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1. introduCtion

We represent the zero-one mixed integer pro-
gramming problem in the form
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aBstraCt:
Recent metaheuristics for mixed integer programming have included proposals for introducing inequalities 
and target objectives to guide the search process. These guidance approaches are useful in intensification 
and diversification strategies related to fixing subsets of variables at particular values. The authors’ preced-
ing Part I study demonstrated how to improve such approaches by new inequalities that dominate those 
previously proposed. In Part II, the authors review the fundamental concepts underlying weighted pseudo 
cuts for generating guiding inequalities, including the use of target objective strategies. Building on these 
foundations, this paper develops a more advanced approach for generating the target objective based on 
exploiting the mutually reinforcing notions of reaction and resistance. The authors demonstrate how to pro-
duce new inequalities by “mining” reference sets of elite solutions to extract characteristics these solutions 
exhibit in common. Additionally, a model embedded memory is integrated to provide a range of recency and 
frequency memory structures for achieving goals associated with short term and long term solution strate-
gies. Finally, supplementary linear programming models that exploit the new inequalities for intensification 
and diversification are proposed.
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We assume that Ax + Dy ≥ b includes the 
inequalities 1 ≥ xj ≥ 0, j ∈ N = {1, …, n}. The 
linear programming relaxation of P that results 
by dropping the integer requirement on x is 
denoted by LP. We further assume Ax + Dy ≥ 
b includes an objective function constraint zo 
≤ uo, where the bound uo is manipulated as part 
of a search strategy for solving P, subject to 
maintaining uo < zo*, where zo* is the zo value 
for the currently best known solution z* to P.

Recent adaptive memory and evolutionary 
metaheuristics for mixed integer program-
ming have included proposals for introducing 
inequalities and target objectives to guide the 
search. These guidance approaches are useful 
in intensification and diversification strategies 
related to fixing subsets of variables at par-
ticular values, and in strategies that use linear 
programming to generate trial solutions whose 
variables are induced to receive integer values.

In this paper we make reference to two 
types of search strategies: those that fix sub-
sets of variables to particular values within 
approaches for exploiting strongly determined 
and consistent variables, and those that make 
use of solution targeting procedures. Those 
targeting procedures solve a linear programming 
problem LP(x′, c′) where the objective vector 
c′ depends on the target solution x′. LP(x′, c′) 
includes the constraints of LP (and additional 
bounding constraints) while replacing the 
objective function zo by a linear function vo = 
c′x. Given a target solution x′, the objective 
vector c′ consists of integer coefficients c′j that 
seek to induce assignments xj = x′j for different 
variables with varying degrees of emphasis. 
We adopt the convention that each instance of 
LP(x′, c′) implicitly includes the LP objective 
of minimizing the function zo = fx + gy as a 
secondary objective, dominated by the objective 
of minimizing vo = c′x, so that the true objective 
function consists of minimizing ωo = Mvo + zo, 
where M is a large positive number.

A useful alternative to working with ωo 
in the form specified is to solve LP(x′, c′) in 
two stages. The first stage minimizes vo = c′x 
to yield an optimal solution x = x″, and the 
second stage enforces vo = c′x″ to solve the 

residual problem of minimizing zo = fx + gy. 
An effective way to enforce vo = c′x″ is to fix 
all non-basic variables having non-zero reduced 
costs to compel these variables to receive their 
optimal first stage values throughout the second 
stage. This can be implemented by masking the 
columns for these variables in the optimal first 
stage basis, and then to continue the second 
stage from this starting basis while ignoring 
the masked variables and their columns. The 
resulting residual problem for the second stage 
can be significantly smaller than the first stage 
problem, allowing the problem for the second 
stage to be solved efficiently.

A second convention involves an interpre-
tation of the problem constraints. Selected in-
stances of inequalities generated by approaches 
of the following sections will be understood 
to be included among the constraints Ax + 
Dy ≥ b of (LP). In our definition of LP(x′, c′) 
and other linear programs related to (LP), we 
take the liberty of representing the currently 
updated form of the constraints Ax + Dy ≥ b by 
the compact representation x ∈ X = {x: (x,y) 
∈ Z}, recognizing that this involves a slight 
distortion in view of the fact that we implicitly 
minimize a function of y as well as x in these 
linear programs.1

In Part I (Glover & Hanafi, 2010), we 
proposed procedures for generating target objec-
tives and solutions by exploiting proximity in 
the original space or projected space. To launch 
our investigation we first review weighted 
pseudo cuts for generating guiding inequalities 
for this problem and associated target objective 
strategies by exploiting proximity with embed-
ded memory in Section 2. Section 3 indicates 
more advanced approaches for generating the 
target objective based on exploiting the mutually 
reinforcing notions of reaction and resistance. 
The term “reaction” refers to the change in the 
value of a variable as a result of creating a target 
objective and solving the resulting linear pro-
gramming problem. We show how to generate 
additional inequalities by “mining” reference 
sets of elite solutions to extract characteristics 
these solutions exhibit in common. Section 4 
describes models that use embedded memory, 
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as proposed in parametric tabu search (Glover, 
1978, 2006), which offers a range of recency 
and frequency memory structures for achiev-
ing goals associated with short term and long 
term solution strategies. We examine ways 
this framework can be exploited in generating 
target objectives, employing both older adap-
tive memory ideas and newer ones proposed 
here for the first time. Section 5 focuses on 
supplementary linear programming models that 
exploit the new inequalities for intensification 
and diversification, and introduce additional 
inequalities from sets of elite solutions that 
enlarge the scope of these models. Concluding 
remarks are given in Section 6.

2. tarGet oBjeCtives By 
exPloitinG ProxiMity 
with eMBedded MeMory

To develop the basic ideas, let x′ denote an 
arbitrary solution, and define the associated 
index sets

N(x′, v) = {j ∈ N: xj′ = v} for v ∈ {0, 1},
N(x′) = {j ∈ N: xj′ ∈ {0, 1}} = {j ∈ N: xj
(1 – xj) = 0} = N(x′, 0) ∪ N(x′, 1), 
N*(x′) = {j ∈ N: xj′ ∈ ]0, 1[} = {j ∈ N: 
xj(1 – xj) ≠ 0} (hence N = N(x′) ∪ N*(x′))
C(x′) = { c ∈ INn

+: cjx′j(1 – x′j) = 0}.

