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Abstract – The quadratic assignment problem (QAP) is a well known combinatorial 
optimization problem most commonly used to model the facility-location problem.  The 
widely acknowledged difficulty of the QAP has made it the focus of many metaheuristic 
solution approaches.  In this study, we introduce several multi-start tabu search 
variants and show the benefit of utilizing strategic diversification within the tabu search 
framework for the QAP.  Computational results for a set of problems obtained from 
QAPLIB demonstrate the ability of our TS multi-start variants to improve on the classic 
tabu search approach that is one of the principal and most widely used methods for the 
QAP.  We also show that our new procedures are highly competitive with the best 
recently introduced methods from the literature, including more complex hybrid 
approaches that incorporate a classic tabu search method as a subroutine. 
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1. Introduction 

The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization 
problem first introduced by Koopmans and Beckmann [22] to model a facility location 
problem.  In this context, the objective is to find a minimum cost assignment of facilities 
to locations considering the flow of materials between facilities and the distance 
between locations.  The problem can be formulated as follows: 
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where f is the flow matrix, d is the distance matrix, p is a permutation vector of n 
indexes (of facilities or locations) mapping a possible assignment of n facilities to n 
locations, and  is the set of all n-vector permutations. For each pair of assignments in 
p the flow between the two facilities is multiplied by the distance between the two 
locations.  The sum of these terms over all pairs gives the total cost assignment for the 
permutation p. The objective is to find a permutation in 

Π

*p Π  of minimum total cost.  
 
Although facility location has been the most popular application of the QAP, a great 
number of other applications have also been encountered in a variety of other domains. 
Blackboard wiring problem in electronics, arrangement of electronic components in 
printed circuit boards and in microchips, balancing turbine runners, analysis of 
chemical reactions in chemistry, machine scheduling in manufacturing, load balancing 
and task allocation in parallel and distributed computing, statistical data analysis, 
information retrieval, and transportation are among the better known examples of 
applications of the QAP in systems engineering [6].  It is also possible to formulate 
several other well-known combinatorial optimization problems as QAPs, including the 
traveling salesman problem, the maximum clique problem and the graph-partitioning 
problem, each of them individually embracing a wide range of other applications in 
industry, technology and engineering.  Featured articles on these application domains 
and special cases may be found in [3, 9, 16, 21, 31, 32, 33, 34, 42]. 
 
Due to its solution complexity and its broad applicability, the QAP has been the subject 
of extensive research in the realms of both exact solution approaches and metaheuristic 
approaches.  The computational limits of existing technology make exact approaches 
impractical for all but relatively small problem instances.  Metaheuristic approaches 
have therefore become popular alternatives due to their superior ability to obtain good 
quality solutions within the limitations of available computing resources. 
 
Metaheuristic approaches applied to the QAP have included artificial neural networks 
[4], simulated annealing [8, 41], genetic algorithms [7, 39], tabu search [2, 28, 35, 38], 
ant colony optimization [15, 25, 37], GRASP [23, 30], scatter search [10] and path-
relinking [20].  Many variations of these approaches are present in the literature of the 
QAP, e.g. [1, 11, 12, 13, 14, 19, 24, 26, 27, 29, 40].   In section 2, we survey the current 
most advanced of these approaches for the QAP. Almost all recently successful methods 
have involved hybrids of some type.  The commonality among all these approaches is 
the use of a local search method, typically incorporating adaptive memory strategies 
from tabu search, embedded within the proposed metaheuristic framework.  Most of the 
better approaches explicitly incorporate some variation of a tabu search algorithm 
developed by Taillard [38].  Taillard’s robust tabu search (RTS) algorithm on its own 
obtains good solutions to the QAP and is very inexpensive in terms of computational 
time.   
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2. Review of Leading Approaches 

A number of the recent metaheuristic solution techniques that have appeared in the 
literature have been genetic algorithm (GA) variants coupled with tabu search.  
Misevicius proposed two GA approaches joined with tabu search for the QAP, a genetic 
algorithm hybridized with a “ruin and recreate” procedure [26] and an improved hybrid 
genetic algorithm utilizing a “shift mutation operator” [27].  Both of these approaches 
are superimposed on a modified version of Taillard’s tabu search which is used to 
execute the key function of improving the solutions provided by the GA operators.  The 
ruin and recreate procedure uses an operator to randomly perturb the solutions 
provided by the GA.  The tabu search procedure is then applied as an operator to 
“recreate” solutions provided by the GA operators as well as the “ruined” solutions 
created by the perturbations [26].  The more advanced hybrid GA version of this 
approach adds a “shift mutation” operator that further perturbs selected solutions to 
create greater diversification [27].     
 
Misevicius [28] also introduces a tabu search variant utilizing some of the same 
concepts of the previous methods but removing the GA operators.  This algorithm 
simply alternatively applies the local search (the modified tabu search procedure of 
Taillard) to solutions that are periodically subjected to mutations (i.e., perturbations).  
Taillard’s RTS algorithm was amended to exclude the aspiration criteria, decrease the 
tabu tenure and simplify the tabu condition. Supplementing this, several diversifying 
“mutation” processes were incorporated, including a random pairwise exchange 
procedure, a shift procedure, a dichotomic mutation (exchanging halves of the 
permutation) and a neighbor exchange mutation (exchanging two adjacent 
assignments).  Misevicius’s approach can be viewed as a restarted tabu search using 
diversification operators similar to some of those applied in the current study. 
 
Two other hybrid genetic algorithm approaches are given by Drezner [12], [13] which 
similarly incorporate several tabu search variations within a modified GA framework.  
Drezner [12] examines the use of a descent heuristic, a simple tabu search, and a new 
“concentric” tabu search procedure, which identifies and evaluates candidate moves 
based upon their distance from a “center” solution. Drezner [13] incorporates an 
extension of the concentric tabu search approach that considers a larger number of 
permissible moves.   
 
A GRASP implementation utilizing local search is presented by Li, Pardalos, and 
Resende [23], and a more advanced variant of GRASP enhanced by a TS path relinking 
strategy is introduced in Oliveira, Pardalos, and Resende [29].  Another path-relinking 
approach using Taillard’s RTS procedure as an improvement method is introduced and 
studied in James, Rego, and Glover [20].  Recently, a hybrid metaheuristic approach 
combining ant colony optimization with a genetic algorithm and local search has been 
proposed by Tseng and Liang [40].  
 
Due to differences in the QAP test sets chosen for testing, direct comparisons of the 
techniques outlined above are difficult.  The best performing algorithms from the 
literature typically provide computational results for different test instances from 
QAPLIB.  The hybrid GAs introduced by Misevicius [26], [27] and the tabu search 
variants [28] produce some of the best solutions for the Taillard test sets but are not 
run on any other test instances.  The hybrid GA due to Drezner [13] produces the best 
quality solutions for the Skorin-Kapov test suite.  No results are presented for the 
Taillard test instances for Drezner’s algorithms.  The GRASP algorithms [23], [29] do not 
present results for either the Taillard test problems or the Skorin-Kapov test problems, 
so performance comparisons between the GRASP implementations and the other 
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approaches outlined above are not possible.  The path relinking approach [20] and the 
hybrid metaheuristic approach [40] are both shown to be competitive on the 
asymmetric Taillard instances.  They are also competitive with several of the hybrid GA 
approaches for the Skorin-Kapov test instances.   
 
