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This paper presents two path relinking algorithms to solve the unconstrained binary quadratic program-
ming (UBQP) problem. One is based on a greedy strategy to generate the relinking path from the initial
solution to the guiding solution and the other operates in a random way. We show extensive computa-
tional results on five sets of benchmarks, including 31 large random UBQP instances and 103 structured
instances derived from the MaxCut problem. Comparisons with several state-of-the-art algorithms dem-
onstrate the efficacy of our proposed algorithms in terms of both solution quality and computational
efficiency. It is noteworthy that both algorithms are able to improve the previous best known results
for almost 40 percent of the 103 MaxCut instances.
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1. Introduction

The objective of the unconstrained binary quadratic program-
ming (UBQP) problem is to maximize the function:

n n
F0 =XQx=3"> g% (1)
i=1 j=1
where Q = (q;) is an n by n matrix of constants and x is an n-vector
of binary (zero-one) variables, i.e., x; €{0,1},i=1, ..., n.

The formulation of UBQP can represent a wide range of impor-
tant problems, including those from financial analysis [28], social
psychology [20], computer aided design [25] and cellular radio
channel allocation [9]. Moreover, a quite number of combinatorial
optimization problems can be transformed into UBQP, such as
graph coloring problem, maxcut problem, set packing problem,
set partitioning problem, maximum clique problem, etc. Interested
readers can refer to [23] for the general transformation procedures.

Given the interest of UBQP, many solution procedures have
been reported in the literature during the past few decades. Exact
methods based on branch and bound or branch and cut [6,21,35]
are quite useful to obtain optimal solutions to instances of limited
sizes. To handle larger instances, a number of heurisric and meta-
heuristic methods have been developed, including local search [7],
Simulated Annealing [4,22], Tabu Search [14,19,32,34,37,38], and
Evolutionary and Memetic Algorithms [5,26,27,30,31].
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Among the existing heuristics, tabu search (TS) based algorithms
are the most successful ones. For example, the first adaptive mem-
ory tabu search algorithm for the UBQP [14] has been used to solve
applications coming from a wide variety of settings. Also, several
multi-start tabu search strategies have been explored in [32] and
a sequel using an iterated tabu search algorithm has been investi-
gated in [34], leading to very good results on large and challenging
UBQP random instances. More recently, the diversification-driven
tabu search method [19], a memetic algorithm [27] using embed-
ded tabu search and a variable fixing tabu search method [37,38]
have proved to be especially effective for solving the most challeng-
ing UBQP instances.

Although numerous algorithms and approaches have been pro-
posed for this well-known problem, we are not aware of any study
on applying path relinking to the UBQP in the literature. Path relink-
ing is a general search strategy closely associated with tabu search
and its underlying ideas share a significant intersection with the
tabu search perspective [15-17], with applications in a variety of
contexts where it has proved to be very effective in solving difficult
problems. In this paper, we follow the general scheme described in
[17] and propose two path relinking algorithms for the UBQP. These
two algorithms differ from each other mainly on the way of generat-
ing the path, one employing a greedy strategy and the other employ-
ing a random construction. In order to assess the performance of our
path relinking algorithms, we provide computational results on five
sets of random and structured benchmarks with a total of 134 test
instances. These results indicate that our proposed algorithms yield
highly competitive outcomes on the tested instances.

The remaining part of the paper is organized as follows. Section
2 briefly reviews some representative approaches for the UBQP.
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Section 3 describes the ingredients of our path relinking algo-
rithms. Section 4 presents computational results and detailed
comparisons with other state-of-the-art algorithms in the litera-
ture. Section 5 discusses the results obtained on two other well-
known combinatorial problems. Concluding remarks are given in
Section 6.

2. Previous work

This section reviews some representative heuristic approaches
for the UBQP, including in particular those that are used as the
reference methods for our experimental evaluation.

Glover et al. [14] introduced the first tabu search algorithm for
the UBQP (AMTS). AMTS is based on the one-flip move and two
types of memory structures to record recency and frequency infor-
mation. Strategic oscillation is employed to alternate between con-
structive phases (progressively setting variables to 1) and
destructive phases (progressively setting variables to 0), which
are triggered by critical events, i.e., when the next move causes
the objective function to decrease. The amplitude of the scillation
is adaptively controlled by a span parameter. Computational re-
sults for instances with up to 500 variables show AMTS outper-
forms the best exact and heuristic methods previously reported
in the literature.

Katayama and Narihisa [22] designed a simulated annealing
algorithm (SA) that is also based on the one-flip move and an incre-
mental neighborhood evaluation technique. To enhance its search
ability, the SA algorithm adopts multiple annealing processes start-
ing from different temperatures. Tested on instances with variables
ranging from 500 to 2500, the proposed SA heuristic shows very
competitive performances, particularly for the largest instances.

Merz and Katayama [31] conducted a landscape analysis and
observed that local optima of the UBQP instances are contained
in a small fraction of the search space. Based on this, they designed
a memetic algorithm (MA) in which a dedicated crossover operator
is utilized to generate good starting solutions for a k-opt local
search. The proposed approach is remarkably effective in solving
a set of problems with up to 2500 variables.

Palubeckis [32] presented several multistart tabu search strate-
gies (MST) dedicated to the construction of the initial solution. An
additional set of challenging random instances with up to 7000
variables were generated to evaluate the proposed MST algo-
rithms. Subsequently, Palubeckis [34] developed an iterated tabu
search algorithm (ITS) in which the perturbation mechanism oper-
ates on a specific set of variables. The experimental results indi-
cated that the ITS consumes less computational effort to find the
best solutions than several MSTS algorithms.

Glover et al. [19] presented a diversification-driven tabu search
(D?TS) algorithm that alternates between a basic tabu search pro-
cedure and a memory-based perturbation strategy guided by a
long-term memory. Despite its simplicity, computational results
showed that DTS is capable of matching or improving the previ-
ously reported results for the challenging instances introduced in
[32].

Lii et al. [27] proposed a hybrid metaheuristic approach (HMA)
which combines a basic tabu search procedure and the genetic
search framework. HMA is characterized by its diversification-
guided recombination operator and quality-and-distance-based
population updating strategy. The dedicated recombination opera-
tor aims to generate diversified offspring solutions in order to
explore new promising search regions while the tabu search proce-
dure is responsible for intensified examination around the off-
spring solutions. Computational results showed HMA is among
the current best performing procedures on the UBQP benchmark
instances.

