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ABSTRACT 

Traditional optimization approaches for handling uncertainty and risk typically require severe 

assumptions that are often not satisfied in complex practical settings. In an effort to overcome 

such limitations, several methods have been developed to handle uncertainty when the data and 

associated real world parameters do not behave according to classical assumptions.  Two of the 

leading and most widely used examples are scenario optimization and robust optimization, both 

of which seek high-quality decisions that are feasible for all scenarios. However, both of these 

approaches likewise succumb to deficiencies encountered by classical methods, by exhibiting 

serious limitations in terms of the complexity and size of the models they can handle.  

Simulation optimization overcomes these limitations, and its flexibility and ease of use has 

contributed to its popularity as a preferred optimization approach to risk management 

applications. 
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INTRODUCTION 

Without uncertainty there is no risk.  However, very few – if any – real-world situations are risk-

free.  In the world of deterministic optimization, we often choose to “ignore” uncertainty in a 

given situation in order to come up with a unique and objective solution to a problem.  But in 

situations where uncertainty is at the core of the problem, as it is in those which involve risk 

management, a different strategy is required. 

In the field of optimization, there are various approaches designed to cope with 

uncertainty.  In this context, the exact values that the parameters (e.g. the data) of the 

optimization problem will have are not known with absolute certainty, but may vary to a larger 

or lesser extent depending on the nature of the factors they represent.  In other words, there may 

be many possible “realizations” of the parameters, each of which is called a scenario. 

Sections 1 and 2 briefly describe traditional scenario-based approaches to optimization, 

such as scenario optimization and robust optimization. Section 3 then delves in greater detail into 

a recently emerging approach that is having a profound impact on risk management called 

simulation optimization. 

1. SCENARIO OPTIMIZATION 

Dembo in [1] offers an approach to solving stochastic programs based on a method for solving 

deterministic scenario subproblems and combining the optimal scenario solutions into a single 

feasible decision. 

Imagine a situation in which we want to minimize the cost of producing a set J of 

finished goods.  Each good j (j=1,…,n) has a per-unit production cost cj associated with it, as 

well as an associated utilization rate aij of resources for each finished good.  In addition, the plant 

that produces the goods has a limited amount of each resource i (i=1,…,m), denoted by bi. We 
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can formulate a deterministic mathematical program for a single scenario s (the scenario 

subproblem, or SP) as follows: 

  SP: 
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 for i=1,…,m (2) 

xj ≥ 0  for j=1,…,n (3) 

where c
s
, a

s
 and b

s
 respectively represent the realization of the cost coefficient, the resource 

utilization and the resource availability data under scenario s.  Consider, for example, a company 

that manufactures a certain type of Maple door.  Depending on the weather in the region where 

the wood for the doors is obtained, the costs of raw materials and transportation will vary.  The 

company is also considering whether to expand production capacity at the facility where doors 

are manufactured, so that a total of six scenarios must be considered.  The six possible scenarios 

and associated parameters for Maple doors are shown in Table 1. 

Table 1: Possible Scenarios for Maple Doors 

Scenario Capacity P(C) Weather P(W) P(Scenario) 
Cost 

cj 

Utilization 

aij 

Availability 

bj 

1 

Current 50% 

Dry 33% 1/6 Low High Low 

2 Normal 33% 1/6 Medium Low Low 

3 Wet 33% 1/6 High Low Low 

4 

Expanded 50% 

Dry 33% 1/6 Low High High 

5 Normal 33% 1/6 Medium Low High 

6 Wet 33% 1/6 High Low High 

 

 Therefore, model SP needs to be solved once for each of the six scenarios. 

The scenario optimization approach can be summarized in two steps: 

1. Compute the optimal solution to each deterministic scenario subproblem SP. 

2. Solve a tracking model to find a single, feasible decision for all scenarios. 



  4 

The key aspect of scenario optimization is the function of the tracking model in step 2.  

For illustration we introduce a simple form of tracking model.  Let p
s
 denote the estimated 

probability for the occurrence of scenario s.  Then, a simple tracking model for our problem can 

be formulated as follows: 

 Minimize     
s s

s

ij

ij

s

ij

ss

j

j

s

j
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 Subject to:  xj ≥ 0   for j=1,…,n (5) 

The purpose of this tracking model is to find a solution that is feasible under all the 

scenarios, and penalizes solutions that differ greatly from the optimal solution under each 

scenario.  The two terms in the objective function are squared to ensure non-negativity.  More 

sophisticated tracking models can be used for various different purposes.  In risk management, 

for instance, we may select a tracking model that is designed to penalize performance below a 

certain target level. 

