated.
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summarized in Table 4, using the same statistics as in Table 2. The
previous best results are from references [8,10,24,28,33].

From Table 4, we observe that GRASP-TS/PM outperforms
GRASP-TS with respect to the best and average objective values.
Specifically, GRASP-TS/PM has the best gap relative to the
previous best result of 0.78 on average over 54 instances while
GRASP-TS has a gap of 5.76. Moreover, GRASP-TS/PM has an
average objective gap over 20 runs relative to the previous best
known value of 4.50, which is two times smaller than obtained by
GRASP-TS with a gap of 9.68. However, GRASP-TS/PM needs
slightly more CPU time to reach its best solutions and its objective

value variance is slightly larger than GRASP-TS. It is noteworthy
that both methods achieve exceedingly high quality outcomes,
although GRASP-TS/PM emerges the clear winner. In particular,
GRASP-TS/PM improves the previous best known results on 19
instances (in bold), while GRASP-TS improves the previous best
known results for 9 instances.

For comparative purposes, Table 5 also includes the results of
three state-of-the-art algorithms. These reference methods are
Scatter Search [24] (column 3), CirCut heuristic [8] (column 4)
and VNSPR [10] (column 5). The last three rows of Table 5 show
the summary of the comparison between each algorithm includ-
ing ours and the previous best known results. The rows better,
equal, worse, respectively, denote the number of instances for
which each algorithm gets better, equal and worse results than
the previous best known results. The results of these reference
algorithms are directly extracted from Marti et al. [24] (results
obtained on a personal computer with a 3.2 GHz Intel Xenon
processor and 2.0 GB of RAM which is comparable to our
computer with a Pentium 2.83 GHz and 2.0 GB RAM). However,
not all the algorithms are run under the same conditions and
hence, this comparison should be interpreted with caution. Notice
also that while some reference algorithms are MaxCut specific
heuristics, our algorithm is designed for the more general UBQP
problem.

Table 5 discloses that GRASP-TS/PM and GRASP-TS can find
new best results on 19 and 9 instances, respectively among the 54
instances and both match the previous best known results on 20
and 18 instances. For the tested instances, both GRASP-TS/PM and
GRASP-TS perform better than the reference algorithms. In
particular, GRASP-TS/PM (GRASP-TS respect.) fails to reach the
best known results for 15 (27 respect.) instances while the
reference algorithms SS, CirCut and VNSPR fail on 32, 34 and 48
instances, respectively. The computing times (in seconds) to reach
the best solution of GRASP-TS (770) and GRASP-TS/PM (804) are
larger than SS (621) and CirCut (616) but much smaller than
VNSPR (64505).

As for Table 3, we apply the Friedman test and the Post-hoc test
to the results in Table 5 to see whether there are significant
performance differences between the proposed methods and other
competitors on the 54 MaxCut instances. Firstly, we discover from
the Friedman test that SS, CirCut, VNSPR, GRASP-TS and GRASP-TS/
PM demonstrate significant differences (with a p-value of 2.2e�16).
Secondly, when comparing GRASP-TS with SS, CirCut and VNSPR,
the Post-hoc analysis indicates that GRASP-TS is significantly better
than VNSPR (with a p-value of 3.788002e�10) but is not signifi-
cantly better than SS and CirCut (with p-values of 4.534268e�01
and 9.358923e�02, respectively). Thirdly, when comparing GRASP-
TS/PM with SS, CirCut and VNSPR, the Post-hoc analysis indicates
that GRASP-TS/PM is significantly better than SS, CirCut and VNSPR
(with p-values of 4.059707e�06, 2.433377e�08, 0.000000eþ00,
respectively). Finally, we observe that GRASP-TS/PM is significantly
better than GRASP-TS (with a p-value of 6.795472e�03).

In summary, the computational results on the 85 random and
structured instances demonstrate the efficacy of our proposed
GRASP-Tabu Search algorithms for solving the UBQP problems,
with GRASP-TS/PM emerging as superior to the other methods
studied in our comparative tests.