3. Path relinking algorithm

3.1. Main framework

Algorithm 1. Outline of the path relinking procedure

1: Input: matrix Q
Output: the best binary n-vector X* found so far and its objective

value f*
3: repeat
4:  Initialize RefSet = {x',...,x"}
5: Identify the best solution X* and the worst solution X" in RefSet

and record the objective value f* of solution x*
6 Tag(i)=TRUE, (i={1,...,b})
7:  PairSet — {(i,j):x, % € RefSet,x' + ¥/, Tag(i) U Tag(j) = TRUE}
8: Tag(i) = FALSE, (i={1,...,b})
9: while (PairSet # () do
0

1 Pick solution pair (X,¥) € RefSet with index pair (i,j) in
PairSet

11: Apply the Relinking Method to produce the sequence
x=x(1), ..., x(r)=¥

12: Select x(m) from the sequence and apply the improvement
method to x(1m)

13: if f{x(m)) > f* then

14: X" =x(m), f* = flx(m))

15: end if

16: if (Update_RefSet(RefSet,x(m))) then

17: RefSet « RefSet U {x(m)}\{x"}

18: Tag(w) = TRUE

19: Record the new worst solution X" in RefSet

20: end if

21: Apply the Relinking Method to produce the sequence
X=y(1),..,y(r)=x

22: Select y(n) from the sequence and apply the improvement
method to y(n)

23: if (fly(n)) > f*) then

24: x =y(n), f = fly(n))

25: end if

26: if (Update_RefSet(RefSet,y(n))) then

27: RefSet «— RefSet U {y(n)}\{x"}

28: Tag(w) = TRUE

29: Record the new worst solution X" in RefSet

30: end if

31: PairSet — PairSet\(i,j)

32: end while
33: until the stopping criterion is satisfied

Algorithm 1 shows the path relinking procedure for UBQP. It
starts with the creation of an initial set of b elite solutions RefSet
(line 4, see Section 3.2) and identifies the best and worst solutions
in RefSet in terms of the objective function value for the purpose of
updating RefSet (line 5). For each elite solution x; € RefSet, a binary
value Tag(i) indicates whether x; can take part in a relinking pro-
cess. Initially, assigning each solution in RefSet a TRUE Tag which
becomes FALSE when it is selected as the initiating solution or
the guiding solution. The set PairSet contains the index pairs (i,j)
designating the initiating and guiding solution from RefSet used
for the relinking process. PairSet is initially composed of all the in-
dex pairs (i,j) such that at least one corresponding Tag has the
value TRUE (line 7). As soon as PairSet is constructed, all the Tag
are marked FALSE (line 8).
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The inner while loop (lines 9-32) generates new solutions by
building paths for each pair of solutions of PairSet and updates
RefSet with specific new solutions. First, one index pair (i,j) is se-
lected from PairSet according to lexicographical order (line 10) to
designate two solutions x’,x’ € RefSet. The Relinking Method is then
applied to these two solutions to generate two paths connecting x'
and ¥/ (lines 11, 21, see Section 3.5). Secondly, one solution x(m) on
each path is selected to be further improved by the Improvement
Method (lines 12, 22, see Section 3.3). The next step tests
Update_RefSet to decide if the new improved solution is used to up-
date RefSet (lines 16, 26, see Section 3.4). If the update is confirmed,
the new solution is inserted in RefSet to replace the worst solution
X" with its Tag set to be TRUE (lines 16-18, 26-28, see Section 3.4).
The current selected pair (i,j) is then deleted from the set PairSet
(line 31). This while-loop procedure continues until all the pairs
in PairSet are examined, i.e., PairSet becomes empty.

Our path relinking algorithm has the following characteristics.
First, considering the path generation procedure, each solution pair
originating from RefSet undergoes a relinking phase and two paths
are considered for each pair (x,%'): one from x' to ¥’ and the other
from ¥ to x'. Secondly, each new high-quality solution derived by
path relinking is a candidate to take part in a subsequent relinking
process as an initiating or guiding solution, using a probabilistic
selection process that assures the solution will eventually get se-
lected. Thirdly, upon the completion of the path relinking phase
that ultimately examines all pairs of solutions in RefSet, we rebuild
RefSet to restart the path-relinking procedure, and repeat this
restarting process until the stopping criterion is satisfied.

3.2. The RefSet initialization method

The initial RefSet contains b different locally optimal solutions
and is constructed as follows. Starting from scratch, we randomly
assign a value of 0 or 1 to each variable to produce an initial solu-
tion, and then subject this solution to our improvement method to
obtain a local optimum (see Section 3.3). The resulting improved
solution is added to RefSet if it does not duplicate any solution cur-
rently in RefSet. This procedure is repeated until the size of RefSet
reaches the cardinality b.

When PairSet becomes empty, RefSet is recreated. The best solu-
tion x* previously found becomes a member of the new RefSet and
the remaining solutions are generated in the same way as in con-
structing RefSet in the first round.

3.3. The improvement method

The improvement method employs a basic tabu search proce-
dure that is implemented in the same way as the tabu search com-
ponent of the hybrid metaheuristic approach (HMA) [27].
Specifically, it employs a simple one-flip move neighborhood,
which consists of changing (flipping) the value of a single variable
X; to its complementary value 1 — x;. Each time a move is carried
out, the reverse move is forbidden for the next TabuTenure itera-
tions [13]. In practice, we elected to set the tabu tenure by Tabu-
Tenure(i) = ttc + rand(10), where ttc is a selected constant and
rand(10) takes a random value from 1 to 10. Once a move is per-
formed, we update a subset of move values affected by the move
using a fast incremental evaluation technique introduced in [18].
Accompanying this rule, a simple aspiration criterion is applied
that permits a move to be selected in spite of being tabu if it leads
to a solution better than the current best solution. By convention
we speak of “better” and “best” in relation to the objective function
value f(x). (Similarity, we refer to the objective function value
when speaking of solution quality.) The TS procedure stops when
the best solution cannot be improved within a given number u of
moves that called improvement cutoff.

3.4. The RefSet update method

The updating procedure of RefSet is invoked each time a newly
constructed solution is improved by tabu search. The improved
solution is permitted to be added into RefSet if it is distinct from
any solution in RefSet and better than the worst solution x" in Ref-
Set. Once this condition is satisfied, the worst solution x" is replaced
by the improved solution and the position w is indicated as refer-
ring to a new solution.

