
International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010 1

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords: Adaptive Search, Linear Programming Models, Parametric Tabu Search, Valid Inequalities,
Zero-one Mixed Integer Programming

1. introduCtion

We represent the zero-one mixed integer pro-
gramming problem in the form

Metaheuristic search with
inequalities and target

objectives for Mixed Binary
optimization – Part ii:

exploiting reaction and resistance
Fred Glover, OptTek Systems, Inc., USA

Saïd Hanafi, University of Lille-Nord de France, UVHC	–	LAMIH, France

aBstraCt:
Recent metaheuristics for mixed integer programming have included proposals for introducing inequalities
and target objectives to guide the search process. These guidance approaches are useful in intensification
and diversification strategies related to fixing subsets of variables at particular values. The authors’ preced-
ing Part I study demonstrated how to improve such approaches by new inequalities that dominate those
previously proposed. In Part II, the authors review the fundamental concepts underlying weighted pseudo
cuts for generating guiding inequalities, including the use of target objective strategies. Building on these
foundations, this paper develops a more advanced approach for generating the target objective based on
exploiting the mutually reinforcing notions of reaction and resistance. The authors demonstrate how to pro-
duce new inequalities by “mining” reference sets of elite solutions to extract characteristics these solutions
exhibit in common. Additionally, a model embedded memory is integrated to provide a range of recency and
frequency memory structures for achieving goals associated with short term and long term solution strate-
gies. Finally, supplementary linear programming models that exploit the new inequalities for intensification
and diversification are proposed.

(P)
Minimize z fx gy

subject to x y Z x y Ax Dy b

0
= +
∈ = + ≥(,) {(,) : }

 integerx










DOI: 10.4018/jamc.2010040101

2 International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

We assume that Ax + Dy ≥ b includes the
inequalities 1 ≥ xj ≥ 0, j ∈ N = {1, …, n}. The
linear programming relaxation of P that results
by dropping the integer requirement on x is
denoted by LP. We further assume Ax + Dy ≥
b includes an objective function constraint zo
≤ uo, where the bound uo is manipulated as part
of a search strategy for solving P, subject to
maintaining uo < zo*, where zo* is the zo value
for the currently best known solution z* to P.

Recent adaptive memory and evolutionary
metaheuristics for mixed integer program-
ming have included proposals for introducing
inequalities and target objectives to guide the
search. These guidance approaches are useful
in intensification and diversification strategies
related to fixing subsets of variables at par-
ticular values, and in strategies that use linear
programming to generate trial solutions whose
variables are induced to receive integer values.

In this paper we make reference to two
types of search strategies: those that fix sub-
sets of variables to particular values within
approaches for exploiting strongly determined
and consistent variables, and those that make
use of solution targeting procedures. Those
targeting procedures solve a linear programming
problem LP(x′, c′) where the objective vector
c′ depends on the target solution x′. LP(x′, c′)
includes the constraints of LP (and additional
bounding constraints) while replacing the
objective function zo by a linear function vo =
c′x. Given a target solution x′, the objective
vector c′ consists of integer coefficients c′j that
seek to induce assignments xj = x′j for different
variables with varying degrees of emphasis.
We adopt the convention that each instance of
LP(x′, c′) implicitly includes the LP objective
of minimizing the function zo = fx + gy as a
secondary objective, dominated by the objective
of minimizing vo = c′x, so that the true objective
function consists of minimizing ωo = Mvo + zo,
where M is a large positive number.

A useful alternative to working with ωo
in the form specified is to solve LP(x′, c′) in
two stages. The first stage minimizes vo = c′x
to yield an optimal solution x = x″, and the
second stage enforces vo = c′x″ to solve the

residual problem of minimizing zo = fx + gy.
An effective way to enforce vo = c′x″ is to fix
all non-basic variables having non-zero reduced
costs to compel these variables to receive their
optimal first stage values throughout the second
stage. This can be implemented by masking the
columns for these variables in the optimal first
stage basis, and then to continue the second
stage from this starting basis while ignoring
the masked variables and their columns. The
resulting residual problem for the second stage
can be significantly smaller than the first stage
problem, allowing the problem for the second
stage to be solved efficiently.

A second convention involves an interpre-
tation of the problem constraints. Selected in-
stances of inequalities generated by approaches
of the following sections will be understood
to be included among the constraints Ax +
Dy ≥ b of (LP). In our definition of LP(x′, c′)
and other linear programs related to (LP), we
take the liberty of representing the currently
updated form of the constraints Ax + Dy ≥ b by
the compact representation x ∈ X = {x: (x,y)
∈ Z}, recognizing that this involves a slight
distortion in view of the fact that we implicitly
minimize a function of y as well as x in these
linear programs.1

In Part I (Glover & Hanafi, 2010), we
proposed procedures for generating target objec-
tives and solutions by exploiting proximity in
the original space or projected space. To launch
our investigation we first review weighted
pseudo cuts for generating guiding inequalities
for this problem and associated target objective
strategies by exploiting proximity with embed-
ded memory in Section 2. Section 3 indicates
more advanced approaches for generating the
target objective based on exploiting the mutually
reinforcing notions of reaction and resistance.
The term “reaction” refers to the change in the
value of a variable as a result of creating a target
objective and solving the resulting linear pro-
gramming problem. We show how to generate
additional inequalities by “mining” reference
sets of elite solutions to extract characteristics
these solutions exhibit in common. Section 4
describes models that use embedded memory,

International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010 3

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

as proposed in parametric tabu search (Glover,
1978, 2006), which offers a range of recency
and frequency memory structures for achiev-
ing goals associated with short term and long
term solution strategies. We examine ways
this framework can be exploited in generating
target objectives, employing both older adap-
tive memory ideas and newer ones proposed
here for the first time. Section 5 focuses on
supplementary linear programming models that
exploit the new inequalities for intensification
and diversification, and introduce additional
inequalities from sets of elite solutions that
enlarge the scope of these models. Concluding
remarks are given in Section 6.

2. tarGet oBjeCtives By
exPloitinG ProxiMity
with eMBedded MeMory

To develop the basic ideas, let x′ denote an
arbitrary solution, and define the associated
index sets

N(x′, v) = {j ∈ N: xj′ = v} for v ∈ {0, 1},
N(x′) = {j ∈ N: xj′ ∈ {0, 1}} = {j ∈ N: xj
(1 – xj) = 0} = N(x′, 0) ∪ N(x′, 1),
N*(x′) = {j ∈ N: xj′ ∈]0, 1[} = {j ∈ N:
xj(1 – xj) ≠ 0} (hence N = N(x′) ∪ N*(x′))
C(x′) = { c ∈ INn

+: cjx′j(1 – x′j) = 0}.

Let x, x′ be two arbitrary binary solutions
and let c′ be an integer vector in C(x′). Define

δ(c′, x′, x) =
c x x c x x
j j jj N j j j
' ' ' '() ()1 1− + −

∈∑ . (1)

The following result is proved in Part I.

Proposition 1. Let x′ denote an arbitrary target
solution with the associated vector c′ ∈
C(x′). Let x″ denoted an optimal solution
to the following LP problem

LP(x′,c′): Minimize {δ(c′, x′, x): x ∈X}.

