

Comparisons of Commercial MIP Solvers and an Adaptive Memory
(Tabu Search) Procedure for a Class of 0-1 Integer Programming

Problems

Lars M. Hvattum
The Norwegian University of Science and Technology

Trondheim, Norway.
lars.m.hvattum@iot.ntnu.no

Arne Løkketangen
Molde University College, Specialized University in Logistics

Molde, Norway.
Arne.Lokketangen@himolde.no

Fred Glover
OptTek System Inc.
 Boulder, CO, USA

Glover@OptTek.com

Abstract

The Boolean optimization problem (BOOP) is a highly useful formulation that
embraces a variety of 0-1 integer programming problems, including weighted
versions of covering, partitioning and maximum satisfiability problems. Several
years ago Hvattum, Løkketangen and Glover (2006) introduced an adaptive
memory (tabu search) method for BOOP which proved effective compared to
competing approaches. However, in the intervening years, major advances have
taken place in exact solvers for integer programming problems, leading to widely
publicized successes by the leading commercial solvers XPRESS, CPLEX and
GUROBI. The implicit message is that an alternative methodology for any broad
class of IP problems such as Boolean Optimization Problems would now be
dominated by the newer versions of these leading solvers.

We test this hypothesis by performing new computational experiments comparing
the tabu search method for the BOOP class against XPRESS, CPLEX and
GUROBI, and documenting improvements provided by the exact codes. The
outcomes are somewhat surprising.

Keywords: zero-one integer programming, Boolean optimization, commercial
solvers, metaheuristics, tabu search

 2

1 Introduction

The Boolean optimization problem (BOOP) represents a large class of binary optimization
models, including weighted versions of set covering, graph stability, set partitioning and
maximum satisfiability problems. These problems are all NP-hard, and in the past exact (provably
convergent) optimization methods have encountered severe performance difficulties in these
particular applications.

The first computational study of this problem is by Davoine, Hammer and Vizvari (2003),
employing a greedy heuristic based on pseudo-boolean functions. Hvattum, Løkketangen and
Glover (2004) in turn introduced simple iterative heuristic methods for solving BOOP. A more
advanced method, based on adaptive memory strategies from tabu search (TS) was proposed in
Hvattum, Løkketangen and Glover (2006), and was shown to yield significant computational
advantages both in comparison with the preceding heuristic methods and in comparison with the
leading commercial solvers XPRESS (see Xpress) and CPLEX (see Cplex) available at the time.

During the past several years, however, dramatic advances have been reported for the commercial
solvers, enabling the three leading solvers, XPRESS, CPLEX and GUROBI (see Gurobi) to solve
integer programming problems far more effectively than in the past. According to Bixby (2010),
the speed-up of solving mixed integer programming (MIP) problems is a factor of about 30 from
CPLEX 6.5 to CPLEX 11, and a factor of about 80 from CPLEX 6.5 to GUROBI 3.0. More
moderate numbers are reported by Lodi (2008), indicating a speed-up of 7.47 from CPLEX 6.5 to
CPLEX 11, while on another set of instances the percentage of instances solved to optimality
increased from 46.5 % for CPLEX 6.5 to 67.1% for CPLEX 11. Koch et al. (2011) report results
showing a speed up factor of about 7.5 for XPRESS in versions released between 2003 and 2010.

These impressive performance gains raise the question of whether the modern commercial
solvers will in fact dominate alternative methods previously proposed for various integer
programming models, particularly in the case of models like BOOP that encompass a significant
range of problems. Indeed, Lodi (2008) states that, as techniques from metaheuristics have been
incorporated in the MIP solvers, they can now be seen as competitive heuristic techniques if used
in a truncated way. For more details on which improvements have been incorporated into
commercial solvers, see the article by Linderoth and Lodi (2011).

We examine this question by performing new computational experiments comparing XPRESS,
CPLEX, and GUROBI against the tabu search for BOOP. In making these comparisons, we
document improvements provided by the exact codes and disclose how different methods
perform differently based on the subclass of test cases considered.

