
Math. Program., Ser. A (2008) 114:207–234
DOI 10.1007/s10107-007-0098-4

F U L L L E N G T H PA P E R

Second-order cover inequalities

Fred Glover · Hanif D. Sherali

Received: 20 October 2005 / Accepted: 13 September 2006 / Published online: 14 February 2007
© Springer-Verlag 2007

Abstract We introduce a new class of second-order cover inequalities whose
members are generally stronger than the classical knapsack cover inequali-
ties that are commonly used to enhance the performance of branch-and-cut
methods for 0–1 integer programming problems. These inequalities result by
focusing attention on a single knapsack constraint in addition to an inequal-
ity that bounds the sum of all variables, or in general, that bounds a linear
form containing only the coefficients 0, 1, and –1. We provide an algorithm
that generates all non-dominated second-order cover inequalities, making use
of theorems on dominance relationships to bypass the examination of many
dominated alternatives. Furthermore, we derive conditions under which these
non-dominated second-order cover inequalities would be facets of the convex
hull of feasible solutions to the parent constraints, and demonstrate how they
can be lifted otherwise. Numerical examples of applying the algorithm disclose
its ability to generate valid inequalities that are sometimes significantly stron-
ger than those derived from traditional knapsack covers. Our results can also
be extended to incorporate multiple choice inequalities that limit sums over
disjoint subsets of variables to be at most one.

Keywords Integer programming · Knapsack cover inequalities ·
0–1 Pre-processing · Nested cuts · Surrogate constraints · Facets

F. Glover (B)
University of Colorado, Boulder, CO 80309-0419, USA
e-mail: fred.glover@colorado.edu

H. D. Sherali
Grado Department of Industrial and Systems Engineering,
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
e-mail: hanifs@vt.edu

208 F. Glover, H. D. Sherali

Mathematics Subject Classification 90C10 · 90C27

1 Introduction

The class of knapsack cover inequalities (or cover cuts) introduced by Balas [1],
Hammer et al. [8], and Wolsey (1975) have enjoyed a well-deserved reputation
for being useful to improve the solution of 0–1 integer programming (IP) prob-
lems, both in pre-processing and in tightening relaxations (see, e.g., [13,16]). In
this paper, we introduce a class of second-order cover (SOC) inequalities whose
members are generally stronger than the classical knapsack cover inequalities,
based on a proposal of Glover [5] for generating inequalities by reference to
the joint implications of a surrogate constraint and supplementary constraints
involving bounds on nested sums of variables. The particular second-order
cover inequalities for the case that we focus on in this paper, which also relate
to the strengthened inequalities of Glover et al. [6], arise in the situation where
a knapsack constraint is accompanied by a single additional constraint that
bounds the sum of all variables.

Consider the following sets, defined respectively by a knapsack constraint
and a supplementary constraint in terms of 0–1 variables xj, j ∈ N = {1, . . . , n}:

K =
⎧
⎨

⎩
x :

∑

j∈N

ajxj ≥ a0

⎫
⎬

⎭
(1)

S =
⎧
⎨

⎩
x :

∑

j∈N

xj ≤ u

⎫
⎬

⎭
. (2)

Let

X = {x binary: x ∈ K ∩ S}.
The upper bound u is assumed to be a positive integer less than n, and the
aj-coefficients are real numbers, without restriction on their signs. Consequently,
our results also apply to the case in which the supplementary bounding inequal-
ity might include coefficients of –1 as well. That is, the inequality defining S
might originally arise from some constraint in 0–1 variables yj in the form∑

j∈N1
yj − ∑

j∈N2
yj ≤ u0, which we can cast in the form (2) [and adjust

(1) accordingly] by the customary use of complementation, i.e., by setting
xj = yj,∀j ∈ N1, and xj = 1− yj,∀j ∈ N2, taking N to be the union of N1 and N2,
and letting u = u0 + |N2|. As a special instance, our analysis also applies to
the situation where the inequality defining S has the form

∑
j∈N xj ≥ �[, and by

extension, includes the case where this is more generally replaced by

� ≤
∑

j∈N

xj ≤ u. (3)

Second-order cover inequalities 209

As shown in Glover [4], the constraint (3) can be usefully employed in con-
junction with (1) to force individual variables to receive a value of 0 or 1. The
present work may be seen as a generalization that derives bounds on sums
of variables, and not just on individual variables, building on the perspectives
underlying the work of Glover [5] for exploiting nested inequalities. The new
results differ from those on nested inequalities by characterizing the sets of
variables over which non-dominated cuts can be generated, while at the same
time identifying the strongest form of these cuts for the chosen sets. Based
on this characterization and associated theorems on dominance implications,
we design an algorithm that generates all non-dominated second-order cover
inequalities, and illustrate how this procedure can be used to yield cuts that are
stronger than knapsack cover cuts.