While this is not an exhaustive list of approaches for the QAP, the algorithms discussed 
constitute many of the best performing approaches found in the current literature.  As 
noted, all utilize some variation of a local search procedure, typically either Taillard’s 
RTS procedure or a modification of it.  In this study we examine various tabu search 
strategies using the RTS algorithm as a benchmark to demonstrate the contribution of 
these strategies. The resulting multi-start tabu search approaches demonstrate that 
high quality results can be obtained by simple and fast procedures incorporating 
traditional tabu search intensification and diversification without requiring the 
complicated designs introduced in the more elaborate “hybrid” metaheuristics. Our 
approaches are both efficient and easy to implement.  Because of this, our improved TS 
algorithms can also easily be embedded within more complex metaheuristic procedures 
such as those described above. 

3. Tabu Search for the QAP 

The hallmark of tabu search is the use of adaptive memory to guide the exploration of 
the search space.  Basic (rudimentary) TS procedures make use of a short term 
“recency memory” to exclude consideration of moves that lead back to recently visited 
solutions, together with one or more aspiration criteria that override the tabu status of 
moves that have suitably attractive properties. More advanced tabu search procedures 
incorporate additional short term and longer term memory structures, including those 
based on frequency and on logical analysis. Accompanying these memory structures are 
intensification and diversification strategies, which respectively focus the search in 
regions previously found to contain good solutions and drive the search into promising 
new regions not previously visited.  (See [17] for a comprehensive coverage of TS.) In 
this paper we focus primarily on the simpler TS strategies, utilizing intensification and 
diversification processes that are straightforward and easy to implement. 
 
The RTS algorithm developed by Taillard [38] provides a core tabu search method that 
itself embodies simple components and that has been shown to provide high quality 
solutions to the QAP with a small expenditure of solution time. As in the case of many 
of the other leading QAP methods, our current study incorporates many of the design 
features of the RTS algorithm. We also use this method as a benchmark for evaluating 
the contribution of various multi-start TS procedures we have developed.  The 
remainder of this section describes the basic components of our approaches. 
 
3.1 Neighborhood Specification 
 
The neighborhood most commonly employed in local search algorithms for the QAP, 
including RTS and the multi-start methods presented in the current study, is the 
classical 2-exchange (or swap) neighborhood.   
 
To illustrate, consider the following permutation: 

p(1) = 3  12  1  5  8  7  2  9  4  10  6  11 
It is convenient to view each location in the permutation as representing a facility. 
Entries in the permutation therefore represent the assigned location of each facility.  
The above permutation therefore represents the assignment of facility 1 to location 3, 
facility 2 to location 12, and so on.  It is straightforward to reverse this encoding.   
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A move in the 2-exchange neighborhood consists of exchanging (or swapping) two 
locations.  For example, a move denoted by (5,9) results in the following permutation: 

p(2) = 3  12  1  9  8  7  2  5  4  10  6  11. 
 

The new solution now assigns facility 4 to location 9 and facility 8 to location 5.  The 
neighborhood thus constitutes the set of all possible moves of this type. 
 
Other encodings and neighborhoods (such as k-exchange neighborhoods) have also 
been considered in the literature, but the computational burden of the larger exchange 
neighborhoods has limited their use.   
 
In the case of the simple 2-swap neighborhood selected here, the value of each possible 
new permutation created by a swap move could simply be calculated based on the 
objective function given in Section 1.  However, as the size of the problem grows, such 
an explicit calculation becomes expensive.  One of the key elements of Taillard’s RTS is 
a procedure that quickly ascertains the impact of the 2-exchange moves on a given 
permutation, thereby saving computational cost, as we examine next. 
 
3.2 Cost Calculation 
 
To expedite the evaluation of a 2-exchange move, the RTS algorithm utilizes a matrix to 
store the cost associated with each swap that may be executed in the current 
permutation. These “partial costs” can then be added to the original cost of the 
permutation to obtain the value associated with the new permutation. In this manner, 
the costs of possible moves can be quickly evaluated and once a move is chosen, the 
matrix can be efficiently updated to reflect the costs associated with the newly formed 
permutation.  These partial costs, for symmetrical QAP instances, can be calculated for 
a move (r,s) on permutation p by: 

≠
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Once a move (r,s) is chosen, it is then possible to update the move cost matrix for 
symmetrical instances by the formula: 

Δ = Δ + − + − − + −( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( , , ) ( , , ) 2( )( ),ru rv sv su t s t u t s t v t r t v t r t ut u v p u v f f f f d d d d  
where t is the new permutation and u and v differ from r and s.  If u or v is the same as 
r or s, then the first equation can be used to compute the cost. (See [38] for a more 
detailed discussion of these costs and [5] for a discussion of asymmetrical cases.) 
 
3.3 Tabu List 
 
The tabu list to carry out a short term memory function maintains a record of 
previously accepted moves by assigning these moves a tabu tenure that denotes the 
length of time (typically in iterations) during which the elements of a previous move are 
considered “tabu” and hence a move consisting of such elements is forbidden.  In the 
current study, we adopt the rules for designating an exchange tabu utilized in the RTS 
algorithm.  However, our use of a multi-start component changes the basic structure of 
the algorithm as will be discussed in later sections.  Modifications to the maintenance of 
the tabu list matrix are performed in the mulit-start algorithms that result in a different 
structure of the tabu list than in RTS.  
 
To determine tabu status, we maintain a matrix of tabu tenures for each element, 
starting from a tabu tenure matrix in which all moves are permissible.  Once a move is 
accepted, an updated tabu tenure is assigned to both elements of the exchange and 
stored in the matrix.  This updated tenure results by adding a random number from a 
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defined range to the iteration count, making the associated elements tabu for a 
specified number of iterations beyond the current iteration.  The tabu condition 
prevents a move from being executed only if both elements of the exchange are 
currently tabu.    
 
 
3.4 Aspiration Criteria 
 
An aspiration criterion is a rule that allows the tabu status to be overridden in cases 
where the forbidden exchange exhibits desirable properties.  The aspiration criteria 
incorporated into all variants developed in this study are the same as those used in the 
RTS algorithm. 
 
The aspiration criteria utilized in this study require a tabu move to successfully pass 
through a series of three levels of criteria to ultimately become a permissible exchange.  
The first level necessitates that an exchange meet one of two criteria.  The first 
determines if the forbidden move results in a global best solution (the solution has the 
best objective function value of any solution found so far during the search).  The 
second establishes whether or not the tabu tenure of at least one of the two elements of 
the exchange is less than a predefined ceiling (the iteration minus a defined aspiration 
value).  If the forbidden move meets either requirement then it is marked as potentially 
admissible and is subject to the second level criterion.     
     
The second level criterion determines if the tabu exchange under consideration is the 
first forbidden move examined in the current iteration of the algorithm.  If the exchange 
is the first move to override the tabu status for the current working permutation, then 
the move is permitted.  Otherwise, the exchange is subjected to one final criterion.   
 
The third level criterion determines the quality of the exchange in relation to the cost of 
the previous exchanges examined during the current iteration.  This comparison 
examines the move (or partial) cost rather than the objective function value of the 
permutation after the exchange.  If the cost of the forbidden exchange is better than all 
of the previous exchanges examined on the current working solution, the move becomes 
permissible.     
 
