

 Int. J. Metaheuristics, Vol. X, No. Y, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

Polynomial unconstrained binary
optimisation – part 2

Fred Glover*
1OptTek Systems, Inc.,
2241 17th Street, Boulder, CO 80302, USA
E-mail: glover@opttek.com
*Corresponding author

Jin-Kao Hao
Laboratoire d’Etude et de Recherche en Informatique (LERIA),
Université d’Angers,
2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
E-mail: jin-kao.hao@univ-angers.fr

Gary Kochenberger
School of Business Administration,
University of Colorado at Denver,
Denver, CO 80217, USA
E-mail: gary.kochenberger@cudenver.edu

Abstract: The class of problems known as quadratic zero-one (binary)
unconstrained optimisation has provided access to a vast array of combinatorial
optimisation problems, allowing them to be expressed within the setting of a
single unifying model. A gap exists, however, in addressing polynomial
problems of degree greater than 2. To bridge this gap, we provide methods for
efficiently executing core search processes for the general polynomial
unconstrained binary (PUB) optimisation problem. A variety of search
algorithms for quadratic optimisation can take advantage of our methods to be
transformed directly into algorithms for problems where the objective functions
involve arbitrary polynomials.
 Part 1 of this paper (Glover et al., 2010) provided fundamental results for
carrying out the transformations and described coding and decoding procedures
relevant for efficiently handling sparse problems, where many coefficients are
0, as typically arise in practical applications. In the present part 2 paper, we
provide special algorithms and data structures for taking advantage of the basic
results of part 1. We also disclose how our designs can be used to enhance
existing quadratic optimisation algorithms.

Keywords: zero-one optimisation; unconstrained polynomial optimisation;
metaheuristics; computational efficiency.

Reference to this paper should be made as follows: Glover, F., Hao, J-K. and
Kochenberger, G. (xxxx) ‘Polynomial unconstrained binary optimisation – part
2’, Int. J. Metaheuristics, Vol. X, No. Y, pp.000–000.

 2 F. Glover et al.

Biographical notes: Fred Glover holds the title of Distinguished Professor at
the University of Colorado and is Chief Technology Officer for OptTek
Systems, Inc. He has authored or co-authored more than 400 published articles
and eight books in the fields of mathematical optimisation, computer science
and artificial intelligence. He is the recipient of the distinguished von Neumann
Theory Prize, an elected member of the National Academy of Engineering, and
has received honorary awards and fellowships from the American Association
for the Advancement of Science (AAAS), the NATO Division of Scientific
Affairs, the Miller Institute of Basic Research in Science and numerous other
organisations.

Jin-Kao Hao holds his Full Professor position in the Computer Science
Department of the University of Angers (France) and is currently the Director
of the LERIA Laboratory. His research lies in the design of effective heuristic
and metaheuristic algorithms for solving large-scale combinatorial search
problems. He is interested in various application areas including
bioinformatics, telecommunication networks and transportation. He has
co-authored more than 120 peer-reviewed publications in international journals,
book chapters and conference proceedings.

Gary Kochenberger is a Full Professor of Decision Science at the University of
Colorado at Denver, where he is the co-Director of the Decision Science
programme. His research focuses on designing and testing metaheuristics
methods for large scale optimisation problems. He has co-authored more than
70 refereed papers and three books.

1 Introduction

1.1 Problem representation

The polynomial unconstrained binary (PUB) optimisation problem may be formulated as:

()o o p pPUB : Minimise c c F : p P

 binary

x

x

= + ∈∑

where x = (x1, x2, …, xn) consists of binary variables, xi ∈ {0, 1} for i ∈ N = {1, …, n},
the coefficients cp for p ∈ P = {1, …, po} are non-zero scalars, and Fp is a product of
components of the x vector given by:

()p i p pF : i N where N N.x= Π ∈ ⊂

Each variable xi in the product defining Fp appears only once, noting that h
i ix x= for xi

binary, which renders powers h of xi other than h = 1 irrelevant.

Remark 1 In a polynomial representation based on permutations, where two
permutations 1 2N (i , i , , i)o

p h= … and 1 2 h(j , j , , j),o
qN = … are over the same

set of indexes, and the associated costs and o
qc are both non-zero, an

 Polynomial unconstrained binary optimisation – part 2 3

equivalent problem results by redefining o o o
p p qc c c= + and 0,o

qc = thus

eliminating the term for the vector N .o
q

The remark is justified simply by noting that the product xi1xi2 … xih has the same value as
the product xj1xj2 … xjh. By summing the costs for different permutations as indicated, the
remark gives a basis for a pre-processing step enabling any permutation-based
formulation of PUB to be converted into the form shown. Such a pre-processing step is
equivalent to producing a restricted permutation formulation where each permutation

1 2N (i , i , , i)o
p h= … has the ascending index property i1 < … < ih. The next remark is

useful to facilitate certain operations of our method.

Remark 2 We assume Pj = {j} for j ∈ N without regard to the value of cj, thus
providing an exception to the rule of only including terms with non-zero
coefficients in the PUB representation.

Illustration of the PUB representation

Consider the PUB problem whose objective function is given by:
2 3

o 1 2 2 3 1 1 2 2 1 1 2 3=7 5 2 – 3 4 5 – 2 3 .x x x x x x x x x x x x x+ + − + +

First, since 2
2 2 ,x x= 3

1 1x x= and x1x2 = x2x1, we can re-write xo in ascending index
notation, including only the non-zero coefficients, as:

o 1 2 1 3 1 2 1 2 37 5 – – 4 3 3 .x x x x x x x x x x= + + +

By Remark 2, we include the x3 term in the representation, even though it has a 0
coefficient, to give:

o 1 2 3 1 3 1 2 1 2 37 5 – 0 – 4 3 3 .x x x x x x x x x x x= + + + +

Assigning indexes p = 1 to 6 to the terms in sequence, we identify the indexes of the
variables in these terms by:

1 2 3 4 5 6N {1}, N {2}, N {3}, N {1,3}, N {1, 2}, N {1, 2,3}= = = = = =

The cost coefficients associated with these terms, including the constant term co, are
given by:

o 1 2 3 4 6c 7, c 5, c –1, c 0, c – 4, c5 3, c 3.= = = = = = =

1.2 Applications and motivation

The special case where the polynomial objective of PUB is a quadratic function
(producing a polynomial of degree 2) has been widely studied. As noted in Part 1 of this
paper (Glover et al., 2010), the quadratic case already encompasses a broad range of
important problems, including those from social psychology, financial analysis, computer
aided design, traffic management, machine scheduling, cellular radio channel allocation,
and molecular conformation among others. Moreover, many combinatorial optimisation
problems pertaining to graphs such as determining maximum cliques, maximum cuts,

 4 F. Glover et al.

maximum vertex packing, minimum coverings, maximum independent sets, and
maximum independent weighted sets are known to be capable of being formulated by
PUB in the quadratic case as documented in papers of Pardalos and Rodgers (1990), and
Pardalos and Xue (1994). A review of additional applications and formulations can be
found in Kochenberger et al. (2004).

The more general PUB formulation given here is of interest for its ability to
encompass a significantly expanded range of problems. The cubic case, for example,
permits PUB to represent the important class of satisfiability problems known as 3-SAT,
and offers the advantage of providing a representation whose size does not depend on the
number of logical clauses, which stands in contrast to the case for customary binary
integer programming formulations of 3-SAT (see e.g., Kochenberger, 2010). The
availability of procedures for efficiently handling and updating move evaluations for
instances of PUB involving polynomials of degree greater than 2, as identified in the
present work, provides an impetus to uncover additional problems that can be usefully
given binary polynomial formulations.

Our procedures, which apply to moves that flip (complement) the values of one or
more variables xj in progressing from one solution to another, constitute a generalisation
of procedures for generating 1-flip moves described in Glover et al. (1998) and extended
to 2-flip and multi-flip moves Glover and Hao (2010a, 2010b). Important recent
contributions of a similar nature for the quadratic problem are provided in Hanafi et al.
(2010). A principle outcome of our development is that a variety of search methods
which currently incorporate procedures to evaluate flip moves for the quadratic problem
can replace these procedures by the methods described here, thereby producing methods
capable of solving general PUB problems without any other changes in their structure.

2 Preliminary relationships

We briefly summarise basic observations from Part 1 of this paper without proof.
Let x′ and x″ represent two binary solutions and define:

() ()o p p p k pc F : p P , where F : k Nx x′ ′ ′ ′= ∈ = Π ∈∑

() ()o p p p k pc F : p P , where F : k N .x x′′ ′′ ′′ ′′= ∈ = Π ∈∑

o o o x x x′′ ′Δ = −

The objective function change Δxo thus discloses whether the transition (move) from x′ to
x″ will cause xo to improve or deteriorate (respectively, decrease or increase) relative to
the minimisation objective.

We identify the variables xi that are complemented in going from the solution x′ to the
solution x″, and the subsets for which xi″ = 1 and 0 by defining:

{ }c
i iN i N : 1–x x′′ ′= ∈ =

{ }c c
iN (1) i N : 1x ′′= ∈ =

 Polynomial unconstrained binary optimisation – part 2 5

{ }c c
iN (0) i N : 0x ′′= ∈ =

{ }pP(M) p P : N M ,= ∈ ⊂

where M is an arbitrary subset of N.

Observation 1: If xi′xi″ = 0 (xi′ = 0 or xi″ = 0) for each i ∈ N, then:

()() ()()c c
o p pc : p P N (1) – c : p P N (0)xΔ = ∈ ∈∑ ∑

We augment this result by two corollaries employing the more restrictive assumption that
x′ = 0. Let N″ = {i ∈ N: xi″ = 1} (hence P(N″) = {p ∈ P: Np ⊂ N″}) to identify those sets
Np such that xi″ = 1 for all i ∈ Np. Thus, if N″ = {i1, …, ih}, then P(N″) is the index set for
all those sets Np composed of one or more of the elements i1, …, ih.

Corollary 1.1: If x′ = 0, then:

()()o pc : p P Nx ′′Δ = ∈∑

To simplify the statement of the next result, it is useful to isolate the coefficients cp of the
product terms Fp that refer only to a single variable xj. As previously noted, we suppose
Np = {p} for p ∈ N, although cp = 0 is possible for some of these indexes. Hence, the
product term Fp for p ∈ N is the single variable term Fp = xp. If we denote indexes p ∈ N
instead by j ∈ N to conform to the practise of referring to variables xj for j ∈ N, our
indexing convention identifies the ‘xj component’ of the objective function xo to be just
cjxj.

Corollary 1.2: If x′ = 0, and x″ results from x′ by flipping the single variable xj, then:

o jc .xΔ =

Corollaries 1.1 and 1.2 identify the change in xo that results from flipping a single
variable xj to be cj while the change that results from flipping all variables xj for j ∈ N″ is
given by ∑(cp: p ∈ P(N″)). Hence, Corollary 1.2 gives an evaluation of a 1-flip move and
Corollary 1.1 gives an evaluation of a q-flip move by letting the set N″ represent the
indexes for a selected set of q variables that are flipped from 0 to 1.

3 Exploiting and updating problem transformations

The preceding corollaries have an important implication: if we start from a solution
x′ = 0, the amount of effort to evaluate a move involving any number of flips, from 1 to q,
is the same for any polynomial of degree d (defined by d = max(|Np|: p ∈ P) for which
d ≥ q. Thus, by this stipulation, the work to evaluate a 1-flip is the same for all
polynomials, the work to evaluate a 2-flip is the same for all polynomials of degree 2 or
greater, and so on. It also follows that the work to evaluate a q-flip for a polynomial of
degree d ≥ q only requires a single addition operation beyond the work to evaluate a
q-flip for a polynomial of degree d = q – 1. Consequently, a 3-flip in a polynomial of
degree 3 or larger can be evaluated by using only one addition operation beyond that
required to evaluate a 3-flip in a polynomial of degree 2.