Let x, x′ be two arbitrary binary solutions 
and let c′ be an integer vector in C(x′). Define

δ(c′, x′, x) =
c x x c x x
j j jj N j j j
' ' ' '( ) ( )1 1− + −

∈∑  .          (1)

The following result is proved in Part I.

Proposition 1. Let x′ denote an arbitrary target 
solution with the associated vector c′ ∈ 
C(x′). Let x″ denoted an optimal solution 
to the following LP problem

LP(x′,c′): Minimize {δ(c′, x′, x): x ∈X}.

Then the inequality

δ(c′, x′, x) ≥ max{1, δ(c′, x′, x″)2}  (2)

eliminates all solutions in F(x′, c′) = {x ∈ [0,1]
n: c′j(xj - xj′) = 0 for j ∈ N(x′) } as a feasible 
solution, but admits all other binary x vectors.

We observe that (2) is a valid inequality, 
i.e., it is satisfied by all binary vectors that are 
feasible for (P) (and more specifically by all 
such vectors that are feasible for LP(x′, c′)), 
with the exception of those ruled out by previ-
ous examination. We make use of solutions 
such as x′ by assigning them the role of target 
solutions and by c′ assigning them the role of 
target objective vectors.

Remark 1: The special case of the inequality (2) 
where c′ = e has been used, for example, to 
produce 0-1 “short hot starts” for branch 
and bound by Spielberg and Guignard 
(2000) and Guignard and Spielberg (2003). 
This special inequality is called a canoni-
cal cut on the unit hypercube by Balas and 
Jeroslow (1972). The inequality (2) also 
generalizes the partial pseudo cuts used by 
Soyster et al. (1978), Hanafi and Wilbaut 
(2009) and Wilbaut and Hanafi (2009). 
The partial pseudo cuts are generated from 
a subset J′ ⊆ N(x′), by using the partial 
distance

d( , , ) ( ) ( )' ' ' '

'

J x x x x x x
j

j J
j j j

= − + −
∈

∑ 1 1  (3)

The distance δ(J′, x′, x) = δ(c′, x′, x) where 
c′j = 1 if j ∈ J′ otherwise c′j = 0.

In Part I, we identified a relatively simple 
approach for generating the vector c′ of the 
target objective by exploiting proximity. The 
proximity procedure for generating target solu-
tions x′ and associated target objectives δ(c′, x′, 
x) begins by solving the initial problem (LP), 
and then solves a succession of problems LP(x′, 
c′) by progressively modifying x′ and c′. Begin-
ning from the linear programming solution x″ to 
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(LP) (and subsequently to LP(x′, c′)), the new 
target solution x′ is derived from x″ simply by 
setting xj′ = ‹xj″›, j ∈ N, where ‹v› denotes the 
nearest integer neighbour of v. (The value ‹.5› 
can be either 0 or 1, by employing an arbitrary 
tie-breaking rule.)

Proximity Procedure

1.  Solve (LP). (If the solution x″ to the first 
instance of (LP) is integer feasible, the 
method stops with an optimal solution for 
(P).)

2.  Construct the target solution x′ derived 
from x″ by setting x′j = ‹x″j›, for j ∈ N. 
Apply the Rule for Generating c′j, to each 
j ∈ N, to produce the vector c′.

3.  Solve LP(x′, c′), yielding the solution x″. 
Update the Problem Inequalities.

4.  If x″ is integer feasible: update the best 
solution (x*,y*) = (x″,y″), update uo < zo*, 
and return to Step 1. Otherwise, return to 
Step 2.

The targeting of xj = x′j for variables whose 
values x″j already equal or almost equal x′j does 
not exert a great deal of influence on the solu-
tion of the new (updated) LP(x′, c′), in the sense 
that such a targeting does not drive this solution 

to differ substantially from the solution to the 
previous LP(x′, c′). A more influential targeting 
occurs by emphasizing the variables xj whose x″j 
values are more “highly fractional,” and hence 
which differ from their integer neighbours x′j 
by a greater amount.

The following rule creates a target objective 
δ(c′, x′, x) based on this compromise criterion, 
arbitrarily choosing a range of 1 to BaseCost 
+ 1 for the coefficient c′j.

Proximity Rule for Generating c′j:

Choose λ0 from the range .1 ≤ λ0 ≤ .4. For j 
∈ N do

c′j = 1 + BaseCost (1-2xj′)(.5 – xj″)/(.5 – λ0) if 
xj″ ∉] λ0, 1 – λ0]
c′j = 1 + BaseCost (xj′ - xj″)/ λ0 otherwise

The values of c′j coefficients produced by 
the preceding rule describe what may be called 
a batwing function. Figure 1 shows the shape 
of this function.

We may modify the specification of the c′j 
values by using model embedded memory, as 
proposed in parametric tabu search. For this, we 
replace the constant value BaseCost in the c′j 
generation rules by a changing BaseCost value 

Figure 1. Batwing function
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which is increased on each successive iteration, 
thus causing the new c′j values to grow as the 
number of iterations increases. The influence of 
these values in driving variables to reach their 
targets will thus become successively greater, 
and targets that have been created more recently 
will be less likely to be violated than those cre-
ated earlier. (The larger value of c′j the more 
likely it will be that xj will not resist its target 
value xj′ by becoming fractional.)

Consequently, as the values c′j grow from 
one iteration to the next, the variables that were 
given new targets farther in the past will tend to 
be the ones that become resistors and candidates 
to receive new target values. As a result, the c′j 
coefficients produced by progressively increas-
ing BaseCost emulate a tabu search recency 
memory that seeks more strongly to prevent 
assignments from changing the more recently 
that they have been made.

The determination of the c′j values can 
be accomplished by starting with BaseCost = 
20 in Step 1 of the proximity procedure, and 
updating the value of BaseCost each time iter is 
incremented by 1 in Step 3 to give BaseCost:= 
λBaseCost, where the parameter λ is chosen 
from the interval λ ∈ [1.1,1.3]. (This value of 
λ can be made the same for all iterations, or can 
be selected randomly from such an interval at 
each iteration.)

To prevent the c′j values from becoming 
excessively large, the current c′j values can be 
reduced once BaseCost reaches a specified limit 
by the applying following rule.

