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1. NotatioN aNd Problem 
formulatioN

We represent the mixed integer programming 
problem in the form

:
0

(MIP) , ,

int

Minimize x fx gy

subject to x y Z x y Ax Dy b

x eger

We assume that Ax + Dy ≥ b includes the 
inequalities Uj ≥ xj ≥ 0, j ∈ N = {1, …, N}, where 
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some components of Uj may be infinite. The 
linear programming relaxation of (MIP) that 
results by dropping the integer requirement on 
x is denoted by (LP). We further assume Ax + 
Dy ≥ b includes an objective function constraint 
xo ≤ Uo, where the bound Uo is manipulated as 
part of a search strategy for solving (MIP), 
subject to maintaining Uo < xo*, where xo* is 
the xo value for the currently best known solu-
tion x* to (MIP).

The current paper focuses on the zero-one 
version of (MIP) denoted by (MIP:0-1), in which 
Uj = 1 for all j ∈ N. We refer to the LP relaxation 
of (MIP:0-1) likewise as (LP), since the identity 
of (LP) will be clear from the context,

In the following we make reference to 
two types of search strategies: those that fix 
subsets of variables to particular values within 
approaches for exploiting strongly determined 
and consistent variables, and those that make use 
of solution targeting procedures. As developed 
here, the latter solve a linear programming 
problem LP(x′,c′)1 that includes the constraints 
of (LP) (and additional bounding constraints 
in the general (MIP) case) while replacing the 
objective function xo by a linear function vo = c′x. 
The vector x′ is called a target solution, and the 
vector c′ consists of integer coefficients cj′ that 
seek to induce assignments xj = xj′ for different 
variables with varying degrees of emphasis.

We adopt the convention that each instance 
of LP(x′, c′) implicitly includes the (LP) objec-
tive of minimizing the function xo = fx + gy as a 
secondary objective, dominated by the objective 
of minimizing vo = c′x, so that the true objec-
tive function consists of minimizing ωo = Mvo 
+ xo, where M is a large positive number. As an 
alternative to working with ωo in the form speci-
fied, it can be advantageous to solve LP(x′,c′) in 
two stages. The first stage minimizes vo = c′x to 
yield an optimal solution x = x″ (with objective 
function value vo″ = c′x″), and the second stage 
enforces vo = vo″ to solve the residual problem 
of minimizing xo = fx + gy.2

A second convention involves an interpre-
tation of the problem constraints. Selected in-
stances of inequalities generated by approaches 
of the following sections will be understood 

to be included among the constraints Ax + 
Dy ≥ b of (LP). In our definition of LP(x′, c′) 
and other linear programs related to (LP), we 
take the liberty of representing the currently 
updated form of the constraints Ax + Dy ≥ b 
by the compact representation x ∈ X = {x: (x,y) 
∈ Z}, recognizing that this involves a slight 
distortion in view of the fact that we implicitly 
minimize a function of y as well as x in these 
linear programs.3

To launch our investigation of the problem 
(MIP:0-1) we first review previous ideas for 
generating guiding inequalities for this problem 
in Section 2 and associated target objective 
strategies using partial vectors and more general 
target objectives in Section 3. We then present 
new inequalities in Section 4 that improve on 
those previously proposed. The fundamental 
issue of creating the target objectives that can 
be used to generate the new inequalities and 
that lead to trial solutions for (MIP: 0-1) by 
exploiting proximity is addressed in Section 5. 
Concluding remarks are given in Section 6.

2. exPloitiNG iNequalities 
iN tarGet solutioN 
strateGies

Let x′ denote an arbitrary solution, and define 
the associated index sets

N(x′, v) = {j ∈ N: xj′ = v} for v ∈ {0, 1},  
N(x′) = {j ∈ N: xj′ ∈ {0, 1}} and  
N*(x′) ={j ∈ N: xj′ ∈ ]0, 1[},  

we have N = N(x′) ∪ N*(x′). For any real num-
ber z, z and z respectively identify the least 
integer ≥ z and the greatest integer ≤ z.

Define

d ¢( ) = - ¢( )+ ¢ -( )Îåx x x x x x
jj N j j j

, 1 1
 

 (1)

Proposition 1. Let x′ denote an arbitrary binary 
solution. Then the inequality
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δ(x′, x) ≥ 1  (1.1)

eliminates the assignment x = x′ as a feasible so-
lution, but admits all other binary x vectors.

Proof: It is evident that δ(x′, x) = || x – x′||1 = 
|| x – x′||2, so for all x ≠ x′, we have δ(x′, x) > 
0. The proposition follows from the fact that 
the value δ(x′, x) is integer.

Remark 1: The inequality (1.1) has been 
used, for example, to produce 0-1 “short hot 
starts” for branch and bound by Spielberg and 
Guignard (2000) and Guignard and Spielberg 
(2003).

The constraint (1.1) is called a canonical 
cut on the unit hypercube by Balas and Jeroslow 
(1972). The constraint (1.1) has also been used 
by Soyster et al. (1978), Hanafi and Wilbaut 
(2006) and Wilbaut and Hanafi (2006).

Proposition 1 has the following conse-
quence.

Corollary 1. Let x′ denote an arbitrary binary 
solution. Then the inequality

δ(x′, x) ≤ n - 1  (1.2)

eliminates the assignment x = e - x′ (the comple-
ment of x′) as a feasible solution, but admits all 
other binary x vectors.

Proof: Immediate from the proof on Proposition 
1, by using e - x′. 