 6 F. Glover et al.

We manipulate the formulation of PUB so that a current solution x′ may always be
treated as if it were the 0 solution, using the common device of transforming the x vector
into another binary vector y by complementing selected components of x; in this case,
specifically complementing those components of x such that xj′ = 1, thus causing the
assignment x = x′ to yield a corresponding assignment y = y′ for which y′ = 0.

To broaden the generality of our results, we introduce a special set No and a
corresponding ‘product term’ Fo associated with the objective function variable xo, where
we stipulate that No = ∅ and hence Fo = 1 (applying the definition Fp = Π(xk: k ∈ Np) to
the case where Np = No = ∅. This yields coFo = co, and hence coFo is just the constant
term associated with the objective function xo. These conventions allow us to express
changes in xo using the same notation employed to express changes in general terms of
the form cpFp.

For the 1-flip case we denote the variable that is flipped by xj, hence yielding
yj = 1 – xj. Then we define the following for each j ∈ N:

P(j) {p ∈ P: j ∈ Np}.

p[j] the unique index such that Np[j] = Np – {j}. (Hence, Fp[j] = Π(xk: k ∈ Np – {j}.

cp[j] 0 if p[j] ∉ P).

Fp[j] yjFp[j] (Hence, Fp[j] is the same as Fp except that yj replaces xj).

We observe that P(j), which identifies the index set for all sets Np that contain j, is
effectively a special case of P(M) = {p ∈ P: Np ⊂ M}, by taking M = {j}.

Observation 2: Flipping xj to replace xj by yj = 1 – xj produces the following changes for
each index p ∈ P(j):

()()p[j] p[j] p p[j] p[j] p[j] p p[j]c : c c changing c F to become c c F .= + +

p pc : – c=

()p p p p p p pF : F [j] changing c F to become c F [j] for the new c value .=

Moreover, these changes are independent, so that the change for one index p ∈ P(j) does
not affect the change for another p ∈ P(j).

It is important to observe that some or all of the indexes p[j] may not belong to P (as
occurs when cp[j] = 0). If p[j] ∉ P, then except for the special case where Np contains the
index of a single variable, p ∈ P implies cp ≠ 0, and hence the new coefficient cp[j] := cp[j]
+ cp must be non-zero. This compels P to be enlarged for the representation PUB(y) by
setting P: = P ∪ {p[j]}. On the other hand, if p[j] ∈ P, then it is possible that the new
value cp[j] + cp of cp[j] may become 0, and in this case P must be reduced by setting
P: = P – {p[j]}. Again, we later give processes for handling such operations efficiently.

The update produced by Observation 2 is completed by redefining x to be y (hence
redefining xj: = 1 – xj) so that we may treat the current solution as x′ = 0, and apply
Observation 2 again to repeat the process. A record of the true solution x is kept
throughout these operations, but the algorithm does not have to know this solution, and
by means of the currently updated formulation only ‘sees’ a current collection of terms
cpFp and their associated sets Np for p ∈ P (referring to the current P).

 Polynomial unconstrained binary optimisation – part 2 7

We now turn to the question of how to perform these processes efficiently, giving
particular emphasis to the situation in which the polynomial is sparse; i.e., where P
represents only a small subset of all possible index sets (equivalently, when many terms
Fp have associated costs cp = 0 and hence do not explicitly appear in the polynomial).

To provide continuity in our present development, the next two sections likewise
make reference to information contained in Part 1, though in abbreviated form.

4 Overall structure of the algorithm

Drawing on Observation 2, a generic method for the PUB problem may be summarised
as follows.

Generic PUB method

0. Create the initial PUB data structures and select a starting solution. Transform the
problem representation so that this solution becomes the current 0 solution.

While a chosen termination condition is not satisfied
1 Select one or more variables xj to be flipped, by employing the cj values to identify Δxo for

1-flip moves as in Corollary 1.2, or the cp values to identify Δxo for multi-flip moves as in
Corollary 1.2.

2 Apply Observation 2 to update the current problem representation. Maintain the appropriate
composition of P, and the sets Np and P(i), for each 1-flip replacing xj by 1 – xj, executed as
follows for p* = p[j] where p* > n:

 If cp* = 0 then
 Create the set Np* and add p* to the set P(i) for each i ∈ Np*..
 ElseIf cp* + cp = 0 (cp* ≠ 0) then
 Remove reference to the set Np* and drop p* from P by
 removing p* from the set P(i) for each i ∈ Np*.
 Endif
EndWhile

The use of the cj and cp values as criteria for selecting a move in step 1 above may of
course be accompanied by additional criteria, such as employing tabu restrictions and
aspiration incentives derived from recency and frequency memory in a tabu search
method.

As intimated by the algorithm’s description, the operations of maintaining the
problem representation reduce to the operations of updating the sets P(i), together with
maintaining a representation of the sets Np themselves. Explicit knowledge of the set P is
unnecessary, since all relevant knowledge about P is contained in the sets P(i).

The next section gives a way to identify the elements of the sets Np without explicitly
listing them, while maintaining a list of cp values that is dramatically smaller than would
be created by allocating a multidimensional matrix to this task (by creating a cost matrix
C(i1,i2, …, id)). To accomplish this requires a means to code vectors of the form (i1, …, ih)
as single numbers v, and to decode such numbers v back into the vectors (i1, …, ih) from
which they were derived.

 8 F. Glover et al.

5 Coding and decoding index vectors for product terms

We reiterate the convention that the indexes of product terms are written in the form a
vector of indexes (i1, i2, …, ih) where i1 < i2 < … ih (hence corresponding to the product
term Π(xk: k = ir: r = 1, …, h) where h takes a value between 1 and the degree d of the
polynomial). Note that we use the symbol i in this representation because each element ir
identifies an index rather than a variable such as xk. We first discuss the procedure for
coding each such vector of indexes as a single value V.

5.1 Coding procedure

Organisation

Partition the terms into groups, G(1) to G(d), where each group is a collection of vectors
(i1, …, ih) for h = 1, …, d, identifying the indexes of all possible terms containing h
elements. (The elements of these vectors constitute the ordered form of the sets Np that
may potentially be created, in a case where the problem is fully dense.):

()1 1G(1) : i : i 1, , n= …

()1 2 1 2 1G(2) : i , i i 1, , n –1; i i 1, ,n= = +… …

.

()1 d 1 2 1G(d) : i , , i : i 1, ,n – (d –1), i i 1, , n – d; ;= = +… … … …

d 1 d 2 d d 1i i 1, , n –1; i i 1, , n− − −= + = +… …

Step 1 Create a base cardinality Δ(h) and a cumulative cardinality n(h) for each group
G(h), h = 1, …, d. (The cumulative cardinality is the number of vectors in group
Gh added to the number of vectors in all preceding groups).

G(1) : (1) n; n(1) (1)Δ = = Δ

G(h) : (h) n(n –1)....(n – (h –1)) / h! n(h) n(h –1) (h) for h 2, ,dΔ = = + Δ = …

Step 2 Create the base coding v(h) for an arbitrary vector (i1, …, ih), for each group
G(h):

1G(1) : v(1) i=

()hG(h) : v(h) i – q : q 1, ,h) h! v(h –1) for h 2, ,d.= Π = + =… …

Step 3 Create the full coding V(h), by adding the cumulative cardinality n(h – 1) to v(h)
for an arbitrary vector (i1, …, ih), for each group G(h):

() ()1 1G(1) : For i : V(1) v(1) i= =

()1 hG(h) : For i , , i : V(h) n(h –1) v(h) for h 2, ,d= + =… …

The cumulative cardinality n(d) is the maximum value of |P| for a polynomial of degree
d, hence the maximum number of non-zero coefficients cp when the polynomial is

 Polynomial unconstrained binary optimisation – part 2 9

represented in ascending index order. The coding operation assigns a unique index
p = V[M] to each set M = {i1, …, ih} for h = 1, …, d, where i1 < … < ih. We use the
notation V[M] to distinguish the value produced by coding M from the value V(h) that
represents the coding value previously defined. Thus, in particular, V[M] = V(h) for the
value V(h) calculated by reference to M = {i1, …, ih} in step 3 above. (M may strictly
speaking be considered a vector, though we continue to refer to it as a set for
convenience). The indexes p = V[M] are exactly those from the set {1, 2, …, n(d)}.

5.2 Using the coding for inputting initial problem data

The coding procedure of Section 5.1 is implemented immediately upon inputting the
initial problem data, thereby providing a compact representation to take advantage of
situations where the data is sparse. Accomplishing this within the data input procedure is
quite simple:

Input procedure

1 Initialise for p = 1 to n(d)
2 Read problem data and simultaneously generate the coding: let M denote the current set of

indexes input from the problem data to become a set Np, and let c denote the cost associated
with M that is to become the value cp attached to the product term Π(xk: k ∈ Np) for Np = M.

3 Produce the index p = V[M] by applying the Full Coding Rule to the elements of M, and let
cp = c.

5.3 Decoding a coded value p = V to obtain the index set M such that V[M] = V

Let V denote the (full) coded value of an index set M = {i1, …, ih}, where V is the index
p of the unknown set Np = M. We identify each component i1, …, ih of M (hence of Np)
by performing appropriate operations on the value V.

For an arbitrary real number z, let [z] denote the greatest integer ≤ z, and let <z>
denote the least integer ≥ z (hence when z is a positive non-integer value, then [z] rounds
z down and <z> rounds z up). Then for each value r from 2 to the degree d of the
polynomial, we make reference to a constant β(r) determined by the formula:

1/r(r) r 1– (r!) .β = + < >

The values β(r), for r = 2, …, d, may be computed in advance and stored, thus avoiding
the need to re-compute these values multiple times when applying the decoding
algorithm. For example, if d = 10, the relevant β(r) values obtained by the preceding
formula are as follows: β(2) = 1, β(3) = 2, β(4) = 2, β(5) = 3, β(6) = 4, β(7) = 4, β(8) = 5,
β(9) = 5, β(10) = 6. (These values disclose that when r ≤ 5, β(r) can be computed from
the simpler formula c(r) = [(r + 1)/2]).

 10 F. Glover et al.

Decoding algorithm

Step 1. /* Identify the group h associated with V. */
The group is G(1) if V ≤ n(1) and is G(h) for h > 1 if n(h – 1) < V ≤ n(h).

Step 2. /* Convert V to a Base Code value v */
v = V – n(h-1)

Step 3 /* Determine the vector (i1, i2, …, ih) from the Base Code value by generating its
components ir in reverse order, for r = h, h – 1, …, 1. */
r = h
while r > 1
 If v = 1 Then
 ir = r
 Else
 w = (v – 1)r!
 u = [w1/r]
 i* = u + β(r)
 (ir = i* or i* + 1, depending on which of these gives the largest
 value of ir satisfying Π ≤ w for Π = (ir – 1)(ir – 2)…(ir – r))
 Πo = (i* – 1)(i* – 2)… (i* – r + 1)
 Π1 = (i* – r) Πo (the value of Π if ir = i*)
 Π2 = i* Πo (the value of Π if ir = i* + 1)
 If Π2 ≤ w then
 Π = Π2
 ir = i* + 1
 Else
 Π = Π1
 ir = i*
 Endif
 v := v – Π/r! /* giving the “residual v” to determine the next
 component ir for r := r – 1. */
 Endif
 r := r – 1
EndWhile
i1 = v

Illustration of memory required for the cost values cp and the associated sets Np

The amount of memory required to store the costs cp and the associated sets Np using the
foregoing processes is equal to the value n(d) for a polynomial of degree d when using an
ascending index order representation. To illustrate, we calculate these values for the cases
d = 1 to 5, assuming n = 100 in each case, and compare these values to the amount of

 Polynomial unconstrained binary optimisation – part 2 11

memory required by using a cost matrix of the form C(i1, …, id), which entails a storage
space of nd.