Then the inequality

δ(c′, x′, x) ≥ max{1, δ(c′, x′, x″)2} (2)

eliminates all solutions in F(x′, c′) = {x ∈ [0,1]
n: c′j(xj - xj′) = 0 for j ∈ N(x′) } as a feasible
solution, but admits all other binary x vectors.

We observe that (2) is a valid inequality,
i.e., it is satisfied by all binary vectors that are
feasible for (P) (and more specifically by all
such vectors that are feasible for LP(x′, c′)),
with the exception of those ruled out by previ-
ous examination. We make use of solutions
such as x′ by assigning them the role of target
solutions and by c′ assigning them the role of
target objective vectors.

Remark 1: The special case of the inequality (2)
where c′ = e has been used, for example, to
produce 0-1 “short hot starts” for branch
and bound by Spielberg and Guignard
(2000) and Guignard and Spielberg (2003).
This special inequality is called a canoni-
cal cut on the unit hypercube by Balas and
Jeroslow (1972). The inequality (2) also
generalizes the partial pseudo cuts used by
Soyster et al. (1978), Hanafi and Wilbaut
(2009) and Wilbaut and Hanafi (2009).
The partial pseudo cuts are generated from
a subset J′ ⊆ N(x′), by using the partial
distance

d(, ,) () ()' ' ' '

'

J x x x x x x
j

j J
j j j

= − + −
∈

∑ 1 1 (3)

The distance δ(J′, x′, x) = δ(c′, x′, x) where
c′j = 1 if j ∈ J′ otherwise c′j = 0.

In Part I, we identified a relatively simple
approach for generating the vector c′ of the
target objective by exploiting proximity. The
proximity procedure for generating target solu-
tions x′ and associated target objectives δ(c′, x′,
x) begins by solving the initial problem (LP),
and then solves a succession of problems LP(x′,
c′) by progressively modifying x′ and c′. Begin-
ning from the linear programming solution x″ to

4 International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

(LP) (and subsequently to LP(x′, c′)), the new
target solution x′ is derived from x″ simply by
setting xj′ = ‹xj″›, j ∈ N, where ‹v› denotes the
nearest integer neighbour of v. (The value ‹.5›
can be either 0 or 1, by employing an arbitrary
tie-breaking rule.)

Proximity Procedure

1. Solve (LP). (If the solution x″ to the first
instance of (LP) is integer feasible, the
method stops with an optimal solution for
(P).)

2. Construct the target solution x′ derived
from x″ by setting x′j = ‹x″j›, for j ∈ N.
Apply the Rule for Generating c′j, to each
j ∈ N, to produce the vector c′.

3. Solve LP(x′, c′), yielding the solution x″.
Update the Problem Inequalities.

4. If x″ is integer feasible: update the best
solution (x*,y*) = (x″,y″), update uo < zo*,
and return to Step 1. Otherwise, return to
Step 2.

The targeting of xj = x′j for variables whose
values x″j already equal or almost equal x′j does
not exert a great deal of influence on the solu-
tion of the new (updated) LP(x′, c′), in the sense
that such a targeting does not drive this solution

to differ substantially from the solution to the
previous LP(x′, c′). A more influential targeting
occurs by emphasizing the variables xj whose x″j
values are more “highly fractional,” and hence
which differ from their integer neighbours x′j
by a greater amount.

The following rule creates a target objective
δ(c′, x′, x) based on this compromise criterion,
arbitrarily choosing a range of 1 to BaseCost
+ 1 for the coefficient c′j.

Proximity Rule for Generating c′j:

Choose λ0 from the range .1 ≤ λ0 ≤ .4. For j
∈ N do

c′j = 1 + BaseCost (1-2xj′)(.5 – xj″)/(.5 – λ0) if
xj″ ∉] λ0, 1 – λ0]
c′j = 1 + BaseCost (xj′ - xj″)/ λ0 otherwise

The values of c′j coefficients produced by
the preceding rule describe what may be called
a batwing function. Figure 1 shows the shape
of this function.

We may modify the specification of the c′j
values by using model embedded memory, as
proposed in parametric tabu search. For this, we
replace the constant value BaseCost in the c′j
generation rules by a changing BaseCost value

Figure 1. Batwing function

International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010 5

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

which is increased on each successive iteration,
thus causing the new c′j values to grow as the
number of iterations increases. The influence of
these values in driving variables to reach their
targets will thus become successively greater,
and targets that have been created more recently
will be less likely to be violated than those cre-
ated earlier. (The larger value of c′j the more
likely it will be that xj will not resist its target
value xj′ by becoming fractional.)

Consequently, as the values c′j grow from
one iteration to the next, the variables that were
given new targets farther in the past will tend to
be the ones that become resistors and candidates
to receive new target values. As a result, the c′j
coefficients produced by progressively increas-
ing BaseCost emulate a tabu search recency
memory that seeks more strongly to prevent
assignments from changing the more recently
that they have been made.

The determination of the c′j values can
be accomplished by starting with BaseCost =
20 in Step 1 of the proximity procedure, and
updating the value of BaseCost each time iter is
incremented by 1 in Step 3 to give BaseCost:=
λBaseCost, where the parameter λ is chosen
from the interval λ ∈ [1.1,1.3]. (This value of
λ can be made the same for all iterations, or can
be selected randomly from such an interval at
each iteration.)

To prevent the c′j values from becoming
excessively large, the current c′j values can be
reduced once BaseCost reaches a specified limit
by the applying following rule.

1) Reset BaseCost = 20 and index the variables
xj, j ∈ N(x′) so that

c′1 ≥ c′2 ≥ …≥ c′p where p = |N(x′)|.

2) Define Δj = c′j – c′j+1 for j = 1, …, p -1 and
select λ ∈ [1.1,1.3].

3) Set c′p:= BaseCost and c′j:= Min(c′j+1 + Δj,
λc′j+1) for j = p -1, …, 1.

4) Finally, reset BaseCost:= c′1 (= Max(cj′, j
∈ N(x′)).

Remark 2: An equivalent implementation is
obtained by replacing instruction 3 with

3-a) Set c′p:= BaseCost and Δ = c′p-1 – c′p;
3-b) for j = p -1, …, 1 do{ Δ’ = c′j-1 – c′j; c′j:=
Min(c′j+1+ Δ, λc′j+1); Δ = Δ’;}

The new c′j values produced by this rule will
retain the same ordering as the original ones.

In a departure for diversification purposes,
the foregoing rule can be changed by modifying
the next to last step to become

Set |c′1|:= BaseCost and |c′j+1|:= Min(|c′j| + Δj,
λ|c′j|) for j =, …, p – 1

and conclude by resetting BaseCost:= |c′p|.

3. GeneratinG tarGet
oBjeCtives and solutions
By exPloitinG reaCtion
and resistanCe

In this section, we propose a more advanced
approach for generating the vector c′ of the
target objective. This approach is based on
exploiting the mutually reinforcing notions of
reaction and resistance. The term “reaction”
refers to the change in the value of a variable
as a result of creating a target objective δ(c′,
x′, x) and solving the resulting problem LP(x′,
c′). The term “resistance” refers to the degree
to which a variable fails to react to a non-zero
c′j coefficient by receiving a fractional value
rather than being driven to 0 or 1.

