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Abstract 
 
We provide a method for efficiently evaluating 2-flip moves that simultaneously change the 
values of two 0-1 variables in search methods for binary unconstrained quadratic optimization 
problems (UQP). We extend a framework recently proposed by the authors for creating efficient 
evaluations of 1-flip moves to yield a method requiring significantly less computation time than 
a direct sequential application of 1-flips. A Tabu Search algorithm that combines 1-flip and 2-
flip moves, in a study currently in process, has made use of this extension to produce very 
competitive results on some UQP benchmark instances. 
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1   Introduction 
 
The binary unconstrained quadratic programming problem may be written 
 
     UQP: Minimize xo = xQx      (1) 
      x binary 
 
where Q is an n by n matrix of constants and x is an n-vector of binary (zero-one) variables. The 
formulation UQP is notable for its ability to represent a wide range of important problems, 
including those from social psychology (Harary, 1953), financial analysis (Laughunn, 1970; 
McBride and Yormak, 1980), computer aided design (Krarup and Pruzan, 1978), traffic 
management (Gallo, Hammer, and Simeone, 1980; Witsgall, 1975), machine scheduling 
(Alidaee, Kochenberger, and Ahmadian, 1994), cellular radio channel allocation (Chardaire and 
Sutter, 1994) and molecular conformation (Phillips and Rosen, 1994). Moreover, many 
combinatorial optimization problems pertaining to graphs such as determining maximum cliques, 
maximum cuts, maximum vertex packing, minimum coverings, maximum independent sets, and 
maximum independent weighted sets are known to be capable of being formulated by the UQP 
problem as documented in papers of Pardalos and Rodgers (1990), and Pardalos and Xue (1994). 
A review of additional applications and formulations can be found in Kochenberger et al. (2004). 
 
In the paper of Glover and Hao (2009), we exposed a method for efficiently evaluating 1-flip 
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moves that change the value of a single 0-1 variable for the UQP problem. In this note, we 
extend this method to provide fast evaluations for 2-flip moves that change the values of two 0-1 
variables.  
 
While the 1-flip move is frequently employed by many search algorithms for the UQP problem, 
the 2-flip move constitutes an interesting and complementary alternative.  The availability of an 
accelerated method for these 2-flip moves offers new possibilities for creating methods that seek 
to exploit various combined neighborhoods, allowing the search to explore more candidate 
solutions within a given time limit. As a consequence of our analysis we also show how to 
conveniently evaluate 3-flip and higher order moves, although the efficient update we present for 
2-flip moves becomes more complex and requires more effort for these more advanced moves. 
 

2   Basic notions of 2-flip moves 
 
We assume the problem is represented by storing Q as a lower triangular matrix as in Glover and 
Hao (2009). Starting from the 1-flip perspective, let x′ and x″ represent two binary solutions 
where x″ is obtained from x′ by flipping the value of a single variable xi from 0 to 1 or from 1 to 
0 (according to whether xi = xi′ is 0 or 1). Define xo′  = x′Qx′ and xo″ = x″Qx″. Then the 
objective function change produced by flipping xi, given by Δi = xo″ – xo′, discloses whether the 
move that replaces x′ by x″ will cause xo to improve or deteriorate (respectively, decrease or 
increase) relative to the minimization objective. 
 
As observed in Glover and Hao (2009), Δi can be expressed as 
 

Δi  =  (xi″ – xi′) (Qii + ∑(Q(i,h) xh′) : h ∈N – {i}))    (2) 
 
where the notation Q(i,h) refers to Qih if i > h and to Qhi if h > i. A very efficient update of Δi 
exists by storing and updating the summation term in (2), differentiating its two components for 
h < i and h > i.  
 
In the case of a 2-flip neighborhood, we are interested in the change in xo that results by flipping 
2 variables, xk and xj, and will refer to this objective function change by Δkj. Although we will 
provide a method that is more efficient than evaluating pairs of 1-flips in succession, it is 
convenient to consider the 2-flip process from a sequential perspective. Accordingly, we assume 
k > j and refer to xk and xj respectively as the “first” and “second” variables flipped, as a basis 
for determining Δkj. Moreover, for a given xk we will consider all variables xj, j < k, that may be 
flipped together with xk, and undertake to identify the best of these flipping companions, whose 
index we denote by j* = j(k) (a function of k).   
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Analysis and illustration 
 
We accompany the analysis underlying our derivation with an example, to make the ideas 
clearer. In the process we will also introduce additional useful notation. Since Q is stored as a 
lower triangular matrix, we define Nk = {j ∈N:  j < k and Qkj ≠ 0}. The set Nk corresponds to the 
“column indexes” associated with row k in the 1-flip evaluation method, which are accessed by a 
linked list in performing 1-flip updates as shown in Glover and Hao (2009).    
 