1)  Reset BaseCost = 20 and index the variables 
xj, j ∈ N(x′) so that

c′1 ≥ c′2 ≥ …≥ c′p where p = |N(x′)|.

2)  Define Δj = c′j – c′j+1 for j = 1, …, p -1 and 
select λ ∈ [1.1,1.3].

3)  Set c′p:= BaseCost and c′j:= Min(c′j+1 + Δj, 
λc′j+1) for j = p -1, …, 1.

4)  Finally, reset BaseCost:= c′1 (= Max(cj′, j 
∈ N(x′)).

Remark 2: An equivalent implementation is 
obtained by replacing instruction 3 with

3-a) Set c′p:= BaseCost and Δ = c′p-1 – c′p;
3-b) for j = p -1, …, 1 do{ Δ’ = c′j-1 – c′j; c′j:= 
Min(c′j+1+ Δ, λc′j+1); Δ = Δ’;}

The new c′j values produced by this rule will 
retain the same ordering as the original ones.

In a departure for diversification purposes, 
the foregoing rule can be changed by modifying 
the next to last step to become

Set |c′1|:= BaseCost and |c′j+1|:= Min(|c′j| + Δj, 
λ|c′j|) for j =, …, p – 1 

and conclude by resetting BaseCost:= |c′p|.

3. GeneratinG tarGet 
oBjeCtives and solutions 
By exPloitinG reaCtion 
and resistanCe

In this section, we propose a more advanced 
approach for generating the vector c′ of the 
target objective. This approach is based on 
exploiting the mutually reinforcing notions of 
reaction and resistance. The term “reaction” 
refers to the change in the value of a variable 
as a result of creating a target objective δ(c′, 
x′, x) and solving the resulting problem LP(x′, 
c′). The term “resistance” refers to the degree 
to which a variable fails to react to a non-zero 
c′j coefficient by receiving a fractional value 
rather than being driven to 0 or 1.

Relative to a given vector x′ and a target 
vector c′ we consider the partition of N into 
the sets

N(c′, x′) = {j ∈ N: c′j ≠ 0 and xj(1 – xj) = 0} 

and

N*(c′, x′) = {j ∈ N: c′j = 0 or xj(1 – xj) ≠ 0}.
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i.e. N = N(c′, x′) ∪ N*(c′, x′). Note that the 
set N*(c′, x′) contains the indexes of variables 
that are not subject to a binding constraint or 
incorporated into a target affecting their values. 
The set N(c′, x′) identifies the variables that have 
been assigned target values xj′. (Equivalently, 
N(c′, x′) = N – N*(c′, x′).)

Remark 3: N*(e, x′) = N*(x′) = {j ∈ N: 0 < x′j < 
1} is the set of variables that receive fractional 
values in the solution x′. (Similarly, we note 
N(e, x′) = N(x′).)

Corresponding to the partition of N into the 
sets N*(c′, x′) and N(c′, x′), the set N*(x″) of 
fractional variables is partitioned into the sets

N*(x″, c′, x′) = N*(x″) ∩ N(c′, x′) and
N**(x″, c′, x′) = N*(x″) ∩ N*(c′, x′).

We identify two different sets of circum-
stances that are relevant to defining reaction, 
the first arising where none of the fractional 
variables xj is assigned a target x′j, hence N*(x″) 
= N**(x″, c′, x′) (i.e., N*(x″) ⊆ N*(c′, x′)), 
and the second arising in the complementary 
case where at least one fractional variable is 
assigned a target, hence N*(x″, c′, x′) ≠ ∅. We 
start by examining the meaning of reaction in 
the somewhat simpler first case.

3.1. reaction when no fractional 
variables have targets

Our initial goal is to create a measure of reac-
tion for the situation where N*(x″) = N**(x″, 
c′, x′), i.e., where all of the fractional variables 
are unassigned (hence, none of these variables 
have targets). In this context we define reaction 
to be measured by the change in the value x″j 
of a fractional variable xj relative to the value 
xo

j received by xj in an optimal solution xo to 
(LP), as given by

Δj = xo
j – x″j.

We observe there is some ambiguity in this 
Δj definition since (LP) changes as a result of 
introducing new inequalities and updating the 
value uo of the inequality zo ≤ uo. To remove this 
ambiguity, we understand the definition of Δj 
to refer to the solution xo obtained by the most 
recent effort to solve (LP), though this (LP) may 
be to some extent out of date, since additional 
inequalities may have been introduced since it 
was solved. For reasons that will become clear 
in the context of resistance, we also allow the 
alternative of designating xo to be the solution 
to the most recent problem LP(x′, c′) preceding 
the current one; i.e., the problem solved before 
creating the latest target vector c′.

The reaction measure Δj is used to deter-
mine the new target objective by re-indexing 
the variables xj, j ∈ N*(x″) = N**(x″, c′, x′), so 
that the absolute values |Δj| are in descending 
order, thus yielding |Δ1| ≥ |Δ2| ≥ … . We then 
identify the k-element subset N(k) = {1,2, …, k} 
of N*(x″) that references the k largest |Δj| values, 
where k = Min(|N*(x″)|, kmax). We suggest the 
parameter kmax be chosen at most 5 and gradu-
ally decreased to 1 as the method progresses.

The c′j coefficients are then determined 
for the variables xj, j ∈ N(k), by the following 
rule. (The constant BaseCost is the same one 
used to generate c′j values in the Proximity 
procedure, and ‹v› again denotes the nearest 
integer neighbor of v.)

N**(x″, c′, x′) Rule for Generating c′j and x′j, 
j ∈ N(k) (for N(k) ⊂ N*(x″) = N**(x″, c′, 
x′)):

Set c′j = 1 + ‹BaseCost |Δj| /|Δ1|› and x′j = 
sign(Δj).

When Δj = 0, a tie-breaking rule can be 
used to determine which of the two options 
should apply, and in the special case where Δ1 
= 0 (hence all Δj = 0), the c′j assignment is taken 
to be 1 for all j ∈ N(k).