Relative to a given vector x′ and a target
vector c′ we consider the partition of N into
the sets

N(c′, x′) = {j ∈ N: c′j ≠ 0 and xj(1 – xj) = 0}

and

N*(c′, x′) = {j ∈ N: c′j = 0 or xj(1 – xj) ≠ 0}.

6 International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

i.e. N = N(c′, x′) ∪ N*(c′, x′). Note that the
set N*(c′, x′) contains the indexes of variables
that are not subject to a binding constraint or
incorporated into a target affecting their values.
The set N(c′, x′) identifies the variables that have
been assigned target values xj′. (Equivalently,
N(c′, x′) = N – N*(c′, x′).)

Remark 3: N*(e, x′) = N*(x′) = {j ∈ N: 0 < x′j <
1} is the set of variables that receive fractional
values in the solution x′. (Similarly, we note
N(e, x′) = N(x′).)

Corresponding to the partition of N into the
sets N*(c′, x′) and N(c′, x′), the set N*(x″) of
fractional variables is partitioned into the sets

N*(x″, c′, x′) = N*(x″) ∩ N(c′, x′) and
N**(x″, c′, x′) = N*(x″) ∩ N*(c′, x′).

We identify two different sets of circum-
stances that are relevant to defining reaction,
the first arising where none of the fractional
variables xj is assigned a target x′j, hence N*(x″)
= N**(x″, c′, x′) (i.e., N*(x″) ⊆ N*(c′, x′)),
and the second arising in the complementary
case where at least one fractional variable is
assigned a target, hence N*(x″, c′, x′) ≠ ∅. We
start by examining the meaning of reaction in
the somewhat simpler first case.

3.1. reaction when no fractional
variables have targets

Our initial goal is to create a measure of reac-
tion for the situation where N*(x″) = N**(x″,
c′, x′), i.e., where all of the fractional variables
are unassigned (hence, none of these variables
have targets). In this context we define reaction
to be measured by the change in the value x″j
of a fractional variable xj relative to the value
xo

j received by xj in an optimal solution xo to
(LP), as given by

Δj = xo
j – x″j.

We observe there is some ambiguity in this
Δj definition since (LP) changes as a result of
introducing new inequalities and updating the
value uo of the inequality zo ≤ uo. To remove this
ambiguity, we understand the definition of Δj
to refer to the solution xo obtained by the most
recent effort to solve (LP), though this (LP) may
be to some extent out of date, since additional
inequalities may have been introduced since it
was solved. For reasons that will become clear
in the context of resistance, we also allow the
alternative of designating xo to be the solution
to the most recent problem LP(x′, c′) preceding
the current one; i.e., the problem solved before
creating the latest target vector c′.

The reaction measure Δj is used to deter-
mine the new target objective by re-indexing
the variables xj, j ∈ N*(x″) = N**(x″, c′, x′), so
that the absolute values |Δj| are in descending
order, thus yielding |Δ1| ≥ |Δ2| ≥ … . We then
identify the k-element subset N(k) = {1,2, …, k}
of N*(x″) that references the k largest |Δj| values,
where k = Min(|N*(x″)|, kmax). We suggest the
parameter kmax be chosen at most 5 and gradu-
ally decreased to 1 as the method progresses.

The c′j coefficients are then determined
for the variables xj, j ∈ N(k), by the following
rule. (The constant BaseCost is the same one
used to generate c′j values in the Proximity
procedure, and ‹v› again denotes the nearest
integer neighbor of v.)

N**(x″, c′, x′) Rule for Generating c′j and x′j,
j ∈ N(k) (for N(k) ⊂ N*(x″) = N**(x″, c′,
x′)):

Set c′j = 1 + ‹BaseCost |Δj| /|Δ1|› and x′j =
sign(Δj).

When Δj = 0, a tie-breaking rule can be
used to determine which of the two options
should apply, and in the special case where Δ1
= 0 (hence all Δj = 0), the c′j assignment is taken
to be 1 for all j ∈ N(k).

To determine a measure of reaction for the
complementary case N*(x″, c′, x′) ≠ ∅, we first
introduce the notion of resistance.

International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010 7

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

3.2. resistance

A resisting variable (or resistor) xj is one that
is assigned a target value x′j but fails to satisfy
xj = x′j in the solution x″ to LP(x′, c′). Accord-
ingly the index set for resisting variables may
be represented by

NR = {j ∈ N(c′, x′): x″j ≠ x′j}
NR = {j ∈ N: c′j (x″j – x′j)≠ 0 and x′j (1 – x′j)
= 0}
NR = {j ∈ N: c′jδ(j, x′, x″)≠ 0}

If xj″ is fractional and j ∈ N(c′, x′) then
clearly j ∈ NR (i.e., N*(x″, c′, x′) ⊂ NR). Con-
sequently, the situation N*(x″, c′, x′) ≠ ∅ previ-
ously identified as complementary to N*(x″) =
N**(x″, c′, x′) corresponds to the presence of
at least one fractional resistor.

If a resistor xj is not fractional, i.e., if the
value x″j is the integer 1 – x′j, we say that xj
blatantly resists its targeted value x′j. Blatant
resistors xj are automatically removed from NR
and placed in the unassigned set N*(c′, x′) by
setting c′j = 0. (Alternatively, a blatant resistor
may be placed in N(x′, 1– x′j) by setting x′j:=
1 – x′j.)

After executing this operation, we are left
with NR = N*(x″, c′, x′), and hence the condi-
tion N*(x″, c′, x′) ≠ ∅ (which complements the
condition N*(x″) = N**(x″, c′, x′)) becomes
equivalent to NR ≠ ∅.

We use the quantity δ(j, x′, x″) to define a
resistance measure RMj for each resisting vari-
able xj, j ∈ NR, that identifies how strongly xj
resists its targeted value xj′. Two simple mea-
sures are given by

RMj = δ(j, x′, x″) or RMj = c′jδ(j, x′, x″) for j
∈ NR.

The resistance measure RMj is used in two
ways: (a) to select specific variables xj that will
receive new xj′ and c′j values in creating the next
target objective; (b) to determine the relative
magnitudes of the resulting c′j values. For this
purpose, it is necessary to extend the notion of

resistance by making reference to potentially
resisting variables (or potential resistors) xj, j
∈ N(c′, x′) – NR, i.e., the variables that have
been assigned target values x′j and hence non-
zero objective function coefficients c′j, but
which yield x″j = x′j in the solution x″ to LP(x′,
c′). We identify a resistance measure RMj

o for
potential resistors by reference to their reduced
cost values rcj (as identified in Section 4):

RMj
o = (2x′j – 1) rcj for j ∈ N(c′, x′) – NR

We note that this definition implies RMj
o ≤

0 for potentially resisting variables. (Otherwise,
xj would be a non-basic variable yielding x″j = 1
in the case where j ∈ N(x′,0), or yielding x″j =
0 in the case where j ∈ N(x′, 1), thus qualifying
as a blatant resistor and hence implying j ∈
NR.) The closer that RMj

o is to 0, the closer xj is
to qualifying to enter the basis and potentially
to escape the influence of the coefficient c′j
that seeks to drive it to the value 0 or 1. Thus
larger values of RMj

o indicate greater potential
resistance. Since the resistance measures RMj
are positive for resisting variables xj, we see
that there is an automatic ordering whereby
RMp > RMq

o for a resisting variable xp and a
potentially resisting variable xq.