3.5 The Traditional Tabu Search Algorithm 
 
The outline of a traditional tabu search algorithm is provided in Figure 1.  The outer 
loop of Figure 1 determines the number of iterations the algorithm is allowed before 
execution ceases (the stopping condition).  The stopping condition applied in a 
traditional TS, may be based on solution quality, execution time, or iterations.  The 
stopping condition utilized in all variations of the TS algorithms in the current study, 
including the RTS used for comparisons, is to stop the execution of the algorithm after 
the global best is not updated for a defined number of iterations.  In the original RTS 
algorithm, the stopping condition was a defined number of iterations regardless of 
improvement.  For this study, the stopping criterion was modified in the original RTS to 
allow for valid comparisons with the proposed multi-start variants.   
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Loop while (num_failures < max_failures) 
 If is tabu but meets all aspiration criteria or is not tabu and best cost so far 
  store best exchange that meets all conditions  
 End If 
 update tabu list 
 make exchange on working solution 
 If strictly improving 
  update best solution 
 Else 
  increment num_failures  
 End If 
End Loop 

Figure 1 - Tabu Search Framework  
 
The main logic of the algorithm begins by setting the working solution to a randomly 
drawn permutation and calculating the partial cost matrix for this permutation.  All 
possible swaps are considered and the best non-tabu or aspired move is accepted.  The 
chosen move is not necessarily globally improving, but that move is still made on the 
working solution.  If the permutation resulting from the move is globally improving the 
global best solution is appropriately updated.  After an exchange is chosen, the tabu 
tenure for each element of the accepted exchange is updated.  The partial cost matrix 
for the permutation is also appropriately updated to reflect the exchange made on the 
old working solution and the algorithm repeats by choosing the next desired exchange 
on the new working solution.   
 
If the components described in the previous sections are inserted into the skeleton in 
Figure 1, the resulting algorithm is an RTS with a modified stopping condition.  The 
multi-start variants developed in this study change the structure of this skeleton and 
will be discussed in depth in the following sections. 

4. Multi-Start Tabu Search 

The algorithm skeleton provided in Figure 1 assumes that the algorithm is seeded with 
one randomly generated permutation and operates on that permutation until a stopping 
criterion is met.  A multi-start approach differs from this traditional design by adjusting 
the search strategy to perturb the standard search path.  This may be achieved by 
running concurrent or sequential independent searches from multiple starting 
solutions, identifying the best solution from all searches at the end.  The perturbation 
may also be accomplished by strategically restarting a traditional TS at various points 
during the exploration.  The restart may consist of modifying the search trajectory, 
restarting the search from a different position in the search space or both.  In this way, 
multiple starts of the TS algorithm are undertaken but at strategic times during the 
search and possibly utilizing information obtained from the prior iterations of the 
search.  The multi-start variants developed in this study use the second strategy.    
 
We explore several methods of restarting the search when an undesirable amount of 
stagnation has occurred.  All of the algorithms developed for this study begin as 
traditional RTS algorithms as described above.  As the search proceeds, however, the 
number of failed consecutive attempts to update the best solution found are recorded 
and compared against a threshold value.  When this threshold value is exceeded, the 
variants are restarted.  As is shown in Figure 2, the skeleton of the multi-start variants 
is identical to the traditional TS given in Figure 1 with the exception of an additional 
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parameter and condition block.  In all of the multi-start variants, the number of 
allowable failures is a value drawn from a defined range, the upper limit of this range 
being less than the maximum failures that defines the stopping criterion in the 
traditional TS.  If the allowable failures threshold is exceeded in the algorithm, a restart 
is performed that perturbs the search in some manner and the allowable failures 
parameter is reset.  The algorithm continues to iterate, restarting when the threshold 
condition is violated, until the original stopping condition is met. 
 
Our multi-start approaches can be separated into two categories.  The first category 
contains the variants that perturb the search by modifying some algorithm parameters 
but continue the exploration from the same working solution.  By modifying the 
parameters when a restart occurs, the permissible exchanges for subsequent iterations 
of the algorithm are altered, allowing for the possibility that the algorithm proceeds on a 
different search trajectory than that of the traditional TS.  Since the multi-start variants 
continue from the same working solution they do not alter the position in the search 
space from which the search continues.  The restricted descent tabu search (RDTS) and 
the tabu tenure modification tabu search (TTMTS) both fall into this category, where the 
alteration of the tabu list matrix and the tabu tenure parameters are explored.  The 
tabu list matrix contains the current tabu status of the elements that establish whether 
or not an exchange is forbidden.  The tabu tenure parameters designate the range of 
values from which the tabu tenure for an element is chosen.  The value (tabu tenure) 
drawn from this range determines the length of time an exchange is forbidden.  These 
parameters may also impact the aspiration criteria.  As mentioned previously, a 
solution passes a first level aspiration test if the tabu status of one of the elements of an 
exchange is less than a defined ceiling.  The aspiration value parameter is not modified 
in the multi-starts.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Multi-Start Tabu Search Framework 

Loop while (num_failures < max_failures) 
 If is tabu but meets all aspiration criteria or is not tabu and best cost so far 
  store best exchange that meets all conditions  
 End If 
 update tabu list 
 make exchange on working solution 
 If strictly improving 
  update best solution 
 Else 
  increment num_failures  
  If (num_failures = allowable_failures) 
   Perform restart 
   Reset allowable_failures 
  End If 
 End If 
End Loop 

The second category contains the random restart tabu search (RRTS), the best solution 
found tabu search (BSFTS) and the diversified best solution found tabu search (DivTS).  
In these variants, the parameter modifications are combined with the replacement of 
the working solution by some other permutation.  The new starting solution replaces 
the current working solution in these algorithms and is either a randomly drawn 
solution, the global best solution, or a diversified version of the global best solution 
respectively.  While all these variants preserve the global best solution found, they differ 
with respect to how they use the previous search history to proceed.  The restart that 
occurs in the RRTS variant is identical to starting a new TS with modified tabu tenure 
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range parameters except that the best solution found is still retained for comparison.  
The other two variants replace the current working solution with a solution, or variation 
of a solution, that is already known to be favorable, thus utilizing more information 
from the previous iterations of the search. 
  
The multi-starts change the structure of the algorithm presented in Figure 1 by 
forcefully perturbing (or restarting) the search in some manner when an undesirable 
amount of stagnation occurs.  Each variant follows the skeleton given in Figure 2 and 
differs only in the manner of restart applied.  The restart that occurs when the 
allowable failures threshold is reached for each of the five variants will be detailed in the 
following sections.   
 
4.1 Restricted Descent Approach (RDTS) 
 
The first multi-start variant is the simplest approach.  The restart component of this 
variant modifies only the tabu list matrix parameter.  As the search begins to stagnate 
(the allowable failures condition is met), the current tabu status of all elements is 
released by resetting the tabu list matrix to once again allow all possible moves from the 
current working solution.  The tabu list is then rebuilt as subsequent moves are made 
and the algorithm continues to iterate until either the allowable failures condition is 
met again or the stopping condition is reached.  In this manner, a restricted descent 
from the current working solution occurs at the restart since a greedier move selection 
is allowed initially as the tabu list matrix is being recreated.   
 