3.5. The relinking method

The relinking method is used to generate new solutions by
exploring trajectories (strictly confined to the neighborhood
space) that connect high-quality solutions. The solution that be-
gins the path is called the initiating solution while the solution
that the path leads to is called the guiding solution [15-17]. We
propose two ways to generate such a path: One is based on a ded-
icated greedy function (whose evaluations are given by the objec-
tive function of UBQP problem) while the other operates in a
random manner. Algorithms 2 and 3 describe these two methods
in details.

In order to describe our relinking procedure, we first give some
primary definitions, denoting the initiating solution by x' and the
guiding solution by x':

o NC: the set of variable indices for which x' and ¥’ have different
values.

e A, a vector that stores the objective value deviation of the cur-
rent solution from the resulting solution after flipping the tth
variable.

e PV: the path vector that stores the selected flip variable at each
step throughout the transiting from x' to X' (Consequently, by
knowing either the initiating solution or the current terminal
solution, each solution generated on the path can be recovered
by referring to PV).

o FI: a vector that records the difference f{x) — f{x') for each solu-
tion x generated when transiting from x' to x..

Algorithm 2. Pseudo-code of Relinking Method 1

Input: A pair of solutions X' and X/
Output: Path solution X(1), ..., x(r) from x' to ¥/
Identify the set NC between X' and ¥
Initialize the A; assignments for t € NC
PV=0, Flo=0, r=|NC| — 1
for k=1 to r then
Find a t € NC with the best A; value
PV—PVU{t}
x(k) = {xy : Xy =%,,u € PV;x, =i, uc N\ PV}
FIk = FIk—l + A[
flx(k)) = fix') + Flk
Update all A; values (t € NC) affected by the move
NC — NC\{t}

end for

© 00 N O U b W N =
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Algorithm 2 shows the first relinking method. Initially, we iden-
tify the set NC of variables whose values differ between the initiating
solution and the guiding solution. The A value of each element in NC
is also precalculated. At each step toward the guiding solution, we
select the variable with the best A value and then add it into the path
vector PV. Moreover, we record the current increment FI value and
the objective value f{x) of the current generated solution x. Finally,
the vector A is updated using the fast incremental evaluation tech-
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nique of [18]. Since two adjacent solutions on the path differ from
each other in the assignment of only one variable, this relinking
procedure accomplishes the path construction from the initiating
solution to the guiding solution after exactly [NC| — 1 steps.

Algorithm 3. Pseudo-code of Relinking Method 2

Input: A pair of solutions x and ¥/
Output: Path solution X(1), ..., x(r) from X' to ¥/
Identify the set NC between X' and ¥
Initialize the A assignments for t € NC
PV=1, Flo=0,r=|NC| -1
for k=1 tordo
Select a t € NC at random
PV — PV U {t}
x(k) = {xy : X, =%,,u € PV;xy =xi . uc N\ PV}
Fl, = Flj_1 + A¢
fix(k)) = fix') + Fy
Update all A; values (t € NC) affected by the move
NC — NC\{t}

end for

LN AN

_ o m
w2 e

The second relinking method, shown in Algorithm 3, is based on
the rule of selecting an element in NC randomly at each step (line
7). The remained components of the method are the same as in
Algorithm 2.

3.6. Path solution selection

Since two consecutive solutions on a relinking path differ only
by flipping a single variable, it is not productive to apply an
improvement method to each solution on the path since many of
these solutions would lead to the same local optimum. In addition,
the improvement method is a time-consuming process, SO we re-
strict its use to being applied to only a single solution on the path,
which we select by reference both to its solution quality and to the
hamming distance of this solution to the initiating and guiding
solutions. Specifically, we set up a candidate solution list (CSL),
consisting of the path solutions having a distance of at least y - [NC|
from both the initiating and guiding solutions (where y € (0,1] is a
parameter). The solution with the highest quality in CSL is picked
for further amelioration by the improvement method.

4. Computational results

In this section, we report extensive computational results of our
two path relinking algorithms on a large collection of various
benchmark instances and compare our results with those of sev-
eral state-of-the-art methods in the literatures.

4.1. Test instances

Five sets of test problems are considered in the experiments,
amounting to 134 instances. The first set of benchmarks is com-
posed of 10 largest instances of size n=2500 from the ORLIB [3].
They all have a density of 0.1 and are named by b2500.1, ...,
b2500.10. These instances are frequently used in the literature by
many authors, see for instance [4,22,30-32,34,19,27].

The second set of benchmarks consists of 21 randomly gener-
ated large problem instances named p3000.1, ..., p7000.3 with
sizes ranging from n =3000 to 7000 and with densities from 0.5
to 1.0.! Experiments reported in [32,34,19,27,37,38] show that these

1 The sources of the generator and input files to replicate these problem instances
can be found at: http://www.soften.ktu.lt/~gintaras/ubqop_its.html.

large instances are particularly challenging UBQP problems, espe-
cially in the case of instances with more than 5000 variables.

The third set of benchmarks includes 69 instances derived from
the MaxCut problem, named G1, ..., G72, with variable sizes rang-
ing from n = 800 to 10000.? These instances are created by using a
machine-independent graph generator, composed of toroidal, planar
and random weighted graphs with weight values 1, 0 or —1. The first
54 instances have been employed by numerous authors to test their
algorithms [8,12,29,33,36] and the results for the remaining 15 lar-
ger instances are reported in [10].

The fourth set of benchmarks contains 30 instances with size
n =128 (named G54100, ..., G541000), n = 1000 (named G10100,
..., G101000) and n = 2744 (named G14100, ..., G141000), respec-
tively.> These instances are created from cubic lattices modeling
Ising spin glasses with weight values 1, 0 or —1. Computational re-
sults on these instances were reported in [8,12,29,33,36].

The last set is composed of 4 DIMACS instances containing from
512 to 3375 vertices and 1536 to 10,125 edges.*

4.2. Experimental protocol

Our path relinking (PR) algorithms are programmed in C and
compiled using GNU GCC on a PC running Windows XP with
Pentium 2.83 GHz CPU and 8 GB RAM. The computational results
reported in this section were obtained with the parameter values
shown in Table 1, where the last two columns respectively denote
the settings for the 31 random UBQP instances and the 103 MaxCut
instances. Given the stochastic nature of our PR algorithms, each
instance is independently solved 20 times by each algorithm.