To determine a measure of reaction for the 
complementary case N*(x″, c′, x′) ≠ ∅, we first 
introduce the notion of resistance.
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3.2. resistance

A resisting variable (or resistor) xj is one that 
is assigned a target value x′j but fails to satisfy 
xj = x′j in the solution x″ to LP(x′, c′). Accord-
ingly the index set for resisting variables may 
be represented by

NR = {j ∈ N(c′, x′): x″j ≠ x′j}
NR = {j ∈ N: c′j (x″j – x′j)≠ 0 and x′j (1 – x′j) 
= 0}
NR = {j ∈ N: c′jδ(j, x′, x″)≠ 0}

If xj″ is fractional and j ∈ N(c′, x′) then 
clearly j ∈ NR (i.e., N*(x″, c′, x′) ⊂ NR). Con-
sequently, the situation N*(x″, c′, x′) ≠ ∅ previ-
ously identified as complementary to N*(x″) = 
N**(x″, c′, x′) corresponds to the presence of 
at least one fractional resistor.

If a resistor xj is not fractional, i.e., if the 
value x″j is the integer 1 – x′j, we say that xj 
blatantly resists its targeted value x′j. Blatant 
resistors xj are automatically removed from NR 
and placed in the unassigned set N*(c′, x′) by 
setting c′j = 0. (Alternatively, a blatant resistor 
may be placed in N(x′, 1– x′j) by setting x′j:= 
1 – x′j.)

After executing this operation, we are left 
with NR = N*(x″, c′, x′), and hence the condi-
tion N*(x″, c′, x′) ≠ ∅ (which complements the 
condition N*(x″) = N**(x″, c′, x′)) becomes 
equivalent to NR ≠ ∅.

We use the quantity δ(j, x′, x″) to define a 
resistance measure RMj for each resisting vari-
able xj, j ∈ NR, that identifies how strongly xj 
resists its targeted value xj′. Two simple mea-
sures are given by

RMj = δ(j, x′, x″) or RMj = c′jδ(j, x′, x″) for j 
∈ NR.

The resistance measure RMj is used in two 
ways: (a) to select specific variables xj that will 
receive new xj′ and c′j values in creating the next 
target objective; (b) to determine the relative 
magnitudes of the resulting c′j values. For this 
purpose, it is necessary to extend the notion of 

resistance by making reference to potentially 
resisting variables (or potential resistors) xj, j 
∈ N(c′, x′) – NR, i.e., the variables that have 
been assigned target values x′j and hence non-
zero objective function coefficients c′j, but 
which yield x″j = x′j in the solution x″ to LP(x′, 
c′). We identify a resistance measure RMj

o for 
potential resistors by reference to their reduced 
cost values rcj (as identified in Section 4):

RMj
o = (2x′j – 1) rcj for j ∈ N(c′, x′) – NR

We note that this definition implies RMj
o ≤ 

0 for potentially resisting variables. (Otherwise, 
xj would be a non-basic variable yielding x″j = 1 
in the case where j ∈ N(x′,0), or yielding x″j = 
0 in the case where j ∈ N(x′, 1), thus qualifying 
as a blatant resistor and hence implying j ∈ 
NR.) The closer that RMj

o is to 0, the closer xj is 
to qualifying to enter the basis and potentially 
to escape the influence of the coefficient c′j 
that seeks to drive it to the value 0 or 1. Thus 
larger values of RMj

o indicate greater potential 
resistance. Since the resistance measures RMj 
are positive for resisting variables xj, we see 
that there is an automatic ordering whereby 
RMp > RMq

o for a resisting variable xp and a 
potentially resisting variable xq.

3.3. Combining Measures of 
resistance and reaction

The notion of reaction is relevant for variables xj 
assigned target values x′j (j ∈ N(c′, x′)) as well 
as for those not assigned such values (j ∈ N*(c′, 
x′)). In the case of variables having explicit 
targets (hence that qualify either as resistors 
or potential resistors) we combine measures 
of resistance and reaction to determine which 
of these variables should receive new targets 
x′j and new coefficients c′j.

Let xo refer to the solution x″ to the instance 
of the problem LP(x′, c′) that was solved im-
mediately before the current instance;3 hence 
the difference between xo

j and x″j identifies the 
reaction of xj to the most recent assignment of 
c′j values. In particular, we define this reaction 
for resistors and potential resistors by
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δj = (1 – x′j)(x″j – xo
j) + x′j (x

o
j – x″j) (j ∈ 

N(c′, x′))
δj = δ(j, x′, x″) – δ(j, x′, xo)

If we use the measure of resistance RMj = 
δ(j, x′, x″), which identifies how far xj lies from 
its target value, a positive δj implies that the 
resistance of xj has increased as a result of the 
latest assignment of c′j values, and a negative δj 
implies that the resistance of xj has decreased as 
a result of this assignment. Just as the resistance 
measure RMj is defined to be either δ(j, x′, x″) 
or c′jδ(j, x′, x″), the corresponding reaction 
measure Rδj can be defined by either

Rδj = δj or Rδj = δj c′j.
Rδj = δ(j, x′, x″) – δ(j, x′, xo) or Rδj = c′j(δ(j, 
x′, x″) – δ(j, x′, xo)).

Based on this we define a composite 
resistance-reaction measure RRj for resisting 
variables as a convex combination of RMj and 
Rδj; i.e., for a chosen value of λ ∈ [0,1]:

RRj = λRMj + (1 – λ)Rδj, j ∈ NR.
RRj = λδ(j, x′, x″) + (1 – λ)(δ(j, x′, x″) – δ(j, 
x′, xo)), j ∈ NR.
RRj = δ(j, x′, x″) + (λ – 1)δ(j, x′, xo), j ∈ NR.

Similarly, for implicitly resisting variables, 
we define a corresponding composite measure 
RRj

o by

RRj
o = λRMj

o + (1 – λ)Rδj, j ∈ N(c′, x′) – NR

In order to make the interpretation of λ 
more consistent, it is appropriate first to scale 
the values of RMj, RMj

o and Rδj. If vj takes the 
role of each of these three values in turn, then 
vj may be replaced by the scaled value vj:= 
vj/|Mean(vj)| (bypassing the scaling in the situ-
ation where |Mean(vj)| = 0).

To give an effective rule for determining RRj 
and RRj

o, a few simple tests can be performed to 
determine a working value for λ, as by limiting 
λ to a small number of default values (e.g., the 

three values 0, 1 and .5, or the five values that 
include .25 and .75).