In the RDTS variant, the tabu tenure parameters are defined as in RTS and left 
constant throughout the entire run of the algorithm.  The restart applied in this variant 
is only in terms of a parameter adjustment, the current working solution is not 
replaced.  The current working solution obtained from the previous iterations of the 
algorithm is retained.  The intention of this variant was to gauge the impact of releasing 
the tabu list in order to benchmark the more sophisticated modifications.   
 
4.2 Tabu Tenure Parameter Modification Approach (TTMTS) 
 
The TTMTS variant takes the previous approach one step further.  As in the previous 
variant (RDTS), the tabu list is released (cleared). The TTMTS variant then additionally 
modifies the tabu tenure parameters.  The tabu tenure for an exchanged element is 
drawn from a defined range, added to the current iteration count, and subsequently 
stored in the tabu list matrix.  To obtain the tabu tenure of an element, an upper and 
lower value is required to determine the range.  Both values are dependent on the size 
of the QAP instance being examined.  However, in the RTS algorithm, these values were 
kept constant and for a particular instance the range did not change over the run of the 
algorithm.   
 
In the TTMTS variant, when the allowable failures condition is reached, not only is the 
tabu list released, new upper and lower values to determine the tabu tenure range are 
chosen.  At each restart of the algorithm, therefore, it is possible that the range of tabu 
tenure values can tighten or loosen.  This could result in the tabu status of elements 
expiring closer together for subsequent iterations of the algorithm.  It may also result in 
a larger divergence in the length of time elements are tabu.  The range values may 
increase or decrease from the previous settings.  This means that the length of the tabu 
status of all exchanged elements may correspondingly increase or decrease for 
subsequent iterations of the algorithm.  This parameter modification changes the set of 
permissible moves as the algorithm continues from each restart.  Similar to the tabu list 
parameter modification, this may change the search trajectory. 
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Again, the current working solution in this variant is not replaced, the search continues 
from the same working solution obtained from the iteration previous to the restart.  As 
with the last version, the search is restarted only in the sense of making parameter 
adjustments and still retains a small part of the search history by leaving untouched 
the current working solution. 
 
4.3 Random Restart Approach (RRTS) 
 
The random restart variant (RRTS) restarts the search from a randomly drawn 
permutation with new tabu tenure parameters and a released tabu list.  It restarts 
when the algorithm stagnates and saves only the global best solution.  This approach is 
similar to running a traditional TS algorithm, with new tabu tenure parameters for each 
search phase, which is run several times for a shorter number of iterations.  The 
algorithm continues from a better (global best) solution than a completely fresh run of a 
TS algorithm.   
 
As in the TTMTS variant, the RRTS algorithm restarts under the new tabu tenure 
parameters and a released tabu list, but does not restart from the current working 
solution.  Rather, the current working solution is replaced with a randomly drawn 
permutation generated in the same manner as the initial working solution.  The only 
information saved from the previous iterations of the search is the global best solution.  
However, this previous search information may impact the aspiration criteria since a 
permutation created from a move may be less likely to improve upon the global best 
solution.   
 
4.4 Best Solution Found Restart Approach (BSFTS) 
 
As in the previous two variants, the same modifications to the tabu list matrix and the 
tabu tenure parameters are made in the BSFTS variant.  The difference in this variant 
is that the working solution from which the algorithm continues after the restart is the 
best solution found up to that point in the search.  This allows for a restricted descent 
from the global best solution under new tabu tenure parameters.  In this case, the idea 
is to capitalize on the best information currently available and perturb the search from 
this region with the adjustment of the tabu tenure parameters.  This intensifies the 
search, in a simple manner, as it forces the search to restart from an already promising 
region. 
  
4.5 Diversified Best Solution Found Restart Approach (DivTS) 
 
The diversified best solution found (DivTS) variant also releases the tabu list and 
modifies the tabu tenure parameters in the same manner as above.  The DivTS variant 
again differs in the replacement of the current working solution at the restart.  This 
variant replaces the current working solution with a strategically diversified 
permutation created from the global best solution found up to the restart condition 
being met.   
 
This new working solution may differ greatly from the current global best solution and 
the current working solution, but it is not randomly generated as in the RRTS variant.  
The DivTS approach forcefully diversifies the search, but in a more tactical manner 
than a random restart.  The diversification procedure used provides a certain level of 
assured variability in the solution from which the algorithm is restarted.  The method 
used to create the new working solution from the current BSF is described in the 
following subsection.   
 
Diversification Procedure 
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The diversification procedure used in DivTS is suggested by Glover [18].  The 
pseudocode for this procedure is given in Figure 3.  The method generates new starting 
solutions from a randomly generated seed solution in the manner illustrated below.   
 
Given a randomly generated permutation such as s, where s(1)…s(n) are the locations to 
which facilities 1…n are assigned: 
 

s = (8,  1,  5,  10,  9,  3,  7,  2,  12,  11,  6,  4) 
 
A step is defined that determines the increment used to step through the elements of 
the permutation.  The step is also used to initialize the starting position (the start 
variable in Figure 3).  For example, if step = 3, then through the first pass of the inner 
loop, start = 3, which results in the partial solution: 
 

ss = (5,  3,  12,  4) 
 
The starting position is then readjusted to start = 2, generating in the next pass of the 
inner loop: 
 

ss = (5,  3,  12,  4,  1,  9,  2,  6) 
 
This process is continued until start = 1, in which case a full starting solution is 
generated: 
 

ss = (5,  3,  12,  4,  1,  9,  2,  6,  8,  10,  7,  11) 
 
 

position = 1  
For start = step to 1 (decrement start by 1) 
    For j = start to n_var (increment j by step) 
        starting_solution (position) = seed_solution(j) 
        position ++  (increment position by 1) 
     End For 
 End For 

 
 
 
 
 
 
 
 

Figure 3 - Pseudocode for the Diversification Method  
 
This method can be used to generate 1 to n solutions from any given permutation, 
where n is the number of variables in the problem instance.  The first solution produced 
is simply the original seed solution.  In the DivTS variant, the step size starts at 1 and 
is increased by 1 at each restart until it equals the problem size and then if necessary is 
reset to 1.  Therefore, at the first restart of DivTS, the current working solution is 
replaced with the global best solution and at each subsequent restart a diversified 
version of the global best solution is utilized. 

5. Computational Results and Discussion 

To compare the mulit-start tabu search variations, a set of 31 test problems obtained 
from QAPLIB were used.  All algorithms were written in C and run on a single Intel 
Itanium processor (1.3 GHz).  The machine used was an SGI Altix running Linux and 
the Intel compilers.  Each algorithm was run 10 times starting from 10 different 
randomly generated seed solutions (initial working solutions).  The parameters for each 
variation are shown in Table 1.   
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To provide initial comparisons between the variants, and between the variants and RTS, 
the stopping condition was set to 5000*n (n being the problem size or number of 
facilities/locations for the problem) which provided quick run times (less than 15 
minutes for all problem sizes).  The robust tabu search procedure (RTS) was written 
identically to Taillard’s algorithm with the exception of this stopping criterion.  The 
stopping criterion was changed from a fixed number of iterations to a maximum 
number of failures rule to provide valid comparisons between RTS and the multi-start 
variants.  
 