The remainder of this paper is organized as follows. Section 2 provides a 0-1 integer
programming model for the BOOP and provides a survey of previous work. Detailed
computational outcomes are given in Section 3, followed by a summary of results and associated
conclusions in Section 4.

 3

2 Problem formulation and search basics

2.1 Problem formulation

The BOOP model involves the objective of maximizing a linear objective function ݖ ൌ ∑ ܿݔ
ୀଵ

in binary variables, subject to a Boolean equation ߶ሺݔଵ, … , ሻݔ ൌ 0. Every Boolean function can
be written in disjunctive normal form, allowing ߶ to be expressed in the form ߶ ൌ ଵܶ ש ש… ܶ
where each ܶ is a product of some non-negated variables ݔ, ݆ א ܣ ك ሼ1, … , ݊ሽ, and some
negated variables ݔఫഥ ൌ 1 െ ݆ ,ݔ א ܤ ك ሼ1,… , ݊ሽ: ܶ ൌ ൫∏ אݔ ൯൫∏ אҧݔ ൯. This was the
original formulation by Davoine, Hammer and Vizvari (2003). Following Hvattum, Løkketangen
and Glover (2004), we consider a reformulation based on transforming ߶ into conjunctive normal
form, giving rise to the following mixed integer programming formulation:

max ݖ ൌ ܿݔ

ୀଵ

 ݔ
א

 ሺ1 െ ሻݔ 1
א

 ݅ א ሼ1, … ,݉ሽ

ݔ א ሼ0,1ሽ ݆ א ሼ1, … , ݊ሽ

Informally, a BOOP can be regarded as a satisfiability problem (SAT) that is extended to include
an objective function. For more information on SAT, see for example Cook (1971) and Du, Gu
and Pardalos (1997).

2.2 The TS-ACW Method: Basic Search Components

We briefly sketch the basics of the tabu search procedure we employ, called TS-ACW (for Tabu
Search with Adaptive Clause Weights) to provide a general overview of its operation. A certain
familiarity with basic TS and local search is assumed, and otherwise the reader is referred to
Glover and Laguna (1997). The search is designed to be able to move in infeasible space by
penalizing an infeasibility measure. The basic components of the method, which derive from a
simple version of tabu search, may be summarized as follows.

The starting solution is randomly generated. A move is a flip of a variable, as expressed by 0→1
or 1→0. The search neighborhood is the set of possible flips, which implies that it has a
cardinality equal to the number of variables. The move selection is greedy, i.e., always chooses a
non-tabu move having the highest move evaluation. Tabu tenure is drawn at random from the
range [10, 15]. The aspiration criterion allows a move to be selected in spite of being tabu if it
leads to a new best solution.

The move evaluation function, Fi has two components. One is the change in the objective value,
and the other is the change in the number of infeasible rows (or clauses). The cost coefficients are
normalized to the range [0,1], and hence the change Δzj in the objective function lies in the range
[-1,+1]. The change in the number of infeasible rows, ΔVj , is usually a small positive or negative

 4

integer. These two components are dynamically balanced by a weight, w, to keep the search
focused around the infeasibility barrier, thus yielding a move evaluation function given by
Fj = ΔVj + w * Δzj. The adaptive weight w is initially set to 1, and is updated every iteration as
follows: If the current solution is feasible, then w = w + winc, otherwise w = w + wdec.

Computational tests lead to the choices of winc = 0.90 and wdec = 0.35. The effect of this
adaptation is to induce a strategic oscillation around the feasibility boundary. The move selection
and update function thus becomes as shown in Figure 1.