We make use of solutions such as x′ by 
assigning them the role of target solutions. In 
this approach, instead of imposing the inequality 
(1.1) we adopt the strategy of first seeing how 
close we can get to satisfying x = x′ by solving 
the LP problem4

LP(x′): Minimize {δ(x′, x): x ∈X}

whereas earlier, X = {x: (x,y) ∈ Z}. We call x′ the 
target solution for this problem. Let x″ denote an 
optimal solution to LP(x′). If the target solution 
x′ is feasible for LP(x′) then it is also uniquely 
optimal for LP(x′) and hence x″ = x′, yielding 
δ(x′, x″) = 0. In such a case, upon testing x′ 
for feasibility in (MIP:0-1) we can impose the 
inequality (1.1) as indicated earlier in order to 
avoid examining the solution again. However, 
in the case where x′ is not feasible for LP(x′), 
an optimal solution x″ will yield δ(x′, x″) > 0 
and since the distance δ(x, x′) is an integer value 
we may impose the valid inequality

δ(x, x′) ≥ δ(x′, x″)  (2.1)

The fact that δ(x′, x″) > 0 discloses that 
(2.1) is at least as strong as (1.1). In addition, 
if the solution x″ is a binary vector that differs 
from x′, we can also test x″ for feasibility in 
(MIP:0-1) and then redefine x′ = x″, to addition-
ally append the constraint (1.1) for this new x′. 
Consequently, regardless of whether x″ is binary, 
we eliminate x″ from the collection of feasible 
solutions as well as obtaining an inequality (2.1) 
when δ(x′, x″) is fractional that dominates the 
original inequality (1.1).

Upon generating the inequality (2.1) 
(and an associated new form of (1.1) if x″ is 
binary), we continue to follow the policy of 
incorporating newly generated inequalities 
among the constraints defining X, and hence 
those defining Z of (MIP:0-1). Consequently, 
we assure that X excludes both the original x′ 
and the solution x″. This allows the problem 
LP(x′) to be re-solved, either for x′ as initially 
defined or for a new target vector (which can 
be also be x″ if the latter is binary), to obtain 
another solution x″ and a new (2.1).

Remark 2: The same observations can be made 
to eliminate the complement of x′, i.e. (e - x′), 
by solving the following LP problem:

LP+(x′): Maximize (δ(x′, x): x ∈X)
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Let x+″ denote an optimal solution to 
LP+(x′). If the complement of the target solution 
x′ is feasible for LP+(x′) then it is also uniquely 
optimal for LP+(x′) and hence x+″ = e - x′, yielding 
δ(x′, x+″) = n. In such a case, upon testing e - x′ 
for feasibility in (MIP:0-1) we can impose the 
inequality (1.2) as indicated earlier in order to 
avoid examining the solution again. However, in 
the case where e - x′ is not feasible for LP+(x′), 
an optimal solution x+″ will yield δ(x′, x+″) < n 
and we may impose the valid inequality

δ(x′, x) ≤ δ(x′, x+″)  (2.2)

The fact that δ(x′, x+″) < n discloses that 
(2.2) is at least as strong as (1.2).

It is worthwhile to use simple forms of 
tabu search memory based on recency and 
frequency in such processes to decide when 
to drop previously introduced inequalities, in 
order to prevent the collection of constraints 
from becoming unduly large. Such approaches 
can be organized in a natural fashion to encour-
age the removal of older constraints and to 
discourage the removal of constraints that have 
more recently or frequently been binding in 
the solutions to the LP(x′) problems produced 
(see Glover & Laguna, 1997; Glover & Hanafi, 
2002). Older constraints can also be replaced 
by one or several surrogate constraints.

The strategy for generating a succession of 
target vectors x′ plays a critical role in exploiting 
such a process. The feasibility pump approach 
of Fischetti, Glover and Lodi (2005) applies a 
randomized variant of nearest neighbor round-
ing to each non-binary solution x″ to generate 
the next x′, but does not make use of associated 
inequalities such as (1.x) and (2.x). In subsequent 
sections we show how to identify more effective 
inequalities and associated target objectives to 
help drive such processes.

3. GeNeralizatioN to 
iNClude Partial VeCtors 
aNd more GeNeral 
tarGet objeCtiVes

We extend the preceding ideas in two ways, 
drawing on ideas of parametric branch and 
bound and parametric tabu search (Glover, 1978, 
2006a). First we consider partial x vectors that 
may not have all components xj determined, 
in the sense of being fixed by assignment or 
by the imposition of bounds. Such vectors are 
relevant in approaches where some variables 
are compelled or induced to receive particular 
values, while others remain free or are subject 
to imposed bounds that are not binding.

Let x′ denote an arbitrary solution and J ⊆ 
N(x′) define the associated set

F(J, x′) = {x ∈ [0,1]n: xj = xj′ for j ∈ J} 

Let x, x′ two arbitrary binary solutions and 
J ⊆ N, define

d J x x x x x x
jj J j j j

, ,¢( ) = - ¢( )+ ¢ -( )Îå 1 1  
 (3)

Proposition 2. Let x′ denote an arbitrary binary 
solution and J′ ⊆ N(x′). Then the inequality

δ(J′, x′, x) ≥ 1  (3.1)

eliminates all solutions in F(J′, x′) as a fea-
sible solution, but admits all other binary x 
vectors.

Proof: It is evident that for all x ∈ F(J′, x′), we 
have δ(J′, x′, x) = 0.

Proposition 2 has the following conse-
quence.

Corollary 2. Let x′ denote an arbitrary binary 
solution and J′ ⊆ N(e - x′). Then the inequal-
ity
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δ(J′, x′, x) ≤ |J′| - 1  (3.2)

eliminates all solutions in F(J′, e - x′) as a 
feasible solution, but admits all other binary 
x vectors.

Proof: Immediate from the proof on Proposition 
2, by using e - x′. 

We couple the target solution x′ with the 
associated set J′ ⊆ N(x′) to yield the problem

LP(x′,J′): Minimize (δ(J′, x′, x): x ∈X).

An optimal solution to LP(x′, J′), as a gen-
eralization of LP(x′), will likewise be denoted 
by x″. We obtain the inequality

δ(J′, x′, x) ≥ δ(J′, x′, x-″)  (4.1)

By an analysis similar to the derivation of 
(2.1), we observe that (4.1) is a valid inequality, 
i.e., it is satisfied by all binary vectors that are 
feasible for (MIP:0-1) (and more specifically 
by all such vectors that are feasible for LP(x′, 
J′)), with the exception of those ruled out by 
previous examination.