4.3. Computational results on the random UBQP instances

Our first experiment undertakes to evaluate the PR algorithms
on the 31 random instances with 2500-7000 variables (the first
two sets of benchmarks). The results are summarized in Tables 2
and 3. Our algorithms use CPU clock time to give the stopping con-
dition subject to having completed at least one round of the PR
procedure. The time limit for 10 ORLIB instances for a single run
is set to be 1 minute and for the 21 larger random instances with
3000, 4000, 5000, 6000 and 7000 variables is set at 5, 10, 20, 30
and 50 minutes. This time cutoff is the same as in [27,32,34].

Tables 2 and 3 respectively show the computational statistics of
applying our PR1 and PR2 algorithms to the 10 ORLIB instances and
the 21 large random instances. In both tables, columns 1 and 2
respectively give the instance names and the previous best objec-
tive values fyr.,. These best values were first reported in [32,34]
and recently improved in [19]. The columns under heading PR1
and PR2 list: the best objective value fy.s, the average objective
gap to the previous best objective values g (i.€., forev — favr) (Where
favr Tepresents the average objective value over 20 runs) and the
average CPU time in seconds denoted by time for reaching the best
objective values fies; over 20 runs. Furthermore, the last row
“Average” indicates the summary of our algorithm’s average
performance.

Table 2 discloses that both PR1 and PR2 can stably reach all the
previous best objective values for the 10 largest Beasley instances.
Moreover, PR1 performs slightly better than PR2 when it comes to
the criteria of g4, and time to the previous best result f,.,. Table 3
indicates that on the 21 large and difficult random instances, PR1
produced the same results as PR2 given that both can reach the
previous best known objective values for all of the tested instances.
However, PR1 is superior to PR2 in terms of the average gap (457.1

2 http://www.stanford.edu/~yyye/yyye/Gset.
3 http://www.optsicom.es/maxcut/#instances.
4 http://dimacs.rutgers.edu/Challenges/Seventh/Instances/.
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Table 1
Settings of important parameters.
Parameters Section Description Values
UBQP MaxCut
b 3.2 RefSet size 10 10
ttc 33 Tabu tenure constant n/100 n/10
u 33 Improvement cutoff of TS 5n 10,000
Y 3.6 Distance scale 1/3 1/3

vs. 690.4) although the CPU time to obtain the best solution is
slightly longer, (749.2 vs. 665.3 seconds).

In order to further evaluate our PR1 and PR2 algorithms, we
compare our results with those obtained from some of best per-
forming algorithms in the literature. For this purpose, we restrict
our attention to comparisons with 5 methods that have reported
the best results for the most challenging problems. These methods
are respectively named ITS [34], MST2 [32], SA [22], D?TS [19] and
HMA [27]. The results for the first 3 of these reference algorithms
are directly extracted from [34] and those for D?TS and HMA come
from [19,27].

Tables 4 and 5 show the best solution gap and average solution
gap to the best known objective value of the 7 algorithms used for

comparison, including PR1 and PR2. In these two tables, the last
row presents the averaged results over the listed instances. Note
that the results of all these algorithms are obtained almost under
the same time limit. Since best known values can be easily reached
for the small size instances by all these state-of-the art algorithms,
we only list larger instances, consisting of 11 instances in Table 4
and 21 instances in Table 5.

Table 4 indicates that both PR1 and PR2 outperform ITS, MST2
and SA in terms of the best solution values. PR1 and PR2 achieve
the best known results for the 11 most challenging instances while
ITS, MST2, SA fail for 5, 5, 10 out of 11 instances. In addition, D*TS
performs slightly worse since it fails to reach the best known result
for one instance p7000.2. However, it is difficult to conclude which
algorithm among PR1, PR2 and HMA performs the best based on
the evaluation criterion of the best solution found.

In order to further discriminate among the compared algo-
rithms, Table 5 presents the average solution gap to the best
known value of each algorithm. Firstly, we notice that over the first
10 instances with 3000 and 4000 variables, D?TS outperforms all
the other 6 compared algorithms with an average gap of O to the
best known values, meaning that DTS is quite robust over 20 runs
for these 10 instances. PR1 and PR fail to reach the gap of O for 4
and 6 instances, respectively. Secondly, considering the overall
set of 21 instances, we find that PR1 performs the best with a
gap of 457.1. HMA performs slightly worse than PR1 with a gap
of 489.4. PR2 takes the third place with a gap of 690.4. In conclu-

Table 2
Computational results on Beasley instances. SiOl’l, this experiment demonstrates that both PR1 and PR2 also
erform quite well with regard to the average solution quality.
Instance  fyrey PR1 PR2 p q € g q y
Sest avr __ time  foes 8o lime 4.4. Computational results on the MaxCut instances
b2500.1  1,515944 1515944 0.0 11 1515944 00 14
b25002 1471392 1471392 00 101 1471392 584 102 In this section, we test our PR algorithms on 3 sets of bench-
b25003  1414,192 1414192 134 49 1414192 00 36 marks with a total of 103 instances derived from MaxCut problem
b25004 1,507,701 1,507,701 0.0 6 1507701 0.0 7 : : - p :
b25005 1491816 1491816 0.0 14 1491816 00 18 In Tables 6-9, columns 1 and 2 respectively give the instance name
b2500.6 1,469,162 1,469,162 0.0 25 1,469,162 0.0 23 and the previous best solution value fy., from references
b2500.7 1,479,040 1,479,040 00 48 1479040 00 50 [8,29,33,36] which are dedicated MaxCut algorithms. The columns
b2500.8 1,484,199 1,484,199 0.0 20 1,484,199 0.0 16 : : —
b2500.9 1482413 1482413 00 51 1482413 00 103 under the headl_ngs.PRl and PR2 list the best objgctlve_ value fpest,
5250010 1483355 1483355 0.0 55 1483355 0.0 75 the average objective value f,,, and the CPU time in seconds
Average 134 38 584 444 denoted by tl_me for reachl_ng the best results fpes:. The_columns un-
der the headings SS and CirCut report the best objective value fpes
Table 3
Computational results on Palubeckis instances.
Instance Sorev PR1 PR2
fbest Savr time fbest Eavr time
p3000.1 3,931,583 3,931,583 0.0 85 3,931,583 80.4 81
p3000.2 5,193,073 5,193,073 0.0 68 5,193,073 0.0 64
p3000.3 5,111,533 5,111,533 35.8 115 5,111,533 71.7 155
p3000.4 5,761,822 5,761,822 0.0 56 5,761,822 0.0 97
p3000.5 5,675,625 5,675,625 90.2 162 5,675,625 278.5 226
p4000.1 6,181,830 6,181,830 0.0 125 6,181,830 0.0 159
p4000.2 7,801,355 7,801,355 71.2 456 7,801,355 3135 302
p4000.3 7,741,685 7,741,685 0.0 295 7,741,685 63.9 436
p4000.4 8,711,822 8,711,822 0.0 277 8,711,822 0.0 392
p4000.5 8,908,979 8,908,979 490.8 272 8,908,979 385.1 327
p5000.1 8,559,680 8,559,680 611.8 623 8,559,680 918.0 387
p5000.2 10,836,019 10,836,019 620.3 821 10,836,019 498.7 609
p5000.3 10,489,137 10,489,137 995.4 1285 10,489,137 317.5 967
p5000.4 12,252,318 12,252,318 1257.7 760 12,252,318 1168.4 767
p5000.5 12,731,803 12,731,803 51.3 676 12,731,803 166.3 726
p6000.1 11,384,976 11,384,976 201.0 1820 11,384,976 822.4 1136
p6000.2 14,333,855 14,333,855 221.1 1391 14,333,855 576.8 1076
p6000.3 16,132,915 16,132,915 1743.5 1128 16,132,915 2017.3 1053
p7000.1 14,478,676 14,478,676 935.4 2275 14,478,676 1523.1 1917
p7000.2 18,249,948 18,249,948 1942.4 1793 18,249,948 2986.1 1591
p7000.3 20,446,407 20,446,407 331.9 1251 20,446,407 23105 1503
Average 457.1 749.2 690.4 665.3
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Table 4
Best results comparison on Palubeckis instances.