Values of d: 1 2 3 4 5

Cost matrix memory nd: 100 10,000 1,000,000 100,000,000 10,000,000,000
Coded memory n(d): 100 5,050 166,750 4,087,957 79,375,495

The rapid growth in the size of memory depicted by this illustration suggests that a
polynomial of degree 4 or 5 may be the largest that is practical to work with. However,
this memory does not account for the fact that the problem will generally be sparse, so
that only a few percent of the total number of possible product terms may exist at any
given time. We address the challenges of taking advantage of our results within the
context of exploiting sparsity, which is a hallmark of real world problems, in the
following sections.

6 Special memory structure and updates

6.1 A basic version

We first describe a basic version of the memory structures to lay a foundation for a more
advanced version of these structures which gives a much faster means of accessing the p
indexes than by using the coding and decoding operations.

As a starting point, we access the elements p in P(i) for i ∈ N by means of a location
vector Loc(q), where the indexes p = Loc(q) corresponding to p ∈ P(i) are in turn
accessed by a doubly linked list, Before(q) and After(q). We refer to Loc(q), Before(q)
and After(q) collectively as the q lists. For a given set P(i), the relevant indexes q of
Before(q) and After(q) that generate the values p = Loc(q) begin at the index q = First(i).
We organise the lists so that First(i) = 0 if P(i) is empty. Otherwise, the condition
After(q) = 0 signifies that q is the last element of the list that begins with q = First(i). The
elements p ∈ P(i) are then generated as follows.

Generate All p ∈ P(i)
 q = First(i)
 While q > 0
 p = Loc(q) /* identifies the “p location” of the current
 element p ∈ P(i)) */
 Decode the index V[M] = p as in Section 5 to identify h and
 M = {i1, …,ih}.
 q = After(q)
 EndWhile

The list Before(q) is not required here, but is needed to perform operations of dropping
elements from P(i). We maintain the Before(q) and After(q) lists so that they satisfy the
obvious relationship Before(q″) = q′ if and only if After(q′) = q″, with the exception that
we make use of a dummy entry Before(0) whose value can be arbitrary.

 12 F. Glover et al.

A ‘pool’ array, denoted PoolQ, keeps track of available q indexes. An element q is
removed from PoolQ in order to add a new index p = Loc(q) to some list P(i), and an
element q is added back to PoolQ when an index p = Loc(q) is dropped from some list
P(i). In particular, a specified element p* as indicated in the Generic PUB Method can be
added to P(i) by the following operation.

Add p* to P(i)
 Remove an index q* from PoolQ /* The identity of q* is irrelevant.*/
 Loc(q*) = p*
 qFirst = First(i)
 After(q*) = qFirst

 Before(qFirst) = q*
 First(i) = q*

During initialisation, when building the q lists from the input data, it suffices to set
First(i) = 0 for all i ∈ N. The element Before(0) can be assigned any value; for example,
Before(0) = 0. Then the indicated operation for adding p* to P(i) can be used to build the
initial q lists for P(i) as well as to add elements to these lists on later steps.

Based on the preceding comments, the complete initialisation of the arrays is
therefore achieved as follows.

Initialisation step
 Set First(i) = 0 for all i ∈ N. Before(0) = 0.
 cp = 0 for p = 1 to n(d)
 q = 0
 While problem data remain to be input
 Read in next data element pair (M, c), where M = {i1,…,ih}
 and c is the cost coefficient associated with M.
 Assume i1 < … < ih if h > 1.
 Code the set M = {i1,…,ih} to obtain p = V[M] and set cp = c
 For each i ∈ M
 q := q + 1
 q* = First(i)
 After(q) = q*
 Before(q*) = q
 First(i) = q

 Add q to PoolQ and set p = Loc(q)
 End For i
 EndWhile

To drop the index p* from a given set P(i) as indicated in the Generic PUB Method, we
note that p* refers to a set Np* that does not include the index j for the variable xj flipped,
i.e., the set Np* was not accessed by going through a linked list. Thus it is necessary for
each i ∈ Np* to know the identity of the index q such that p* is accessed by setting
p* = Loc(q) (where q itself is accessed from the linked list starting with First(i)). One

 Polynomial unconstrained binary optimisation – part 2 13

way to do this is to search for this q by scanning the q list associated with P(i).
Employing such a search makes it possible to avoid referring to the linked list Before(q)
but the process can be fairly expensive computationally. Consequently we employ the
following approach that achieves greater efficiency.

For each set Np = (i1, …, ih) we store a vector Qp = (q1, …, qh) that identifies the
relevant q indexes for Np. In particular q1 is the q element on the q list for i1 that yields
p = Loc(q1), q2 is the q element on the q list for i2 that yields p = Loc(q2), and so forth.
Instead of searching for the relevant q for each i = ir in the set Np = (i1, …, ih), we make
use of the associated value q* = qr and remove the index p from the set P(i) for i = ir by
the operation.

Drop p from P(i)
 If First(i) = q* then
 First(i) = After(q*)
 Else
 qB = Before(q*)
 qA = After(q*)
 Before(qA) = qB
 After(qB) = qA
 Endif

The preceding operation is only performed at most d times for any given set Np, since
each such set contains at most d elements. In the cubic case where d = 3, for example, the
update for a given set Np is exceedingly fast. In general, the index sets P(i) for all i ∈ N
are maintained and updated efficiently using the indicated structure.

We now examine how our preceding basic ideas can be extended to provide advanced
memory structures and updating operations to take advantage of sparsity more
effectively.

6.2 Advanced memory structures and updates

It is advantageous to organise the memory so that different levels h, for h = 1 to d, are
treated separately. Thus in place of referring to index sets Np by a single index p, we refer
to these sets by means of paired indexes (h, p), using the notation Nhp = {i1, …, ih}. The
indexes p at a given level h may therefore overlap with the indexes at another level. We
motivate this ‘differentiation by level’ by stating a useful consequence of Observation 2.

Define nzo(h) to be the number of non-zero terms in the initial problem data at level
h, i.e., nzo(h) is the number of terms over sets Nhp = {i1, …,ih} such that cp ≠ 0. Let zo(h)
denote an upper limit on the number of non-zero terms at level h that will be produced by
the generic PUB algorithm throughout its entire execution. We make use of zo(h) to
identify a limit on the number of non-zero terms produced at any given point in the
algorithm’s execution.

Corollary 2.1: A upper bound value for zo(h) for h = 1 to d is given by:

o oz (d) nz (d)=

()o oz (h –1) Min (h –1), z (h)h for h 2 to d.= Δ =

 14 F. Glover et al.

Proof: By Observation 2 a 1-flip can only add new terms for the sets Np[j] defined by
Np[j] = Np – {j}. Letting p* denote p[j] as in the generic PUB algorithm, it is therefore
impossible to add or drop a set Np* such that |Np*| = d, because no larger set Np exists
such that Np* = Np – {j}. Consequently, zo(d) = nzo(d) gives a valid bound at level d. In
addition, if zo(h) is the number of terms in the union of all such terms generated
throughout the progress of the algorithm, then by Observation 2 each such term can give
rise to at most h other terms at level h – 1 (since there are h variables in the term that can
be flipped, and each variable flipped affects exactly one term Np* at level h – 1,
potentially adding Np* as a new term if cp* = 0). This establishes that zo(h – 1) is bounded
from above by zo(h)h, noting that the limit Δ(h – 1) as defined in Section 5 can not be
exceeded.

For sparse problems, the bound on zo(h – 1) given by zo(h)h will generally be more
limiting than the bound given by Δ(h – 1), except in the case for h = 2, when
Δ(h – 1) = Δ(1) = n. A useful direct implication of the corollary is that the number of sets
Np = {i1, …, ih} that can receive non-zero costs cp at any stage of the algorithm is given
by the upper bound U(d) = ∑(zo(h): h = 1 to d).

We next provide a way to exploit Corollary 2.1 for sparse problems by a different
manner of coding the indexes p ∈ P, drawing on the bounds zo(h) and storing the sets Np
explicitly.

Sparse problem coding – the descriptive challenge

The stages of the advanced algorithm will be covered at a finer level of detail than
normally devoted to such descriptions, in view of the fact that seemingly minor
departures can produce significant repercussions affecting the accuracy as well as
efficiency of the method. The goal of communicating the essential ideas poses an
unconventional challenge, because the classical means of presenting pseudo code at a
coarse level of detail unfortunately leaves large gaps in critical components of the
algorithm, and it is essential to fill these gaps to provide a satisfactory understanding of
the method. To assist in this process, we make use of supporting observations and
parenthetical remarks that provide further explanation.

Data organisation

The organisation employed by our method allows the data to be input in random order.
We henceforth assume data entries consist of triples (h, M, c), where M = {i1, …, ih}
identifies a set Np and where c denotes the cost associated with this set. In contrast to the
previous assumption that the elements of M are ordered so that i1 < … < ih, we perform
the ordering as data are input and simultaneously keep track of whether the same M may
be referenced more than once (where the values i1, …, ih are input in different orders), in
order to appropriately sum the costs for different instances of the same set as indicated in
Remark 1 in Section 1.

All sets Np for a given value of h are placed in a single group, referring to them as
sets Nhp as the index p ranges from 1 to a value Last(h) which keeps track of the size of
the group at level h. The set M = {i1, …, ih} is recorded as a set Nhp by using an array
N(h,p,r), where:

rN(h,p, r) i for r 1 to h.= =

 Polynomial unconstrained binary optimisation – part 2 15

Each time a new set M is input for a given value of h, we update Last(h) by setting
Last(h) := Last(h) + 1, followed by p = Last(h) and then recording N(h, p, r) as indicated.

The arrays Nhp, p = 1 to Last(h), are accompanied by the following associated arrays:

Code(h, p) the coded value v = V[Nhp]

Cost(h, p) c (the sum of relevant c values, if more than one instance of the set M is
input)

θ(v) an array to store coded indexes p, such that v = V[Nhp] for v = 1 to n(d – 1).
(The fact that v only goes to n(d – 1) and not to n(d) is explained later).

6.3 Full organisation of the algorithm

In the following, we explicitly store all costs Cost(1, i), referring to the variables xi, i = 1
to n, including zero as well as non-zero costs, hence nzo(1) is held constant at nzo(1) = n.
The method is then divided into three stages, where each of the first two stages performs
preliminary set-up operations for the stage following, which consists of the main
computations of the generic PUB method. This staged organisation contributes to the
ability to take advantage of the coding and decoding operations in a way that saves
considerable memory and yet provides substantial gains in speed during the stage devoted
to the PUB algorithm.

Stage 1

A first pass reads the original data to determine the values values nzo(h), h = 2 to d. Stage
1 then computes the values zo(h) and U(h), h = 0 to d as indicated in Corollary 2.1 and its
discussion, to give zo(d) = nzo(d) together with zo(h – 1) = Min(Δ(h – 1), zo(h)h) for h = 2
to d, and U(d) = ∑(zo(h): h = 1 to d). These values are passed to Stage 2 in order to
dimension the arrays Last(h), N(h, p, r), Code(h, p), and Cost(h, p) used in the next stage
as indicated next.