Remark 3: The same observations can be 
made to eliminate all solutions in F(J′, e - x′) 
as a feasible solution by solving the following 
LP problem:

LP+(x′,J′): Maximize (δ(J′, x, x′): x ∈X).

We obtain the inequality

δ(J′, x′, x) ≤ δ(J′, x′, x+″)  (4.2)

where x+″ is an optimal solution to LP+(x′, J′).
In the special case where J′ = N(x′), we 

have the following properties. Let x′ ∈ [0,1]n 
define the associated set

F(x′) = F(x′, N(x′)) = {x ∈ [0,1]n: xj = xj′ for j 
∈ N(x′)}. 

Let k be an integer satisfying 0 ≤ k ≤ n - 
|N(x′)|, the canonical hyperplane associated to 
the solution x′, denoted H(x′, k) is defined by

H(x′, k) = { x ∈ [0,1]n: δ(N(x′), x′, x) = k}. 

Proposition 3. x ∈ H(x′, k) ∩ {0,1}n Û δ(x, 
F(x′)∩ {0,1}n) = k

where δ(x, F) = min{δ(x, y): y ∈ F}

Proof: i) Necessity: if x ∈ H(x′, k) ∩ {0,1}n this 
imply that δ(N(x′), x′, x) = k. Moreover if  y ∈ 
F(x′) ∩ {0,1}n thus δ(N(x′), x′, y) = 0 which 
imply that y(N(x′)) = x′(N(x′)) where x(J) =  
(xj)j∈J. Hence, we have

δ(x, y) = δ(N(x′), x, y) + δ(N-N(x′), x, y) 
= δ(N(x′), x, x′) + δ(N-N(x′), x, y) 
= k + δ(N-N(x′), x, y) ≥ k. 

Let y′∈ {0,1}n such that y′(N(x′)) = x′(N(x′)) and 
y′(N-N(x′)) = x(N-N(x′)). Then we have y′ ∈ F(x′) 
and δ(x, y′) = k. Hence, δ(x, F(x′)∩ {0,1}n) = 
min{δ(x, y): y ∈ F(x′)∩ {0,1}n } = k.
ii) Sufficiency: Let y′∈ F(x′) ∩ {0,1}n such that 
δ(x, y′) = δ(x, F(x′) ∩ {0,1}n) = k. To simplify the 
notion let F′ = F(x′) ∩ {0,1}n = {x ∈ {0,1}n: xj 
= xj′ for j ∈ N(x′)}. Hence, we have δ(N-N(x′), 
x, F′) = 0 which implies that δ(N-N(x′), x, y′) 
= 0. Moreover if y′ ∈ F(x′) we have y′(N(x′)) = 
x′(N(x′)). Thus δ(N(x′), x, x′) = k. This implies 
that x ∈ H(x′, k) ∩ {0,1}n. which completes the 
proof of this proposition. 

In the next proposition, we state relation 
between half-spaces associated to the canoni-
cal hyperplanes. Let H-(x′, k) be the half-space 
associated with the canonical hyperplane H(x′, 
k) defined by

H-(x′, k) = { x ∈ [0,1]n: δ(N(x′), x′, x) ≤ k} 
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Proposition 4. Let x′ and x″ be two arbitrary 
solutions. Then

H-(x′, k) ∪ H-(x″, k) ⊆ H-((x′ + x″)/2, k). 

Proof: Immediate from the fact that N(x′) ⊆ N((x′ 
+ x″)/2) and N(x″) ⊆ N((x′ + x″)/2). 

Proposition 5. Co(H(x′, k) ∩ {0,1}n) = H(x′, k), 
where Co(X) is the convex hull of the set X.

Proof: The inclusion Co(H(x′, k) ∩ {0,1}n) ⊆ 
H(x′, k) is obvious for any solution x′ and integer 
k. To prove the inclusion

H(x′, k) ⊆ Co(H(x′, k) ∩ {0,1}n),  (5.1)

let y ∈ H(x′, k) and observe that δ(N(x′), x′, y) 
= δ(N(x′) ∩ N(y), x′, y) + δ(N(x′) ∩ N*(y), x′, 
y) = k. Now, we show by induction the second 
inclusion (4.3) on p = δ(N(x′) ∩ N*(y), x′, y). 
The statement is evident for p = 0. We assume 
that the statement is true for δ(N(x′) ∩ N*(y), 
x′, y) = p. To show that it is also true for δ(N(x′) 
∩ N*(y), x′, y) = p+1, consider the subset J ⊆ 
N(x′) ∩ N*(y) such that

d dJ x y j x y
j J

, , , ,¢( ) = ¢( ) =Îå 1  (5.2)

Thus we have δ(N(x′), x′, y) = δ(J, x′, y) + 
δ((N-J) ∩ (N(x′) ∩ N*(y)), x′, y) = k. For all j 
∈ J, define the vector yj such that

yj(N-J) = y(N-J) 
yj(J-{j}) = x′(J-{j}) and  (5.3)
yj({j}) = 1 - x′j. 

Now we show that

d
j J

jj x y y y
Îå ¢( ) =, , .  (5.4)

From (5.3) and (5.2), for all q ∉ J we have

, ,

, ,

j
qj J

j
q q qj J

j x y y

y j x y y y . 

For all q ∈ J, from (5.3) and (5.2) and since 
(1 – 2x′q) 

2 = 1 and x′q(1 – x′q) = 0 for all x′q ∈ 
{0,1}, we have

2

, , , ,

, ,

, ,

, , 1

, ,

, , 1 2

, ,

, , 1 2

, , 1 2

1 2 1 2

1 2 2 1

j j
q qj J j J q

q
q

qj J q

q

qj J

q

q j J

q

q q

q q q q q

q q q q

q

j x y y j x y y

q x y y

j x y x

q x y x

j x y x

q x y x

x j x y

q x y x

x q x y x

x x y x x

x y x x

y  

Hence y is on the convex hull of the vector yj for 
j ∈ J (see 5.4) and it is easy to see that 

δ(N(x′) ∩ N*(yj), x′, y) = p for all j ∈ J. 