3.3. Combining Measures of
resistance and reaction

The notion of reaction is relevant for variables xj
assigned target values x′j (j ∈ N(c′, x′)) as well
as for those not assigned such values (j ∈ N*(c′,
x′)). In the case of variables having explicit
targets (hence that qualify either as resistors
or potential resistors) we combine measures
of resistance and reaction to determine which
of these variables should receive new targets
x′j and new coefficients c′j.

Let xo refer to the solution x″ to the instance
of the problem LP(x′, c′) that was solved im-
mediately before the current instance;3 hence
the difference between xo

j and x″j identifies the
reaction of xj to the most recent assignment of
c′j values. In particular, we define this reaction
for resistors and potential resistors by

8 International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

δj = (1 – x′j)(x″j – xo
j) + x′j (x

o
j – x″j) (j ∈

N(c′, x′))
δj = δ(j, x′, x″) – δ(j, x′, xo)

If we use the measure of resistance RMj =
δ(j, x′, x″), which identifies how far xj lies from
its target value, a positive δj implies that the
resistance of xj has increased as a result of the
latest assignment of c′j values, and a negative δj
implies that the resistance of xj has decreased as
a result of this assignment. Just as the resistance
measure RMj is defined to be either δ(j, x′, x″)
or c′jδ(j, x′, x″), the corresponding reaction
measure Rδj can be defined by either

Rδj = δj or Rδj = δj c′j.
Rδj = δ(j, x′, x″) – δ(j, x′, xo) or Rδj = c′j(δ(j,
x′, x″) – δ(j, x′, xo)).

Based on this we define a composite
resistance-reaction measure RRj for resisting
variables as a convex combination of RMj and
Rδj; i.e., for a chosen value of λ ∈ [0,1]:

RRj = λRMj + (1 – λ)Rδj, j ∈ NR.
RRj = λδ(j, x′, x″) + (1 – λ)(δ(j, x′, x″) – δ(j,
x′, xo)), j ∈ NR.
RRj = δ(j, x′, x″) + (λ – 1)δ(j, x′, xo), j ∈ NR.

Similarly, for implicitly resisting variables,
we define a corresponding composite measure
RRj

o by

RRj
o = λRMj

o + (1 – λ)Rδj, j ∈ N(c′, x′) – NR

In order to make the interpretation of λ
more consistent, it is appropriate first to scale
the values of RMj, RMj

o and Rδj. If vj takes the
role of each of these three values in turn, then
vj may be replaced by the scaled value vj:=
vj/|Mean(vj)| (bypassing the scaling in the situ-
ation where |Mean(vj)| = 0).

To give an effective rule for determining RRj
and RRj

o, a few simple tests can be performed to
determine a working value for λ, as by limiting
λ to a small number of default values (e.g., the

three values 0, 1 and .5, or the five values that
include .25 and .75).

3.4. including reference
to a tabu list

A key feature in using both RRj and RRj
o to

determine new target objectives is to make
use of a simple tabu list T to avoid cycling and
insure a useful degree of variation in the process.
We specify in the next section a procedure for
creating and updating T, which we treat both
as an ordered list and as a set. (We sometimes
speak of a variable xj as belonging to T, with
the evident interpretation that j ∈ T.) It suffices
at present to stipulate that we always refer to
non-tabu elements of N(c′, x′), and hence we
restrict attention to values RRj and RRj

o for which
j ∈ N(c′, x′) – T. The rules for generating new
target objectives make use of these values in
the following manner.

Because RRj and RRj
o in general are not

assured to be either positive or negative, we
treat their ordering for the purpose of generat-
ing c′j coefficients as a rank ordering. We want
each RRj value (for a resistor) to be assigned a
higher rank than that assigned to any RRj

o value
(for a potential resistor). An easy way to do
this is to define a value RRj for each potential
resistor given by

RRj = RRo
j – RR1

o + 1 – Min(RRj: j ∈ NR), j
∈ N(c′, x′) – NR.
RRj = RRo

j – Max(RRo
j: j ∈ N(c′, x′) – NR) - 1

+ Min(RRj: j ∈ NR), j ∈ N(c′, x′) – NR.

The set of RRj values over j ∈ N(c′, x′) then
satisfies the desired ordering for both resistors
(j ∈ NR) and potential resistors (j ∈ N(c′, x′)
– NR). (Recall that NR = N*(x″, c′, x′) by hav-
ing previously disposed of blatant resistors.)

For the subset N(k) of k non-tabu elements
of N(c′, x′) (hence of N(c′, x′) – T) that we seek
to generate, the ordering over the subset NR –
T thus comes ahead of the ordering over the
subset (N(c′, x′) – NR) – T, This allows both
resistors and potential resistors to be included

International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010 9

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

among those elements to be assigned new coef-
ficients c′j and new target values x′j, where the
new c′j coefficients for resistors always have
larger absolute values than the c′j coefficients
for potential resistors. If the set of non-tabu
resistors NR – T already contains at least k
elements, then no potential resistors will be
assigned new c′j or x′j values.

3.5. overview of the resistance
and reaction Procedure

The rule for generating the target objective δ(c′,
x′, x) that lies at the heart of the Resistance &
Reaction procedure is based on carrying out the
following preliminary steps, where the value
kmax is determined as previously indicated: (a)
re-index the variables xj, j ∈ N(c′, x′) – T, so
that the values RRj are in descending order, thus
yielding RR1 ≥ RR2 ≥ … ; (b) identify the subset
N(k) = {1,2, …, k} of NR that references the
k largest RRj values, where k = Min(|N(c′, x′)
– T |, kmax); (c) create a rank ordering by letting
Rp,p = 1, …, r denote the distinct values among
the RRj, j ∈ N(k), where R1 > R2 > … > Rr (r ≥ 1).

Then the rule to determine the c′j and x′j
values for the variables xj, j ∈ N(k), is given
as follows:

N(c′, x′) – T Rule for Generating c′j and xj′, j
∈ N(k) (for NR = N*(x″, c′, x′) ≠ ∅):

If RRj = Rp, set c′j = ‹1 + BaseCost(r + 1 –
p)/r› and x′j = 1 – x′j.

We see that this rule assigns c′j coefficients
so that the c′j values are the positive integers ‹1
+ BaseCost(1/r)›, ‹1 + BaseCost(2/r)›,…, ‹1 +
BaseCost(r/r)› = 1 + BaseCost.

We are now ready to specify the Resistance
& Reaction procedure in overview, which
incorporates its main elements except for the
creation and updating of the tabu list T.

Resistance and Reaction
Procedure in Overview

0. Initialize the current problem P to be the
(MIP:0-1) problem.

1. Solve LP(P) yielding the optimal solution
xo. (Stop if the first instance of (LP) yields an
integer feasible solution xo, which therefore
is optimal for (MIP:0-1).)

2. Construct the target solution x′ derived from
xo by setting x′j = ‹xo

j›, for j ∈ N. Apply
the Rule of the Proximity Procedure for
Generating c′j (to each j in N) to produce
the vector c′.