Stage 2

Dimensioning and preliminaries

Last(h) is dimensioned to satisfy h ≤ d, and the upper bound zo(h) on the value of Last(h)
is used in dimensioning the other arrays. Rather than employ an aggregate N(h, p, r)
array, separate arrays N(2, p, r), …, N(d, p, r) are employed, where a given array
N(h, p, r) is dimensioned for p ≤ zo(h) and r ≤ h. (No array N(1, p, r) is required).
Similarly, we use separate arrays Code(2, p) …, Code(d, p) and Cost(1, p), …, Cost(d, p)
dimensioned so that p ≤ zo(h) in each case. (Note the Cost(h, p) arrays differ from the
others by starting at h = 1 instead of h = 2.) As discussed later, for speed of access,
particularly in the cases where d = 2 or 3, it can be advantageous to use 2-D rather than
3-D arrays, e.g., N2(p, r), N3(p, r), etc.

The coding array θ(v) (which identifies index pairs (h, p) where the sets Nhp are
stored) is dimensioned to attain a maximum v value of v = n(d – 1). The elements of this
array for v = n(d – 1) + 1 to n(d) are omitted. These refer to sets Nhp = {i1, …, ih} such
that h = d (hence |Nhp| = d) and we do not need to code or decode the sets for h = d
because, by Observation 2, none of them will change. The purpose of using θ(v) in the

 16 F. Glover et al.

present organisation of the method is to be able to identify the location of new sets Np*
that will be created and stored (for p* = p[j] as in Observation 2). This likewise allows
substantial saving of memory space.

The following code can be implemented in a manner that does not create the
N(h, p, r) arrays but only retains their coded values in Stage 2. This option defers the
generation of these arrays to the beginning of Stage 3 as a means of saving additional
memory space at a slightly increased computational expense at the start of Stage 3. Such
an approach can be used if memory space is at a premium.

Stage 2 consists of two phases, Phase 1 and Phase 2, as follows.

Phase 1 Initialisation:
 θ(v) = v, for v = 1 to n
 /* corresponding to indexes for the variables xi, i = v = 1 to n */
 θ(v) = 0, v = n + 1 to n(d – 1)
 /*θ(v) = 0 indicates that a set Nhp = {i1, …, ih} that will receive the
 coded value v has not yet been input. */
 Cost(h,p) = 0 and Code(h,p) = p for h = 1 and p = 1 to n.
 /* Treats the variables xi for i = 1 to n as if already input
 with 0 costs.*/
 Last(1) = n and Last(h) = 0 for h = 2 to d.

Read in data and set up lists
While data remain to be read
 Read in the data triple (h, M, c) where M = {i1, …, ih}. Re-index, if necessary, so that i1 <

… < ih.
 Code the set M to identify v = V[M]. (If h = 1, v = i1.)
 If θ(v) = 0 then
 Last(h) := Last(h) + 1
 p = Last(h)
 Code(h,p) = v
 /* Create the array Nhp to save {i1, …, ih} */
 Set N(h,p,r) = ir for r = 1 to h.
 Cost(h,p) = c
 θ(v) = p
 Else
 /* θ(v) ≠ 0, hence a record has already been created for the set
 {i1, …, ih}. Identify the location p where this record exists,
 establishing Nhp = {i1, …, ih}. */
 p = θ(v) (Implicit: if h = 1, then p = v = i1.)
 Cost(h,p) := Cost(h,p) + c
 Endif
EndWhile

 Polynomial unconstrained binary optimisation – part 2 17

At the end of the foregoing process, if Cost(h, p) = 0 for h > 1 and for some p in the range
from 1 to Last(h), then reference to this pair (h, p) can be dropped. This situation can
arise if different instances of the same set {i1, …, ih} are input (with their indexes in
different order) and if the costs of these sets sum to 0, hence cancelling each other.
Presumably this will be a rare occurrence, and the method will still function accurately by
not bothering to drop such zero-cost elements. Consequently, checking for zero-cost
elements may be considered as optional. If the checking is done, however, the operation
proceeds as follows:

For h = 2 to d
 hLast = Last(h)
 For p = Last(h) to 1 /* in reverse order */
 If Cost(h,p) = 0 then
 /* write the hLast entry over the present one */
 Cost(h,p) = Cost(h,hLast)
 Nhp = Nh,hLast /* N(h,p,r) = N(h,hLast,r) for r = 1 to h */
 v = Code(h,hLast)
 Code(h,p) = v
 θ(v) = p
 hLast = hLast – 1
 Endif
 Endfor p
 Last(h) = hLast
Endfor h

Expand the records to include sets Nhp that may eventually receive non-zero costs

We refer to temporary vectors Tr for r = 1 to h where Tr = T(r, k) k = 1 to h – 1, which are
only used for values of h between 2 and d – 1.

Phase 2 Initialisation
LastNZ(h) = Last(h), h = 1 to d /* This records the index p = Last(h) for
 the last non-zero cost Cost(h,p) from Stage 1 at each level h.*/
/* Next examine the levels in reverse order. */
For h = d, d – 1, …,3
 /* The case for h = 2 is not needed, because {i1,i2} contains the simple h – 1 level subsets

{i1} and {i2} and we don’t need to look up the p indexes for these single element subsets
since they are given directly by p = i1 and p = i2. */

 For p = 1 to Last(h)
 /* Access the set Nhp = {i1, …, ih}; i.e., where ir = N(h,p,r)
 for r = 1 to h */
 /* Identify the h different vectors Tr = Nhp – {ir} for r = 1 to h. Hence Tr = Np – {j}

for j = ir. Each such vector, which contains h – 1 of the h elements of Nhp, identifies
one of the sets Np* of Observation 2, i.e., a set that can potentially be created from

 18 F. Glover et al.

flipping some variable xj. */

 For j = 1 to h
 /* Here j denotes the index that is dropped from Nhp to
 create Tr. */
 k = 0
 For r = 1 to h
 /* Store all indexes of N(h,p,r) in Tr except the
 index j. */
 If r ≠ j then
 k := k + 1
 T(r,k) = N(h,p,r)
 Endif
 Endfor r
 Endfor j
 /* The temporary Tr sets are now created. Store each one as a level h – 1 set Nh-

1,p*, for an appropriate p*, unless the Tr set is already stored as some set Nh-1,p*.
In addition, for each r we set Find(h,p,r) = p*, to be able to find the index p*
where the h* = h – 1 level set associated with the element N(h,p,r) of Nhp is
located. We will need Find(h,p,r) in order to quickly locate Nh*p (= Nh-1,p*) when
the variable xj is flipped for j = N(h,p,r) (hence j = ir, for Nhp = {i1, …,ir,…, ih)).
Then Nh*p* for p* = Find(h,p,r) will be the set Np – {j} of Observation 2. Since
the Find array is associated element for element with the Nhp array, we denote it
by Findhp. */

 h* = h – 1
 For r = 1 to h
 v* = V[Tr] /* Obtain v* by coding Tr = (T(r,1), …, T(r,h*)) */
 p* = θ(v*)
 If p* = 0 then
 /* There is no record yet for the vector Tr. Hence it will become a new

Nhp* which currently has a 0 cost. Update Last(h*) (= Last(h – 1)) and
make it the new p*. */

 Last(h*) := Last(h*) + 1
 p* = Last(h*)
 Cost(h*,p*) = 0
 /* Record Nh*p* = Tr */
 For k = 1 to h*
 N(h*,p*,k) = T(r,k)
 Endfor k
 /* Record the location p* of Nh*,p* in the θ(v) array */
 θ(v*) = p*
 Endif

 /* If the preceding “if-then” statement does not apply, i.e., if p* ≠ 0, then
Tr and its appropriate record have already been created and stored as

 Polynomial unconstrained binary optimisation – part 2 19

Nh*p* for p* = θ(v*). Nothing needs to be done in this case. Finally, for
both cases, record the entry Find(h,p,r) of the Findhp array. */

 Find(h,p,r) = p*
 Endfor r
 Endwhile p
Endfor h

The temporary T(r, k) vectors have been introduced to make the foregoing process more
understandable. These vectors can be instead generated without storing them at all, in an
initial part of the loop for r = 1 to h. This results in eliminating the loop for j = 1 to h.

Concluding step of stage 2

The arrays Last(h), LastNZ(h), together with Code(h, p), Cost(h, p), and the larger arrays
Nhp = N(h, p, r), and Findhp = Find(h, p, r), are placed a data file to be read in by the
Generic PUB Method. Code(h, p) is not needed hereafter.

6.3.1 Analysis for dimensioning the generic PUB algorithm

The array θ (v), v = 1 to n(d – 1) created in Stage 2 is not passed to the Generic PUB
Algorithm, hence substantially reducing its overall memory requirements. (Likewise, a
number of arrays used by the generic PUB algorithm were not required in the initial
pre-processing operations of Stage 2, saving space in these routines as well).

The sets Nhp for h = 1 to d and p = 1 to Last(h) at the conclusion of Stage 2
encompass all sets {i1, …, ih} that may possibly receive non-zero costs. By Corollary 2.1
and its analysis, we know the number of these sets is at most U(d) = ∑(zo(h): h = 1 to d).
Each Nhp array and each associated Findhp array will contribute an additional h x zo(h)
entries to the allocated array space, since there are at most zo(h) of these h-element
arrays, and hence in total they contribute 2∑h × zo(h): h = 1 to d) to the array space.

The array space required by the generic PUB method to read in the data generated by
Stage 2 is therefore as follows. Let Nh and Findh denote the sets consisting of all arrays
Nhp and Findhp for p = 1 to Last(h). Nh and Findh each contribute h × Last(h) elements to
array space that will be passed to the Generic PUB Algorithm. Actually, the Findhp array
is not stored for h = 1. Consequently, the arrays within Nh and Findh consume a space of
2Nmax + n, where Nmax = ∑(h x Last(h): h = 2 to d). Finally, let Costh denote the set of
arrays whose elements are given by Cost(h, p) for p = 1 to Last(h), which collectively
consume an amount of array space equal to Nsum = ∑(Last(h): h = 1 to d).

In addition the maximum NQ value for dimensioning PoolQ and the q lists Loc(q),
Before(q) and After(q) will equal Nmax, by the following observation. We are interested in
counting, for each i, the number of sets Nhp for h ≥ 2 that contain i, and then summing
this number over all i. This is the same as summing the number of elements in each set
Nhp such that h ≥ 2, thereby equalling the indicated value for Nmax.

One further array, Qhp is generated inside of the generic PUB algorithm, and is
dimensioned exactly as Nhp. Hence the collection Qh

 has the same number of elements, h
× Last(h), as Nh (and Findh). However, the sets Qh are only created for h = 2 to d – 1, and
hence the collection of the Qh sets consume an array space of NQ = ∑(h × Last(h): h = 2
to d – 1).

 20 F. Glover et al.

To summarise, let NAll, FindAll
, QAll and CostAll

 respectively denote the collection of all
Nh, Findh, Qh and Costh arrays. The collection of all arrays for the generic PUB method
can then be dimensioned Last(d), LastNZ(d), First(n), Before(1 + Nmax), After(Nmax),
PoolQ(Nmax), Loc(Nmax), NAll(Nmax), FindAll(Nmax), QAll(NQ) and CostAll(Nsum).