Instance Sorev Best solution gap (i.e., forev — foest)
PR1 PR2 ITS [34] MST2 [32] SA [22] D2TS [19] HMA [27]

p5000.1 8,559,680 0 0 700 325 1432 325 0
p5000.2 10,836,019 0 0 0 582 582 0 0
p5000.3 10,489,137 0 0 0 1] 354 0 0
p5000.4 12,252,318 0 0 934 1643 444 0 0
p5000.5 12,731,803 0 0 0 0 1025 0 0
p6000.1 11,384,976 0 0 0 0 430 0 0
p6000.2 14,333,855 0 0 88 0 675 0 0
p6000.3 16,132,915 0 0 2729 0 0 0 0
p7000.1 14,478,676 0 0 340 1607 2579 0 0
p7000.2 18,249,948 0 0 1651 2330 5552 104 0
p7000.3 20,446,407 0 0 0 0 2264 0 0
Average 0 0 585.6 589.7 1394.3 39 0

Table 5

Average Results Comparison on Palubeckis Instances.
Instance Sorev Average solution gap (i.e., forev — favr)

PR1 PR2 ITS [34] MST2 [32] SA [22] D?TS [19] HMA [27]

p3000.1 3,931,583 0 80 0 0 0 0 0
p3000.2 5,193,073 0 0 97 97 97 0 0
p3000.3 5,111,533 36 72 344 287 535 0 33
p3000.4 5,761,822 0 0 154 77 308 0 0
p3000.5 5,675,625 90 279 501 382 459 0 145
p4000.1 6,181,830 0 0 0 0 734 0 0
p4000.2 7,801,355 71 314 1285 804 1887 0 142
p4000.3 7,741,685 0 64 471 1284 79 0 6
p4000.4 8,711,822 0 0 438 667 536 0 38
p4000.5 8,908,979 491 385 572 717 984 0 546
p5000.1 8,559,680 612 918 971 581 2455 656 507
p5000.2 10,836,019 620 499 1068 978 2101 12,533 512
p5000.3 10,489,137 995 318 1266 1874 2451 12,876 332
p5000.4 12,252,318 1258 1168 1952 2570 1134 1962 1228
p5000.5 12,731,803 51 166 835 1233 1172 239 284
p6000.1 11,384,976 201 822 57 34 2248 0 140
p6000.2 14,333,855 221 577 1709 1269 2067 1286 526
p6000.3 16,132,915 1744 2017 3064 2673 3845 787 2311
p7000.1 14,478,676 935 1523 1139 2515 5504 2138 819
p7000.2 18,249,948 1942 2986 4301 3814 7837 8712 1323
p7000.3 20,446,407 332 2311 3078 7868 8978 2551 1386
Average 457.1 690.4 1109.6 1415.4 2162.4 2082.9 489.4

and the required CPU time to reach f,s.. We focus on comparing our
algorithms with the SS and CirCut algorithms, which yield best re-
sults in the literature on many test instances. The results of SS and
CirCut algorithms are directly extracted from [29]. The last three
rows summarize the comparison between these algorithms and
ours. The rows better, equal and worse respectively denote the num-
ber of instances for which each algorithm gets results that are bet-
ter, equal and worse than the previous best known results. We mark
in bold those results that are the updated best known values ob-
tained by PR1 and PR2.

Table 6 reports the results on 54 instances of the third set of
benchmarks within a time limit of 30 minutes. From this table,
we first notice that our algorithms are able to find better objective
values than the best known values in the literature. Meanwhile,
PR2 slightly outperforms PR1 in terms of the best objective values.
Specifically, PR1 can improve the previous best known objective
values for 24 instances and match the previous best for 22 in-
stances, while PR2 can improve the previous best known objective
values for 25 instances and match the previous best for 24 in-
stances. Moreover, PR1 and PR2 fail to reach the best known results
for 8 and 5 instances respectively, while SS and CirCut fail on 32
and 34 instances, respectively. Additionally, PR1 and PR2 reaches
its best results in a shorter CPU time than the time taken by SS

and CirCut to reach their best results. These outcomes provide evi-
dence of the efficacy of our path relinking approach.