3. Solve LP(x’, c′), yielding the solution x”.
Set xoo = x”. Update the current problem
by adding the inequality derived from c′
(i.e., P = P | δ(c′, x′, x) ≥ v(LP(x’, c′))+
1).

4. Let N*(x″) = {j ∈ N: 0 < xj” < 1}, N*(c′,
x′) = {j ∈ N: c′j = 0 or 0 < xj′ < 1}, N(c′, x′)
= N – N*(c′, x′), N**(x″, c′, x′) = N*(x″)∩
N*(c′, x′) and N*(x″, c′, x′) = N*(x″)∩ N(c′,
x′), NR = {j ∈ N: c′jδ(j, x′, x″)≠ 0}.

5. There exists at least one fractional variable
(N*(x″) ≠ ∅). Remove blatant resistors xj,
if any exist, from NR and transfer them to
N*(c′, x′) (or to N(x′, 1– x′j)) so NR = N*(x″,
c′, x′).
(a) If N*(x″) = N**(x″, c′, x′) (hence NR

= ∅), apply the N**(x″, c′, x′) Rule
for Generating c′j and x′j, j ∈ N(k) to
produce the new target objective δ(c′,
x′, x) and associated target vector x′:

Set c′j = 1 + ‹BaseCost|Δj| /|Δ1|› and x′j =
sign(Δj), where Δj = xo

j – x″j.

(b) If instead NR ≠ ∅, then apply the N(c′,
x′) – T Rule for Generating c′j and x′j,
j ∈ N(k), to produce the new target
objective δ(c′, x′, x) and associated
target vector x′:

If RRj = Rp, set c′j = ‹1 + BaseCost(r + 1 –
p)/r› and x′j = 1 – x′j.

6. Set xoo = x” and solve LP(x′, c′), yielding
the solution x″. Update the current problem
P by adding the inequality derived from c′
(i.e., P = P | δ(c′, x′, x) ≥ v(LP(x’, c′)) +
1).

10 International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

7. If x″ is integer feasible: update the best
solution (x*,y*) = (x″,y″), update the current
problem P by adding uo < zo*, (i.e., P = P
| uo < zo*) and return to Step 1. Otherwise,
return to Step 4.

This design is completed by the processes
described in the next section.

4. CreatinG and
ManaGinG the taBu list
t – resistanCe & reaCtion
ProCedure CoMPleted

We propose an approach for creating the tabu
list T that is relatively simple but offers use-
ful features within the present context. As
in a variety of constructions for handling a
recency-based tabu memory, we update T by
adding a new element j to the first position of
the list when a variable xj becomes tabu (as a
result of assigning it a new target value x′j and
coefficient c′j), and by dropping the “oldest”
element that lies in the last position of T when
its tabu status expires.

Our present construction employs a rule
that may add and drop more than one element
from T at the same time. The checking of tabu
status is facilitated by using a vector Tabu(j)
that is updated by setting Tabu(j) = true when
j is added to T and by setting Tabu(j) = false
when j is dropped from T. (Tabu status is often
monitored by using a vector TabuEnd(j) that
identifies the last iteration that element j quali-
fies as tabu, without bothering to explicitly store
the list T, but the current method of creating
and removing tabu status makes the indicated
handling of T preferable.)

We first describe the method for the case
where k = 1, i.e., only a single variable xj is as-
signed a new target value (and thereby becomes
tabu) on a given iteration. The modification for
handling the case k > 1 is straightforward, as
subsequently indicated. Two parameters Tmin
and Tmax govern the generation of T, where
Tmax > Tmin ≥ 1. For simplicity we suggest the
default values Tmin = 2 and Tmax = n.6. (In general,

appropriate values are anticipated to result by
selecting Tmin from the interval between 1 and
3 and Tmax from the interval between n.5 and
n.7.) The small value of Tmin accords with an
intensification focus, and larger values may be
selected for diversification.

The target value x′j and coefficient c′j do not
automatically change when j is dropped from
T and xj becomes non-tabu. Consequently, we
employ one other parameter AssignSpan that
limits the duration that xj may be assigned the
same x′j and c′j values, after which xj is released
from the restrictions induced by this assignment.
To make use of AssignSpan, we keep track of
when xj most recently was added to T by setting
TabuAdd(j) = iter, where iter denotes the current
iteration value (in this case, the iteration when
the addition occurred). Then, when TabuAdd(j)
+ AssignSpan < iter, xj is released from the
influence of x′j and c′j by removing j from the
set N(c′, x′) and adding it to the unassigned set
N*(c′, x′). As long as xj is actively being assigned
new x′j and c′j values, TabuAdd(j) is repeatedly
being assigned new values of iter, and hence
the transfer of j to N*(c′, x′) is postponed. We
suggest a default value for AssignSpan between
l.5Tmax and 3Tmax; e.g., AssignSpan = 2Tmax.

To manage the updating of T itself, we
maintain an array denoted TabuRefresh(j) that
is initialized by setting TabuRefresh(j) = 0
for all j ∈ N. Then on any iteration when j is
added to T, TabuRefresh(j) is checked to see
if TabuRefresh(j) < iter (which automatically
holds the first time j is added to T). When the
condition is satisfied, a refreshing operation is
performed, after adding j to the front of T, that
consists of two steps: (a) the list T is reduced
in size to yield |T| = Tmin (more precisely, |T| ≤
Tmin) by dropping all but the Tmin first elements
of T; (b) TabuRefresh(j) is updated by setting
TabuRefresh(j) = iter + v, where v is a number
randomly chosen from the interval [AssignSpan,
2AssignSpan]. These operations assure that
future steps of adding this particular element
j to T will not again shrink T to contain Tmin
elements until iter reaches a value that exceeds
TabuRefresh(j). Barring the occurrence of such
a refreshing operation, T is allowed to grow

International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010 11

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

without dropping any of its elements until it
reaches a size of Tmax. Once |T| = Tmax, the old-
est j is removed from the end of T each time a
new element j is added to the front of T, and
hence T is stabilized at the size Tmax until a new
refreshing operation occurs.

This approach for updating T is motivated
by the following observation. The first time j
is added to T (when TabuRefresh(j) = 0) T may
acceptably be reduced in size to contain not
just Tmin elements, but in fact to contain only 1
element, and no matter what element is added
on the next iteration the composition of N(c′,
x′) cannot duplicate any previous composition.
Moreover, following such a step, the composi-
tion of N(c′, x′) will likewise not be duplicated
as long as T continues to grow without dropping
any elements. Thus, by relying on intervening
refreshing operations with TabuRefresh(j) =
0 and Tmin = 1, we could conceivably allow
T to grow even until reaching a size Tmax = n.
(Typically, a considerable number of iterations
would pass before reaching such a state.) In
general, however, by allowing T to reach a size
Tmax = n the restrictiveness of preventing targets
from being reassigned for Tmax iterations would
be too severe. Consequently we employ two
mechanisms to avoid such an overly restrictive
state: (i) choosing Tmax < n and (ii) performing
a refreshing operation that allows each j to
shrink T more than once (whenever iter grows
to exceed the updated value of TabuRefresh(j))
The combination of these two mechanisms pro-
vides a flexible tabu list that is self-calibrating
in the sense of automatically adjusting its size
in response to varying patterns of assigning
target values to elements.