Table 1- TS Variant Parameter Settings 

Parameter  RTS  RDTS  TTMTS RRTS BSFTS DivTS DivTS 
Maximum Failures  
(Stopping Criterion) 5000*n 5000*n 5000*n 5000*n 5000*n 5000*n 50000*n 
Allowable Failures  
Lower Limit 
(Restart Parameter) n/a 

(5000*n) 
/1000 

(5000*n) 
/1000 

(5000*n) 
/1000 

(5000*n) 
/1000 

(5000*n) 
/1000 

(50000*n) 
/1000 

Allowable Failures  
Upper Limit  
(Restart Parameter) n/a 

(5000*n) 
/10 

(5000*n) 
/10 

(5000*n) 
/10 

(5000*n) 
/10 

(5000*n) 
/10 

(50000*n) 
/10 

Tabu Tenure  
Lower Limit 

9*n/10  
(static) 

9*n/10 
(static) 

1*n/10 
 (variable) 

1*n/10  
(variable) 

1*n/10  
(variable) 

1*n/10 
 (variable) 

1*n/10 
(variable) 

Tabu Tenure  
Upper Limit 

11*n/10  
(static) 

11*n/10 
(static) 

11*n/10 
 (variable) 

11*n/10  
(variable) 

11*n/10  
(variable) 

11*n/10 
 (variable) 

11*n/10  
(variable) 

Aspiration Value n*n*2 n*n*2 n*n*2 n*n*2 n*n*2 n*n*2 n*n*2 
 
The allowable failure limits define a range from which the number of iterations, in 
which no improving move is found before a restart occurs, is chosen.  An initial number 
of iterations is chosen from this range at the beginning of the algorithm and at each 
restart a new value is chosen.  The upper limit of this range is set to be less than the 
maximum failures parameter.   
 
The tabu tenure range parameters used by the RTS algorithm are 9*n/10 and 11*n/10.  
The initial values of the lower and upper tabu tenure range parameters for all variants 
were also set to these values.  All multi-start variants, with the exception of the 
restricted decent (RDTS) variant, modified these parameter values at restart.  The new 
tabu tenure range parameters, upon restart only, were drawn from the range of values 
given in Table 1.  The upper and lower tabu tenure values are chosen randomly from 
this range with the only constraint being that the upper value must be larger than the 
lower value.  The aspiration value employed in RTS was used for all variants. 
 
The last column in Table 1 gives the parameter settings for the longer run of the 
diversified BSF variant (DivTS).  The maximum number of failures before stopping was 
increased to 50000*n and the additional parameters that depended on this value were 
also modified as is shown in Table 1.  Computational testing showed these parameter 
choices provided desirable results, although further experimentation could possibly 
provide more insight. 
 
Table 2 provides a comparison of all the variants as well as the RTS algorithm.  The 
average percent deviation (APD) from the best known solution is given for each 
algorithm as well as the number of times the best known solution was found out of the 
10 runs (if it was found) and the average time to completion.  All times are in minutes.  
The best overall average deviation for each test problem is bolded.  The shaded cells 
denote that the variant did as well or better than the RTS algorithm. 
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Table 2 - Comparative Analysis between TS variants and RTS 
 

Problem BKS 
RTS 
APD 

#  
BSF  Time  

RDTS 
APD 

#  
BSF  Time  

TTMTS 
APD 

#  
BSF  Time  

RRTS 
APD 

#  
BSF  Time  

BSFTS 
APD 

#  
BSF  Time  

DivTS 
 APD 

#  
BSF  Time  

Sko42 15812 0.003 (9) 0.31 0.000 (10) 0.27 0.000 (10) 0.28 0.000 (10) 0.30 0.000 (10) 0.29 0.000 (10) 0.29 
Sko49 23386 0.079 (1) 0.60 0.068 (1) 0.67 0.039 (3) 0.97 0.056 (1) 0.75 0.048 (3) 0.63 0.043 (3) 0.75 
Sko56 34458 0.037 (2) 1.59 0.048 (1) 1.38 0.017 (3) 1.42 0.014 (3) 1.37 0.031 (2) 1.47 0.016 (3) 1.51 
Sko64 48498 0.039  2.66 0.017 (1) 2.69 0.017 (3) 2.82 0.022 (2) 2.13 0.020 (4) 2.53 0.008 (5) 2.19 
Sko72 66256 0.104  3.26 0.090  3.87 0.068  3.82 0.065  4.86 0.072 (1) 4.12 0.087  3.76 
Sko81 90998 0.083  4.91 0.087  5.26 0.081  5.82 0.063  7.42 0.113  4.61 0.057  5.89 
Sko90 115534 0.088  7.85 0.116  9.53 0.101  7.92 0.107  7.34 0.155  6.54 0.099  8.96 
Sko100a 152002 0.097  9.87 0.107  9.65 0.087  12.98 0.077  12.10 0.080  11.14 0.084  13.07 
Sko100b 153890 0.083  10.66 0.097  9.89 0.049  12.03 0.067  11.03 0.090  11.20 0.043  13.83 
Sko100c 147862 0.053  9.68 0.048  10.76 0.032  12.14 0.030  11.24 0.039  11.35 0.029  10.83 
Sko100d 149576 0.088  10.14 0.097  11.01 0.073  12.14 0.081  12.13 0.106  10.58 0.075  12.95 
Sko100e 149150 0.067  9.69 0.060  9.46 0.035  11.00 0.061  8.77 0.066  10.26 0.034  10.69 
Sko100f 149036 0.085  11.17 0.107  12.32 0.091  14.33 0.099  10.95 0.141  11.07 0.102  14.08 
                            
Tai20a 703482 0.030 (9) 0.24 0.000 (10) 0.31 0.000 (10) 0.25 0.030 (9) 0.27 0.034 (9) 0.28 0.030 (9) 0.24 
Tai25a 1167256 0.047 (9) 0.48 0.000 (10) 0.49 0.037 (9) 0.50 0.138 (6) 0.58 0.104 (7) 0.53 0.047 (9) 0.61 
Tai30a 1818146 0.205 (1) 0.29 0.117 (2) 0.22 0.184 (3) 0.27 0.186 (5) 0.29 0.090 (6) 0.35 0.133 (4) 0.29 
Tai35a 2422002 0.619  0.20 0.412 (2) 0.22 0.345 (2) 0.24 0.292 (2) 0.27 0.402 (3) 0.21 0.378 (1) 0.21 
Tai40a 3139370 0.664  0.31 0.618  0.44 0.544  0.39 0.539  0.39 0.473  0.37 0.503  0.36 
Tai50a 4938796 1.093  0.70 1.124  1.07 0.804  1.31 0.893  1.42 0.920  1.02 0.805  0.96 
Tai60a 7205962 1.159  1.83 1.119  2.02 1.028  2.05 0.951  2.42 0.959  2.10 1.018  2.34 
Tai80a 13515450 1.207  4.51 1.167  4.45 0.979  5.55 0.910  6.97 0.968  6.20 0.898  5.65 
Tai100a 21059006 1.219  9.94 1.105  10.87 0.882  12.08 0.932  11.47 0.925  10.98 0.908  13.14 
                            