By applying the hypothesis of the induction, 
we conclude that each vector yj is also on the 
convex hull of binary solutions in H(x′, k). This 
completes the proof of the second inclusion 
(5.1). The proposition then follows from the 
two inclusions. 

Proposition 5 is related to Theorem 1 of 
Balas and Jeroslow.

Let x′ denote an arbitrary solution and c ∈ 
INn define the associated set

F(x′, c) = {x ∈ [0,1]n: cj(xj - xj′) = 
0 for j ∈ N(x′) } 

Let x, x’ be two arbitrary binary solu-
tions and let c be an integer vector (c ∈ INn). 
Define
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d c x x c x x x x
jj N j j j j

, ,¢( ) = - ¢( )+ ¢ -(( )Îå 1 1  

Remark 4: δ(e, x′, x) = || x – x′||1 = || x – 
x′||2

B(c) = { x ∈ [0,1]n: cjxj(1 – xj) = 0}. 

Remark 5: δ(c, x′, x) = δ(J′, x′, x) if cj = 1 if j 
∈ J′ otherwise cj = 0.

Remark 6: B(e) = {0,1}n and B(0) = [0,1]n

C(x) = { c ∈ INn
+: cjxj(1 – xj) = 0}.

Proposition 6. Let x′ denote an arbitrary solu-
tion and c ∈ C(x′). Then the inequality

δ(c, x′, x) ≥ 1  (6.1)

eliminates the solutions in F(x′, c) as a feasible 
solution, but admits all other binary x vectors.
The inequality

δ(c, x′, x) ≤ ce - 1  (6.2)

eliminates the solutions in F(e - x′, c) as a 
feasible solution, but admits all other binary 
x vectors.

Proof: Immediate from the proof on Proposi-
tion 2 and Corollary 2 by by setting J ′ = { c 
∈ N: cj ≠ 0}. 

We couple the target solution x′ with the 
associated vector c ∈ C(x′) to yield the two 
problems

LP(x′, c): Minimize (δ(c, x′, x): x ∈X).
LP+(x′, c): Maximize (δ(c, x′, x): x ∈X).

An optimal solution to LP(x′, c) (resp. 
LP+(x′, c)), as a generalization of LP(x′) (resp. 
LP+(x′), will likewise be denoted by x-″ (resp. 
x+″). Finally, we obtain the inequalities

δ(c, x′, x) ≥  δ(c, x′, x-″)  (7.1)

δ(c, x′, x) ≤  δ(c, x′, x+″)  (7.2)

4. stroNGer iNequalities 
aNd additioNal Valid 
iNequalities from basiC 
feasible lP solutioNs

Our approach to generate inequalities that domi-
nate those of (7) is also able to produce additional 
valid inequalities from related basic feasible 
solution to the LP problem LP(x′,c), expanding 
the range of solution strategies for exploiting 
the use of target solutions. We refer specifically 
to the class of basic feasible solutions that may 
be called y-optimal solutions, which are dual 
feasible in the continuous variables y (including 
in y any continuous slack variables that may be 
added to the formulation), disregarding dual 
feasibility relative to the x variables. Such y-
optimal solutions can be easily generated in the 
vicinity of an optimal LP solution by pivoting to 
bring one or more non-basic x variables into the 
basis, and then applying a restricted version of 
the primal simplex method that re-optimizes (if 
necessary) to establish dual feasibility relative 
only to the continuous variables, ignoring pivots 
that would bring x variables into the basis. By 
this means, instead of generating a single valid 
inequality from a given LP formulation such as 
LP(x′,c), we can generate a collection of such 
inequalities from a series of basic feasible y-
optimal solutions produced by a series of pivots 
to visit some number of such solutions in the 
vicinity of an optimal solution.

As a foundation for these results, we assume 
x″ (or more precisely, (x″, y″)) has been obtained 
as a y-optimal basic feasible solution to LP(x′,c) 
by the bounded variable simplex method (see, 
e.g., Dantzig, 1963). By reference to the linear 
programming basis that produces x″, which 
we will call the x″ basis, define B = {j ∈ N: xj″ 
is basic} and NB = {j ∈ N: xj″ is non-basic}. 
We subdivide NB to identify the two subsets 
NB(0) = {j ∈ NB: xj″ = 0}, NB(1) = {j ∈ NB: 
xj″ = 1}. These sets have no necessary relation 
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to the sets N′(x’’,0) and N′(x’’,1), though in the 
case where x″ is an optimal basic solution5 to 
LP(x′,c), we would normally expect from the 
definition of c in relation to the target vector 
x′ that there would be some overlap between 
N′(x’’,0) and N′(x’’,1) and similarly between 
NB(1) and N′(1).

To simplify the notation, we find it 
convenient to give δ(c, x′, x) an alternative 
representation.

δ(c, x′, x) = c′x + cx′ with cj′ = cj (1 – 2xj′), j ∈ N 

The new inequality that dominates (6) 
results by taking account of the reduced costs 
derived from the x″ basis. Letting rc denote the 
reduced cost to an arbitrary y-optimal basic fea-
sible solution x″ for LP(x′,c). Finally, to identify 
the new inequality, define the vector d′ by

d′ = c – rc	

We then express the inequality as

δ(d′, x′, x) ≥ δ(d′, x′, x″) 	 (8)

We first show that (8) is valid when gener-
ated from an arbitrary y-optimal basic feasible 
solution, and then demonstrate in addition 
that it dominates (7) in the case where (8) is a 
valid inequality (i.e., where (8) is derived from 
an optimal basic feasible solution). By our 
previously stated convention, it is understood 
that X (and (MIP:0-1)) may be modified by 
incorporating previously generated inequalities 
that exclude some binary solutions originally 
admitted as feasible.