The total array space consumed by the generic PUB algorithm, whose details are
given next, is therefore 1 + 2d + 6Nmax + NQ + Nsum. By comparison, if we define 0

maxN

and 0Nsum to be the larger quantities that replace Last(h) in the definitions of Nmax and
Nsum by the bounds zo(h), then the total array space consumed by stage 2 is

0 0
max2d n(d –1) 2N +2N .sum+ +

6.3.2 Generic PUB algorithm – completed organisation

Preliminaries

The array Qhp (= Q(h, p ,1), …, Q(h, p, h)) created in this algorithm accompanies the
array Nhp by indicating the value q = Q(h, p, r) for each r = 1 to h such that the index p is
stored on the q-list, by the relationship pLoc(q) = p. [The same p index may be accessed
by more than one q, but the level h will differ, so that the pair (h, p) given by h = hLoc(q)
and p = pLoc(q) will be unique for each q, i.e., no two q indexes will access the same pair
(h, p)]. The array Qhp is used to identify the index q and hence the index p that is to be
dropped, as explained below. For clarity, the relationships between the arrays Nhp, Findhp
and Qhp are illustrated in Appendix 1.

We also introduce an Option E (where E denotes ‘Evaluation’), which provides for an
enhanced way to evaluate candidate moves for selection. Option E is divided into four
parts E(1), …, E(4), whose components are described in Section 7, to exploit an
additional property of profitable moves that derives from Observations 1 and 2. We
enclose reference to Option E in square brackets ‘[]’ to indicate that its details are
described externally.

Generic PUB method completed

Initialisation
Read in Last(h), LastNZ(h), h = 1 to d, and Cost(h,p) for h = 1 to d and p = 1 to Last(h).
Read in N(h,p,r) and Find(h,p,r) for h = 1 to d, p = 1 to Last(h) and r = 1 to h.

Generate the sets P(i)

Set First(i) = 0 for all i ∈ N. Before(0) = 0.
 [Option E(1): Initialise supplemental evaluation.]
qNow = 0
 /* Next, set up P(i) to refer to those indexes p such that Nhp contains i and such that

Cost(h,p) is non-zero. Each P(i) is recorded by means of the lists Before(q) and After(q),
starting with q = First(i), while simultaneously recording Qhp = Q(h,p,r), r = 1 to h. To
restrict P(i) to refer to non-zero cost terms, only look at indexes p that are accessed for p = 1
to LastNZ(h), limited to levels h = 2 to d since the level h = 1 is treated separately.*/

For h = 2 to d
 For p = 1 to LastNZ(h)

 Polynomial unconstrained binary optimisation – part 2 21

 /* Nhp has already been created in Stage 2, and read in to the
 Generic PUB routine during its initialisation. */
 [Option E(2): Complete initialisation of supplemental evaluation.]
 For r = 1 to h
 i = N(h,p,r) /* i = ir for Nhp = {i1, …, ih} */
 qNow := qNow + 1
 qPrevious = First(i)
 After(qNow) = qPrevious

 Before(qPrevious) = qNow

 First(i) = qNow

 hLoc(qNow) = h
 pLoc(qNow) = p
 rLoc(qNow) = r
 Q(h,p,r) = qNow
 EndFor r
 EndWhile p
Endfor h

/* Set up the original PoolQ, in the form PoolQ(1) to PoolQ(NQ), to store q indexes not yet used
that may potentially be needed. */
qLast = qNow
For q = qLast to Nmax

 PoolQ(q – qLast + 1) = q
EndFor
NQ = Nmax – qLast + 1

6.3.2.1 Updating by observation 2 when xj is flipped

In the next segment, given the index j of the variable xj that has been flipped, each
p ∈ P(j) is examined via the lists Before(q) and After(q), identifying p = pLoc(q) (starting
from q = First(j)). The operations first update the cost for set Nhp by reversing the sign of
Cost(h, p); i.e., setting c = Cost(h, p) and then setting Cost(h, p) := – c. Updates are then
performed on the set Nhp – {j} by identifying p* = p[j] as in the Generic PUB Algorithm
and setting Cost(h, p*) := c + Cost(h, p*). In our organisation, p* is obtained by
p* = Find(h, p, r) where r is identified by j = N(h, p, r), i.e., Nhp = {i1, …, ir, …,ih} and
ir = j. Note that the index p* refers to a set at level h – 1, where for h* = h – 1 the set
Nh*p* has the same components as Nhp except for ir = j.

q = First(j)
While q > 0
 p = pLoc(q)
 h = hLoc(q)
 r = rLoc(q)

 22 F. Glover et al.

 c = Cost(h,p)
 Cost(h,p) = – c
 [Option E(3)]
 p* = Find(h,p,r)
 /* Given p* for level h* = h – 1, check to see if Nh*p* currently exists, i.e., if

Cost(h*,p*) is non-zero. If costs are not integers, then Cost(h*,p*) = 0 may be
established by |Cost(h*,p*)| < ε where ε is a small positive value. */

 h* = h – 1
 If h* = 1 then skip the following “If-then” sequence, picking up q :=
 After(q) for the next iteration of the loop.
 [Option E(4)]
 If Cost(h*,p*) = 0 then
 /* Create Nh*,p*: this entails adding a new q* to access Nh*,p* so that the path P(i) can

include reference to p* by finding it stored in Loc(q*), i.e., by accessing the pair
(h*,p*) = Loc(q*), or the triple (h*,p*,r) = Loc(q*). */

 For r* = 1 to h*
 i = N(h*,p*,r*)
 /* Examine each entry i = ir* of Nh*,p* = (i1, …, ir*, …,ih*) as r* goes from 1 to h*,

and add a new q, denoted by q*, to the list P(i). Likewise, add p* to P(i): Start by
getting an available index q* from PoolQ. */

 q* = PoolQ(NQ)
 NQ := NQ – 1
 qFirst = First(i)

 After(q*) = qFirst

 Before(qFirst) = q*

 First(i) = q*
 hLoc(q*) = h*
 pLoc(q*) = p*
 rLoc(q*) = r*
 /* Create entry r* of the Q(h*,p*,r*) array */

 Q(h*,p*,r*) = q*
 Endfor r*
 /* Give Nh*,p* a cost = Cost(h*,p*) + c = 0 + c. */
 Cost(h*,p*) = c
 Else
 /* Here the cost for Nh*p* is non-zero, and Nh*p* is already recorded. */
 Cost(h*,p*) := Cost(h*,p*) + c
 /* Check the changed value of Cost(h*,p*) */
 If Cost(h*,p*) = 0 then
 /* Since the cost for Nh*,p* changes from non-zero to zero, drop p* from P(i) for

each i in Nh*,p* so that p* and Nh*,p* will not be accessed at level h* = h – 1.
Exploit the list Qh*p* to do this. */

 For r* = 1 to h*

 Polynomial unconstrained binary optimisation – part 2 23

 /* Examine each q* = qr* of Qh*,p* = (q1, …,qr*, …,qh*) as r* goes from 1 to
h*, where q* is the value of q such that p* is accessed by p* = pLoc(q*),
locating p* on the list P(j). */

 i = N(h*,p*,r*)
 q* = Q(h*,p*,r*)
 If First(i) = q* then
 First(i) = After(q*)
 Else
 qB = Before(q*)
 qA = After(q*)
 Before(qA) = qB
 After(qB) = qA

 Endif
 /* Put q* back on PoolQ */
 NQ := NQ + 1
 PoolQ(NQ) = q*
 EndFor r*
 Endif
 Endif
 q := After(q)
Endwhile

A way to additionally streamline the foregoing operations and employ reduced memory
for the case of quadratic and cubic polynomials is given in Appendix 2.

6.3.2.2 Memory implications

To illustrate the memory requirements of this organisation, we take two examples from
3-SAT problems in Kochenberger (2010) whose PUB formulations give n = 200 and
n = 600, respectively. For this purpose we have selected the instances for n = 200 and
n = 600 that contain the largest number of initial non-zero costs for each of these two
values of n. From this initial non-zero cost data we are able to compute the bounds zo(h)
on the number of non-zero costs at each level h by Corollary 2.1, and then use the
observations of Section 6.3.1 to identify the total memory requirements. We report these
requirements separately for Stage 2 and for the generic PUB stage of the algorithm, since
these requirements are independent in the sense that only the larger of the two
requirements determines the memory consumed at any point by the algorithm.

In the case of the generic PUB stage, without more extensive processing we do not
know the values Last(h) for h = 1 to d that give the values Nmax, Nsum and NQ to precisely
identify the total memory employed, but we can substitute the upper bounds zo(h) for the
values Last(h) to obtain an over-estimate of the total memory. Consequently we use the
same values 0

maxN and 0
su mN used to identify the memory requirements for Stage 2,

together with an associated value 0
QN that over-estimates NQ. We note for 3-SAT

problems that d = 3.

 24 F. Glover et al.

Illustration for n = 200

The initial number of non-zero costs are given by nzo(1) = 157, nzo(2) = 1,553 and
nzo(3) = 1,122. Applying Corollary 2.1, we have the following upper bounds on the
number of non-zero costs that the algorithm can generate at levels 3 and 2:

o oz (3) nz (3) 1,122,= =

oz (2) 1,553 Min((2), 1,553 3(1,122) Min(19,900, 4,919) 4,919.= + Δ + = =

The value zo(1) is limited by Δ(1) = n = 200. (Information about level 1 always explicitly
refers to all of the indexes 1 to n in any case.)

By the definitions at the end of Section 6.3.1 we have 0
maxN 13,204,=

0N 9,838,Q = and the value n(d – 1) = 200 + 200 × 199/2 = 20,100. The associated

formulas for total memory from Section 6.3.1 are:

Stage 2 Memory = 0 0
max2d + n(d 1) + 2N 2Nsum− +

Generic PUB stage Memory = 0 0
max1+ 2d + 6N N Nsum Q+ +

Consequently, we obtain

Stage 2 memory 58,996

Generic PUB memory 95,310.

These values may be compared to the values n3 = 8,000,000 and n(d) = 258,900, for the
classical and full coded memory representations. This shows that even a full reliance on
coded memory throughout the algorithm, which results in less efficient processing,
consumes somewhat more memory than our approach for exploiting sparsity. In fact, the
value n(d) = 258,900 underestimates the amount of memory used by the full coding by a
factor of 2 or more, because additional arrays are needed to execute the method.

Illustration for n = 600

The initial number of non-zero costs in this instance are given by nzo(1) = 453,
nzo(2) = 3,768 and nzo(3) = 2,550. Upper bounds on the number of non-zero costs at
levels 3 and 2 are thus:

o oz (3) nz (3) 2,550= =

oz (2) 11, 418=

The value zo(1) is limited by Δ(1) = n = 600.
We again apply the formulas:

0 0
maxStage 2 : Memory 2d n(d –1) 2N 2Nsum= + + +

0 0
maxGeneric PUB stage : Memory 1 2d 6N Nsum QN= + + + +

 Polynomial unconstrained binary optimisation – part 2 25

where in this case 0
maxN 30,486,= 0N 13,968,sum = 0N 22,836,Q = and the value

n(d – 1) = 600 + 600 × 599/2 = 180,300. Then we obtain:

Stage 2 Memory 269,214=

Generic PUB Memory 219,727=

These values may be compared to the values n3 = 216,000,000 and n(d) = 36,000,500 for
the classical and full coded memory representations. We see that the memory savings
provided by our method for exploiting sparse data become more dramatic as the size of
the problem increases.