Tai20b 122455319 0.000 (10) 0.20 0.000 (10) 0.20 0.000 (10) 0.20 0.000 (10) 0.20 0.000 (10) 0.20 0.000 (10) 0.20 
Tai25b 344355646 0.000 (10) 0.43 0.000 (10) 0.43 0.000 (10) 0.58 0.000 (10) 0.49 0.000 (10) 0.52 0.000 (10) 0.56 
Tai30b 637117113 0.001 (6) 0.48 0.001 (8) 0.36 0.001 (8) 0.36 0.002 (8) 0.28 0.027 (6) 0.50 0.013 (8) 0.42 
Tai35b 283315445 0.000 (10) 0.16 0.019 (9) 0.20 0.029 (8) 0.20 0.028 (8) 0.24 0.044 (7) 0.18 0.055 (6) 0.16 
Tai40b 637250948 0.000 (10) 0.25 0.000 (10) 0.29 0.001 (9) 0.25 0.000 (10) 0.26 0.000 (10) 0.24 0.005 (9) 0.23 
Tai50b 458821517 0.037 (1) 1.01 0.090  1.00 0.101  1.01 0.100  0.97 0.048 (1) 0.91 0.125 (1) 0.90 
Tai60b 608215054 0.013 (2) 2.34 0.072  2.39 0.116  1.71 0.144  2.07 0.107  2.00 0.139  1.92 
Tai80b 818415043 0.064  6.26 0.306  5.11 0.296  5.25 0.477  4.84 0.364  4.95 0.406  6.07 
Tai100b 1185996137 0.070   15.42 0.233   12.55 0.320   12.76 0.396   11.91 0.342   11.66 0.444   9.76 

 



The TS variants developed in this study can be divided into two groups.  The first 
category contains the RDTS and TTMTS variants that manipulate the allowable moves 
and change the trajectory of the search but continue from the current working solution 
without replacing it.  In these two algorithms there is simply a manipulation of the tabu 
parameters to perturb the search.  The second category is composed of the RRTS, 
BSFTS, and DivTS variants that replace the current working solution when the restart 
occurs along with the manipulation of the tabu parameters.     
 
From the first category of variants, TTMTS performs better than RDTS.  TTMTS obtains 
better APDs (average percent deviations from the best known solution) than RDTS for 
18 out of the 31 test problems and ties RDTS on 6 instances.  In comparison to the RTS 
algorithm, both the RDTS algorithm and the TTMTS algorithm perform quite well by 
simply perturbing the set of allowable moves.  The RDTS algorithm beats or ties the 
APD of the RTS algorithm on 18 out of 31 test instances.  TTMTS shows even better 
performance, beating or tying the APD obtained by the RTS algorithm on 23 out of 31 
test instances.  TTMTS also obtains the overall best APDs over all variants from both 
categories, as well as RTS, for 4 of the test instances.  RDTS obtains the best overall 
APD for the Tai25a instance.     
 
Of the three multi-start variants that form the second category (RRTS, BSFTS, and 
DivTS), DivTS shows the best performance.  DivTS provides the best APDs of the 3 
variants on 12 of the 31 test instances and ties on 4.  RRTS is the second best of the 
variants from the second category, obtaining 8 of the best APDs and 5 ties.  BSFTS 
beats DivTS and RRTS on 6 test instances and ties on 4.  All three variants perform 
very well against the RTS algorithm.  DivTS and RRTS obtain better APDs than RTS on 
approximately 70% of the test instances.  BSFTS also obtains better solution quality 
than RTS on over half the test instances.  Comparing only the two best performing 
multi-starts from this second category, RRTS and DivTS, DivTS is clearly the overall 
winner obtaining the best APDs on 16 of the 31 test instances compared to 11 for 
RRTS.  DivTS also obtains the best overall APD over all variants, including the RTS 
algorithm, for 6 of the test instances.  BSFTS restarts the search from a promising 
region and the results indicate an improvement of this approach over RTS.  However, 
the DivTS and RRTS variants obtain the best results which illustrate the benefit of 
diversification to the search strategy.  The improvement of DivTS over the RRTS version 
demonstrates the importance of using strategic diversification strategies as opposed to 
those that rely on randomization. 
 
As can be seen in Table 2, all variants performed significantly better than RTS on the 
Skorin-Kapov problems (Sko*) and the symmetric Taillard instances (Tai*a).  For the 
shorter runs provided in Table 2, the RTS algorithm outperforms all of the variants on 
the asymmetric instances (Tai*b).  The restart parameter (allowable failures) in the 
variants is dependent upon the maximum failures parameter.  As the maximum failures 
increases, the time to a restart also increases, which allows the base tabu search to 
operate on a solution for longer without perturbation which improves the asymmetric 
results.  The results provided in Table 3, where the maximum failures parameter 
(stopping condition) is increased, demonstrate this sensitivity to the restart parameter 
for the asymmetric test instances.   
 
It is of interest to note that that both the longer run DivTS algorithm and the ETS 
algorithms that characteristically diversify the search by perturbing the working 
solution, perform very well on the Tai*b test set.  All of the competitive algorithms for 
the Tai*b test set employ some type of diversification, but our study demonstrates that 
the timing of these perturbations can dramatically impact the results obtained for this 
asymmetric problem set.  As can be seen in Table 3, the DivTS variant obtains very 
good results on the Tai*b test set when the time between restarts is extended.  
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Therefore, the realized benefit seems to depend more on the sensitivity to the allowable 
failures parameter (or the scheduling of the restart) in this test set than it does in the 
other test sets.   
 
As can be seen in Table 5, given longer run times, APDs of 0.000 for all but the two 
largest problems in the Tai*b test set are relatively easy to obtain for all competitive 
algorithms regardless of the algorithmic design.  The symmetric instances, Sko* and 
Tai*a, prove to be much more difficult for most algorithms.  Considering only the 
symmetric instances in Table 2, the DivTS algorithm outperforms all of the other 
variants.  RDTS obtains 1 of the overall best APDs among all the variants for the 
symmetric instances.  TTMTS and RRTS both obtain 5 of the best APDs each for these 
22 test instances.  BSFTS obtains 2 of the best overall APDs and DivTS obtains 8 of the 
best overall APDs.  Given DivTS’s higher performance on the symmetric instances, 
where obtaining high quality solutions is more difficult, DivTS was run for longer times 
and those results are shown in Table 3. 
 
Table 3 presents the long run results for the DivTS algorithm.  In these runs the 
maximum failures parameter was increased to 50000*n.  The results presented in Table 
3 show that DivTS obtains high quality results for all test instances in relatively short 
run times.  The algorithm obtains APDs of 0.05 or below for all but 6 of the 31 test 
problems.  The best known solution is found 154 out of 310 times (approximately half 
the total runs).  All but one of the average run times are less than 2 hours, with 
anything under 90 facilities/locations running in less than an hour. 
 