5. Conclusion

In this paper, we studied a simple and a population-based
GRASP-tabu Search algorithm for solving the UBQP problem. Both
algorithms are based on a dedicated randomized greedy con-
struction heuristic, enhanced by reference to the ideas of
‘‘strongly determined variables’’ and ‘‘elite solution recovery’’ of

Table 5
Best results comparison on MaxCut instances.

Instance fprev Best solution value

SS CirCut VNSPR GRASP-TS GRASP-TS/PM

G1 11,624 11,624 11,624 11,621 11,624 11,624

G2 11,620 11,620 11,617 11,615 11,620 11,620

G3 11,622 11,622 11,622 11,622 11,620 11,620

G4 11,646 11,646 11,641 11,600 11,646 11,646

G5 11,631 11,631 11,627 11,598 11,631 11,631

G6 2178 2165 2178 2102 2178 2178

G7 2003 1982 2003 1906 2006 2006
G8 2003 1986 2003 1908 2005 2005
G9 2048 2040 2048 1998 2054 2054
G10 2000 1993 1994 1910 2000 2000
G11 564 562 560 564 564 564

G12 556 552 552 556 556 556

G13 582 578 574 580 582 582

G14 3064 3060 3058 3055 3062 3063

G15 3050 3049 3049 3043 3040 3050

G16 3052 3045 3045 3043 3049 3052

G17 3043 3043 3037 3030 3043 3047
G18 988 988 978 916 992 992
G19 903 903 888 836 906 906
G20 941 941 941 900 941 941

G21 931 930 931 902 931 931

G22 13,359 13,346 13,346 13,295 13,346 13,349

G23 13,342 13,317 13,317 13,290 13,318 13,332

G24 13,337 13,303 13,314 13,276 13,313 13,324

G25 13,326 13,320 13,326 12,298 13,315 13,326

G26 13,314 13,294 13,314 12,290 13,306 13,313

G27 3318 3318 3306 3296 3316 3325
G28 3285 3285 3260 3220 3275 3287
G29 3389 3389 3376 3303 3389 3394
G30 3403 3403 3385 3320 3395 3402

G31 3288 3288 3285 3202 3286 3299
G32 1410 1398 1390 1396 1394 1406

G33 1382 1362 1360 1376 1368 1374

G34 1384 1364 1368 1372 1376 1376

G35 7684 7668 7670 7635 7653 7661

G36 7677 7660 7660 7632 7646 7660

G37 7689 7664 7666 7643 7664 7670

G38 7681 7681 7646 7602 7653 7670

G39 2395 2393 2395 2303 2388 2397
G40 2387 2374 2387 2302 2378 2392
G41 2398 2386 2398 2298 2367 2398

G42 2469 2457 2469 2390 2453 2474
G43 6660 6656 6656 6659 6660 6660

G44 6650 6648 6643 6642 6649 6649

G45 6654 6642 6652 6646 6654 6654

G46 6645 6634 6645 6630 6648 6649
G47 6656 6649 6656 6640 6656 6656

G48 6000 6000 6000 6000 6000 6000

G49 6000 6000 6000 6000 6000 6000

G50 5880 5880 5880 5880 5880 5880

G51 3846 3846 3837 3808 3843 3847
G52 3849 3849 3833 3816 3844 3850
G53 3846 3846 3842 3802 3847 3848
G54 3846 3846 3842 3820 3848 3850

Better – 0 0 0 9 19

Matched – 22 20 6 18 20

Worse – 32 34 48 27 15
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probabilistic Tabu Search, and using a tabu search local optimiza-
tion procedure. Additionally, the algorithm with population
management (GRASP-TS/PM) integrates a population manage-
ment strategy for maintaining a pool of diversified elite solutions.

Tested on three sets of 85 well-known random and structured
benchmark instances, we have shown that both GRASP-Tabu
Search algorithms obtain highly competitive results in compar-
ison with the previous best known results from the literature. In
particular, for the 54 structured instances derived from MaxCut,
GRASP-TS/PM can improve the best known objective values for 19
instances whose optimum solution values are still unknown. In
future work, we look forward to exploiting other forms of
population-based search strategies like Path Relinking and more
advanced tabu search mechanisms to provide further gains along
these lines.
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