7 Multi-flip moves and enhanced evaluations

The preceding analyses suggest that the total number of potential moves grows rapidly
enough so that 2-flip moves will usually be the practical limit for examining all moves of
a given class. However, candidate list strategies as described in Glover and Laguna
(1997) can enable moves involving somewhat larger numbers of flips to be evaluated and
used. This is particularly true in the case of polynomials of degree 3 and especially of
degree 2, where methods subsequently described make it possible to perform exceedingly
efficient updates. In these cases, the filter-and-fan strategy of Glover (1997), which
builds on basic candidate list ideas, provides an additional opportunity for exploiting
multi-flip moves.

We begin by examining special ways to take advantage of 2-flip moves for
polynomials of arbitrary degree, and then show how to build on these processes to
provide useful methods for generating 3-flip and higher order moves by means of natural
candidate list ideas, accounting for the fact that the evaluation of higher order moves
involves some sacrifice of the efficiencies available in the 2-flip case.

The Generic PUB Algorithm has the useful property that the effort required to
evaluate 2-flip moves is independent of the degree d of the polynomial. The only
difference entailed by higher degree polynomials is that more work is required in
updating the PUB representation after a move is made, but the work to evaluate a move
involving a given number of flips is independent of this degree.

Specifically, for a polynomial of any degree, a 2-flip move requires examining only
the sets Np of the form Np = {i1,i2} together with the two associated sets Ni1 = {i1} and
Ni2 = {i2}. If 1-flip moves are evaluated separately, then an option for evaluating 2-flips
is to restrict attention to sets Np for p ∈ P; i.e., for which cp ≠ 0. The organisation that
differentiates the sets Np by level, hence creating sets Nhp for h = 1 to d, makes it possible
to carry out these evaluations efficiently.

In general, if we restrict attention to evaluating only 1-flip and 2-flip moves, we can
obtain enhanced evaluations by taking advantage of an additional consequence of
Corollaries 1.1 and 1.2 in Section 2.

Corollary 1.3: If x′ = 0 constitutes a local optimum relative to:

1 1-flip moves, then it is also a local optimum relative to 2-flip moves unless cp < 0 for
some p such that |Np| = 2.

 26 F. Glover et al.

2 both 1-flip and 2-flip moves, then it is a local optimum for 3-flip moves unless cp < 0
for some p such that |Np| = 3, or unless there exists some i ∈ N such that i belongs to
2 sets Np having |Np| = 2 and cp < 0.

Proof: Represent the coefficient cp of a set Np = {i1, …, ih} by c(i1, …, ih) and identify the
cost of flipping all elements in Np, whether or not p ∈ P (i.e., cp ≠ 0) by
FlipCost(i1, …, ih) = ∑(c(k1,…, kr): {k1, …,kr} ⊂ {i1, …, ih}). By Corollaries 1.1 and 1.2,
if x′ = 0 is a local optimum relative to 1-flip moves, then ci ≥ 0 for all i ∈ N, and the only
relevant sets N″ for 2-flip moves consist of those Np of the form Np = N2p = {i1,i2}
together with their subsets {i1} and {i2}. The solution x′ = 0 fails to be a local optimum
for 2-flip moves only if for some such Np we have c(i1,i2) + c(i1) + c(i2) < 0 which
immediately implies cp < 0. On the other hand, if x′ = 0 is a local optimum relative to
both 1-flip and 2-flip moves, we additionally have c(i1,i2) + c(i1) + c(i2) ≥ 0 for all p such
that Np has the form Np = {i1,i2}. A 3-flip involving a set N″ = {i1,i2,i3} has
FlipCost(i1,i2,i3) = c(i1,i2,i3) + c(i1,i2) + c(i2,i3) + c(i1,i3) + c(i1) + c(i2) + c(i3)
(understanding a component costs that does not correspond to some cp for p ∈ P to be 0,
including c(i1,i2,i3) if d < 3). Denying the assertion (2) of the corollary, we have
c(i1,i2,i3) ≥ 0 and no index i belongs to two of the three sets {i1,i2}, {i2,i3}, {i1,i3}
whose associated costs c(i1,i2), c(i2,i3) and c(i1,i3) are negative. Equivalently, at least
two of the three costs c(i1,i2), c(i2,i3) and c(i1,i3) must be non-negative. Suppose these
costs are c(i1,i2) and c(i2,i3). Group the components of FlipCost to give
FlipCost(i1,i2,i3) = c(i1,i2,i3) + c(i1,i2) + c(i2,i3) + c(i2) + (c(i1,i3) + c(i1) + c(i3)). Each of the
first three terms is non-negative by denying the conclusion of (2), while the two terms of
the sum c(i2) + (c(i1,i3) + c(i1) + c(i3)) are both non-negative by the assumption that x’ = 0
is locally optimal relative to 1-flips and 2-flips. This completes the proof by
contradiction.

The foregoing result has implications for choice rules in algorithms that fall within
the domain of the Generic PUB Algorithm by creating a bias toward selecting moves that
are components of profitable q-flip moves, where q is larger than we can consider for a
direct evaluation. Define:

{ }pP (j) p P(j) : c 0− = ∈ <

and determine an evaluation for flipping xj given by Eval(j) = Eval1(j) or Eval2(j), where:

1Eval (j) P (j)−=

()2 pEval (j) – c : p P (j)−= ∈∑

Alternatively, Eval(j) may be determined as a linear combination of Eval1(j) and Eval2(j).
Note the index j will automatically be excluded from P–(j) under the local optimality
assumption. Then, in the situation where x’ = 0 is locally optimal for 1-flip moves, or for
both 1-flip and 2-flip moves, we choose to flip a variable xj such that j = arg max
(Eval(i): i ∈ N). If we further restrict the definition of P– (j) to be given by
P– (j) = {p ∈ P(j): cp < 0 and |Np| ≤ 3}, then Eval(j) is designed to favour the selection of a
variable xj that may be a component move within an improving 3-flip move. By
extension, the foregoing rule is a way of selecting xj in a manner that increases the chance
that it will be a component of some higher level flip move.

 Polynomial unconstrained binary optimisation – part 2 27

Method to exploit corollary 1.3: option E

Corollary 1.3 gives rise to an Option E as previously referred to in the Generic PUB code.
The supplemental evaluation based on Eval1(j) and Eval2(j) proceeds as follows, where
the indicated code can be inserted directly in the locations previously identified in
Section 6.3.2. We note that we do not have to include reference to cp for p ∈ N because
Eval1(j) and Eval2(j) are only referenced when a 1-flip is not improving, i.e., when cp ≥ 0.

Option E(1): Initialise supplemental evaluation
Eval1(i) = 0 and Eval2(i) = 0 for all i ∈ N.

Option E(2): Completed initialisation of supplemental evaluation
c = Cost(h,p)
If c < 0 then
 For r = 1 to h
 i = N(h,p,r)
 Eval1(i) = Eval1(i) + 1
 Eval2(i) = Eval2(i) – c
 Endfor r
Endif

Option E(3)
If c > 0 then
 Eval1(j) := Eval1(j) + 1
 Eval2(j) := Eval2(j) – c
Elseif c < 0 then
 Eval1(j) := Eval1(j) – 1
 Eval2(j) := Eval2(j) + c
Endif

Option E(4)
c* = Cost(h*,p*)
If c* ≥ 0 and c + c* < 0 then
 For r* = 1 to h*
 i = N(h*,p*,r*)
 Eval1(i) := Eval1(i) + 1
 Eval2(i) := Eval2(i) – (c + c*)
 Endfor r*
Elseif c* < 0 and c + c* ≥ 0 then
 For r* = 1 to h*
 Eval1(i) := Eval1(i) – 1
 Eval2(i) := Eval2(i) + (c + c*)
 Endfor r*
Endif

The justification of the foregoing code segments is provided by Corollary 1.3, in
conjunction with Observation 2 and the general structure of the Generic PUB Algorithm.

 28 F. Glover et al.

8 Concluding remarks

The PUB optimisation problem affords a model that encompasses problems significantly
more general than those captured by the widely studied quadratic model. Our results for
the PUB problem enable 1-flip, 2-flip and higher level flip moves (within limits of
computational complexity) to be executed efficiently. These results give a framework for
a generic PUB algorithm whose evaluation routines can be embedded in a variety of
existing search methods. Special data structures and streamlined updating methods are
introduced that offer additional efficiencies.

We particularly focus on organising our Generic PUB Algorithm to take advantage of
large and sparse problems, which typically arise in practical applications. By
incorporating a coding procedure in a preliminary stage and employing special data
structures and updating algorithms to perform the main computations of the PUB method,
our approach offers the potential to solve such practical problems with greater efficacy
and reduced computational effort.

References
Glover, F. (1997) ‘A template for scatter search and path relinking’, in Hao, J-K., Lutton, E.,

Ronald, E., Schoenauer, M. and Snyers, D. (Eds.): Artificial Evolution, Lecture Notes in
Computer Science, 1363, pp.13–54, Springer, Berlin.

Glover, F. and Hao, J.K. (2010a) ‘Efficient evaluations for solving large 0-1 unconstrained
quadratic optimization problems’, International Journal of Metaheuristics, Vol. 1, No 1,
pp.3–10.

Glover, F. and Hao, J.K. (2010b) ‘Fast 2-flip move evaluations for binary unconstrained quadratic
optimisation problems’, International Journal of Metaheuristics, Vol. 1, No. 2, pp.100–107.

Glover, F. and Laguna, M. (1997) Tabu Search, Kluwer Academic Publishers, Boston.
Glover, F., Hao, J.K. and Kochenberger, G. (2010) ‘Polynomial unconstrained binary optimization

– part 1’, International Journal of Metaheuristics, Vol. 1, No. 3, pp.232–256.
Glover, F., Kochenberger, G., Alidaee, B. and Amini, M. (1998) ‘Tabu search with critical event

memory: an enhanced application for binary quadratic programs’, in Voss, S., Martello, S.,
Osman, I.H. and Roucairol, C. (Eds.): Meta-Heuristics – Advances and Trends in Local
Search Paradigms for Optimization, pp.83–109, Kluwer Academic Publishers,
Boston/Dordrecht/London.

Hanafi, S., Rebai, A-R. and Vasquez, M. (2010) ‘Several versions of the devour digest tidy-up
heuristic for unconstrained binary quadratic problems’, Working paper, LAMIH, Université de
Valenciennes.

Kochenberger, G. (2010) ‘Notes on 3-SAT and max 3-SAT’, Working paper, University of
Colorado, Denver.

Kochenberger, G., Glover, F., Alidaee, B. and Rego, C. (2004) ‘A unified modeling and solution
framework for combinatorial optimization problems’, OR Spectrum, Vol. 26, No. 2,
pp.237–250.

Pardalos, F. and Xue, J. (1994) ‘The maximum clique problem’, The Journal of Global
Optimization, Vol. 4, No. 3, pp.301–328.

Pardalos, P. and Rodgers, G.P. (1990) ‘Computational aspects of a branch and bound algorithm for
quadratic zero-one programming’, Computing, Vol. 45, No. 2, pp.131–144.

 Polynomial unconstrained binary optimisation – part 2 29

Appendix 1

Illustrations of relationships between component

Data structures

A.1.1 Relationship between Nhp and Findhp

For purposes of illustration we represent Nhp and Findhp by N(h p) and Find(h, p)
Consider these two associated vectors for level h = 3 and p = 23, where p is arbitrarily
given the value 23, to yield the two vectors N(3,23) and Find(3,23) as follows. (Note the
index h = 3 identifying the third level is included at the start of each vector so that all
vectors at this level can be conveniently accessed by holding h constant at 3).