As previously mentioned, the results provided in Table 3 for the asymmetric test 
instances (Tai*b) demonstrate the sensitivity to the restart parameter for this set of test 
problems.  While the short runs of DivTS in Table 2 provided inferior results for these 
asymmetric instances, the longer run results are very good.  As can be seen in Table 3, 
the best known solution was obtained 100% of the time for 6 of the 9 test instances.  
For the remaining 3 instances the APD was under 0.06.  For Tai80b, the BKS was 
found 8 out of the 10 runs with the APD for this test instance being 0.000.  Table 3 
illustrates that increasing the maximum failures parameter (stopping condition) for the 
DivTS variant provides results, for the Tai*b instances, that exceed the solution quality 
of some of the best tabu search algorithms from the literature (ETS) for this asymmetric 
test set.  Although the ETS algorithms provided a new best known solution for one of 
these instances, it is shown in Table 5 that they do not perform as well as the longer 
runs of the DivTS algorithm on these asymmetric instances.   
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Table 3 - Longer Run Results for DivTS 

Problem BKS DivTS APD
# 

BSF Time Problem BKS DivTS APD
# 

BSF Time Problem BKS DivTS APD
# 

BSF Time

Sko42 15812 0.000 (10) 3.98 Tai20a 703482 0.000 (10) 0.24 Tai20b 122455319 0.000 (10) 0.23

Sko49 23386 0.008 (7) 9.61 Tai25a 1167256 0.000 (10) 0.56 Tai25b 344355646 0.000 (10) 0.46

Sko56 34458 0.002 (8) 13.16 Tai30a 1818146 0.000 (10) 1.31 Tai30b 637117113 0.000 (10) 1.31

Sko64 48498 0.000 (10) 22.03 Tai35a 2422002 0.000 (10) 4.44 Tai35b 283315445 0.000 (10) 2.39

Sko72 66256 0.006 (2) 37.98 Tai40a 3139370 0.222 (1) 5.16 Tai40b 637250948 0.000 (10) 3.18

Sko81 90998 0.016 (2) 56.36 Tai50a 4938796 0.725 10.23 Tai50b 458821517 0.000 (10) 8.82

Sko90 115534 0.026 89.60 Tai60a 7205962 0.718 25.69 Tai60b 608215054 0.000 (8) 17.08

Sko100a 152002 0.027 129.22 Tai80a 13515450 0.753 52.74 Tai80b 818415043 0.006 58.24

Sko100b 153890 0.008 (2) 106.55 Tai100a 21059006 0.825 142.06 Tai100b 1185996137 0.056 118.91

Sko100c 147862 0.006 (2) 126.69

Sko100d 149576 0.027 (1) 123.45

Sko100e 149150 0.009 (1) 108.84
Sko100f 149036 0.023 110.28  
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Tables 4 and 5 give comparisons of the DivTS algorithm to the following additional 
methods from the current literature: 
• An Ant Colony Optimization/Genetic Algorithm/Local Search Hybrid – ACO/GA/LS 

[40]  
• A Genetic Algorithm Hybrid with a Strict Descent Operator - GA/SD [12] 
• A Genetic Algorithm Hybrid with a Simple Tabu Search  Operator - GA/S-TS [12] 
• A Genetic Algorithm Hybrid with Concentric Tabu Search Operator - GA/C-TS [12] 
• A Genetic Algorithm Hybrid with an Improved Concentric Tabu Search Operator - 

GA/IC-TS [13] 
• Three Tabu Search variants (ETS-1, ETS-2, and ETS-3) [28] 
• Two Genetic Algorithm Hybrids with a Tabu Search - GA/TS and GA/TS-I [26], [27] 
 
Tables 4 and 5 provide comparisons of the longer run of the DivTS multi-start variant 
with some of the best approaches from the literature.  The DivTS algorithm is highly 
competitive with these algorithms both in terms of solution quality and computational 
time.  However, true comparisons are not possible due to the use of different hardware 
and the lack of full result sets for all algorithms on all test problems.  While these 
comparisons illustrate the strength and competitiveness of the DivTS algorithm with 
some of the best performing approaches, comprehensive benchmarks were not possible 
since we were unable to run all algorithms on the same test problems, using the same 
hardware. 
 
The reported run times over the set of algorithms used for comparisons in Tables 4 and 
5 vary dramatically.  The longer run of the DivTS algorithm was purposefully set to be 
comparable and to not exceed the run times of all approaches.  Runtime comparisons 
are made only to illustrate that the algorithms developed in this study are within 
acceptable ranges.  ACO/GA/LS was run on a 2.0 GHz Pentium Intel processor.  The 
clock speed on this processor is faster than the 1.3 GHz Intel Itanium processor used in 
our study.  Straightforward hardware comparisons cannot be made since the processor 
used in the current study is an Itanium processor (which uses a different instruction 
set) and the compilers used were different.  Benchmarks obtained from SPEC [36] 
suggest that a 2.0 GHz Pentium processor is slightly slower than a 1.3 GHz Itanium 
processor.  Without knowledge of the exact hardware configurations of the Pentium 2.0 
GHz machine, a true performance comparison cannot be made but it may be assumed 
that these two machines are comparable.  GA/SD, GA/S-TS, GA/C-TS, and GA/IC-TS 
are run on a 600 MHz Pentium III.  According to the SPEC benchmarks, the processor 
used in the current study would be approximately four times as fast as the one used for 
these GA Hybrids.  Therefore, run on a more comparable platform, the runtimes for 
these algorithms may be much more competitive.  Specific hardware or compiler 
information was not reported for the ETS-*, GA/TS, and GA/TS-I algorithms.  The only 
information provided was that the processor was an x86 Family 6 processor.  This can 
be assumed to be slower than the architecture used in the current study, but any 
further comparisons are not possible. 
 
 



 
 
Table 4 – Longer Run DivTS Comparisons with Literature for Skorin-Kapov Test Problems 

Problem BKS
DivTS 
APD

DivTS
Time

ACO/GA/LS 
APD

ACO/GA/LS
Time

GA/SD
APD

GA/SD 
Time

GA/S-TS 
APD

GA/S-TS 
Time

GA/C-TS 
APD

GA/C-TS 
Time

GA/IC-TS 
APD 

GA/IC-TS 
Time

Sko42 15812 0.000 3.98 0.000 0.71 0.014 0.16 0.001 0.30 0.000 1.15

Sko49 23386 0.008 9.61 0.056 7.58 0.107 0.28 0.062 0.48 0.009 2.13

Sko56 34458 0.002 13.16 0.012 9.07 0.054 0.42 0.007 0.72 0.001 3.24 0.000 13.60

Sko64 48498 0.000 22.03 0.004 17.35 0.051 0.73 0.019 1.23 0.000 5.85 0.000 26.18

Sko72 66256 0.006 37.98 0.018 70.83 0.112 0.93 0.056 1.45 0.014 8.36 0.000 38.32

Sko81 90998 0.016 56.36 0.025 112.33 0.087 1.44 0.058 2.18 0.014 13.30 0.003 63.07

Sko90 115534 0.026 89.60 0.042 92.07 0.139 2.31 0.073 3.51 0.011 22.35 0.001 102.25

Sko100a 152002 0.027 129.22 0.021 171.00 0.114 3.42 0.070 5.11 0.018 33.55 0.002 177.56

Sko100b 153890 0.008 106.55 0.012 192.44 0.096 3.47 0.042 5.11 0.011 34.05 0.000 170.18

Sko100c 147862 0.006 126.69 0.005 220.57 0.075 3.22 0.045 4.69 0.003 33.80 0.001 158.38

Sko100d 149576 0.027 123.45 0.029 209.21 0.137 3.45 0.084 5.15 0.049 33.90 0.000 164.22

Sko100e 149150 0.009 108.84 0.002 208.08 0.071 3.31 0.028 4.70 0.002 30.67 0.000 169.61
Sko100f 149036 0.023 110.28 0.034 210.86 0.148 3.55 0.110 5.25 0.032 35.74 0.003 174.55
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Table 5 – Longer Run DivTS Comparisons with Literature for Taillard Test Problems 