3.4. including reference 
to a tabu list

A key feature in using both RRj and RRj
o to 

determine new target objectives is to make 
use of a simple tabu list T to avoid cycling and 
insure a useful degree of variation in the process. 
We specify in the next section a procedure for 
creating and updating T, which we treat both 
as an ordered list and as a set. (We sometimes 
speak of a variable xj as belonging to T, with 
the evident interpretation that j ∈ T.) It suffices 
at present to stipulate that we always refer to 
non-tabu elements of N(c′, x′), and hence we 
restrict attention to values RRj and RRj

o for which 
j ∈ N(c′, x′) – T. The rules for generating new 
target objectives make use of these values in 
the following manner.

Because RRj and RRj
o in general are not 

assured to be either positive or negative, we 
treat their ordering for the purpose of generat-
ing c′j coefficients as a rank ordering. We want 
each RRj value (for a resistor) to be assigned a 
higher rank than that assigned to any RRj

o value 
(for a potential resistor). An easy way to do 
this is to define a value RRj for each potential 
resistor given by

RRj = RRo
j – RR1

o + 1 – Min(RRj: j ∈ NR), j 
∈ N(c′, x′) – NR.
RRj = RRo

j – Max(RRo
j: j ∈ N(c′, x′) – NR) - 1 

+ Min(RRj: j ∈ NR), j ∈ N(c′, x′) – NR.

The set of RRj values over j ∈ N(c′, x′) then 
satisfies the desired ordering for both resistors 
(j ∈ NR) and potential resistors (j ∈ N(c′, x′) 
– NR). (Recall that NR = N*(x″, c′, x′) by hav-
ing previously disposed of blatant resistors.)

For the subset N(k) of k non-tabu elements 
of N(c′, x′) (hence of N(c′, x′) – T) that we seek 
to generate, the ordering over the subset NR – 
T thus comes ahead of the ordering over the 
subset (N(c′, x′) – NR) – T, This allows both 
resistors and potential resistors to be included 
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among those elements to be assigned new coef-
ficients c′j and new target values x′j, where the 
new c′j coefficients for resistors always have 
larger absolute values than the c′j coefficients 
for potential resistors. If the set of non-tabu 
resistors NR – T already contains at least k 
elements, then no potential resistors will be 
assigned new c′j or x′j values.

3.5. overview of the resistance 
and reaction Procedure

The rule for generating the target objective δ(c′, 
x′, x) that lies at the heart of the Resistance & 
Reaction procedure is based on carrying out the 
following preliminary steps, where the value 
kmax is determined as previously indicated: (a) 
re-index the variables xj, j ∈ N(c′, x′) – T, so 
that the values RRj are in descending order, thus 
yielding RR1 ≥ RR2 ≥ … ; (b) identify the subset 
N(k) = {1,2, …, k} of NR that references the 
k largest RRj values, where k = Min(|N(c′, x′) 
– T |, kmax); (c) create a rank ordering by letting 
Rp,p = 1, …, r denote the distinct values among 
the RRj, j ∈ N(k), where R1 > R2 > … > Rr (r ≥ 1).

Then the rule to determine the c′j and x′j 
values for the variables xj, j ∈ N(k), is given 
as follows:

N(c′, x′) – T Rule for Generating c′j and xj′, j 
∈ N(k) (for NR = N*(x″, c′, x′) ≠ ∅):

If RRj = Rp, set c′j = ‹1 + BaseCost(r + 1 – 
p)/r› and x′j = 1 – x′j.

We see that this rule assigns c′j coefficients 
so that the c′j values are the positive integers ‹1 
+ BaseCost(1/r)›, ‹1 + BaseCost(2/r)›,…, ‹1 + 
BaseCost(r/r)› = 1 + BaseCost.

We are now ready to specify the Resistance 
& Reaction procedure in overview, which 
incorporates its main elements except for the 
creation and updating of the tabu list T.

Resistance and Reaction 
Procedure in Overview

0.  Initialize the current problem P to be the 
(MIP:0-1) problem.

1.  Solve LP(P) yielding the optimal solution 
xo. (Stop if the first instance of (LP) yields an 
integer feasible solution xo, which therefore 
is optimal for (MIP:0-1).)

2.  Construct the target solution x′ derived from 
xo by setting x′j = ‹xo

j›, for j ∈ N. Apply 
the Rule of the Proximity Procedure for 
Generating c′j (to each j in N) to produce 
the vector c′.

3.  Solve LP(x’, c′), yielding the solution x”. 
Set xoo = x”. Update the current problem 
by adding the inequality derived from c′ 
(i.e., P = P | δ(c′, x′, x) ≥ v(LP(x’, c′))+ 
1).

4.  Let N*(x″) = {j ∈ N: 0 < xj” < 1}, N*(c′, 
x′) = {j ∈ N: c′j = 0 or 0 < xj′ < 1}, N(c′, x′) 
= N – N*(c′, x′), N**(x″, c′, x′) = N*(x″)∩ 
N*(c′, x′) and  N*(x″, c′, x′) = N*(x″)∩ N(c′, 
x′), NR = {j ∈ N: c′jδ(j, x′, x″)≠ 0}.

5.  There exists at least one fractional variable 
(N*(x″) ≠ ∅). Remove blatant resistors xj, 
if any exist, from NR and transfer them to 
N*(c′, x′) (or to N(x′, 1– x′j)) so NR = N*(x″, 
c′, x′).
(a)  If N*(x″) = N**(x″, c′, x′) (hence NR 

= ∅), apply the N**(x″, c′, x′) Rule 
for Generating c′j and x′j, j ∈ N(k) to 
produce the new target objective δ(c′, 
x′, x) and associated target vector x′:

Set c′j = 1 + ‹BaseCost|Δj| /|Δ1|› and x′j = 
sign(Δj), where Δj = xo

j – x″j.

(b)  If instead NR ≠ ∅, then apply the N(c′, 
x′) – T Rule for Generating c′j and x′j, 
j ∈ N(k), to produce the new target 
objective δ(c′, x′, x) and associated 
target vector x′:

If RRj = Rp, set c′j = ‹1 + BaseCost(r + 1 – 
p)/r› and x′j = 1 – x′j.

6.  Set xoo = x” and solve LP(x′, c′), yielding 
the solution x″. Update the current problem 
P by adding the inequality derived from c′ 
(i.e., P = P | δ(c′, x′, x) ≥ v(LP(x’, c′)) + 
1).
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7.  If x″ is integer feasible: update the best 
solution (x*,y*) = (x″,y″), update the current 
problem P by adding uo < zo*, (i.e., P = P 
| uo < zo*) and return to Step 1. Otherwise, 
return to Step 4.