2. ROBUST OPTIMIZATION 

Robust optimization may be used when the parameters of the optimization problem are known 

only within a finite set of values.  The robust optimization framework gets its name because it 

seeks to identify a robust decision – i.e. a solution that performs well across many possible 

scenarios.   

In order to measure the robustness of a given solution, different criteria may be used.  

Kouvelis and Yu identify three criteria:  (1) Absolute robustness; (2) Robust deviation; and (3) 

Relative robustness.  We illustrate the meaning and relevance of these criteria, by describing the 

robust optimization approach described in [2]. 

Consider an optimization problem where the objective is to minimize a certain 

performance measure such as cost. Let S denote the set of possible data scenarios over the 
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planning horizon of interest.  Also, let X denote the set of decision variables, and P the set of 

input parameters of our decision model. Correspondingly, we let P
s
 identify the value of the 

parameters belonging to scenario s, and let F
s
 identify the set of feasible solutions to scenario s.  

The optimal solution to a specific scenario s is then: 

 ),(min),( * s

FX

s

s

s PXfPXfz
s

  (6) 

We assume here that f is convex.  The first criterion, absolute robustness, also known as 

“worst-case optimization,” seeks to find a solution that is feasible for all possible scenarios and 

optimal for the worst possible scenario.  In other words, in a situation where the goal is to 

minimize the cost, the optimization procedure will seek the robust solution, z
R
, that minimizes 

the cost of the maximum-cost scenario.  We can formulate this as an objective function of the 

form 

 )},(maxmin{ s

Ss

R PXfz


  (7) 

The second criterion, robust deviation, is the one that minimizes the largest deviation 

from optimality.  In other words, we seek to minimize the worst-case deviation that separates the 

robust solution from the optimal solution to each scenario.  The third criterion, relative 

robustness, is similar to the second, but instead of a direct deviation measure, we use a relative 

deviation measure with respect to optimality.  Suppose for convenience we reformulate the 

scenario subproblem introduced in the previous section as follows(based on [2], pp. 26-29): 

z
s
 =  min c

s
x (8) 

 

 Subject to: A
s
x = b

s 
(9) 

x ≥ 0 (10) 

Then, the robust deviation problem would be formulated as: 
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 Minimize  y (11) 

 

 Subject to: c
s
x ≤ y+z

s
 (12) 

 A
s
x = b

s 
(13) 

 x ≥ 0 (14) 

Variations to this basic framework have been proposed in [3] to capture the risk-averse 

nature of decision-makers, by introducing higher moments of the distribution of z
s
 in the 

optimization model, and implementing weights as penalty factors for infeasibility of the robust 

solution with respect to certain scenarios.   

3. SIMULATION OPTIMIZATION 

Until quite recently, the methods available for finding optimal decisions have been unable to 

effectively handle the complexities and uncertainties posed by many real world situations of the 

form treated by simulation.  The areas of scenario optimization and robust optimization 

described in the previous sections attempt to deal with some of these, but the modeling 

framework limits the range of situations that can be tackled with such technology. 

The complexities and uncertainties that render real world systems mathematically 

intractable are the primary reason that simulation is often chosen as a basis for handling decision 

problems associated with those systems.  On one hand, the set of possible scenarios is often 

unknown a priori.  On the other hand, the possible combinations of parameters is too numerous 

to be handled efficiently by methods such as those previously described.  Consequently, decision 

makers must deal with the dilemma that many important types of optimization problems can only 

be treated by the use of simulation models, but once these problems are submitted to simulation 

there are no optimization methods that can adequately cope with them. 
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Recent developments are changing this picture.  The field of metaheuristics – the domain 

of optimization that augments traditional mathematics with artificial intelligence and methods 

derived from physical, biological or evolutionary analogs – has witnessed advances yielding 

effective engines for guiding a series of complex evaluations in the quest for optimal values for 

the decision variables, as described in [4, 5, 6, 7, 8 and 9]. 