Our results concerning (8) are based on 
identifying properties of basic solutions in 
reference to the problem

LP(x′, d′): Minimize (δ(d′, x′, x): x ∈X)

Proposition 7. The inequality (8) derived from 
an arbitrary y-optimal basic feasible solution 
x″ for LP(x′, c) is satisfied by all binary vectors 

x ∈ X, and excludes the solution x = x″ when 
δ(c, x′,x″) is fractional.

Proof: We first show that the basic solution x″ 
for LP(x′, c) is an optimal solution to LP(x′, d′). 
Let rd denote the reduced cost for the objective 
function δ(d′, x′, x) for LP(x′, d′) relative to the 
x″ basis. Assume X = {x: Ax ≥ b, x ≥ 0} and let 
B the basis associated to the basic solution x″. 
From the definitions the reduced cost rc = c′ – 
c′B(AB)-1A, and of d′ = c′ – rc, it follows that

d′ = c′B(AB)-1A and d′B = c′B  (8.1)

thus the reduced costs rd is null; i.e.,

rd′ = d′ – d′B(AB)-1A = c′B(AB)-1A – d′B(AB)-1A
= c′B(AB)-1A – c′B(AB)-1A ≤ 0. 

This establishes the optimality of x″ for LP(x′, 
d′). Since the dj′ coefficients are all integers, we 
therefore obtain the valid inequality
δ(d′, x′, x) ≥ δ(d′, x′, x″) . 

The definition of d′ yields

δ(d′, x′, x″) = δ(c, x′, x″) + δ(-rc, x′, x″). 

The δ(-rc, x′, x″) value is integer, since x″ 
∈ B(-rc). Thus, δ(d′, x′, x″) is fractional if 
and only if δ(c′, x′, x″) is fractional, and we 
also have

δ(d′, x′, x″) = δ(c, x′, x″) + δ(-rc, x′, x″).

The proposition then follows from the defini-
tions of (7) and (8). 

Proposition 7 has the following novel 
consequence.

Corollary 3. The inequality (8) is independent 
of the cj values for the non-basic x variables. In 
particular, for any y-feasible basic solution and 
specified values cj for j ∈ B, the coefficients dj′ 
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of d′ are identical for every choice of the integer 
coefficients cj, j ∈ NB.

Proof: The Corollary follows from the argu-
ments of the Proof of Proposition 7 (see 8.1) 
thus showing that these changes cancel out, to 
produce the same final do′ and d′ after imple-
menting the changes that existed previously. 

In effect, since Corollary 1 applies to the 
situation where cj = 0 for j ∈ NB, it also allows 
each dj′ coefficient for j ∈ NB to be identified 
by reference to the quantity that results by 
multiplying the vector of optimal dual values 
by the corresponding column Aj of the matrix 
A defining the constraints of (MIP), excluding 
rows of A corresponding to the inequalities 1 
≥ xj ≥ 0. (We continue to assume this matrix is 
enlarged by reference to additional inequalities 
such as (7) or (8) that may currently be included 
in defining x ∈ X.)

Now we establish the result that (8) is at 
least as strong as (7).

Proposition 8. If the basic solution x″ for LP(x′, 
c) is optimal, and thus yields a valid inequality 
(7), then the inequality (8) dominates (7).

Proof: We use the fact that x″ is optimal for 
LP(x′, d′) as established by Proposition 7. When 
x″ is optimal for LP(x′, c) from the optimal con-
dition of the corresponding dual we have

rc x″ ≤ rc x for all x ≥ 0 

Thus we have

-rc x″ ≥ -rc x for all x ≥ 0  (8.2)

Since

δ(-rc, x′, x″) = -rc′x″ + -rcx′ 
δ(-rc, x′, x) = -rc′x + -rcx′ 

This with (8.2) implies that

δ(-rc, x′, x″) - δ(-rc, x′, x) = -rc′x″ - 
-rc′x ≥ 0  (8.3)

Moreover we have

δ(d′, x′, x″) = δ(c, x′, x″) + δ(-rc, x′, x″).  (8.4)

δ(d′, x′, x) = δ(c, x′, x) + δ(-rc, x′, x).  (8.5)

Hence by substituting (8.4) and (8.5) in the 
inequality (8) we obtain

δ(c, x′, x) + δ(-rc, x′, x) ≥ δ(c, x′, x″) +  
δ(-rc, x′, x″) = δ(c, x′, x″) + δ(-rc, x′, x″). 

Thus by using (8.3) we obtain (7). Consequently, 
this establishes that (8) implies (7). 

Corollary 4. If the basic solution x″ for LP(x′,c) 
is optimal then

δ(d′, x′, x) - δ(d′, x′, x″) = δ(c, x′, x) -  
δ(c, x′, x″). 

Proof: If the basic solution x″ for LP(x′,c) is 
optimal then δ(-rc, x′, x”) is integer so  δ(-
rc, x′, x″) = δ(-rc, x′, x″) which implies that 
δ(d′, x′, x) - δ(d′, x′, x″) = δ(c, x′, x) - δ(c, 
x′, x″). 

As in the use of the inequality (7), if a basic 
solution x″ that generates (8) is a binary vector 
that differs from x′, then we can also test x″ for 
feasibility in (MIP:0-1) and then redefine  x′ = 
x″, to additionally append the constraint (1.1) 
for this new x′.

The combined arguments of the proofs 
of Propositions 7 and 8 lead to a still stronger 
conclusion. Consider a linear program LP(x′, 
h′) given by

LP(x′,h′): Minimize (δ(h′, x′, x): x ∈X).
where the coefficients hj′ = dj′ (and hence = cj) 
for j ∈ B and, as before, B is defined relative 
to a given y-optimal basic feasible solution x″. 
Subject to this condition, the only restriction 
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on the hj′ coefficients for j ∈ NB is that they 
be integers. Then we can state the following 
result.