This design is completed by the processes 
described in the next section.

4. CreatinG and 
ManaGinG the taBu list 
t – resistanCe & reaCtion 
ProCedure CoMPleted

We propose an approach for creating the tabu 
list T that is relatively simple but offers use-
ful features within the present context. As 
in a variety of constructions for handling a 
recency-based tabu memory, we update T by 
adding a new element j to the first position of 
the list when a variable xj becomes tabu (as a 
result of assigning it a new target value x′j and 
coefficient c′j), and by dropping the “oldest” 
element that lies in the last position of T when 
its tabu status expires.

Our present construction employs a rule 
that may add and drop more than one element 
from T at the same time. The checking of tabu 
status is facilitated by using a vector Tabu(j) 
that is updated by setting Tabu(j) = true when 
j is added to T and by setting Tabu(j) = false 
when j is dropped from T. (Tabu status is often 
monitored by using a vector TabuEnd(j) that 
identifies the last iteration that element j quali-
fies as tabu, without bothering to explicitly store 
the list T, but the current method of creating 
and removing tabu status makes the indicated 
handling of T preferable.)

We first describe the method for the case 
where k = 1, i.e., only a single variable xj is as-
signed a new target value (and thereby becomes 
tabu) on a given iteration. The modification for 
handling the case k > 1 is straightforward, as 
subsequently indicated. Two parameters Tmin 
and Tmax govern the generation of T, where 
Tmax > Tmin ≥ 1. For simplicity we suggest the 
default values Tmin = 2 and Tmax = n.6. (In general, 

appropriate values are anticipated to result by 
selecting Tmin from the interval between 1 and 
3 and Tmax from the interval between n.5 and 
n.7.) The small value of Tmin accords with an 
intensification focus, and larger values may be 
selected for diversification.

The target value x′j and coefficient c′j do not 
automatically change when j is dropped from 
T and xj becomes non-tabu. Consequently, we 
employ one other parameter AssignSpan that 
limits the duration that xj may be assigned the 
same x′j and c′j values, after which xj is released 
from the restrictions induced by this assignment. 
To make use of AssignSpan, we keep track of 
when xj most recently was added to T by setting 
TabuAdd(j) = iter, where iter denotes the current 
iteration value (in this case, the iteration when 
the addition occurred). Then, when TabuAdd(j) 
+ AssignSpan < iter, xj is released from the 
influence of x′j and c′j by removing j from the 
set N(c′, x′) and adding it to the unassigned set 
N*(c′, x′). As long as xj is actively being assigned 
new x′j and c′j values, TabuAdd(j) is repeatedly 
being assigned new values of iter, and hence 
the transfer of j to N*(c′, x′) is postponed. We 
suggest a default value for AssignSpan between 
l.5Tmax and 3Tmax; e.g., AssignSpan = 2Tmax.

To manage the updating of T itself, we 
maintain an array denoted TabuRefresh(j) that 
is initialized by setting TabuRefresh(j) = 0 
for all j ∈ N. Then on any iteration when j is 
added to T, TabuRefresh(j) is checked to see 
if TabuRefresh(j) < iter (which automatically 
holds the first time j is added to T). When the 
condition is satisfied, a refreshing operation is 
performed, after adding j to the front of T, that 
consists of two steps: (a) the list T is reduced 
in size to yield |T| = Tmin (more precisely, |T| ≤ 
Tmin) by dropping all but the Tmin first elements 
of T; (b) TabuRefresh(j) is updated by setting 
TabuRefresh(j) = iter + v, where v is a number 
randomly chosen from the interval [AssignSpan, 
2AssignSpan]. These operations assure that 
future steps of adding this particular element 
j to T will not again shrink T to contain Tmin 
elements until iter reaches a value that exceeds 
TabuRefresh(j). Barring the occurrence of such 
a refreshing operation, T is allowed to grow 
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without dropping any of its elements until it 
reaches a size of Tmax. Once |T| = Tmax, the old-
est j is removed from the end of T each time a 
new element j is added to the front of T, and 
hence T is stabilized at the size Tmax until a new 
refreshing operation occurs.

This approach for updating T is motivated 
by the following observation. The first time j 
is added to T (when TabuRefresh(j) = 0) T may 
acceptably be reduced in size to contain not 
just Tmin elements, but in fact to contain only 1 
element, and no matter what element is added 
on the next iteration the composition of N(c′, 
x′) cannot duplicate any previous composition. 
Moreover, following such a step, the composi-
tion of N(c′, x′) will likewise not be duplicated 
as long as T continues to grow without dropping 
any elements. Thus, by relying on intervening 
refreshing operations with TabuRefresh(j) = 
0 and Tmin = 1, we could conceivably allow 
T to grow even until reaching a size Tmax = n. 
(Typically, a considerable number of iterations 
would pass before reaching such a state.) In 
general, however, by allowing T to reach a size 
Tmax = n the restrictiveness of preventing targets 
from being reassigned for Tmax iterations would 
be too severe. Consequently we employ two 
mechanisms to avoid such an overly restrictive 
state: (i) choosing Tmax < n and (ii) performing 
a refreshing operation that allows each j to 
shrink T more than once (whenever iter grows 
to exceed the updated value of TabuRefresh(j)) 
The combination of these two mechanisms pro-
vides a flexible tabu list that is self-calibrating 
in the sense of automatically adjusting its size 
in response to varying patterns of assigning 
target values to elements.

The addition of multiple elements to the 
front of T follows essentially the same design, 
subject to the restriction of adding only up to 
Tmin new indexes j of N(k) to T on any iteration, 
should k be greater than Tmin. We slightly extend 
the earlier suggestion Tmin = 2 to propose Tmin 
= 3 for kmax ≥ 3.

Note that the organization of the method 
assures T ⊂ N(c′, x′) and typically a good por-
tion of N(c′, x′) lies outside T. If exceptional 

circumstances result in T = N(c′, x′), the method 
drops the last element of T so that N(c′, x′) 
contains at least one non-tabu element.