Modern simulation optimization tools are designed to solve optimization problems of the 

form 

  Minimize F(x)  (Objective function) 

  Subject to: Ax < b            (Constraints) 

  gl < G(x) < gu  (Requirements) 

  l < x < u       (Bounds) 

where the vector x of decision variables includes variables that range over continuous values and 

variables that only take on discrete values (both integer values and values with arbitrary step 

sizes). 

The objective function F(x) is typically highly complex; under the context of simulation 

optimization F(x) represents a performance measure output by the simulation, and may be any 

mapping from a set of values x to a real value.  The constraints represented by inequality Ax ≤  b 

are linear (given that non-linearity in the model is embedded within the simulation itself), and the 

coefficient matrix A and the right-hand-side values corresponding to vector b must be known.  

The requirements gl ≤ G(x) ≤ gu impose simple upper and/or lower bounds on a function that can 

be linear or non-linear, and is an output of the simulation.  The values of the bounds gl and gu 

must be known constants.  All the variables are bounded and some may be restricted to be 
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discrete, as previously noted.  Each evaluation of F(x) and G(x) requires a simulation of the 

system.  By combining simulation and optimization, a powerful design tool results. 

Optimizers designed for simulation embody the principle of separating the method from 

the model.  In such a context, the optimization problem is defined outside the complex system.  

Therefore, the evaluator (i.e. the simulation model) can change and evolve to incorporate 

additional elements of the complex system, while the optimization routines remain the same.  

Hence, there is a complete separation between the model that represents the system and the 

procedure that is used to solve optimization problems defined within this model. 

The optimization procedure uses the outputs from the system evaluator, which measures 

the merit of the inputs that were fed into the model.  On the basis of both current and past 

evaluations, the method decides upon a new set of input values (see Figure 1).   

| Insert Figure 1 about here | 

Provided that a feasible solution exists, the optimization procedure ideally carries out a 

special search where the successively generated inputs produce varying evaluations, not all of 

them improving, but which over time provide a highly efficient trajectory to the globally best 

solutions.  The process continues until an appropriate termination criterion is satisfied (usually 

based on the user’s preference for the amount of time devoted to the search).   

The simulation optimization framework is very flexible in terms of the performance 

measures the decision-maker wishes to evaluate.  In fact, the only limitation is not on the side of 

the optimization engine, but on the simulation model’s ability to evaluate performance based on 

specified values for the decision variables. In order to provide in-depth insights into the use of 

simulation optimization in the context of risk-management, we present a practical application 

through the use of an illustrative example in the context of optimal portfolio selection. 
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Example: Selecting Optimal Portfolios of Projects 

The Energy Industry uses project portfolio optimization to manage investments in exploration 

and production, as well as power plant acquisitions [10, 11].  Decision makers typically wish to 

maximize the return on invested capital, while controlling the exposure of their portfolio of 

projects to various risk factors. 

The following example involves a company that has sixty-one potential projects in its 

investment funnel.  Each type of project requires an initial investment and a certain number of 

business development, engineering and earth sciences personnel.  The company has a budget 

limit for its investment opportunities, and a limited number of personnel of each skill category.  

Projects may start in different time periods, but there is a restricted window of opportunity of up 

to three years for each project.  The company must select a set of projects to invest in that will 

best further its corporate goals.   

Probably the best-known model for portfolio optimization is rooted in the work of Nobel 

laureate Harry Markowitz.  The model, called the mean-variance model [12], is based on the 

assumption that the expected portfolio returns will be normally distributed.  The model seeks to 

balance risk and return in a single objective function, as follows. 

Given a vector of portfolio returns r, and a covariance matrix Q of returns, then we can 

formulate the model as follows: 

Maximize  r
T
 w - kw

T 
Qw (15) 

 Subject to: i ciwi = b

 (16) 

 w  {0,1} (17) 
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where k represents a coefficient of the firm’s risk aversion, ci represents the initial investment in 

project i, wi is a binary variable representing the decision whether to invest in project i, and b is 

the available budget.  We will use the mean-variance model as a base case for the purpose of 

comparing to other selected models of portfolio performance. 

To facilitate our analysis, we make use of the OptFolio
®
 software that combines 

simulation and optimization into a single system specifically designed for portfolio optimization 

[13, 14 and 15]. 

We examine three cases to demonstrate the flexibility of this method to enable a variety 

of decision alternatives that significantly improve upon traditional mean-variance portfolio 

optimization, and illustrate the flexibility afforded by simulation optimization approaches in 

terms of controlling risk.  The results also show the benefits of managing and efficiently 

allocating scarce resources like capital, personnel and time.  The weighted average cost of 

capital, or annual discount rate, used for all cases was 12%. 