Table 7 reports the results of 15 largest instances from the same
set of benchmark as above with variables ranging from 5000 to
10000. For instances with 5000, 7000, 8000, 9000 and 10,000 vari-
ables, we report the results for a time limit of 1, 2, 4, 4 and 4 hours,
respectively. The previous best objective values fp., are cited from
[10], which is the only paper, to the best of our knowledge, that re-
ports the results on these instances. As can be seen from Table 7,
both PR1 and PR2 obtain new best known results on 13 out of these
15 large instances and obtains results inferior to the best known re-
sults only on 2 instances. Moreover, PR2 outperforms PR1 by obtain-
ing better solutions for 14 instances. The results of the 30 instances
from the fourth set of benchmarks are shown in Table 8. For the in-
stances with variables numbering 128, 1000 and 2744, the results
are reported with a time limit of 1 second, 10 minutes and 30 min-
utes. Table 8 shows that our PR1 and PR2 algorithms once again out-
perform the two reference algorithms. Both PR1 and PR2 can match
the best knownresultson 21 and 20 out of 30 instances, respectively.
By contrast, SS and CirCut can match the previous best results on 10
instances. PR1 and PR2 fail to match the best known results on 9 and
10 out of 30 instances, respectively. By contrast, both SS and CirCut
fail to match the previous best results on 20 instances.
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Table 6
Computational results on small and medium MaxCut instances of Set1.

Instance Jorev PR1 PR2 SS [29] CirCut [8]

fbest favr time fbest favr time fbest time fbesr time
G1 11,624 11,624 11624.0 2 11,624 11624.0 1 11,624 139 11,624 352
G2 11,620 11,620 11620.0 6 11,620 11620.0 9 11,620 167 11,617 283
G3 11,622 11,620 11620.0 17 11,620 11620.0 2 11,622 180 11,622 330
G4 11,646 11,646 11646.0 3 11,646 11646.0 2 11,646 194 11,641 524
G5 11,631 11,631 11631.0 3 11,631 11631.0 4 11,631 205 11,627 1128
G6 2178 2178 2178.0 9 2178 2178.0 6 2165 176 2178 947
G7 2003 2006 2006.0 2 2006 2006.0 7 1982 176 2003 867
G8 2003 2005 2005.0 8 2005 2005.0 6 1986 195 2003 931
G9 2048 2054 2054.0 16 2054 2054.0 10 2040 158 2048 943
G10 1994 2000 2000.0 22 2000 1999.8 29 1993 210 1994 881
G11 564 564 564.0 4 564 564.0 1 562 172 560 74
G12 556 556 556.0 17 556 556.0 15 552 242 552 58
G13 582 582 582.0 28 582 582.0 22 578 228 574 62
G14 3064 3063 3062.1 44 3064 3062.6 1188 3060 187 3058 128
G15 3050 3050 3049.3 49 3050 3049.3 51 3049 143 3049 155
G16 3052 3052 3051.3 27 3052 30514 47 3045 162 3045 142
G17 3043 3047 3045.5 235 3047 3046.4 110 3043 313 3037 366
G18 988 992 992.0 16 992 992.0 12 988 174 978 497
G19 903 906 906.0 11 906 906.0 14 903 128 888 507
G20 941 941 941.0 13 941 941.0 9 941 191 941 503
G21 931 931 931.0 11 931 931.0 19 930 233 931 524
G22 13,359 13,359 13353.5 1652 13,359 133545 943 13,346 1336 13,346 493
G23 13,342 13,342 13333.0 517 13,342 13331.6 879 13,317 1022 13,317 457
G24 13,337 13,337 133273 1257 13,333 133253 1876 13,303 1191 13,314 521
G25 13,326 13,338 13328.0 957 13,339 13328.2 1078 13,320 1299 13,326 1600
G26 13,314 13,324 13313.7 710 13,326 133123 333 13,294 1415 13,314 1569
G27 3318 3337 33273 851 3336 3326.9 753 3318 1438 3306 1456
G28 3285 3296 3286.0 1723 3296 3288.9 1512 3285 1314 3260 1543
G29 3389 3404 3395.2 861 3405 33919 1618 3389 1266 3376 1512
G30 3403 3412 3404.6 1655 3411 3404.8 843 3403 1196 3385 1463
G31 3288 3306 3299.7 624 3306 3299.5 752 3288 1336 3285 1448
G32 1410 1408 1400.9 893 1410 1404.6 450 1398 901 1390 221
G33 1382 1382 1373.9 1019 1382 1376.1 986 1362 926 1360 198
G34 1384 1382 1375.4 1608 1384 1378.2 1747 1364 950 1368 237
G35 7684 7674 7663.3 1372 7679 7670.8 959 7668 1258 7670 440
G36 7677 7666 7653.1 316 7671 7658.7 1790 7660 1392 7660 400
G37 7689 7673 7663.3 1736 7682 7667.9 965 7664 1387 7666 382
G38 7681 7674 7663.4 614 7682 7670.4 1775 7681 1012 7646 1189
G39 2395 2402 23913 526 2407 2391.1 1588 2393 1311 2395 852
G40 2387 2394 2381.2 1748 2399 23833 879 2374 1166 2387 901
G41 2398 2402 2380.0 1181 2404 2388.9 529 2386 1017 2398 942
G42 2469 2475 24623 1177 2478 2466.2 1575 2457 1458 2469 875
G43 6660 6660 6660.0 22 6660 6659.9 19 6656 406 6656 213
G44 6650 6650 6649.9 18 6650 6649.9 32 6648 356 6643 192
G45 6654 6654 6653.9 43 6654 6653.9 50 6642 354 6652 210
G46 6645 6649 6648.2 18 6649 6648.8 36 6634 498 6645 639
G47 6656 6657 6656.6 99 6657 6656.8 20 6649 359 6656 633
G48 6000 6000 6000.0 3 6000 6000.0 3 6000 20 6000 119
G49 6000 6000 6000.0 3 6000 6000.0 2 6000 35 6000 134
G50 5880 5880 5880.0 2 5880 5880.0 2 5880 27 5880 231
G51 3846 3848 3844.6 312 3848 3846.4 158 3846 513 3837 497
G52 3849 3851 3847.6 610 3851 3848.4 373 3849 551 3833 507
G53 3846 3849 3846.9 151 3850 3847.7 88 3846 424 3842 503
G54 3846 3852 3848.6 522 3851 3847.8 318 3846 429 3842 524
Average 469.3 490.6 621.0 616.7
Better 24 25 0 0
Equal 22 24 22 20
Worse 8 5 32 34

Improved results are indicated in bold.

Comparing PR1 and PR2 to each other, the PR2 algorithm
achieves better results for 4 instances (G14100, G14400, G14800
and G141000) while PR1 obtain better results for 2 instances
(G14300 and G14500). In addition, PR2 obtains its best solutions
faster than PR1, 377.5 vs 473.2 seconds on average. We note that
CirCut consumes less CPU time than ours, though the quality of
its solutions does not measure up.