The addition of multiple elements to the
front of T follows essentially the same design,
subject to the restriction of adding only up to
Tmin new indexes j of N(k) to T on any iteration,
should k be greater than Tmin. We slightly extend
the earlier suggestion Tmin = 2 to propose Tmin
= 3 for kmax ≥ 3.

Note that the organization of the method
assures T ⊂ N(c′, x′) and typically a good por-
tion of N(c′, x′) lies outside T. If exceptional

circumstances result in T = N(c′, x′), the method
drops the last element of T so that N(c′, x′)
contains at least one non-tabu element.

Drawing on these observations, the detailed
form of the Resistance & ReactionProcedure
that includes instructions for managing the tabu
list is specified below, employing the stopping
criterion indicated earlier of limiting the com-
putation to a specified maximum number of
iterations. (These iterations differ from those
counted by iter, which is re-set to 0 each time
a new solution is found and the method returns
to solve the updated (LP),)

Complete resistance and
reaction Procedure

0. Choose the values Tmin, Tmax and AssignSpan.
1. Solve (LP). (Stop if the first instance of

(LP) yields an integer feasible solution x″,
which therefore is optimal for (MIP:0-1).)
Set TabuRefresh(j) = 0 for all j ∈ N and
set iter = 0.

2 There exists at least one fractional variable
(N*(x″) ≠ ∅). Remove each blatant resistor
xj, if any exists, from NR and transfer it to
N*(c′, x′) (or to N′(1– x′j)), yielding NR =
N*(x″, c′, x′). If j is transferred to N*(c′,
x′) and j ∈ T, drop j from T. Also, if T =
N(c′, x′), then drop the last element from T.
(a) If N*(x″) = N**(x″, c′, x′) (hence NR

= ∅), apply the N**(x″, c′, x′) Rule for
Generating c′j and x′j, j ∈ N(k).

(b) If instead NR ≠ ∅, then apply the N(c′,
x′) – T Rule for Generating c′j and x′j,
j ∈ N(k).

(c) Set iter: = iter + 1. Using the indexing
that produces N(k) in (a) or (b), add
the elements j = 1, 2, …min(Tmin,k) to
the front of T (so that T = (1, 2, …)
after the addition). If TabuRefresh(j)
< iter for any added element j, set
TabuRefresh(j) = iter + v, for v ran-
domly chosen between AsignLength
and 2AssignSpan (for each such j) and
then reduce T to at most Tmin elements
by dropping all elements in positions
> Tmin.

12 International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

3. Solve LP(x′, c′), yielding the solution x″.
Update the Problem Inequalities.

4. If x″ is integer feasible: update the best
solution (x*,y*) = (x″,y″), update uo < zo*,
and return to Step 1. Otherwise, return to
Step 2.

The inequalities introduced in Sections 3 and 4
provide a useful component of this method, but
the method is organized to operate even in the
absence of such inequalities. The intensifica-
tion and diversification strategies proposed in
Section 5 can be incorporated for solving more
difficult problems.

5. intensifiCation and
diversifiCation Based on
strateGiC inequalities

More generally, for any positive integer k sat-
isfying n ≥ k ≥ 1, the binary vectors x that lie at
least a Hamming distance k from x′ are precisely
those that satisfy the inequality

δ(e, x′, x) ≥ k (4)

The inequality (4) has been introduced
within the context of adaptive memory search
strategies (Glover, 2005) to compel new solu-
tions x to be separated from a given solution
x′ by a desired distance. In particular, upon
identifying a reference set R = {xr, r ∈ RI},
which consists of elite and diverse solutions
generated during prior search, the approach
consists of launching a diversification strategy
that requires new solutions x to satisfy the as-
sociated set of inequalities

δ(e, xr, x) ≥ kr, r ∈ RI (5)

This system also gives a mechanism for
implementing a proposal of Shylo (1999)4 to
separate new binary solutions by a minimum
specified Hamming distance from a set of solu-
tions previously encountered.

The inequalities of (5) constitute a form of
model embedded memory for adaptive memory

search methods where they are introduced for
two purposes: (a) to generate new starting
solutions and (b) to restrict a search process
to visiting solutions that remain at specified
distances from previous solutions. A diversi-
fication phase that employs the strategy (b)
operates by eventually reducing the eo

r values
to 1, in order to transition from diversification
to intensification. One approach for doing this
is to use tabu penalties to discourage moves
that lead to solutions violating (5). We discuss
another approach in the next section.

A more limiting variant of (5) arises in the
context of exploiting strongly determined and
consistent variables, and in associated adaptive
memory projection strategies that iteratively
select various subsets of variable to hold fixed at
specific values, or to be constrained to lie within
specific bounds (Glover, 2005). This variant
occurs by identifying sub-sets Jr1, Jr2, …, of N
for the solutions xr to produce the inequalities

δ(Jrh, xr, x) ≥ krh, r ∈ RI, h = 1, 2 …
(6)

The inequalities of (6) are evidently more
restrictive than those of (5), if the sum of the
values krh over h is strictly greater than the
values kr (i.e., if krh

hå > kr for each r).

The inequalities (6) find application
within two main contexts. The first occurs
within a diversification segment of alternating
intensification and diversification phases, where
each intensification phase holds certain vari-
ables fixed and the ensuing diversification di-
vides the index of variables N of each xr into
two sub-sets Jr1 and Jr2 that respectively contain
the components of xr held fixed (i.e., this arise
by setting kr1 = 0) and the components permit-
ted to be free during the preceding intensifica-
tion phase. For example, the heuristic based on
the LP-relaxation considers xr which is an
optimal solution of LP-relaxtion of a current
problem and divides the set N into two sub-sets
Jr1 and Jr2 that respectively contain the compo-
nents of xr held basis variables and the compo-
nents no basis. Then a reduced problem is

International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010 13

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

generated where the no basic variables are fixed
to their values in xr (i.e. this arise by setting kr2
= 0) and the components in Jr1 permitted to be
free. The heuristic solves approximatily or
exactly the corresponding reduced problem (see
Soyster et al., 1978; Hanafi & Wilbaut, 2009).
Another example is the Local Branching pro-
posed by Fischetti and Lodi (2003), at each
iteration r, the set Jr1 corresponds to the set of
variables over which branching has already
been occured (those variables held fixed i.e.,
kr1 = 0) and Jr2 contains the components of xr
permitted to be separated from a given solution
x′ by a desired distance kr2. In Relaxation Induced
Neighborhood Search for solving the MIP
proposed by Danna et al. (2005), they use Jr1
= N((x +x*)/2) and Jr2 = N - Jr1 where x* is the

current incumbent feasible solution and x is
an optimal solution of the LP-relaxation.

The second area of application occurs in
conjunction with frequency memory by choos-
ing three sub-sets Jr1, Jr2 and Jr3 (for example) to
consist of components of solution xr that have
received particular values with high, middle
and low frequencies, relative to a specified
set of previously visited solutions. (The same
frequency vector, and hence the same way of
sub-dividing the xr vectors, may be relevant
for all xr solutions generated during a given
phase of search.)5

Our following ideas can be implemented
to enhance these adaptive memory projection
strategies as well as the other strategies previ-
ously described.