Case 1:  Mean-Variance Approach 

In this first case, we implement the mean-variance portfolio selection method of Markowitz 

described above.  The decision is to determine participation levels (0 or 1) in each project with 

the objective of maximizing the expected net present value (NPV) of the portfolio while keeping 

the standard deviation of the NPV below a specified threshold of $140M.  We denote the 

expected value of the NPV by NPV, and the standard deviation of the NPV by NPV.  This case 

can be formulated as follows: 

Maximize   NPV (objective function)(18)Subject to:

 NPV < $140M (requirement) (19) 

  
i

ii bxc  (budget constraint) (20) 
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  
i

jiij jPxp      (personnel constraints) (21) 

 All projects must start in year 1 (22) 

 xi  {0, 1}       i (binary decisions) (23) 

The optimal portfolio has the following performance metrics: 

NPV = $394M, NPV = $107M, P(5)NPV = $176M, 

where P(5)NPV denotes the 5
th

 percentile of the resulting NPV probability distribution (i.e. 

the probability of the NPV being lower than the P(5) value is 5%). 

The bound imposed on the standard deviation in equation (19) does not seem binding.  

However, due to the binary nature of the decision variables, no project additions are possible 

without violating the bound.  Figure 2 shows a graph of the probability distribution of the NPV 

obtained for 1000 replications of this base model.  The thin line represents the expected value. 

   |  Insert Figure 2 about here.  | 

Case 2:  Risk controlled by 5
th

 Percentile 

In the context of risk management, statistics such as variance or standard deviation of returns are 

not always easy to interpret and other measures may be more intuitive and useful.  For example, 

it is clearer to say: “there is a 95% chance that the portfolio return is above some value X” than 

to say that the standard deviation is $107M.  This measure can easily be implemented in a 

simulation optimization procedure by imposing a requirement on the 5
th

 percentile of the 

resulting distribution of returns.  In Case 2, the decision is to determine participation levels (0, 1) 

in each project with the objective of maximizing the expected NPV of the portfolio, while 

keeping the 5
th

 percentile of the NPV distribution above the value determined in Case 1.  This is 

achieved by imposing the requirement in equation (25) on the model below.  In other words, we 

want to find the portfolio that produces the maximum average return, as long as no more than 5% 
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of the observations fall below $176M.  Also, in this case we allow for delays in the start dates of 

projects, according to windows of opportunity defined for each project.  In order to achieve this, 

we have created copies of a project that are shifted by one, two or three periods into the future 

(according to the windows of opportunity defined for each project).  Mutual exclusivity clauses 

ensure that only one start date for each project is selected. For example, to represent the fact that 

Project A can start at time t = 0, 1 or 2, we include the following mutual exclusivity clause as a 

constraint: 

Project A0 + Project A1 + Project A2  1 

The subscript following the project name corresponds to the allowed start dates for the 

project, and the constraint only allows at most one of these to be chosen. 

Maximize   NPV (24)Subject to:P(5)NPV > $176M

 (requirement) (25) 

  
i

ii bxc  (budget constraint) (26) 

  
i

jiij jPxp      (personnel constraints) (27) 

 



Mm

i

i

ix    1  (mutual exclusivity) (28) 

 xi  {0, 1} I (binary decisions) (29) 

where mi denotes the set of mutually exclusive projects related to project i.   

In this case we have replaced the standard deviation with the 5
th

 percentile as a measure 

of risk containment.  The resulting portfolio has the following attributes: 

NPV = $438M, NPV = $140M, P(5)NPV = $241M 
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By using the 5
th

 percentile instead of the standard deviation as a measure of risk, we are 

able to obtain an outcome that shifts the distribution of returns to the right, compared to Case 1, 

as shown in Figure 3.   

  |  Insert Figure 3 about here.  | 

  This case clearly outperforms case 1.  Not only do we obtain significantly better financial 

performance, but we also achieve a higher personnel utilization rate, and a more diverse 

portfolio. 

Case 3:  Probability Maximizing and Value-at-Risk 

In Case 3, the decision is to determine participation levels (0, 1) in each project with the 

objective of maximizing the probability of meeting or exceeding the mean NPV found in Case 1.  