Drawing on these observations, the detailed 
form of the Resistance & ReactionProcedure 
that includes instructions for managing the tabu 
list is specified below, employing the stopping 
criterion indicated earlier of limiting the com-
putation to a specified maximum number of 
iterations. (These iterations differ from those 
counted by iter, which is re-set to 0 each time 
a new solution is found and the method returns 
to solve the updated (LP),)

Complete resistance and 
reaction Procedure

0.  Choose the values Tmin, Tmax and AssignSpan.
1.  Solve (LP). (Stop if the first instance of 

(LP) yields an integer feasible solution x″, 
which therefore is optimal for (MIP:0-1).) 
Set TabuRefresh(j) = 0 for all j ∈ N and 
set iter = 0.

2 There exists at least one fractional variable 
(N*(x″) ≠ ∅). Remove each blatant resistor 
xj, if any exists, from NR and transfer it to 
N*(c′, x′) (or to N′(1– x′j)), yielding NR = 
N*(x″, c′, x′). If j is transferred to N*(c′, 
x′) and j ∈ T, drop j from T. Also, if T = 
N(c′, x′), then drop the last element from T.
(a)  If N*(x″) = N**(x″, c′, x′) (hence NR 

= ∅), apply the N**(x″, c′, x′) Rule for 
Generating c′j and x′j, j ∈ N(k).

(b)  If instead NR ≠ ∅, then apply the N(c′, 
x′) – T Rule for Generating c′j and x′j, 
j ∈ N(k).

(c)  Set iter: = iter + 1. Using the indexing 
that produces N(k) in (a) or (b), add 
the elements j = 1, 2, …min(Tmin,k) to 
the front of T (so that T = (1, 2, …) 
after the addition). If TabuRefresh(j) 
< iter for any added element j, set 
TabuRefresh(j) = iter + v, for v ran-
domly chosen between AsignLength 
and 2AssignSpan (for each such j) and 
then reduce T to at most Tmin elements 
by dropping all elements in positions 
> Tmin.
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3.  Solve LP(x′, c′), yielding the solution x″. 
Update the Problem Inequalities.

4.  If x″ is integer feasible: update the best 
solution (x*,y*) = (x″,y″), update uo < zo*, 
and return to Step 1. Otherwise, return to 
Step 2.

The inequalities introduced in Sections 3 and 4 
provide a useful component of this method, but 
the method is organized to operate even in the 
absence of such inequalities. The intensifica-
tion and diversification strategies proposed in 
Section 5 can be incorporated for solving more 
difficult problems.

5. intensifiCation and 
diversifiCation Based on 
strateGiC inequalities

More generally, for any positive integer k sat-
isfying n ≥ k ≥ 1, the binary vectors x that lie at 
least a Hamming distance k from x′ are precisely 
those that satisfy the inequality

δ(e, x′, x) ≥ k (4)

The inequality (4) has been introduced 
within the context of adaptive memory search 
strategies (Glover, 2005) to compel new solu-
tions x to be separated from a given solution 
x′ by a desired distance. In particular, upon 
identifying a reference set R = {xr, r ∈ RI}, 
which consists of elite and diverse solutions 
generated during prior search, the approach 
consists of launching a diversification strategy 
that requires new solutions x to satisfy the as-
sociated set of inequalities

δ(e, xr, x) ≥ kr, r ∈ RI (5)

This system also gives a mechanism for 
implementing a proposal of Shylo (1999)4 to 
separate new binary solutions by a minimum 
specified Hamming distance from a set of solu-
tions previously encountered.

The inequalities of (5) constitute a form of 
model embedded memory for adaptive memory 

search methods where they are introduced for 
two purposes: (a) to generate new starting 
solutions and (b) to restrict a search process 
to visiting solutions that remain at specified 
distances from previous solutions. A diversi-
fication phase that employs the strategy (b) 
operates by eventually reducing the eo

r values 
to 1, in order to transition from diversification 
to intensification. One approach for doing this 
is to use tabu penalties to discourage moves 
that lead to solutions violating (5). We discuss 
another approach in the next section.

A more limiting variant of (5) arises in the 
context of exploiting strongly determined and 
consistent variables, and in associated adaptive 
memory projection strategies that iteratively 
select various subsets of variable to hold fixed at 
specific values, or to be constrained to lie within 
specific bounds (Glover, 2005). This variant 
occurs by identifying sub-sets Jr1, Jr2, …, of N 
for the solutions xr to produce the inequalities

δ(Jrh, xr, x) ≥ krh, r ∈ RI, h = 1, 2 …  
(6)

The inequalities of (6) are evidently more 
restrictive than those of (5), if the sum of the 
values krh over h is strictly greater than the 
values kr (i.e., if krh

hå  > kr for each r).

The inequalities (6) find application 
within two main contexts. The first occurs 
within a diversification segment of alternating 
intensification and diversification phases, where 
each intensification phase holds certain vari-
ables fixed and the ensuing diversification di-
vides the index of variables N of each xr into 
two sub-sets Jr1 and Jr2 that respectively contain 
the components of xr held fixed (i.e., this arise 
by setting kr1 = 0) and the components permit-
ted to be free during the preceding intensifica-
tion phase. For example, the heuristic based on 
the LP-relaxation considers xr which is an 
optimal solution of LP-relaxtion of a current 
problem and divides the set N into two sub-sets 
Jr1 and Jr2 that respectively contain the compo-
nents of xr held basis variables and the compo-
nents no basis. Then a reduced problem is 
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generated where the no basic variables are fixed 
to their values in xr (i.e. this arise by setting kr2 
= 0) and the components in Jr1 permitted to be 
free. The heuristic solves approximatily or 
exactly the corresponding reduced problem (see 
Soyster et al., 1978; Hanafi & Wilbaut, 2009). 
Another example is the Local Branching pro-
posed by Fischetti and Lodi (2003), at each 
iteration r, the set Jr1 corresponds to the set of 
variables over which branching has already 
been occured (those variables held fixed i.e., 
kr1 = 0) and Jr2 contains the components of xr 
permitted to be separated from a given solution 
x′ by a desired distance kr2. In Relaxation Induced 
Neighborhood Search for solving the MIP 
proposed by Danna et al. (2005), they use Jr1 
= N((x +x*)/2) and Jr2 = N - Jr1 where x* is the 

current incumbent feasible solution and x  is 
an optimal solution of the LP-relaxation.