From a practical standpoint, the present work is additionally motivated by
the finding of Vasquez and Vimont [20] that a strategy of imposing bounds on
the sum of variables can improve the efficiency of solving multi-dimensional
knapsack problems. Our results also have application in the context of the logic
cuts of Hooker [11] and Hooker and Osorio [12], and more generally, in the
setting of cutting planes generated and exploited in Osorio et al. [15]. Related
areas of application are also identified in Hanafi [10] and in Spielberg and
Guignard [18].

The remainder of this paper is organized as follows. In the next section, we
introduce some relevant notation, derive the fundamental second-order cover
(SOC) inequality, and discuss the basic concept of dominance. Section 3 dis-
cusses some preprocessing strategies, and Sect. 4 presents our main dominance
theorem and designs routines for generating SOC inequalities and checking for
non-dominance. Several additional dominance results are established in Sect. 5,
which lays the groundwork for deriving the entire class of non-dominated SOC
inequalities. Conditions under which such non-dominated SOC inequalities are
facetial with respect to the convex hull of X [denoted conv(X)], and a tech-
nique for lifting these inequalities otherwise, are explored in Sect. 6. Finally,
Sect. 7 closes with a discussion on connections with surrogate constraints and
extensions to higher-order cover inequalities.

2 Second-order cover inequalities and non-dominance

For the sake of convenience in our derivation, let us assume without loss of
generality throughout that

a1 ≥ a2 ≥ · · · ≥ an (4a)

and that

X �= Ø, that is
u∑

j=1
:aj>0

aj ≥ a0. (4b)

210 F. Glover, H. D. Sherali

Let J be an arbitrary subset of N containing at most u elements, and denote its
complement by NJ ≡ N − J. Given any J and NJ, define the subsets J(h) ⊆ J
and NJ(h) ⊆ NJ, depending on an index count h, as follows:

J(h) = { set of h smallest indices in J}, ∀0 ≤ h ≤ |J| (5a)

NJ(h) = {set of min{h, |NJ|}smallest indices in NJ}, ∀0 ≤ h ≤ u. (5b)

Accordingly, define the corresponding sums of coefficients

SJ(h)=
∑

j∈J(h):aj>0

aj, ∀0 ≤ h ≤ |J|, and SNJ(h) =
∑

j∈NJ(h):aj>0

aj, ∀0 ≤ h ≤ u,

(6)

where these sums are taken to be zeros if the associated sets are empty.

Proposition 1 Consider any nonempty J ⊆ N, and let p ∈ [0, min{u, |J|}] be the
smallest integer such that SJ(p)+ SNJ(u− p) ≥ a0. Then

∑

j∈J

xj ≥ p (7)

is a valid second-order cover (SOC) inequality implied by X.

Proof Note that from (4), (5), and (6), we have that the solution to min{∑j∈J xj :
x ∈ X} will be realized by finding the smallest p ∈ [0, min{u, |J|}] such that the
sum of the p largest (positive) coefficients aj for j ∈ J, plus the sum of the
up to (u − p) largest (positive) coefficients aj for j ∈ NJ is at least a0, i.e.,
SJ(p)+ SNJ(u− p) ≥ a0. Hence, we have,

min

⎧
⎨

⎩

∑

j∈J

xj : x ∈ X

⎫
⎬

⎭
= p, (8)

which implies the validity of (7). 	

Corollary 1 The second-order cover inequality (7) implies the following under
x ∈ S:

∑

j∈NJ

xj ≤ u− p. (9)

Proof Follows directly form the inequalities in (2) and (7). 	

An obvious implication of Corollary 1 is that if (7) is valid with p = u for

some J, then (9) directly yields xj = 0,∀ j ∈ NJ, i.e., these variables can be
eliminated from the problem.