Corollary 5. The x″ basis is an optimal LP 
basis for LP(x′, h′) if and only if

hj′ ≥ dj′ for j ∈ NB 

and the inequality (8) dominates the corre-
sponding inequality derived by reference to 
LP(x′, h′).

Proof: Immediate from the proofs on Proposi-
tions 7 and 8. 

The importance of Corollary 5 is the dem-
onstration that (8) is the strongest possible valid 
inequality from those that can be generated by 
reference to a given y-optimal basic solution x″ 
and an objective function that shares the same 
coefficients for the basic variables.

It is to be noted that if (MIP:0-1) contains an 
integer valued slack variable si upon converting 
the associated inequality Aix + Diy ≥ bi of the 
system Ax + Dy ≥ b into an equation – hence 
if Ai and bi consist only of integers and Di is 
the 0 vector – then si may be treated as one 
of the components of the vector x in deriving 
(8), and this inclusion serves to sharpen the 
resulting inequality. In the special case where 
all slack variables have this form, i.e., where 
(MIP:0-1) is a pure integer problem having no 
continuous variables and all data are integers, 
then it can be shown that the inclusion of the 
slack variables within x yields an instance of 
(8) that is equivalent to a fractional Gomory 
cut, and a stronger inequality can be derived 
by means of the foundation-penalty cuts of 
Glover and Sherali (2003). Consequently, 
the primary relevance of (8) comes from the 
fact that it applies to mixed integer as well as 
pure integer problems, and more particularly 
provides a useful means for enhancing target 
objective strategies for these problems. As an 
instance of this, we now examine methods that 
take advantage of (8) in additional ways by 

extension of ideas proposed with parametric 
tabu search.

5. GeNeratiNG tarGet 
objeCtiVes aNd solutioNs 
by exPloitiNG Proximity

We now examine the issue of creating the tar-
get solution x′ and associated target objective 
δ(c, x′, x) that underlies the inequalities of the 
preceding sections. This is a key determinant 
of the effectiveness of targeting strategies, 
since it determines how quickly and effectively 
such a strategy can lead to new integer feasible 
solutions.

In this section, we propose a relatively 
simple approach for generating the vector c of 
the target objective by exploiting proximity. 
The proximity procedure for generating target 
solutions x′ and associated target objectives δ(c, 
x′, x) begins by solving the initial problem (LP), 
and then solves a succession of problems LP(x′, 
c) by progressively modifying x′ and c. Begin-
ning from the linear programming solution x″ 
to (LP) (and subsequently to LP(x′,c)), the new 
target solution x′ is derived from x″ simply by 
setting xj′ = ‹xj″›, j ∈ N, where ‹v› denotes the 
nearest integer neighbour of v. (The value ‹.5› 
can be either 0 or 1, by employing an arbitrary 
tie-breaking rule.)

Since the resulting vector x′ of nearest 
integer neighbors is unlikely to be feasible for 
(MIP:0-1), the critical element is to generate the 
target objective δ(c, x′, x) so that the solutions 
x″ to successively generated problems LP(x′, c) 
will become progressively closer to satisfying 
integer feasibility.

If one or more integer feasible solutions 
is obtained during this approach, each such 
solution qualifies as a new best solution x*, due 
to the incorporation of the objective function 
constraint xo ≤ Uo<xo*.

The criterion of the proximity procedure 
that selects the target solution x′ as a nearest 
integer neighbor of x″ is evidently myopic. 
Consequently, the procedure is intended to be 
executed for only a limited number of iterations. 
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However, the possibility exists that for some 
problems the target objectives of this approach 
may quickly lead to new integer solutions 
without invoking more advanced rules. To 
accommodate this eventuality, we include the 
option of allowing the procedure to continue 
its execution as long as it finds progressively 
improved solutions.

The proximity procedure is based on the 
principle that some variables xj should be 
more strongly induced to receive their nearest 
neighbor target values xj′ than other variables. 
In the absence of other information, we may 
tentatively suppose that a variable whose LP 
solution value xj″ is already an integer or is close 
to being an integer is more likely to receive 
that integer value in a feasible integer solution. 
Consequently, we are motivated to choose a 
target objective δ(c, x′, x) that will more strongly 
encourage such a variable to receive its associ-
ated value xj′. However, the relevance of being 
close to an integer value needs to be considered 
from more than one perspective.

5.1 batwing function for Proximity

The targeting of xj = xj′ for variables whose 
values xj″ already equal or almost equal xj′ 
does not exert a great deal of influence on the 
solution of the new LP(x′, c), in the sense that 
such a targeting does not drive this solution 
to differ substantially from the solution to the 
previous LP(x′, c). A more influential targeting 
occurs by emphasizing the variables xj whose 
xj″ values are more “highly fractional,” and 
hence which differ from their integer neighbours 
xj′ by a greater amount. There are evidently 
trade-offs to be considered in the pursuit of 
influence, since a variable whose xj″ value 
lies close to .5, and hence whose integer target 
may be more influential, has the deficiency 
that the likelihood of this integer target being 
the “right” target is less certain. A compromise 
targeting criterion is therefore to give greater 
emphasis to driving xj to an integer value if xj″ 
lies “moderately” (but not exceedingly) close 
to an integer value. Such a criterion affords an 
improved chance that the targeted value will 

be appropriate, without abandoning the quest 
to identify targets that exert a useful degree 
of influence. Consequently, we select values 
λ0 and λ1 = 1 – λ0 that lie moderately (but not 
exceedingly) close to 0 and 1, such as λ0 = 1/5 
and λ1 = 4/5, or λ0 = 1/4 and λ1 = 3/4, and gener-
ate cj coefficients that give greater emphasis to 
driving variables to 0 and 1 whose xj″ values 
lie close to λ0 and λ1.