Adaptive clause weighting is a long-term learning approach that operates in conjunction with the
move evaluation function to diversify the search, and is a variant of an approach from
Løkketangen and Glover (1997). Considering that some clauses may be harder to satisfy than
others, each clause is assigned a weight, Wi. When a clause becomes violated during the search,
the associated weight is incremented. This information is then used to modify the move
evaluation function by using a weighted version of ΔVj. Full details of the TS-ACW method are
given in Hvattum, Løkketangen and Glover (2006).

for each variable evaluate move

if aspiration then
 select best move
else
 select best non-tabu move

exeute selected move
set Tabu Tenure drawn from [10,15]
update w and clause weights

Solver Original
Version

New
Version

XPRESS 12 20

CPLEX 6.5 12.1

GUROBI NA 3.0.1

Table 1. Solver versions.

Figure 1. BOOP move selection and update function.

 5

3 Computational Results

As stated earlier, our goal is to get an indication of the increased power of the leading general
purpose exact solvers, CPLEX, XPRESS and GUROBI, and to address the question of how the
improvements in these methods affect their performance in relation to the tabu search method
TS-ACW for solving problems from the BOOP class.

The various versions of the exact solvers are shown in Table 1. To carry out a comparative
analysis we must also consider the difference in hardware performance. Previous tests comparing
CPLEX and XPRESS to TS-ACW were conducted by running CPLEX and TS-ACW on a 1 Ghz,
Intel P3, under Windows 2000, and running XPRESS on a 400 MHzSun UltraSparc under
SunOS 5.7. All the new tests were run on the same machine, an Intel Core2 Duo, 2.66 GHz,
under Windows XP. These machines have ratings of 769, 154 and 1429 MIPS (whetstones)
respectively. Based on this rating, on data from Dongarra (2010), and on the number of iterations
performed of TS-ACW per second on the different computers, we have normalized the
computational times presented later so as to correspond to running times on the newer Intel Core2
Duo machine. Running times on the UltraSparc computer have thus been divided by a factor of
7.7, and the running times on the Intel P3 computer have been divided by a factor of 3.

The original set of test-cases consisted of 63 major classes, all generated by Davoine, Hammer
and Vizvari (2003). All together there were 5400 instances. We have selected instances from
classes 23 – 63, as the smaller test problems were considerably easier, and not as suitable for
discerning the differences between the various methods. These selected test-sets thus include
instances containing from 100 variables and 400 clauses (or constraints) to those containing 1000
variables and 10,000 clauses. Each test set comprises five different instances sharing the same
size and structure, bringing the total to 205. As these are optimization problems, obtaining
feasibility was not a major issue. Detailed results per problem class are presented in an Appendix.
In the following we discuss results at an aggregated level.

The TS-ACW metaheuristic has been run on the new computer using a time limit of 60 seconds
and ten separate runs per instance. We report average results for the latter experiment. The three
exact solvers were tested with a time-limit of 4 hours per instance, with the exception of XPRESS
12 which was allowed to be run for up to 24 hours on some selected instance classes.

Table 2 reports the results relative to the performance of CPLEX 6.0 as run by Davoine, Hammer
and Vizvari (2003). Each value in Table 2 is the average over all instances of the ratio of the
objective function value obtained by the indicated method to the value obtained by CPLEX 6.0.
Since the objective is that of maximization, larger values are better. All numbers referring to
results relative to CPLEX 6.0 are given in percentage points.

We point out that relatively small differences in ratios amount to somewhat more significant
differences in the actual objective function values obtained. In Table 3 we compare the average
results of TS-ACW with the results of the new versions of three exact methods, reporting the
minimum, average, and maximum difference on the complete set of instances. If instead we were
to use the best values from the 10 runs of TS-ACW, the minimum difference would become 0 as
none of the exact methods are able to find better solutions on any instance.

 6

To further highlight the differences in performance between the four methods, a pair-wise t-test
shows that TS-ACW is significantly better than any other method. P-values from two-tailed tests
with TS-ACW (using average results over 10 runs) against XPRESS, CPLEX, and GUROBI
were 0.0002, 0.0064, and 0.0004, respectively. Comparing XPRESS 12 against XPRESS 20
yields a P-value of 0.0073 and comparing CPLEX 6.5 against CPLEX 12.1 yields a P-value of
0.0018. Hence, there is a significant improvement in the results obtained by the new versions of
XPRESS and CPLEX. The difference between CPLEX and GUROBI is not significant on a 0.05
level, whereas both are significantly better than XPRESS on any reasonable level.