N(3, 23) (4,7,13) (hence, N(3, 23,1) 4; N(3, 23, 2) 7; N(3, 23,3) 13)= = = =

Find(3, 23) (18,34, 28) (hence, Find(3, 23,1) 18;Find(3, 23, 2) 34; Find(3, 23,3) 28)= = = =

Each component of the Find(3, 23) vector identifies a p* value at level h – 1 = 2 that
yields a reduced level 2 form of the level 3 vector N(3, 23). Specifically, Find(3, 23)
identifies 3 different level 2 vectors derived from (4, 7, 13), consisting of (7, 13), (4, 13)
and (4, 7). Each of these level 2 vectors drops one element of (4, 7, 13); i.e., (7, 13) drops
the first element, (4, 13) drops the second element and (4, 7) drops the third element.
(Consequently, these three vectors correspond to Nhp – {j} as j successively equals the
components 4, 7 and 13 of Nhp.) In short, the three reduced level 2 vectors are identified
by the three p* values (18, 34, 28) so that N(2,18) = (7, 13), N(2, 34) = (4, 13) and
N(2, 28) = (4, 7). As in the case of the p value of 23, the p* values 18, 34 and 28 are
chosen arbitrarily for concreteness. (These values will in fact be determined by the
sequence in which data elements are read into the problem.) An image of how the two
vectors relate positionally can be gained by again writing the Find(3, 23) vector below
the N(3,23) vector as follows.

N(3, 23) (4,7,13)=

Find(3, 23) (18,34, 28)=

We use the symbol # to indicate that the corresponding component of a vector is dropped,
and portray the relationship between N(3, 23) and Find(3, 23) by writing:

N(2,18) (# 4,7,13); N(2,34) (4, #7,13); N(2, 28) (4,7, #13); thus giving= = =

N(2,18) (7,13); N(2,34) (4,13); N(2, 28) (4,7)= = =

Level 2 vectors constitute a special case that is handled differently from level h vectors
for h > 2. We illustrate this special case starting with Nhp and Findhp for h = 2. We again
choose a value p arbitrarily (here p = 13) to give the two associated vectors N(2, 13) and
Find(2, 13):

N(2,13) (5,7)=

Find(2,13) (7,5)=

 30 F. Glover et al.

In contrast to the arbitrary designation p = 13, the p* values of the Find vector; i.e., the
‘7’ and the ‘5’ of Find(2, 13) = (7, 5), are not arbitrary, but determined by the entries of
N(2, 13) = (5, 7), which Find(2, 13) = (7, 5) duplicates in reverse order. To see why this
is so, recall that the p* entries of Find(2, 13) = (p1, p2) respectively identify the vectors
N(2, 13) – {5} and N(2, 13) – {7}, corresponding to Nhp – {j} as j ranges over the entries
of Nhp. (We take the liberty of mixing set notation and vector notation, since the
interpretation is obvious.) Using the # symbol as introduced above, we can write:

()1 2N(1,p) (#5,7); N 1,p (5,#7), thus giving= =

() ()1 2N 1,p (7); N 1,p (5)= =

These two expressions show that the p* values p1 and p2 are compelled to be p1 = 7 and
p2 = 5, hence giving N(1, 7) = (7) and N(1, 5) = (5). This accords with the convention that
the p value in the situation where Nhp = {i} is given by p = i. Here we have applied this
convention in generating the vector Nh-1,p*

This special case illustrates that when h = 2 we don’t need to use the vector Findhp to
generate the vectors Nh–1,p* from Nhp, in contrast to cases where h > 2. Specifically,
knowledge of the contents of any level 2 vector N2p = (i1,i2) immediately gives the two
associated Nh–1,p* vectors, which are just (i2) in the case where j = i1and (i1) in the case
where j = i2. Moreover, equally important, we also know where these vectors are stored
because of the convention that N(1, p) = p; i.e., the ‘vector’ (i2) is accessed by Nhp for
p = i2 and (i1) is accessed by Nhp for p = i1.

A.1.2 Relationship between Nhp and Qhp as used in generating elements of a list
P(j)

We next consider the relationship between the arrays Nhp and Qhp and then combine this
information with information involving the array Findhp to update problem arrays when a
variable xj is flipped. Suppose d = 3 and we want to generate elements of the list P(j) for
j = 7. Assume all of the sets Nhp for h = 1 to h = 3(= d) are given in Table A1. We also
identify associated Qhp vectors for h = 2 and h = 3 (the case for h = 1 is superfluous) of
the form Q2p = (q1, q2) and Q3p = (q1, q2, q3). The connections between the Nhp and Qhp
vectors are elaborated Table A1.
Table A1 Connections

P(7)
h p Nhp Qhp

1 7 7

13 5, 7 28, 67 2
18 7,8 45, 33

23 4, 7, 13 48, 79, 63
27 5, 7, 33 62, 91, 88
18 7, 8, 52 35, 37, 26

3

19 7, 15, 30 49, 28, 58

 Polynomial unconstrained binary optimisation – part 2 31

For illustration, we will use a single vector Loc(q) = (hLoc(q), pLoc(q), rLoc(q)) rather
than writing out hLoc(q), pLoc(q) and rLoc(q) separately. (In computer implementation,
it is better to use the three separate vectors to allow their components to be accessed more
efficiently, particularly when not all components are used in the same operation.) The
representation using the vector Loc(q) permits the connection between the elements
(h, p, r) = Loc(q) and the vector N(h, p, r) to be immediately visible.

The table discloses the manner in which Loc and the Nhp and Qhp vectors interrelate.
To clarify these interrelationships, we begin by listing the Loc vectors and directly
beneath them the associated Nhp vectors, which are associated by the representation Nhp =
(i1, ...,ir, ...,ih) and Loc(q) = (h,p,r) for ir = N(h,p,r). The first two indexes of Loc(q)
associated with a given term Nhp are highlighted, to emphasise that these two indexes
remain constant for the term under consideration.

For h = 2:
Loc(28) = (2, 13,1): Loc(67) = (2, 13, 2)
 N(2,13,1) = 5; N(2,13,2) = 7;
Loc(45) = (2, 18, 1), Loc(33) = (2, 18, 2)
 N(2,18,1) = 7; N(2,18,2) = 8;

For h = 3:
Loc(48) = (3, 23, 1); Loc(79) = (3, 23, 2); Loc(63) = (3, 23, 3)
 N(3, 23, 1) = 4; N(3, 23, 2) = 7; N(3, 23, 3) = 13
Loc(62) = (3, 27, 1), Loc(91) = (3, 27, 2), Loc(88) = (3, 27, 3)
 N(3,27,1) = 5; N(3, 27,2) = 7; N(3, 27, 3) = 33
Loc(35) = (3, 18, 1): Loc(37) = (3, 18, 2), Loc(26) = (3, 18, 3)
 N(3,18,1) = 7; N(3, 18, 2) = 8; N(3, 18 3) = 52
Loc(49) = (3, 19, 1), Loc(28) = (3, 19, 2), Loc(58) = (3, 19, 3)
 N(3, 19, 1) = 7; N(3, 19, 2) = 15; N(3, 19, 3) = 30

We use this information to illustrate a trace of the elements of the list P(7), by starting
with First(h, 7) for h = 2 and 3. (There is no need to refer to h = 1, since the element of
the list P(7) for h = 1 is uniquely the index j = 7.) ‘NA’ below represents ‘not applicable,’
meaning that the:

Before value of the first element on the list is never accessed.

A trace of P(7):
Level h = 3:

After(79) = 91; After(91) = 35; After(35) = 49; After(49) = 0 First(3, 7) =
79,

Before(79) = NA; Before(91) = 79; Before(35) = 91; Before(49) =
35

Level h = 2:

First(2, 7) =
67,

After(67) = 45; After(45) = 0

 Before(28) = NA; Before(45) = 67

 32 F. Glover et al.

Examination of Table A1 verifies the contents of the Before and After arrays. For
example, for h = 3, the vectors Loc(q) = (h, p, r) that yield N(h, p, r) = 7 are given for
q = 79, 91, 35 and 49. (The q values do not have to appear in exactly this sequence inn
the trace of the Before(q) and After(q) lists. Variation will occur according to the
sequence in which the generic PUB algorithm adds and deletes elements from these lists.)
The validity of the Before and After arrays for h = 2 may be verified similarly.

A.1.3 Consequences of flipping a variable

Now, we illustrate the process of updating the arrays when the variable x7 is flipped.
First, consider the effect of flipping x7 on the level 3 set Nhp = N3,23, which is the first
element we encounter by tracing the P(7) list at level 3; i.e., we obtain q = First(3,7) = 79,
and as previously noted, Loc(79) = (3, 23, 2) giving h = 3, p = 23 and r = 2. [We already
know h = 3 as a result of tracing the q lists at level 3, hence we only pick up p = pLoc(79)
= 23 and r = rLoc(79) = 2]. From Table A1 the information for h = 3 and p = 23 is given
by:

h p Nhp Qhp
3 23 4, 7, 13 48, 79, 63

To determine the effect of flipping x7 we now make use of the Findhp array, which was
illustrated earlier in association with Nhp = N(3, 23) = (4, 7, 13), giving
Find(3, 23) = (18, 34, 28), where:

N(2,18) (7,13); N(2,34) (4,13); N(2, 28) (4,7)= = =

The flip of x7 affects Nhp by uniquely generating the array Nh*p* = N(2, 34) = (4, 13). We
know the coordinates h* = 2 and p* = 34 of N(2, 34) because h* = h – 1 and 34 is in the
second position of Find(3, 23) = (18, 34, 28) just as j = 7 is in the second position of
N(3, 23) = (4, 7, 13). Moreover, we know this position r because this is precisely the
value given by rLoc(q), which we found in the beginning by accessing q = 79 and
obtaining rLoc(79) = 2.

In sum, then, we have determined that flipping x7 directly affects the set level 3 set
Nhp = N(3, 23) because this set is encountered on P(7) for q = 79, and the flip also affects
the set Nh*p* = N(2, 34) whose coordinate p* = 34 we were able to identify using the
Findhp array and the position rLoc(79) = 2, yielding p* = Find(h, p, 2). Finally, by
Observation 2, the new costs for the two affected sets are given by setting
c = Cost(h, p) = Cost(3,23), and then setting Cost(3, 23) = – c and
Cost(2, 34) := Cost(2, 34) + c.

Illustration for level 2

To complete the illustration of the consequences of flipping a variable, we show the
special case involving Level 2 sets. Consider the stage of tracing the P(7) list that
examines elements on this list at Level 2. (The order in which the levels are examined is
immaterial.) We illustrate for the set Nhp = N2,45 where is the second element encountered
by tracing the P(7) list at Level 2; i.e., where the first element is accessed by
q = First(2, 7) = 67 and the second is accessed by q =After(67) = 45. As noted in the
listing of the Loc(q) vectors above, Loc(45) = (2, 18, 1), giving h = 2, p = 18 and r = 1.

 Polynomial unconstrained binary optimisation – part 2 33

Table A1 gives the information for h = 2 and p = 18 by:

h p Nhp Qhp
2 18 7, 8 45, 33

To determine the effect of flipping x7 we could proceed as earlier by making use of the
Findhp array in association with the Nhp array, noting that Nhp = N(2,18) = (7,8) and
Find(2,18) = (8,7), where:

N(1,8) (8); N(1,7) (7)= =

The flip of x7 affects Nhp by uniquely generating the array Nh*p* = N(1,8) = (8). We know
the coordinates h* = 1 and p* = 8 of N(1,8) because h* = h – 1 and 8 is in the first
position of Find(2, 18) = (8, 7) just as j = 7 is in the first position of N(2, 18) = (7, 8). We
also know this position r because this is precisely the value given by rLoc(q), which we
found in the beginning by accessing q = 45 and obtaining rLoc(45) = 1.