Problem BKS
DivTS 
APD

DivTS
Time

ETS-1 
APD

ETS-2 
APD

ETS-3 
APD

ETS
Time

ACO/GA/LS 
APD

ACO/GA/LS 
Time

GA/TS 
APD

GA/TS-I 
APD Time

Tai20a 703482 0.000 0.24 0.000 0.000 0.000 0.03 0.061 0.000 0.04

Tai25a 1167256 0.000 0.56 0.037 0.000 0.015 0.08 0.088 0.000 0.10

Tai30a 1818146 0.000 1.31 0.003 0.041 0.000 0.21 0.341 1.41 0.019 0.000 0.27

Tai35a 2422002 0.000 4.44 0.000 0.000 0.000 3.67 0.487 3.54 0.126 0.000 0.60

Tai40a 3139370 0.222 5.16 0.167 0.130 0.173 28.33 0.593 13.05 0.338 0.209 1.42

Tai50a 4938796 0.725 10.23 0.322 0.354 0.388 116.67 0.901 29.65 0.567 0.424 5.00

Tai60a 7205962 0.718 25.69 0.570 0.603 0.677 116.67 1.068 58.49 0.590 0.547 12.00

Tai80a 13515450 0.753 52.74 0.321 0.390 0.405 200.00 1.178 152.20 0.271 0.320 53.33

Tai100a 21059006 0.825 142.06 0.367 0.371 0.441 666.67 1.115 335.62 0.296 0.259 200.00

Tai20b 122455319 0.000 0.23 0.000 0.000 0.000 0.01 0.000 0.000 0.01

Tai25b 344355646 0.000 0.46 0.000 0.000 0.000 0.02 0.007 0.000 0.02

Tai30b 637117113 0.000 1.31 0.000 0.000 0.000 0.07 0.000 0.25 0.000 0.000 0.03

Tai35b 283315445 0.000 2.39 0.000 0.019 0.000 0.23 0.000 0.32 0.059 0.000 0.05

Tai40b 637250948 0.000 3.18 0.000 0.000 0.000 0.23 0.000 0.59 0.000 0.000 0.12

Tai50b 458821517 0.000 8.82 0.000 0.003 0.000 4.50 0.000 2.89 0.002 0.000 0.33

Tai60b 608215054 0.000 17.08 0.000 0.001 0.003 22.50 0.000 2.83 0.000 0.000 0.67

Tai80b 818415043 0.006 58.24 0.008 0.036 0.016 116.67 0.000 60.29 0.003 0.000 2.50
Tai100b 1185996137 0.056 118.91 0.072 0.123 0.034 333.33 0.010 698.87 0.014 0.000 7.30
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The DivTS algorithm outperforms or ties the hybrid ACO/GA/LS in all but 5 cases for 
the 27 test instances where performance could be compared.  In most cases, especially 
for the larger problem instances, the average run times are also substantially lower.  
 
For the Skorin-Kapov test instances, DivTS outperforms Drezner’s GA hybrids with the 
simple TS operator (GA/S-TS) and the strict descent operator (GA/SD) in all cases, 
although the run times for DivTS are considerably longer.  The original GA hybridized 
with the concentric tabu search (GA/C-TS) wins 6 out of the 13 problems.  This 
algorithm runs slightly longer than the first two hybridized GAs but still shorter than 
DivTS.  The hybrid method that enhances a GA with an improved concentric tabu 
search (GA/IC-TS) outperforms the DivTS algorithm in almost all cases with slightly 
longer run times. 
 
DivTS meets or exceeds the solution quality of the ETS algorithms for all but the larger 
instances of Taillard’s symmetric instances.  ETS-3 also slightly edges out DivTS on 
Tai100b.  However, the run times for the ETS algorithms are quite significantly longer 
than the run times for DivTS.  Misevicius’s original hybrid GA (GA/TS) again performs 
better on the larger symmetric instances from the Tai*a test set and on the Tai100b 
asymmetric instance.  The improved version (GA/TS-I) also performs better than DivTS 
on the same test problems and additionally on Tai80b.  The run times for the symmetric 
instances are comparable to those for DivTS and shorter for the asymmetric instances. 
 
Tseng and Liang (ACO/GA/LS) provide the only study that reports results on both the 
Sko* and Tai* test instances, omitting only a couple of the smaller problems.  The DivTS 
algorithm reports overall better results than this more complex hybrid in much shorter 
runtimes.  Since this is also the most comparable hardware, the results indicate the 
ability of the multi-start approach to provide superior performance by utilizing more 
strategic operators.  All of the hybrid GA approaches, as well as the other TS 
algorithms, report results for only either the Tai* test problems or the Sko* test 
problems.  Drezner (GA/SD, GA/S-TS, GA/C-TS, and GA/IC-TS) reports results for the 
Sko* problems.  Misevicius (ETS-* and GA/TS-*) reports results for the Tai*a and Tai*b 
test suites.  The Sko test set contains structured, symmetric problems only.  The Tai*a 
test set contains unstructured, symmetric problems and the Tai*b problems are 
unstructured, asymmetric instances.  The variation in the nature of the test instances 
may impact the performance of an algorithm on certain problem types.  For example, 
the asymmetric Tai*b instances appear to be more sensitive to the restart threshold 
parameter in our study.  Without a full result set for all algorithms, it is difficult to 
determine which, if any, algorithm is superior to all of the others over a full set of QAP 
instances.  The results presented for the longer run of DivTS illustrate that it performs 
well on all problem sets and is competitive with the algorithms that have been shown to 
work well on one test set or the other.  This illustrates the advantage of the concepts 
demonstrated in the current study.               

6. Conclusions 

In this study several multi-start tabu search variants for the quadratic assignment 
problem were introduced.  The algorithms were shown to improve upon the robust tabu 
search algorithm that is commonly used as a subprocedure in metaheuristic 
approaches for the QAP.  The results demonstrate that merely modifying the tabu 
parameters, which influences the trajectory of the search by altering the set of allowable 
moves, can provide improvements in solution quality.  The benefits obtained from 
applying simple intensification and strategic diversification to the search is also 
illustrated.  The success of the diversified best solution found variant (DivTS) shows the 
benefit of applying strategic diversification rather than relying on randomization.  The 
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exploitation of the simple adaptive memory techniques used in the multi-start variants 
developed indicate the power of using search information and strategic operators to 
guide the exploration.  Future work includes the development and use of more 
sophisticated intensification and diversification approaches within this multi-start 
framework. 
 
The results illustrate that high quality results can be obtained from approaches that 
capitalize on the strategic use of what has already been learned. The multi-start 
algorithms examined in this study are simple modifications to a traditional tabu search.  
As such, they execute quickly and are programmatically straightforward.  The results 
are shown to be highly competitive with more complicated hybrid metaheuristic 
approaches.  The success of the multi-start algorithms in comparison to more complex 
approaches demonstrate the promise of further advancement by applying greater use of 
intelligently designed strategies.  Additionally, the execution speed and programmatic 
simplicity make them ideal candidates to use in conjunctions with more sophisticated 
methods such as path relinking or scatter search.  This is also a planned area of future 
research. 
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