The following rule creates a target objective 
δ(c, x′, x) based on this compromise criterion, 
arbitrarily choosing a range of 1 to 21 for the 
coefficient cj. (From the standpoint of solving 
the problem LP(x′, c), this range is equivalent 
to any other range over positive values from v 
to 21v, except for the necessity to round the cj 
coefficients to integers.)

Proximity Rule for Generating cj:

Choose λ0 from the range .1 ≤ λ0 ≤ .4, and let 
λ1 = 1 – λ0.

If xj′ = 0 (hence xj″ ≤ .5) then
 If xj″ ≤ λ0, set cj = 1 + 20xj″/ λ0
 Else set cj = 1 + 20(.5 – xj″)/(.5 – λ0)
Else if xj′ = 1 (hence xj″ ≥ .5) then
 If xj″ ≤ λ1, set cj = 1 + 20(xj″ – .5)/(λ1 

– .5)
 Else set cj = 1 + 20(1 – xj″)/(1 – λ1)
End if

Finally, replace the specified value of cj by 
its nearest integer neighbour ‹cj›

Remark 7: cj = 1 if xj′ = xj″.

The values of cj coefficients produced by 
the preceding rule describe what may be called 
a batwing function – a piecewise linear function 
resembling the wings of a bat, with shoulders at 
xj″ = .5, wing tips at xj″ = 0 and xj″ = 1, and the 
angular joints of the wings at xj″ = λ0 and xj″ = 
λ1. Over the xj″ domain from the left wing tip 
at 0 to the first joint at λ0, the function ranges 
from 1 to 21, and then from this joint to the left 
shoulder at .5 the function ranges from 21 back 
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to 1. Similarly, from right shoulder, also at .5, to 
the second joint at λ1, the function ranges from 1 
to 21, and then from this joint to the right wing 
tip at 1 the function ranges likewise from 21 
to 1. (The coefficient cj takes the negative of 
these absolute values from the right shoulder 
to the right wing tip.).

In general, if we let Tip, Joint and Shoulder 
denote the cj values to be assigned at these junc-
tures (where typically Joint > Tip, Shoulder), 
then the generic form of a batwing function 
results by replacing the four successive cj values 
in the preceding method by

cj = Tip + (Joint – Tip)xj″/ λ0, 
cj = Shoulder + (Joint – Shoulder)(.5 – xj″)/ 
(.5 – λ0), 
cj = Shoulder + (Joint – Shoulder)(xj″ – .5)/ 
(λ1 – .5) 
cj = Tip + (Joint – Tip)(1 – xj″)/(1 – λ1) 

The values of cj coefficients called a 
batwing function can also be expressed as 
follows:

cj = Tip + (Joint – Tip) δ(j, x′, x″)/ λ0, if xj″ ∉] 
λ0, 1 – λ0] 
cj = Shoulder + (Joint – Shoulder)(.5 – δ(j, x′, 
x″))/(.5 – λ0), otherwise 

The image of such a function more nearly 
resembles a bat in flight as the value of Tip is 
increased in relation to the value of Shoulder, 
and more nearly resembles a bat at rest in the 
opposite case. The function can be turned into 
a piecewise convex function that more strongly 
targets the values λ0 and λ1 by raising the ab-
solute value of cj to a power p > 1 (affixing a 
negative sign to yield cj over the range from 
the right shoulder to the right wing tip). Such 
a function (e.g., a quadratic function) more 
strongly resembles a bat wing than the linear 
function.6

5.2 design of the 
Proximity Procedure

We allow the proximity procedure that incor-
porates the foregoing rule for generating cj the 
option of choosing a single fixed λ0 value, or of 
choosing different values from the specified in-
terval to generate a greater variety of outcomes. 
A subinterval for λ0 centred around .2 or .25 is 
anticipated to lead to the best outcomes, but it can 
be useful to periodically choose values outside 
this range for diversification purposes.

We employ a stopping criterion for the 
proximity procedure that limits the total number 
of iterations or the number of iterations since 
finding the last feasible integer solution. In 
each instance where a feasible integer solution 
is obtained, the method re-solves the problem 
(LP), which is updated to incorporate both the 
objective function constraint xo ≤ Uo < xo* and 
inequalities such as (8) that are generated in the 
course of solving various problems LP(x′, c). 
The instruction “Update the Problem Inequali-
ties” is included within the proximity procedure 
to refer to this process of adding inequalities to 
LP(x′, c) and (LP), and to the associated process 
of dropping inequalities by criteria indicated 
in Section 2.

Proximity Procedure

1.  Solve (LP). (If the solution x″ to the first 
instance of (LP) is integer feasible, the 
method stops with an optimal solution for 
(MIP:0-1).)

2.  Construct the target solution x′ derived from 
x″ by setting xj′ = ‹xj″›, for j ∈ N. Apply 
the Rule for Generating cj, to each j ∈ N, 
to produce the vector c.

3.  Solve LP(x′, c), yielding the solution x″. 
Update the Problem Inequalities.

4.  If x″ is integer feasible: update the best 
solution (x*,y*) = (x″,y″), update Uo < xo*, 
and return to Step 1. Otherwise, return to 
Step 2.

A preferred variant of the proximity pro-
cedure does not change all the components of 
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c each time a new target objective is produced, 
but changes only a subset consisting of k of 
these components, for a value k somewhat 
smaller than n. For example, a reasonable default 
value for k is given by k = 5. Alternatively, the 
procedure may begin with k = n and gradually 
reduce k to its default value.