We also introduce a term λkj which is defined as a function of the values xk′ and xj′, as follows: 
 
For xk′ = 0: 

λkj  = Δj + Qkj    if xj′ = 0 
λkj  = Δj  – Qkj    if xj′ = 1 

            (3) 
For xk′ = 1: 

λkj  = Δj  – Qkj    if xj′ = 0 
λkj  = Δj + Qkj    if xj′  = 1  

 
(Equivalently,  λkj  = Δj + δkjQkj, where  δkj = 1 if xk′ = xj′ and δkj = – 1 if xk′ ≠ xj′.) 
 
Fundamental Relationship:  
 
The value Δkj (= x″Qx″ – x′Qx′) that gives the change in xo when xk and xj are both flipped is 
given by 
 
   Δkj  =  Δk + λkj       (4) 
 
Justification:  After first flipping xk and changing xo by the amount Δk, the result of additionally 
flipping xj can be given by (2) for j = i, provided we first update the portion of (2) that refers to 
xk′ by replacing xk′ with xk″. The unique term changed is Q(j,k) xk′, or simply Qkjxk′ for k > j, 
which modifies (2) by adding the term λkj as identified in (4) above. 
 
To illustrate how we may take advantage of (3) and (4), suppose k = 17 (i.e., the “first” variable 
flipped is x17), and assume the full set of cross product terms in which x17 appears with a non-
zero coefficient is given by: 
 
   x17 (6x2 – 7x5 + 11x6 – 12x8 + 12x9) 
 
Then N17 = {2, 5, 6, 8, 9}, and the non-zero coefficients Qkj for k = 17 and j ∈Nk are listed in 
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Table 1 below, together with the current values xj′ of the associated variables xj. The table also 
shows the single flip evaluations Δj for each of these variables and we assume for the illustration 
that x17′ = 0 and Δ17 = 3. The λkj  values shown in Table 1 can then be verified to result from the 
formula given in (3) and (4) under these assumptions. 
 
===============================  
   j   =   2        5         6        8        9 
----------------------------------------------------    
 Qk j =               6      – 7      11    – 12      12 
  xj′  =               0         0        1        0         1 
 Δj    =               1         5        4         4        2 
 λkj    =              7       – 2     – 7      – 8   – 10 
===============================  
        Table 1 
 
By our argument that justifies (4), we may interpret the value λkj as the amount of change that 
will be produced in the quantity Δj if we first flip xk and then flip xj. This interpretation can be 
readily confirmed by reference to the values given in the example. To see this, consider again the 
expression 
 
   x17 (6x2 – 7x5 + 11x6 – 12x8 + 12x9). 
 
If x17 is flipped to change x17′ = 0 to x17′ = 1 then by additionally flipping x2 from 0 to 1 the 
preceding expression makes it clear that Q17,2 = 6 units will be added to Δ2, thus increasing the 
change in xo by 6 units beyond the change produced by flipping x2 itself. Similarly, if the flip of 
x17 is followed by additionally flipping x5 then Q17,5 = – 7 units will be added to Δ5, in this 
instance reducing the value of xo by 7 units beyond the change produced by flipping x5. In the 
case of flipping x6, whose current value is given by x6′ = 1, examination of the preceding 
expression discloses that Q17,6 = 11 units will be subtracted (rather than added) to produce the 
additional change in xo. The interpretation of the rest of the λkj values follows similarly. 
 
Based on the foregoing analysis, we conclude that for a given index k, the smallest of the λkj 
values (under the objective of minimizing xo) identifies the best variable xj* to flip together with 
xk. Hence in the case of our example j* = 9, yielding the smallest λkj value λk9 = – 10. Note that  
this value can be obtained from the calculation of (3) without bothering to compute Δkj from (4). 
 
To determine whether the 2-flip produced by flipping both xk and xj* (here x17 and x9) is negative 
and hence profitable, we complete the step given in (4) by now adding the value of Δ17  = 3 to λ9,  
yielding a final value of Δ17,9  = – 7, which verifies that the 2-flip will indeed improve xo.  
 



 

 

6

 (It may incidentally be noted that none of the 1-flips were profitable in this example – i.e., Δk 
and all Δj values were positive – but several of the 2-flips yield negative Δkj values, disclosing 
that they improve xo.)  
 

3   Generating and updating the 2-flip evaluations: implications for 
computation 
  
The first step for producing fast 2-flip calculations is evidently to generate and update the Δk 
values by the rules in Glover and Hao (2009), and for each Δk to calculate the λkj values, j ∈Nk, 
as illustrated in the preceding section. These λkj values are then maintained so that they may 
simply be looked up in the process of evaluating the 2-flip moves.  
 
We can improve this process when Q is sparse, however, by employing the following approach. 
Instead of recalculating the λkj values after each 2-flip move, we keep a special record that makes 
it possible to merely update the relevant subset of λkj values that change from one iteration to the 
next. This updating process can be performed as follows. 
 