The second area of application occurs in 
conjunction with frequency memory by choos-
ing three sub-sets Jr1, Jr2 and Jr3 (for example) to 
consist of components of solution xr that have 
received particular values with high, middle 
and low frequencies, relative to a specified 
set of previously visited solutions. (The same 
frequency vector, and hence the same way of 
sub-dividing the xr vectors, may be relevant 
for all xr solutions generated during a given 
phase of search.)5

Our following ideas can be implemented 
to enhance these adaptive memory projection 
strategies as well as the other strategies previ-
ously described.

5.1 an intensification Procedure

Consider an indexed collection of inequalities 
of the form of (2) given by

δ(cp, x′, x) ≥ δ(cp, x′, x″), p ∈ P (7)

We introduce an intensification procedure 
that makes use of (7) by basing the inequalities 
indexed by P on a collection of high quality 
binary target solutions x′. Such solutions can 

be obtained from past search history or from 
approaches for rounding an optimal solution to a 
linear programming relaxation (LP) of (P), using 
penalties to account for infeasibility in ranking 
the quality of such solutions. The solutions x′ 
do not have to be feasible to be used as target 
solutions or to generate inequalities. In Section 
6 we give specific approaches for creating such 
target solutions and the associated target objec-
tives δ(c′, x′, x) that serve as a foundation for 
producing the underlying inequalities.

Our goal from an intensification perspec-
tive is to find a new solution that is close to those 
in the collection of high quality solutions that 
give rise to (7). We introduce slack variables sp, 
p ∈ P, to permit the system (7) to be expressed 
equivalently as

δ(cp, x′, x) – sp = δ(cp, x′, x″), sp ≥ 0, p ∈ P 
(8)

Then, assuming the set X includes reference 
to the constraints (8), we create an Intensified 
LP Relaxation

Minimize (so = : x ∈ X)

where the weights wp for the variables sp are 
selected to be positive integers.

An important variation is to seek a solu-
tion that minimizes the maximum deviation of 
x from solutions giving rise to (7). This can be 
accomplished by introducing the inequalities

so ≥ δ(cp, x′, x″) – δ(cp, x′, x), p ∈ P 
(9)

Assuming these inequalities are likewise 
incorporated into X,6 the Min(Max) goal is 
achieved by solving the problem

Minimize (so: x ∈ X)

An optimal solution to either of these 
two indicated objectives can then be used as a 
starting point for an intensified solution pass, 
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performing all-at-once or successive rounding to 
replace its fractional components by integers.7

5.2 a diversification analog

To create a diversification procedure for 
generating new starting solutions, we seek an 
objective function to drive the search to lie as 
far as possible from solutions in the region de-
fined by (7). For this purpose we introduce the 
variables sp as in (8), but utilize a maximization 
objective rather than a minimization objective 
to produce the problem

Maximize (so = : x ∈ X)

The weights wp are once again chosen to 
be positive.

A principal alternative in this case consists 
of maximizing the minimum deviation of x 
from solutions giving rise to (7). For this, we 
additionally include the inequalities

so≤ δ(cp, x′, x″) – δ(cp, x′, x), p ∈ P 
(10)

giving rise to the problem

Maximize (so: x ∈ X).

The variable so introduced in (10) differs 
from its counterpart in (9). In the case where 
the degree of diversification provided by this 
approach is excessive, by driving solutions too 
far away from solutions expected to be good, 
control can be exerted through bounding X with 
other constraints, and in particular by manipulat-
ing the bound zo identified in Section 1.

6. ConClusion

Branch-and-bound (B&B) and branch-and-cut 
(B&C) methods have long been considered the 
methods of choice for solving mixed integer 
programming problems. In recent years, efforts 

to create improved B&B and B&C solution ap-
proaches have intensified and have produced 
significant benefits, as evidenced by the exis-
tence of MIP procedures that are appreciably 
more effective than their predecessors. It re-
mains true, however, that many MIP problems 
resist solution by the best current B&B and 
B&C methods. As a consequence, metaheuristic 
methods have attracted attention as possible 
alternatives or supplements to the more classical 
approaches. Yet to date, the amount of effort 
devoted to developing good metaheuristics for 
MIP problems is almost negligible compared to 
the effort being devoted to developing refined 
versions of the classical methods.

The view adopted in Part I and II is that 
metaheuristic approaches can benefit from a 
change of perspective in order to perform at 
their best in the MIP setting. Drawing on les-
sons learned from applying classical methods, 
we anticipate that metaheuristics can likewise 
profit from generating inequalities to supple-
ment their basic functions. However, we pro-
pose that these inequalities be used in ways 
not employed in classical MIP methods, and 
indicate two principal avenues for doing this: 
first by generating the inequalities in reference 
to strategically created target solutions and target 
objectives, as in Part I, and second by embedding 
these inequalities in special intensification and 
diversification processes, as described in this 
Part II. The use of such strategies raises the is-
sue of how to compose the target solutions and 
objectives themselves. Classical MIP methods 
such as B&B and B&C again provide a clue 
to be heeded, by demonstrating that memory 
is relevant to effective solution procedures. 
However, we suggest that gains can be made 
by going beyond the rigidly structured memory 
employed in B&B and B&C procedures. Thus 
we make use of the type of adaptive memory 
framework introduced in tabu search, which of-
fers a range of recency and frequency memory 
structures for achieving goals associated with 
short term and long term solution strategies.
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endnotes
1  In some problem settings, the inclusion of the 

secondary objective xo in a primary objective 
voo = Mvo + xo is unimportant, and in these 
cases our notation is accurate in referring to 
the explicit minimization of vo= c′x.

2  For any real number α, α and α respectively 
identify the least integer ≥ α and the greatest 
integer ≤ α.

3  This is the “alternative definition” of xo indi-
cated earlier.

4  See also Pardalos and Shylo (2006) and Ur-
sulenko (2006).

5  The formulas of Glover (2005) apply more 
generally to arbitrary integer solution vectors.

6  The inclusion of (8) and (9) is solely for 
the purpose of solving the associated linear 
programs, and these temporarily accessed 
constraints do not have to be incorporated 
among those defining Z.

7  Successive rounding normally updates the LP 
solution after rounding each variable in order 
to determine the effects on other variables and 
thereby take advantage of modified rounding 
options.
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