However, in this special case for Level 2, we can also obtain this same value p* = 8
(and hence also know N(1, p*) = 8) without referring to the Findhp array for h = 2. [We
also only need to access the value p = pLoc(q) and not the values h = hLoc(q) and
r = rLoc(q)) for the value q found on the P(7) list].

Specifically, we h = 2 is already known because we use this h value to access First(2,
7) and then After(q) to obtain q = 45. From this we obtain p = pLoc(45) = 18, and access
N(2,18) = (7, 8). Finally, for this special h = 2 case we obtain p* by the operation:

If N(h,p,1) = j then
 p* = N(h,p,2)
Else
 p* = N(h,p,1)
Endif

This immediately yields p* = 8 without bothering to access or store the Findhp vector for
h = 2. Once p* = 8 is identified, the new costs for the two affected sets are given by
setting c = Cost(h, p) = Cost(2, 18), and then setting Cost(2, 18) = – c and
Cost(1, 8) := Cost(1, 8) + c.

A.1.4 Exploiting the Qhp sets

We finally illustrate how the information provided by the Qhp sets is used to handle the
case when the cost Cost(h, p) of a particular term Nhp changes from zero to non-zero, or
vice versa. Such a change means that reference to Nhp must be added or deleted from the
various lists P(j) that access Nhp, to continue to exploit sparsity by only accessing terms
with non-zero costs.

The Qhp array, represented by Qhp = (q1, …, qh), facilitates these operations by
recording the ‘q index’ qr where the set Nhp is accessed by a trace of the list P(ir), where ir
is the ‘rth element’ of Nhr = (i1, …,ir, …,ih). In reality, when examining a given level h, a
cost can change from zero to non-zero, or back, only at level h* = h – 1. Hence, we are
concerned with arrays of the form Qh*p*, where p* is derived from the pair (h, p) as in the
preceding illustrations.

 34 F. Glover et al.

We continue to assume d = 3, which implies the largest value h* = h – 1 is limited to
2, and hence the Qhp values in Table A1 for h = 3 are irrelevant. (Their inclusion is useful
for giving information that verifies the contents of the Loc(q) vectors in our example, but
the Qhp arrays in general need not be generated for h = d.)

We extend the illustrations of Section A2.3, which concerns the effects of flipping x7.
We first consider these effects for the level 3 set Nhp = N3,23. As noted at the conclusion
of the illustration for h = 3, new costs Cost(h, p) and Cost(h*, p*) are obtained for the
two affected terms Nhp and Nh*p*, for (h, p) = (3,23) and (h*,p*) = (2, 34), by setting
c = Cost(h, p) = Cost(3, 23), and then setting Cost(3, 23) = – c and
Cost(2,34) := Cost(2,34) + c. We know c ≠ 0 because Nhp was accessed by tracing non-
zero cost terms. We are thus concerned with whether Cost(h*, p*) = Cost(2, 34) starts or
ends with a 0 value.

Cost(h*, p*) starts at 0

The term Nh*p* is not on any of the P(i) lists and hence must be added to the lists that are
relevant. Here, Nh*p* = N2,34 = (i1,i2) = (4, 13). Consequently, we need to find add (h*, p*)
= (2,34) to the lists P(i1) = P(4) and P(i2) = P(13). We let r* range from 1 to 2, to access
ir* = i1 and i2, and in each case, pick up a new q value, q = q*, and then put q* on the front
of the list for P(ir*). Moreover, we simultaneously create the associated array Qh*p*. A
fuller understanding of this array will be provided upon examining the case where
Cost(h*,p*) starts non-zero but becomes zero.

For r* = 1, 2
 /* Get a new q index */
 q* = PoolQ(NQ)
 NQ := NQ – 1
 /* Add q* to P(i) for i in Nh*p* */
 i = 4 if r* = 1 and i = 13 if r* = 2
 /* i = N(h*,p*,r*) */
 qFirst = First(i)
 After(q*) = qFirst
 Before(qFirst) = q*
 First(i) = q*
 hLoc(q*) = 2 (= h*)
 pLoc(q*) = 34 (= p*)
 rLoc(q*) = r*
 /* Create entry r* of the Q(h*,p*,r*) array */
 Q(h*,p*,r*) = q*
Endfor r*
Cost(2,34) (= Cost(h*,p*) = c

 Polynomial unconstrained binary optimisation – part 2 35

Cost(h*,p*) starts non-zero and becomes 0.

In this case, the result of updating Cost(2, 34) := Cost(2, 34) + c yields Cost(2, 34) = 0.
Consequently (h*, p*) = (2, 34) must be dropped from all relevant P(i) lists. As before,
N2,34 = (i1,i2) = (4,13), and now we must find (h*,p*) on the lists P(i1) = P(4) and
P(i2) = P(13) in order to drop them, and this is where the list Qh*p* enters into the picture.

Table A1 does not show Q2,34 because it only contains information related to terms
Nhp that lie on the list for P(7), and at present we are dealing with a term Nh*p* = (4, 13)
that does not contain the index j = 7, and hence does not lie on P(7). Since Nh*p* exists
(has a non-zero cost before making changes), the associated Qh*p* also exists and we
suppose for concreteness Q2,34 = (q1, q2) = (62, 29), meaning that (h*, p*) = (2, 34) is
accessed on the list for P(i1) = P(4) by q1 = 62, and is accessed on the list for P(i2) = P(13)
by q2 = 29. For this, we just add (h*, p*) to the first of these two lists by the operation of
picking up a new q value, q = q*…

Cost(2,34) := Cost(2,34) + c

If Cost(2,34) = 0 (|Cost(2,34)| < ε) then
 For r* = 1 to 2
 i = 4 if r* = 1 and i = 13 if r* = 2
 /* i = N(h*,p*,r*) */
 q* = 62 if r* = 1 and q* = 29 if r* = 2
 /* q* = Q(h*,p*,r*) */
 If First(i) = q* then
 First(i) = After(q*)
 Else
 qB = Before(q*)
 qA = After(q*)
 Before(qA) = qB
 After(qB) = qA
 Endif
 /* Put q* back on PoolQ */
 NQ := NQ + 1
 PoolQ(NQ) = q*
 EndFor r*
Endif

Special case for level 2

Extending the previous illustration for Level 2, we consider the situation where
Nhp = N2,45; i.e., (h, p) = (2, 45) and we obtained (h*, p*) = (1, 8). By starting at Level 2,
we now deal with h* = 1 at Level 1. Since by convention we maintain N(1, i) = i for all
Level 1 sets, and access the Level 1 sets without concern for whether they have zero or
non-zero costs, there is no need to use the machinery illustrated for h > 2
(and hence h* > 1). For this same reason, no Qhp sets are recorded when h = 1, as
illustrated in Table A1.

 36 F. Glover et al.

Appendix 2

Special implications for the cubic and quadratic cases

First we note that the decoding process can be accelerated when h = 2. In this instance,
the fact that Np = {i1, i2} allows the identity of i1and i2 to be determined from p = Loc(q)
by the following simplified version of the decoding method of Section 5.

Simplified decoding algorithm for |Np| = 2

v = p – n

If v = 1 then
 i2 = 2
Else
 w = (v – 1)2
 u = [w1/2]
 i* = u + 1
 Πo = u
 Π1 = (i* – 2) Πo
 Π2 = i* Πo
 If Π2 ≤ w then
 Π = Π2

 i2 = i* + 1
 Else
 Π = Π1

 ir = i*
 Endif
 v := v – Π/2
Endif
i1 = v

The preceding specialised algorithm can also be embedded in a specialised algorithm for
the case where |Np| = 3, and thus a general decoding algorithm that applies to cubic
polynomials (with degree d = 3) can be made more efficient by the device of including
this specialisation.

Additional specialisations for both the cubic and quadratic cases arise in reference to
the arrays rLoc(q) and Find(h, p, r) in Section 6.3.2.1, where these arrays are used to
identify p* = Find(h, p, r) for r = rLoc(q). When h = 3, the index p* can be found fairly
quickly even without storing rLoc(q), by the following simplified search:

 Polynomial unconstrained binary optimisation – part 2 37

If j = N(h,p,1) then
 p* = Find(h,p,1)
Elseif j = N(h,p,2) then
 p* = Find(h,p,2)
Else
 p* = Find(h,p,3)
Endif

Finally, Find(h, p, r) need not be stored or accessed for h = 2, since in this case p* =
Find(h, p, r) would result in identifying p* = i where either N(h,p,1) = {i, j} or {j, i}.
Hence, for h = 2 we can find p* directly by:

If j = N(h,p,1) then
 p* = N(h,p,2)
Else
 p* = N(h,p,1)
Endif

Further simplification for h = 2 occurs by not bothering to refer to h in N(h, p, r), i.e.,
storing N(2, p, r) as just N(p, r). Then the preceding check is:

If j = N(p,1) then
 p* = N(p,2)
Else
 p* = N(p,1)
Endif

These simplifications can be introduced by checking for the value of h in a polynomial of
any degree d, but can be incorporated directly for the cases where d = 2 and 3 to provide
more economical alternative.

Quadratic problems

The analysis based on implications of Observation 2 also discloses that the quadratic case
occupies a special position that permits sparsity to be exploited with particular efficiency
and with simplified data structures when d = 2. For quadratic polynomials, zo(2) remains
unchanged at the value nzo(2), the number of non-zero quadratic terms in the initial input
data. The form of P(i) simplifies to P(i) = {p ∈ P: i = i1 or i2 for Np = {i1, i2}, i1, i2 ∈ N},
understanding that i itself implicitly belongs to P(i). Further, no set Np of the form
Np = {i1, i2} will be added or dropped as a result of making any number of flip moves
when d = 2, and consequently the initial q lists Loc(q), Before(q) and After(q) which are
created when the problem data is read in will remain invariant. In turn, this means that
there is no need to maintain the list PoolQ, since no q indexes will be added to or dropped
from this list [and PoolQ implicitly is an unchanging list {1, …, NQ} where each entry q
of PoolQ always identifies the same set Np identified by p = pLoc(q)]. Under this
circumstance, the After(q) list is also irrelevant, as is the list Qp, since the only function
of this latter list is to provide a means to drop elements from PoolQ efficiently. In sum,

 38 F. Glover et al.

the full set of updating operations for the quadratic case simplifies to precisely the
following.

Initial generation of the elements p ∈ P(i) during data input

Set First(i) = 0 for all i ∈ N. After(0) = 0.
cp = 0 for p = 1 to n(d)
q = 0
While problem data remain to be input
 Read in next data element (h,M, c), where M = {i1, …, ih} and c = c(i1, …, ih) for h = 1 or

2. Assume i1 < i2 (if h = 2)
 Code the set M = {i1, …, ih} to obtain p = V[M] and set cp = c.
 If h = 2 then

 For i = i1 and i = i2

 q := q + 1
 After(q) = First(i)

 First(i) = q

 p = Loc(q)
 EndFor i
 Endif
EndWhile

Then the elements p ∈ P(i) are identified as indicated earlier.

Accessing the elements p ∈ P(i)
 q = First(i)
 While q > 0
 p = pLoc(q) /* identifies the current element p ∈ P(i) */
 /* Access N2p = {i1,i2} */
 q = After(q)
 EndWhile

Again it is understood that the index i itself is to be included among these indexes
accessed, though we do not bother to store it in P(i). These enhancements for quadratic
problems can be used to improve existing quadratic unconstrained binary optimisation
algorithms based on flip moves when applied to problems with sparse data.