The results of the fifth set of benchmarks using a time limit of
30 minutes are shown in Table 9. For the instance pm3-15-50, both
PR1 and PR2 are able to improve the previous best known result
from a value of 3000 to the value of 3010 and 3014, respectively.

For the instance pm3-8-50, PR1 and PR2 match the previously best
known result but the other refered algorithms fail to do so. (We
note that an algorithm fail to obtain a number of best known re-
sults and still qualify as a top performing algorithm in the litera-
ture, given that other algorithms may generally obtain still fewer
best known results.) Moreover, both of our algorithms and CirCut
can reach the best known result on instance g3-8 with CPU time
292, 258 and 54 seconds, respectively. However, both PR algo-
rithms perform slightly worse than SS on instance g3-15.

To verify whether the proposed PR algorithms are able to fur-
ther improve the results by allowing longer computational time,
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Table 7
Computational results on large MaxCut instances of Set1.

Instance  fprev PR1 PR2

fbesr favr time fbest favr time
G55 9960 10,253 10233.7 3996 10,265 10234.0 3231
G56 3649 3975 3958.0 3991 3981 3959.2 3842
G57 3220 3448 3436.0 3656 3472 3462.0 4403
G58 - 19,183 19159.3 3979 19,205 19182.0 3715
G59 - 6027 5989.2 3876 6027 6006.2 5194
G60 13,658 14,109 14077.5 7738 14,112 14091.8 6300
G61 5273 5716 5688.8 7782 5730 5695.7 5381
G62 4612 4804 4785.7 8110 4836 48302 6114
G63 8059 26,876 26845.8 4826 26,916 26879.3 5867
G64 7861 8623 8569.5 8790 8641 8594.1 6974
G65 13,286 5482 5468.7 16,248 5526 55159 15,004
G66 - 6272 6257.8 16,031 6314 63024 15,191
G67 - 6856 6832.0 17,213 6902 6884.6 12,372
G70 9499 9405 9378.6 15,202 9463 9434.0 14,531
G72 6644 6892 6876.2 14,422 6946 6933.8 15,898
Better 13 13
Equal 0 0
Worse 2 2

Improved results are indicated in bold.

we re-ran PR1 and PR2 on the MaxCut instances using 10 times
longer time than before, as shown in Table 10. Surprisingly, both
PR1 and PR2 can further improve its best results on a total of 33
instances. Although we only show the better results without differ-
entiating whether they come from PR1 or PR2, we find that PR1
and PR2 obtain the same results on 7 instances of set 2, while bet-
ter results come from PR2 for the 25 instances of set 1 (except the
instance G31).

4.5. Additional comparisons

In order to further compare the proposed path relinking algo-
rithms and the HMA algorithm in [27], we apply the time-to-target
(TTT) analysis to show the empirical probability distribution of the
needed time to attain a given target value [1]. For this experiment,
we also include a multistart tabu search algorithm (MSTS) which is
the tabu search procedure used in the path relinking algorithms
reinforced with a random restart procedure.

We carry out the TTT experiment on a random UBQP instance
(p5000.5) and a structured MaxCut instance (G25) with the PR1,
PR2, HMA and MSTS algorithms. We perform 200 independent
runs for each algorithm and each graph and record the time needed
to attain an objective value at least as good as a given target value
for each run. Then we sort the recorded times in an increasing or-
der so that t; represents the ith lowest time and a probability
pi=(i—1/2)/200 is associated to each time t; Finally, the points
(t;,p;) are plotted. Fig. 1 shows the results of the TTT experiment
for PR1, PR2, HMA and MSTS on the two tested instance p5000.5
(Left) and G25 (Right). From the left part of Fig. 1, we first observe
that for the first 400 seconds, PR1, PR2, HMA and MSTS almost per-
form the same with a low probability of 17% to reach the target
value. Afterwards, PR1 and PR2 are obviously superior to HMA
and MSTS. Specifically, at the moment of 2000 seconds, both PR1
and PR2 reach the target value with a probability of 100% against
a probability of 60% for HMA and a probability of 38% for MSTS.

From the right part of Fig. 1, we notice that MSTS performs much
worse than the other algorithms with a probability less than 5% to
reach the target value during the overall time span of 500 seconds
while PR1, PR2 and HMA only need 50 seconds to yield an equal
or a better performance. In addition, after 50 seconds PR2 always

Table 8

Computational results on MaxCut instances of Set2.
Instance forev PR1 PR2 SS [29] CirCut [8]