Together with recording the λkj values for each k ∈N and for j ∈Nk, we also identify  the 
associated index j* (= j(k)) = arg min(λkj, j ∈Nk) and the value vk = λkj*. The best 2-flip that can 
be obtained when xk is the first flip variable will change xo by the amount 
 

 Δkj* = Δk  + vk.       (5) 
 
By this relationship, the 2-flip evaluation can be made by simply scanning the indexes k ∈N and 
performing the calculation of (5) for each. The structure of the lower triangular matrix of course 
implies that we only calculate a 2-flip evaluation once for each k and j (for k > 1), rather than 
calculating it for both of the pairs (k,j) and (j,k).   
 
Effects of the update calculations 
 
In brief, to carry out this accelerated updating process for 2-flip evaluations we must increase the 
memory used by the 1-flip evaluations to additionally store the λkj values. These can be recorded 
and accessed in the same way as the Qkj values (hence effectively doubling the memory devoted 
to storing the sparse matrix Q in lower triangular form). The two n-dimensional arrays for 
identifying j* = j(k) (for each k) and the value vk are also added.  
 
This added memory makes it possible to evaluate all 2-flips with only a little more than twice the 
effort required to evaluate all 1-flips. This represents an appreciable savings in computational 
effort by comparison with  the approximate squaring of the effort required to examine 1-flips that 
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a more direct 2-flip implementation would entail.  
 
We could in fact effectively perform the analysis that identifies the j* and vk (=λkj*) values 
without having to store the full set of updated λkj values, and simply rely on the formulas (3) and 
(4) to derive the final evaluations. This adds some computational effort, but can be used as an 
alternative to save additional memory if Q is dense.  We also observe that in the case of a tabu 
search implementation we need to determine an additional instance of the winning index j* = j(k) 
and the associated value vk, derived from the λkj values by restricting attention to those variables 
xj that are not tabu. (The ordinary “unrestricted” derivation remains relevant for the case of an 
aspiration level that may overrule a variable’s tabu status.)  This can be done without doubling 
the effort, since the “tabu search j*” can be determined on the same pass of the indexes j ∈ Nk 
(for non-zero Qkj’s) used to update the λkj values and determine the unrestricted j*.  
 

4   Extensions to 3-flip (and higher order) moves 
 
The type of “incremental” analysis used in identifying the change in xo represented by the value 
Δkj for 2-flip moves can readily be extended to identify an analogous value Δkjp for 3-flip moves, 
where we assume k > j > p. In particular, supposing that we have first flipped xk and xj to obtain 
the change Δkj identified in (4), we conclude by flipping xp and determine its effect by 
considering the result of applying (2) for i = p, subject to first modifying the expression (2) to 
account for the changes induced by having replaced xk′ and xj′ by xk″ and xj″.  
 
We note that the terms of (2) affected by the change in xk and xj are precisely those of Qkpxk′ and 
Qjpxj′, and hence the result is to create a modified instance of Δp given by  
 

λkjp = Δp + Qkp(xk″ – xk′) + Qjp(xj″ – xj′) 
 
or equivalently 

λkjp = Δp + δkpQkp + δjpQjp 
 
for δkp and δjp given as in the expression for δkj following (3). In sum, then the value  Δkjp is given 
by 
 
   Δkjp = Δkj + λkjp. 

 

This same incremental analysis can be easily applied to higher order moves. For example, in the 
case of 4-flips the evaluations have the form 
 
   Δkjpq = Δkjp + λkjpq 
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and the general pattern is apparent. To exploit such evaluations without excessive computational 
effort, candidate list strategies of the type proposed with tabu search can be employed. (See, e.g., 
Glover and Laguna (1997).) 
 

5   Concluding remarks 
 
Moves consisting of 1-flips and 2-flips moves evidently define different and complementary 
neighborhoods. Although these moves can independently be employed in search processes, a 
combination of them may lead to more effective search. This is exemplified in one of our 
ongoing studies where 1-flip and 2-flip moves are made probabilistically within an algorithm 
based on tabu search. Combined with an extended memory-based diversification strategy, this 
joint use of  both moves allows the algorithm to reach highly competitive results on a set of 
benchmark instances from the literature. More specifically, testing on the nine instances of UQP 
transformed from the Set-Partitioning Problem (Lewis, Kochenberger, and Alidaee, 2008), this 
algorithm improves three previous best objective values while equaling the best solution for the 
remaining instances. The same algorithm using only 1-flip move fails to match the previous 
results under the same testing conditions.  

Finally, we note that there exist several other ways to establish combined neighborhoods from 1-
flip and 2-flip moves, as described in Lü, Glover, and Hao (2009). For instance, a search 
algorithm can explore the two moves in a circular (token ring) manner, or employ the union of 
both moves. It may also switch between the moves using a systematic strategy that incorporates 
learning, rather then simply using a probabilistic criterion for switching. A more thorough 
analysis of these alternatives, as well as those that arise by applying our incremental analysis to 
more complex moves, provides interesting directions for future research. 
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