Although these results show the performance outcomes when the methods are run to their time
limits, they do not indicate how much time each method required to obtain the best solution that
it found. In this connection, it should be pointed out that the new version of CPLEX used more
time on average than its original version to find the best solution, even when taking into account
that the hardware is about three times faster. This reflects the fact that CPLEX finds much better
solutions than before, and of course has to work for it. Table 4 shows the time required for each
method to obtain the best solutions found.

For 18 of the 41 instance classes, all versions of all commercial solvers were able to prove
optimality on all instances. The newest version of CPLEX proved optimality for all instances in
23 classes, but for the remaining 18 classes, only a few instances could be solved to optimality.
Table 5 illustrates the running times required by the different methods to find optimal solutions
and to prove optimality for the 18 out of 41 classes where all commercial methods prove
optimality. Recall that running times have been normalized to correspond to seconds on the
newest computer used.

Solver Original
Version

New
Version

XPRESS 99.465 100.865

CPLEX 100.902 102.112

GUROBI NA 102.190

TS-ACW NA 102.302

Table 2. Average results (in ratios) over all 205 instances.

 XPRESS CPLEX GUROBI

Minimum -15.0 -15.0 -15.0

Average 1147.3 184.1 100.6

Maximum 31354.7 10552.7 3339.7

Table 3. Comparing nominal solution values of TS-ACW with the three exact methods over all the
205 instances. Fractional differences arise due to using the average result over 10 runs for TS-ACW.

 7

The above results were all obtained using the standard settings of the commercial solvers.
However, both CPLEX and XPRESS contain some support for automatically tuning the
parameters of the solvers. Three instances, one from each of classes 27, 52, and 61, were selected
and the parameter tuning procedures run with ample running time allowed, although limiting the
running time for each instance on each parameter set to 300 seconds.

For XPRESS the following settings were adjusted by the tuning process: 1) primal simplex was
chosen as default instead of automatically deciding the type of LP-solver, 2) the feasibility pump
was set to be active always, instead of being turned off, 3) Gomory cuts were turned off except in
the root node, and 4) selection of heuristics in the search tree was set to an undocumented value.
For CPLEX the following settings were adjusted: 1) a limit on 10 passes to generate Gomory cuts
instead of the default which is to let CPLEX decide and 2) the maximum number of candidate
variables for generating Gomory fractional cuts is increased from 200 to 10,000.

The tuned versions of XPRESS and CPLEX were run again on the 70 most challenging instances
(those instance classes where no exact solver had been able to prove optimality for any instance).

 Seconds to find optimal
solution

Seconds to prove
optimality

Solver Original
Version

New
Version

Original
Version

New
Version

XPRESS 53.3 155.8 162.8 182.9

CPLEX 178.1 39.3 204.3 58.5

GUROBI NA 8.3 NA 68.0

TS-ACW NA 0.0 NA NA

Table 5. Results on a subset of 18 classes where all methods find optimal solutions.

Solver Original
Version

New
Version

XPRESS 680.0 2929.8

CPLEX 952.7 2981.5

GUROBI NA 229.4

TS-ACW NA 3.8

Table 4. Average time in seconds to find best solution over all 205 instances.

 8

The results are summarized in Table 6, and show that both XPRESS and CPLEX obtain better
results after the tuning process. However, only the improvement by XPRESS is statistically
significant, with a P-value of 0.0002 in a two-tailed pair-wise t-test. Since CPLEX and XPRESS
makes different choices with respect to Gomory cuts in the parameter tuning process, it may
appear that these choices are not important when solving instances of the BOOP. For XPRESS,
the choice of always using dual simplex would not degrade the performance by much. We are
thus inclined to suggest that the choices with respect to running the feasibility pump and the
selection of heuristics in the search tree had an effect on the performance of XPRESS.