fbest favr time fbest fuvr time fbesr time fbest time

G54100 110 110 110.0 0 110 110.0 0 110 1.9 110 16.2
G54200 112 112 112.0 0 112 112.0 0 112 1.9 112 18.6
G54300 106 106 106.0 0 106 106.0 0 106 2.1 106 15.8
G54400 114 114 114.0 0 114 114.0 0 114 2.1 114 16.0
G54500 112 112 112.0 0 112 112.0 0 112 23 112 15.8
G54600 110 110 110.0 0 110 110.0 0 110 2.1 110 15.4
G54700 112 112 112.0 0 112 112.0 0 112 2.0 112 14.8
G54800 108 108 108.0 0 108 108.0 0 108 2.1 108 15.4
G54900 110 110 110.0 0 110 110.0 0 110 1.8 110 15.5
G541000 112 112 112.0 0 112 112.0 0 112 14 112 16.4
G10100 896 896 894.3 99 896 894.6 24 882 406.1 880 106.0
G10200 900 900 900.0 1 900 900.0 1 894 302.4 892 116.0
G10300 892 892 890.5 342 892 891.3 71 884 4104 882 112.0
G10400 898 898 898.0 3 898 898.0 1 892 485.9 894 103.0
G10500 886 886 885.4 48 886 885.4 36 880 400.9 882 106.0
G10600 888 888 888.0 1 888 888.0 1 870 461.8 886 119.0
G10700 900 900 898.1 400 900 898.2 414 890 386.2 894 115.0
G10800 882 882 881.3 39 882 881.2 31 880 466.9 874 104.0
G10900 902 902 900.9 143 902 901.5 63 888 493.6 890 121.0
G101000 894 894 893.5 27 894 893.7 8 886 352.8 886 111.0
G14100 2446 2442 2437.1 581 2444 2437.6 1682 2428 1320.6 2410 382.0
G14200 2458 2456 2452.1 985 2456 2452.4 361 2418 11211 2416 351.0
G14300 2442 2440 24329 491 2438 2435.5 551 2410 1215.8 2408 377.0
G14400 2450 2446 2440.2 1739 2448 2440.0 1036 2422 1237.2 2414 356.0
G14500 2446 2446 24379 877 2444 2438.7 1193 2416 11225 2406 388.0
G14600 2450 2448 2441.2 1163 2448 24423 884 2424 1213.9 2412 331.0
G14700 2444 2440 24315 1829 2440 2435.0 1384 2404 1230.6 2410 381.0
G14800 2448 2442 2436.9 1725 2444 2438.9 1055 2416 1132.0 2418 332.0
G14900 2426 2422 2414.7 1605 2422 24173 1185 2412 1213.9 2388 333.0
G141000 2458 2452 24458 2097 2454 2448.8 1345 2430 1125.8 2420 391.0
Average 473.2 377.5 537.3 163.2
Better 0 0 0 0
Equal 21 20 10 10
Worse 9 10 20 20
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Table 9
Computational results on MaxCut instances of Set3.
Instance Sorev PR1 PR2 SS [29] CirCut [8]
fbesr favr time fbesr favr time fbesr time fbest time
g3-15 283,206,561 279,830,931  277345801.1 3000 276,903,146  273564256.6 1272 281,029,888 1023 268,519,648 788
g3-8 41,684,814 41,684,814 41508934.7 292 41,684,814 41521529.9 258 40,314,704 66 41,684,814 54
pm3-15-50 3000 3010 3006.6 1602 3014 3007.3 1890 2964 333 2895 427
pm3-8-50 458 458 458.0 2 458 458.0 2 442 49 454 39
Average 1224.0 855.5 367.7 326.9
Better 1 1 0 0
Equal 2 2 0 1
Worse 1 1 4 3
Improved results are indicated in bold.
Table 10
Computational results on MaxCut with longer CPU time.
Instance foest time Instance foest time Instance Foest time
G25 13,340 3539 G27 3341 3040 G28 3298 17,482
G30 3413 4795 G31 3310 10,801 G37 7686 3903
G38 7688 17,230 G39 2408 3087 G40 2400 11,947
G41 2405 945 G42 2481 5580 G55 10,274 31,764
G56 3993 11,727 G57 3484 4968 G58 19,225 20,499
G59 6039 28,790 G60 14,131 62,466 G61 5748 29,056
G62 4854 59,568 G63 26,941 45,136 G64 8693 66,851
G65 5544 94,934 G66 6340 74,375 G67 6928 114,438
G70 9529 135,572 G72 6978 141,167 G14100 2446 2105
G14200 2458 1657 G14600 2450 1476 G14700 2442 2824
G14800 2446 3543 G14900 2426 7165 G141000 2458 8929
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Fig. 1. Empirical probability distribution for the time to achieve a target value.

has a higher probability to achieve the target value than HMA and
PR1. However, HMA is superior to PR1 from the moment of 100 sec-
onds, which reverses the observation on instance p5000.5 where
HMA is generally inferior to PR1. Therefore, this experiment shows
that the path relinking procedure, as one of the important compo-
nents of the proposed PR1 and PR2 algorithms, does play a key role
for the good performance of our algorithms, especially in compari-
son with the MSTS algorithm.

5. Discussion

In the previous section, we showed that the proposed path
relinking algorithms are able to achieve very competitive results
on the UBQP and MaxCut benchmark instances. In this section,
we discuss the results obtained on two other well-known combi-
natorial problems: set packing and graph k-coloring.

For the set packing problem, we first recast the problem into the
UBQP model as shown in [2]. This experiment is based on a set of
16 large random benchmark instances with up to 2000 variables
used in [2,11]. The experimental results (within a time limit of
30 minutes) show that our path relinking algorithms can match
the best known results on 10 of the 16 instances. Remarkably,
PR2 is able to improve the best known results ever reported in
the literature for 2 instances. This performance can be considered
to be very competitive in comparison with the state of the art
methods like the GRASP algorithm of [11] which is specially de-
signed for the set packing problem.

For the graph k-coloring problem, we recast the problem to the
UBQP model according to the transformation shown in [24]. For
each graph, we set k to be equal to the smallest known number
ever reported in the literature and ran PR2 to check whether PR2
can find a feasible coloring. On the one hand, for the 21 small graph
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instances considered in [24] with up to 450 vertices and 1000
edges, PR2 can find a feasible coloring for each tested instance.
On the other hand, tests on 20 challenging DIMACS graphs indicate
that it is very difficult for PR2 to find feasible colorings with k set to
be the smallest color number reported in the literature. Indeed,
PR2 only found the feasible coloring on 2 out of 20 instances. This
experiment indicates that though our path relinking algorithms are
able to find good approximate solutions for the k-coloring problem,
they cannot compete with the current best coloring algorithms.

6. Conclusion

In this paper, we proposed two effective path relinking algo-
rithms for the unconstrained binary quadratic programming prob-
lem. The proposed algorithms are composed of a reference set
initialization method, an improvement method by tabu search, a
reference set update method, a relinking method and a path solu-
tion selection method. The proposed algorithms differ from each
other mainly on the way they generate the path, one employing
a greedy strategy (PR1) and the other employing a random strategy
(PR2). The experiments suggest that PR1 is more appropriate for
random instances while PR2 is preferable for structured instances.

Computational experiments on five sets of 134 well-known ran-
dom and structured benchmark instances have demonstrated that
both algorithms are capable of attaining highly competitive results
in comparison with the previous best-known results from the liter-
ature. In particular, for three sets of benchmarks with a total of 103
instances derived from the MaxCut problem, our algorithms can
improve the previous best known results for almost 40 percent
of these instances whose optimum solutions are still unknown.
We also indicated that the path relinking algorithms perform quite
well on 16 large set packing benchmark instances, but their perfor-
mance on k-coloring is more moderate. It would be interesting to
verify the performance of the proposed algorithms in solving other
combinational problems that can be reformulated into the UBQP
model.

There are several issues for future consideration. First, more
elaborate methods can be used to better manage the reference
set by considering both the the quality of solution and its distance
to the previously found solutions, given the fact that a good diver-
sity of the reference set is important for the path generation. Sec-
ond, it would be interesting to verify if selecting more than one
solution from a path for improvement is a good strategy. Third,
by replacing the basic tabu search based improvement method
with a more advanced tabu search method, still better outcomes
could be expected.
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