5.1 an intensification Procedure

Consider an indexed collection of inequalities
of the form of (2) given by

δ(cp, x′, x) ≥ δ(cp, x′, x″), p ∈ P (7)

We introduce an intensification procedure
that makes use of (7) by basing the inequalities
indexed by P on a collection of high quality
binary target solutions x′. Such solutions can

be obtained from past search history or from
approaches for rounding an optimal solution to a
linear programming relaxation (LP) of (P), using
penalties to account for infeasibility in ranking
the quality of such solutions. The solutions x′
do not have to be feasible to be used as target
solutions or to generate inequalities. In Section
6 we give specific approaches for creating such
target solutions and the associated target objec-
tives δ(c′, x′, x) that serve as a foundation for
producing the underlying inequalities.

Our goal from an intensification perspec-
tive is to find a new solution that is close to those
in the collection of high quality solutions that
give rise to (7). We introduce slack variables sp,
p ∈ P, to permit the system (7) to be expressed
equivalently as

δ(cp, x′, x) – sp = δ(cp, x′, x″), sp ≥ 0, p ∈ P
(8)

Then, assuming the set X includes reference
to the constraints (8), we create an Intensified
LP Relaxation

Minimize (so = : x ∈ X)

where the weights wp for the variables sp are
selected to be positive integers.

An important variation is to seek a solu-
tion that minimizes the maximum deviation of
x from solutions giving rise to (7). This can be
accomplished by introducing the inequalities

so ≥ δ(cp, x′, x″) – δ(cp, x′, x), p ∈ P
(9)

Assuming these inequalities are likewise
incorporated into X,6 the Min(Max) goal is
achieved by solving the problem

Minimize (so: x ∈ X)

An optimal solution to either of these
two indicated objectives can then be used as a
starting point for an intensified solution pass,

14 International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

performing all-at-once or successive rounding to
replace its fractional components by integers.7

5.2 a diversification analog

To create a diversification procedure for
generating new starting solutions, we seek an
objective function to drive the search to lie as
far as possible from solutions in the region de-
fined by (7). For this purpose we introduce the
variables sp as in (8), but utilize a maximization
objective rather than a minimization objective
to produce the problem

Maximize (so = : x ∈ X)

The weights wp are once again chosen to
be positive.

A principal alternative in this case consists
of maximizing the minimum deviation of x
from solutions giving rise to (7). For this, we
additionally include the inequalities

so≤ δ(cp, x′, x″) – δ(cp, x′, x), p ∈ P
(10)

giving rise to the problem

Maximize (so: x ∈ X).

The variable so introduced in (10) differs
from its counterpart in (9). In the case where
the degree of diversification provided by this
approach is excessive, by driving solutions too
far away from solutions expected to be good,
control can be exerted through bounding X with
other constraints, and in particular by manipulat-
ing the bound zo identified in Section 1.

6. ConClusion

Branch-and-bound (B&B) and branch-and-cut
(B&C) methods have long been considered the
methods of choice for solving mixed integer
programming problems. In recent years, efforts

to create improved B&B and B&C solution ap-
proaches have intensified and have produced
significant benefits, as evidenced by the exis-
tence of MIP procedures that are appreciably
more effective than their predecessors. It re-
mains true, however, that many MIP problems
resist solution by the best current B&B and
B&C methods. As a consequence, metaheuristic
methods have attracted attention as possible
alternatives or supplements to the more classical
approaches. Yet to date, the amount of effort
devoted to developing good metaheuristics for
MIP problems is almost negligible compared to
the effort being devoted to developing refined
versions of the classical methods.

The view adopted in Part I and II is that
metaheuristic approaches can benefit from a
change of perspective in order to perform at
their best in the MIP setting. Drawing on les-
sons learned from applying classical methods,
we anticipate that metaheuristics can likewise
profit from generating inequalities to supple-
ment their basic functions. However, we pro-
pose that these inequalities be used in ways
not employed in classical MIP methods, and
indicate two principal avenues for doing this:
first by generating the inequalities in reference
to strategically created target solutions and target
objectives, as in Part I, and second by embedding
these inequalities in special intensification and
diversification processes, as described in this
Part II. The use of such strategies raises the is-
sue of how to compose the target solutions and
objectives themselves. Classical MIP methods
such as B&B and B&C again provide a clue
to be heeded, by demonstrating that memory
is relevant to effective solution procedures.
However, we suggest that gains can be made
by going beyond the rigidly structured memory
employed in B&B and B&C procedures. Thus
we make use of the type of adaptive memory
framework introduced in tabu search, which of-
fers a range of recency and frequency memory
structures for achieving goals associated with
short term and long term solution strategies.

International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010 15

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

aCknowledGMent

The present research work has been supported by
International Campus on Safety and Intermodal-
ity in Transportation, the Nord-Pas-de-Calais
Region, the European Community, the Regional
Delegation for Research and Technology, the
Ministry of Higher Education and Research,
the National Center for Scientific Research.
A restricted (preliminary) version of this work
appeared in Glover (2008).

referenCes

Balas, E., & Jeroslow, R. (1972). Canonical Cuts
on the Unit Hypercube. SIAM Journal on Applied
Mathematics, 23(1), 60–69. doi:10.1137/0123007

Blum, C., & Roli, A. (2003). Metaheuristics in Com-
binatorial Optimization: Overview and Conceptual
Comparison. ACM Journal, 35(3), 268–308.

Crainic, T. G., & Toulouse, M. (2003). Parallel
Strategies for Meta-Heuristics. In Kochenberger, G.,
& Glover, F. (Eds.), Handbook of Metaheuristics.
Dordrecht, The Netherlands: Kluwer Academic
Publishers.

Dantzig, G. (1963). Linear Programming and Exten-
sions. Princeton, NJ: Princeton University Press.

Davoine, T., Hammer, P. L., & Vizvári, B.
(2003). A Heuristic for Boolean optimization
problems. Journal of Heuristics, 9, 229–247.
doi:10.1023/A:1023717307746

Fischetti, M., Glover, F., & Lodi, A. (2005). Feasi-
bility Pump. Mathematical Programming - Series
A, 104, 91–104. doi:10.1007/s10107-004-0570-3

Fischetti, M., Glover, F., Lodi, A., & Monaci, M.
(2006). Feasibility Net, research study in process.

Glover, F. (1978). Parametric Branch and Bound.
OMEGA . The International Journal of Management
Science, 6(2), 145–152.

Glover, F. (2005). Adaptive Memory Projection
Methods for Integer Programming. In C. Rego &
B. Alidaee (Eds.), Metaheuristic Optimization Via
Memory and Evolution: Tabu Search and Scatter
Search (pp. 425-440). Dordrecht, The Netherland:
Kluwer Academic Publishers.

Glover, F. (2006). Parametric Tabu Search for
Mixed Integer Programs. Computers & Opera-
tions Research, 33(9), 2449–2494. doi:10.1016/j.
cor.2005.07.009

Glover, F. (2006a). Satisfiability Data Mining for
Binary Data Classification Problems (Tech. Rep.).
Boulder, CO: University of Colorado, Boulder.