4 Summary of Results and Conclusions

GUROBI is the fastest MIP solver, and gives slightly better results than CPLEX. CPLEX is a bit
faster than GUROBI in terms of proving the optimal solution. XPRESS finds worse solutions
than the two other methods, and uses more time both to find these solutions and to prove
optimality where applicable.

We estimate that CPLEX 12.1 is about 3.5 times faster than CPLEX 6.5 in terms of solving
medium difficult BOOP instances to optimality. The percentage of instances solved to optimality
has increased from 52.2 % to 62.0 %, but this increase is an overestimation since the effective
time limit was higher for CPLEX 12.1. No speed increase is observed from XPRESS 12 to
XPRESS 20, but the results obtained on instances where optimality is not proven are significantly
improved. Also, the percentage of instances solved to optimality increased from 50.7 % to 58.0
%.

TS-ACW GUROBI CPLEX 12.1 XPRESS 20

 Default Tuned Default Tuned

Time to best: 10.2 636.6 7850.4 9052.8 6514.2 4413.4

Average result: 104.990 104.665 104.435 104.511 100.819 104.217

Table 6. Results on the 70 most difficult instances, comparing the improvement after running
the automatic tuning tools by CPLEX and XPRESS. Average results for TS-ACW and
GUROBI are also reported for comparison.

 9

The tabu search method yields solutions of the same quality as those obtained by the exact
methods when optimality is proven, and yields better solutions otherwise. Solutions are found
much faster using the tabu search approach than any of the exact methods, representing a
difference of roughly two orders of magnitude. In general, TS-ACW performed somewhat better
than in the previous tests, due to better hardware which allowed the search to perform
approximately three times as many iterations within a fixed time limit.

In summary, the computational tests comparing the TS-ACW method to the best performing
commercial solver GUROBI produced the following outcomes.

Computed over all 205 test problems (Class 23 to Class 63), the average time for each method to
obtain the best solution it found is 4.1 seconds for TS-ACW (with a limit of 60 seconds), and
229.4 seconds for GUROBI.

The average of the objective function values (for a maximization objective) expressed as a ratio
to the average obtained by CPLEX 6.0 is 102.302 for TS-ACW (when taking the average
objective function values, or 102.310 if taking the best objective function value over 10
independent runs), and 102.190 for GUROBI. Expressed in terms of actual differences in
objective function values, these amounts correspond to an average difference of 100.6 between
TS-ACW and GUROBI, with a maximum difference of 3339.7. More significantly, even if
terminated after 5 seconds the tabu search approach yields solutions having the same quality as
obtained by the GUROBI exact method when optimality is proven (126 out of 205 problems, one
less than CPLEX 12.1), and TS-ACW yields solutions whose quality is superior to that of the
exact method otherwise (79 out of 205 problems), even if restricted to 5 seconds per run. The
other commercial solvers did not perform as well compared to our TS-ACW methods, as shown
in Section 3.

We observe that these results demonstrate the considerable value of the exact solvers in cases
where the overriding concern is to know whether or not optimal solutions have been found.
Specifically, as noted, in 126 of the 205 problems tested (having disregarded the majority of the
instances in the original test bed due to being too easy to solve) the best of the exact solvers did
in fact verify optimality. Although it is noteworthy that our method likewise obtained these same
solutions in a fraction of the time required by the exact solver, we emphasize that there are
contexts in which an assurance of optimality (when an exact method succeeds in achieving and
verifying optimality) can be important.

References

Bixby, R. E. (2010) “Mixed Integer Programming: It Works Better Than You May Think,” slide
presentation, Gurobi Optimization.

Cook S.A. (1971). ”The complexity of theorem-proving procedures”, Proceedings of the Third
ACM Symposium on Theory of Computing, pp 151 - 158

Cplex - http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

 10

Davoine, T., P. L. Hammer and B. Vizvári. (2003). “A Heuristic for Boolean optimization
problems”. Journal of Heuristics 9, pp 229-247.