This variant results by the following modi-
fication. Let co identify the form of c produced 
by the Proximity Rule for Generating cj, as 
applied in Step 2 of the Proximity Procedure. 
Re-index the xj variables so that c1

o ≥ c2
o ≥ … 

≥ cn
o, and let J(k) = {1,…,k}, thus identifying 

the variables xj, j ∈ J(k), as those having the 
k largest cj

o values. Then proximity procedure 
is amended by setting c = 0 in Step 1 and then 
setting cj = cj

o for j ∈ J(k) in Step 2, without 
modifying the cj values for j ∈ N – J(k). Rel-
evant issues for research involve the determi-
nation of whether it is better to begin with k 
restricted or to gradually reduce it throughout 
the search, or to allow it to oscillate around a 
preferred value. Different classes of problems 
will undoubtedly afford different answers to 
such questions, and may be susceptible to 
exploitation by different forms of the batwing 
function (allowing different magnitudes for the 
Tip, Joint and Shoulder, and possibly allowing 
the location of the shoulders to be different than 
the .5 midpoint, with the locations of the joints 
likewise asymmetric).

6. CoNClusioN

Branch-and-bound (B&B) and branch-and-cut 
(B&C) methods have long been considered the 
methods of choice for solving mixed integer 
programming problems. This orientation has 
resulted in eliciting contributions to these 
classical methods from many researchers, and 
has led to successive improvements in these 
methods extending over a period of several 
decades. In recent years, these efforts to create 
improved B&B and B&C solution approaches 
have intensified and have produced significant 
benefits, as evidenced by the existence of MIP 

procedures that are appreciably more effective 
than their predecessors.

It remains true, however, that many MIP 
problems resist solution by the best current 
B&B and B&C methods. It is not uncommon 
to encounter problems that confound the lead-
ing commercial solvers, resulting in situations 
where these solvers are unable to find even 
moderately good feasible solutions after hours, 
days, or weeks of computational effort. As 
a consequence, metaheuristic methods have 
attracted attention as possible alternatives or 
supplements to the more classical approaches. 
Yet to date, the amount of effort devoted to de-
veloping good metaheuristics for MIP problems 
is almost negligible compared to the effort being 
devoted to developing refined versions of the 
classical methods.

The view adopted in this paper is that 
metaheuristic approaches can benefit from a 
change of perspective in order to perform at 
their best in the MIP setting. Drawing on les-
sons learned from applying classical methods, 
we anticipate that metaheuristics can likewise 
profit from generating inequalities to supple-
ment their basic functions. However, we pro-
pose that these inequalities be used in ways 
not employed in classical MIP methods, and 
indicate two principal avenues for doing this: 
first by generating the inequalities in reference 
to strategically created target solutions and target 
objectives, as in the current Part I, and second 
by embedding these inequalities in special 
intensification and diversification processes, 
as described in Part II.
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eNdNotes
1  The vector c′ depends on x′. As will be seen, 

we define several different linear programs 
that are treated as described here in reference 
to the problem LP(x′, c′).
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2  An effective way to enforce vo = vo″ is to fix all 
non-basic variables having non-zero reduced 
costs to compel these variables to receive 
their optimal first stage values throughout 
the second stage. This can be implemented by 
masking the columns for these variables in the 
optimal first stage basis, and then to continue 
the second stage from this starting basis while 
ignoring the masked variables and their col-
umns. (The masked non-basic variables may 
incorporate components of both x and y, and 
will generally include slack variables for some 
of the inequalities embodied in Ax + Dy ≥ b.) 
The resulting residual problem for the second 
stage can be significantly smaller than the first 
stage problem, allowing the problem for the 
second stage to be solved very efficiently.

3  In some problem settings, the inclusion of 
the secondary objective xo in voo = Mvo + xo is 
unimportant, and in these cases our notation is 
accurate in referring to the explicit minimiza-
tion of vo= c′x.

4  This strategy is utilized in the parametric 
branch and bound approach of Glover (1978) 
and in the feasibility pump approach of Fis-
chetti, Glover and Lodi (2005).

5  We continue to apply the convention of refer-
ring to just the x-component x″ of a solution 
(x″, y″), understanding the y component to be 
implicit.

6  Calibration to determine a batwing structure, 
either piecewise linear or nonlinear, that proves 
more effective than other alternatives within 
Phase 1 would provide an interesting study.

Fred Glover is the chief technology officer in charge of algorithmic design and strategic planning 
initiatives for OptTek Systems, Inc., heading the development of commercial computer software 
systems currently serving more than 80,000 users in the United States and abroad.  He also holds 
the title of distinguished professor at the University of Colorado, Boulder, where he is affiliated 
with the Leeds School of Business and the Department of Electrical and Computer Engineer-
ing. Dr. Glover is widely known for his work in the applications of computer decision support 
systems, including industrial planning, financial analysis, systems design, energy and natural 
resources planning, logistics, transportation and large-scale allocation models. He has authored 
or co-authored more than 370 published articles and eight books in the fields of mathematical 
optimization, computer science and artificial intelligence. He is also the originator of Tabu 
Search (Adaptive Memory Programming), an optimization search methodology of which more 
than 200,000 Web pages can be found with a simple Google search. Dr. Glover is the recipient 
of the highest honor of the Institute of Operations Research and Management Science, the von 
Neumann Theory Prize, and is an elected member of the National Academy of Engineering. He 
has also received numerous other awards and honorary fellowships, including those from the 
American Association for the Advancement of Science (AAAS), the NATO Division of Scientific 
Affairs, the Institute of Operations Research and Management Science (INFORMS), the Decision 
Sciences Institute (DSI), the U.S. Defense Communications Agency (DCA), the Energy Research 
Institute (ERI), the American Assembly of Collegiate Schools of Business (AACSB), Alpha Iota 
Delta, the Institute of Cybernetics of the Ukrainian Academy of Science, and the Miller Institute 
for Basic Research in Science. 

Saïd Hanafi holds a full professor position in computing science at Institute of Techniques and 
Sciences, University of Valenciennes and is currently in charge of the team Operations Research 
and Decision Support. His research lies in the design of effective heuristic and metaheuristic 
algorithms for solving large-scale combinatorial search problems. He is interested in theoretical 
as well as algorithmic modelling and application aspects of integer programming and combina-
torial optimisation and has published over 30 articles on the topic. His current interests revolve 
around the integration of tools from hybrid methods mixing exact and heuristics for solving 
hard problems.