This objective is expressed in equation (30) of the following model. 

Maximize   P(NPV ≥ $394M)  (30) 

Subject to:  
i

ii bxc  (budget constraint) (31) 

  
i

jiij jPxp       (personnel constraints) (32) 

 



Mm

i

i

ix            1  (mutual exclusivity) (33) 

 xi  {0, 1}         i (binary decisions) (34) 

This case focuses on maximizing the chance of achieving a goal and essentially combines 

performance and risk containment into one metric.  The probability in (30) is not known a priori, 

so we must rely on the simulation to obtain it.  The resulting optimal solution yields a portfolio 

that has the following attributes: 

NPV = $440M, NPV = $167M, P(5) = $198M 
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Although this portfolio has a performance similar to the one in Case 2, it has a 70% 

chance of achieving or exceeding the NPV goal.  As can be seen in the graph of Figure 4, we 

have succeeded in shifting the probability distribution even further to the right, therefore 

increasing our chances of exceeding the returns obtained with the traditional Markowitz 

approach.  In addition, in cases 2 and 3, we need not make any assumption about the distribution 

of expected returns. 

  |  Include Figure 4 about here.  | 

As a related corollary to this last case, we can conduct an interesting analysis that 

addresses Value-at-Risk (VaR).  In traditional (securities) portfolio management, VaR is defined 

as the worst expected loss under normal market conditions over a specific time interval and at a 

given confidence level.  In other words, VaR measures how much the holder of the portfolio can 

lose with probability =  over a certain time horizon [16].  In the case of project portfolios, we 

can define VaR as the probability that the NPV of the portfolio will fall below a specified value.   

Going back to our present case, the manager may want to limit the probability of incurring 

negative returns.  In this example, we formulate the problem in a slightly different way: we still 

want to maximize the expected return, but we limit the probability that we incur a loss to  = 1% 

by using the requirement shown in equation (36) as follows: 

Maximize   NPV  (35) 

Subject to: P(NPV < 0) ≤ 1% (requirement) (36) 

 
i

ii bxc  (budget constraint) (37) 

  
i

jiij jPxp       (personnel constraints) (38) 

 



Mm

i

i

ix            1  (mutual exclusivity) (39) 
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 xi  {0, 1}         i (binary decisions) (40) 

The portfolio performance under this scenario is: 

NPV = $411M, NPV = $159M, P(5) = $195M 

These results from the VaR model turn out to be slightly inferior to the case where the 

probability was maximized.  This is not a surprise, since the focus is on limiting the probability 

of downside risk, whereas before, the goal was to maximize the probability of obtaining a high 

expected return.  However, this last analysis could prove valuable for a manager that wants to 

limit the VaR of the selected portfolio.  As shown here, for this particular set of projects, a very 

good portfolio can be selected with that objective in mind. 

4. CONCLUSIONS 

Practically every real-world situation involves uncertainty and risk, creating a need for 

optimization methods that can handle uncertainty in model data and input parameters.  We have 

briefly described two popular methods, scenario optimization and robust optimization, that seek 

to overcome limitations of classical optimization approaches for dealing with uncertainty, and 

which undertake to find high-quality solutions that are feasible under as many scenarios as 

possible.  However, these methods are unable to handle problems involving moderately large 

numbers of decision variables and constraints, or involving significant degrees of uncertainty and 

complexity.  In these cases, simulation optimization is becoming the method of choice.  The 

combination of simulation and optimization affords all the flexibility of the simulation engine in 

terms of defining a variety of performance measures as desired by the decision maker.  In 

addition, as we demonstrate through a project portfolio selection example, modern optimization 

engines can enforce requirements on one or more outputs from the simulation, a feature that 

scenario-based methods cannot handle.  Finally, simulation optimization produces results that 
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can be conveyed and grasped in an intuitive manner, providing an especially useful tool for 

identifying improved business decisions under risk and uncertainty.
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Figure 1: Coordination between Optimizer and Simulator 

N P V

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1
3
6

1
8
2

2
2
7

2
7
3

3
1
9

3
6
4

4
1
0

4
5
6

5
0
2

5
4
7

5
9
3

6
3
9

6
8
4

 

Figure 2:  Mean-Variance Portfolio 
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Figure 3:  Portfolio Risk Controlled by P(5) 
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Figure 4:  Probability-Maximizing Portfolio 

 