Dongarra, J.J. (2010). “Performance of Various Computers Using Standard Linear Equations
Software”. Technical Report CS-89-85.

Du, D., J. Gu and P. Pardalos (Eds.). (1997). Satisfiability Problem: Theory and Applications,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 35.

Glover, F. and M. Laguna. (1997). Tabu Search. Kluwer Academic Publishers.

Gurobi - http://www.gurobi.com/

Hvattum, L. M., A. Løkketangen and F. Glover. (2004). ”Adaptive Memory Search for Boolean
Optimization Problems”. Discrete Applied Mathematics, Vol. 142, pp. 99-109.

Hvattum, L. M., A. Løkketangen and F. Glover. (2006). "New Heuristics and Adaptive Memory
Procedures for Boolean Optimization Problems,” Integer Programming Theory and Practice, J.
K. Karlof, ed. pp. 1-18.

Koch, T., T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R.E. Bixby, E. Danna, G.
Gamrath, A.M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D.E. Steffy,
and K. Wolter. (2011). “MIPLIB 2010 – Mixed Integer Programming Library version 5”.
Mathematical Programming Computation, Vol 3, pp. 103-163.

Linderoth, J.T. and A. Lodi. (2011). “MILP Software”. In: Wiley Encyclopedia of Operations
Research and Management Science. Ed.: J.J. Cochrane.

Lodi, A. (2008). “MIP Computation and beyond”. Technical Report ARRIVAL-TR-0229.

Løkketangen, A. and F. Glover. (1997). “Surrogate Constraint Analysis - New Heuristics and
Learning Schemes for Satisfiability Problems”. In: Satisfiability Problem: Theory and
Applications. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Vol. 35. AMS. Eds.: D. Du, J. Gu, and P. M. Pardalos.

Xpress - http://www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-Optimization-
Suite.aspx

Appendix

In this appendix we provide detailed results for each problem class in the test. Table A5 gives details about the test instances used in
terms of size and structure. Table A1 gives results for classes where optimality is proven by all the exact methods. Table A3 gives
results for classes where optimality is not proven by any exact method, and Table A2 gives results for the other classes, where some
but not all methods prove optimality for some of the instances. Numbers in bold font represent that optimality was proven for all
instances in the class. Table A4 gives additional results for tests after tuning the parameters of CPLEX and XPRESS.

Table A1. Results on classes where all exact methods are able to prove optimality within the time limit. Running times are normalized
to match those of the fastest computer used, reporting time in seconds to best solution (B) and time in seconds to prove optimality total
(T). Results for TS-ACW are averaged over ten runs, each run being terminated after 60 seconds.

 12

Table A2. Results on classes containing some instances where only a subset of the exact methods is able to prove optimality within the
time limit. Running times are normalized to match those of the fastest computer used, reporting time in seconds to best solution (B)
and time in seconds to prove optimality total (T). Results for TS-ACW are averaged over ten runs, each run being terminated after 60
seconds.

Table A3. Results on classes where none of the exact methods has been able to prove optimality within the time limit on any instances.
Running times are normalized to match those of the fastest computer used, reporting time in seconds to best solution (B) and time in
seconds to prove optimality total (T). Results for TS-ACW are averaged over ten runs, each run being terminated after 60 seconds.

 13

Table A4. Results on classes where none of the exact methods has been able to prove optimality within the time limit on any instances.
Running times are normalized to match those of the fastest computer used, reporting time in seconds to best solution (B) and time in
seconds to prove optimality total (T).

Table A5. Details of the test instances used, reporting the number of variables, the total number
of terms (non-zero elements in the constraint matrix), and the percentage of complemented terms.
Classes 23--49 are random instances, classes 50--54 are based on graph stability problems, and
classes 55--63 are based on set covering problems.