Glover, F. (2007). Infeasible/Feasible Search Trajec-
tories and Directional Rounding in Integer Program-
ming. Journal of Heuristics, 13(6), pp. 505-542.

Glover, F., & Greenberg, H. (1989). New Approaches
for Heuristic Search: A Bilateral Linkage with
Artificial Intelligence. European Journal of Opera-
tional Research, 39(2), 119–130. doi:10.1016/0377-
2217(89)90185-9

Glover, F., & Hanafi, S. (2002). Tabu Search and
Finite Convergence. Discrete Applied Mathematics,
119, 3–36. doi:10.1016/S0166-218X(01)00263-3

Glover, F., & Hanafi, S. (2010). Metaheuristic Search
with Inequalities and Target Objectives for Mixed
Binary Optimization Part I: Exploiting Proximity.
International Journal of Applied Metaheuristic
Computing, 1(1), 1–15.

Glover, F., & Laguna, M. (1997). Tabu Search.
Dordrecht, The Netherlands: Kluwer Academic
Publishers.

Glover, F., & Sherali, H. D. (2003). Foundation-
Penalty Cuts for Mixed-Integer Programs. Opera-
tions Research Letters, 31, 245–253. doi:10.1016/
S0167-6377(03)00014-2

Guignard, M., & Spielberg, K. (2003). Double
Contraction, Double Probing, Short Starts and BB-
Probing Cuts for Mixed (0,1) Programming (Tech.
Rep.). Philadelphia, PA: University of Pennsylvania,
Wharton School.

Hanafi, S., & Wilbaut, C. (2006). Improved Conver-
gent Heuristic for 0-1 Mixed Integer Programming.
Annals of Operations Research. doi:.doi:10.1007/
s10479-009-0546-z

Hvattum, L. M., Lokketangen, A., & Glover, F.
(2004). Adaptive Memory Search for Boolean Op-
timization Problems. Discrete Applied Mathematics,
142, 99–109. doi:10.1016/j.dam.2003.06.006

Nediak, M., & Eckstein, J. (2007). Pivot, Cut,
and Dive: A Heuristic for Mixed 0-1 Integer Pro-
gramming. Journal of Heuristics, 13, 471–503.
doi:10.1007/s10732-007-9021-7

16 International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Nowicki, E., & Smutnicki, C. (1996). A Fast Taboo
Search Algorithm for the Job Shop Problem. Man-
agement Science, 42(6), 797–813. doi:10.1287/
mnsc.42.6.797

Pardalos, P. S., & Shylo, O. V. (2006). An algorithm
for Job Shop Scheduling based on Global Equilibrium
Search Techniques. Computational Management Sci-
ence. DOI: 10.1007/s10287-006-0023-y Patel, J., &
Chinneck, J. W. (2006). Active-Constraint Variable
Ordering for Faster Feasibility of Mixed Integer
Linear Programs. Mathematical Programming.

Pedroso, J. P. (2005). Tabu search for mixed integer
programming. In Rego, C., & Alidaee, B. (Eds.),
Metaheuristic Optimization via Memory and Evo-
lution: Tabu Search and Scatter Search. Dordrecht,
The Netherlands: Kluwer Academic Publishers.
doi:10.1007/0-387-23667-8_11

Shylo, O. V. (1999). A Global Equilibrium Search
Method. Kybernetika I Systemniy Analys, 1, 74–80.

Soyster, A. L., Lev, B., & Slivka, W. (1978). Zero–one
programming with many variables and few con-
straints. European Journal of Operational Research,
2(3), 195–201. doi:10.1016/0377-2217(78)90093-0

Spielberg, K., & Guignard, M. (2000). A Sequential
(Quasi) Hot Start Method for BB (0,1) Mixed Integer
Programming. In Proceedings of the Mathematical
Programming Symposium, Atlanta.

Ursulenko, A. (2006). Notes on the Global Equilib-
rium Search (Tech. Rep.). Al Paso, TX: Texas A &
M University.

Wilbaut, C., & Hanafi, S. (2009). New Convergent
Heuristics for 0-1 Mixed Integer Programming.
European Journal of Operational Research, 195,
62–74. doi:10.1016/j.ejor.2008.01.044

endnotes
1 In some problem settings, the inclusion of the

secondary objective xo in a primary objective
voo = Mvo + xo is unimportant, and in these
cases our notation is accurate in referring to
the explicit minimization of vo= c′x.

2 For any real number α, α and α respectively
identify the least integer ≥ α and the greatest
integer ≤ α.

3 This is the “alternative definition” of xo indi-
cated earlier.

4 See also Pardalos and Shylo (2006) and Ur-
sulenko (2006).

5 The formulas of Glover (2005) apply more
generally to arbitrary integer solution vectors.

6 The inclusion of (8) and (9) is solely for
the purpose of solving the associated linear
programs, and these temporarily accessed
constraints do not have to be incorporated
among those defining Z.

7 Successive rounding normally updates the LP
solution after rounding each variable in order
to determine the effects on other variables and
thereby take advantage of modified rounding
options.

Fred Glover is the Chief Technology Officer in charge of algorithmic design and strategic
planning initiatives for OptTek Systems, Inc., heading the development of commercial computer
software systems currently serving more than 80,000 users in the United States and abroad. He
also holds the title of Distinguished Professor at the University of Colorado, Boulder, where he
is affiliated with the Leeds School of Business and the Department of Electrical and Computer
Engineering. Dr. Glover is widely known for his work in the applications of computer decision
support systems, including industrial planning, financial analysis, systems design, energy and
natural resources planning, logistics, transportation and large-scale allocation models. He has
authored or co-authored more than 400 published articles and eight books in the fields of math-
ematical optimization, computer science and artificial intelligence. He is also the originator of
Tabu Search (Adaptive Memory Programming), an optimization search methodology of which more

International Journal of Applied Metaheuristic Computing, 1(2), 1-17, April-June 2010 17

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

than 200,000 Web pages can be found with a simple Google search. Dr. Glover is the recipient
of the highest honor of the Institute of Operations Research and Management Science, the von
Neumann Theory Prize, and is an elected member of the National Academy of Engineering. He
has also received numerous other awards and honorary fellowships, including those from the
American Association for the Advancement of Science (AAAS), the NATO Division of Scientific
Affairs, the Institute of Operations Research and Management Science (INFORMS), the Decision
Sciences Institute (DSI), the U.S. Defense Communications Agency (DCA), the Energy Research
Institute (ERI), the American Assembly of Collegiate Schools of Business (AACSB), Alpha Iota
Delta, the Institute of Cybernetics of the Ukrainian Academy of Science, and the Miller Institute
for Basic Research in Science.

Saïd Hanafi holds a Full Professor position in Computing Science at Institute of Techniques
and Sciences, University of Valenciennes and is currently in charge of the team Operations
Research and Decision Support. His research lies in the design of effective heuristic and meta-
heuristic algorithms for solving large-scale combinatorial search problems. His is interested in
theoretical as well as algorithmic modelling and application aspects of integer programming
and combinatorial optimisation and has published over 30 articles on the topic. His current
interests revolve around the integration of tools from hybrid methods mixing exact and heuristics
for solving hard problems.