Second-order cover inequalities 211

Now, consider a pair of valid SOC inequalities of type (7) given by

∑

j∈J

xj ≥ p, where min

⎧
⎨

⎩

∑

j∈J

xj : x ∈ X

⎫
⎬

⎭
= p (10a)

and

∑

j∈J′
xj ≥ p′, where min

⎧
⎨

⎩

∑

j∈J′
xj : x ∈ X

⎫
⎬

⎭
= p′. (10b)

We say that (10a) dominates (10b) over the unit hypercube H = {x : 0 ≤ x ≤ e},
where e is a vector of ones, if (10b) is implied by (10a) over H, i.e.,

min

⎧
⎨

⎩

∑

j∈J′
xj :

∑

j∈J

xj ≥ p, 0 ≤ x ≤ e

⎫
⎬

⎭
≥ p′. (11a)

Observe from (10a, b) that whenever (11a) holds true, we have

p′ = min

⎧
⎨

⎩

∑

j∈J′
xj : x ∈ X

⎫
⎬

⎭
≥ min

⎧
⎨

⎩

∑

j∈J′
xj :

∑

j∈J

xj ≥ p, 0 ≤ x ≤ e

⎫
⎬

⎭
≥ p′,

that is, equality holds true throughout. Hence, equivalently, (10a) dominates
(10b) over H if and only if

min

⎧
⎨

⎩

∑

j∈J′
xj :

∑

j∈J

xj ≥ p, 0 ≤ x ≤ e

⎫
⎬

⎭
= p′. (11b)

Proposition 2 Consider the pair of SOC inequalities (10a) and (10b), and sup-
pose that

∣
∣J − J′

∣
∣ = r. Then (10a) dominates (10b) over H if and only if

p′ = max{0, p − r}. In particular, if p′ ≥ 1, then this happens if and only if
p = p′ + r.

Proof Observe that the problem on the left-hand side of (11b) is solved by
setting xj = 1,∀j ∈ J − J′, and then setting xj = 1 for some max{0, p− r} indices
j ∈ J ∩ J′, and xj = 0 otherwise. Hence, the optimal objective function value of
this problem equals max{0, p − r}. Therefore, from (11b), the SOC inequality
(10a) dominates (10b) over H if and only if p′ = max{0, p − r}. Moreover, if
p′ ≥ 1, then this occurs if and only if p′ = p− r, i.e., p = p′ + r. 	

In other words, an SOC inequality
∑

j∈J′ xj ≥ p′ with p′ ≥ 1 would be non-
dominated (ND) by the viewpoint of Proposition 2 if we cannot construct a
J ⊆ N that has some r additional elements than J′ does, and, say, has some r′

212 F. Glover, H. D. Sherali

elements removed from J′, and yet we have that
∑

j∈J xj ≥ p ≡ p′ + r is a valid
SOC inequality, where at least one of r ≥ 1 and r′ ≥ 1 holds true. In fact, as we
show next, there is an equivalent characterization of non-dominance in terms
of a simpler, local non-dominance property. Specifically, we will say that (10a)
locally dominates (10b) over H if either one of the following conditions holds
true:

(i) J ⊂ J′ and p = p′ ≥ 1(nontrivial case of r = 0 and r′ ≥ 1) (12a)

(ii) J = J′ ∪ {j}for some j �∈ J′, and p=p′+1(case of r=1 and r′ = 0). (12b)

Moreover, we will say that an SOC inequality
∑

j∈J′ xj ≥ p′ is locally non-
dominated (LND) if p′ ≥ 1 and there does not exist a J ⊆ N that locally
dominates it.

Now, consider the following result.

Proposition 3 Consider an SOC inequality (10b) having p′ ≥ 1. Then this is
LND if and only if it is ND.

Proof If the given SOC inequality (10b) is ND, then it is obviously LND. Hence,
suppose that (10b) is LND and let us show that it is ND. On the contrary, suppose
that there exists an SOC inequality (10a) based on a set J ⊆ N, with

∣
∣J − J′

∣
∣ =

r and
∣
∣J′ − J

∣
∣ = r′, where at least one of r ≥ 1 and r′ ≥ 1 holds true, and where

p = p′ + r (see Proposition 2). Hence, we have

P1: Min

⎧
⎨

⎩

∑

j∈J

xj : x ∈ X

⎫
⎬

⎭
= p = p′ + r.

For convenience, denote v(P) as the optimal objective value for any given prob-
lem P (so v(P1) = p = p′ + r above), and let J+ ≡ J − J′, J′+ ≡ J′ − J, and
J′′ ≡ J ∩ J′. Consider the following two cases.
Case (i) r′ ≥ 1 Define the problem

P2: Min

⎧
⎨

⎩

∑

j∈J′′
xj : x ∈ X

⎫
⎬

⎭
,

and suppose that x∗ solves Problem P2. Note that we must have v(P2) ≥ p′,
because otherwise, if v(P2) < p′, then since x∗ is feasible to P1 and J = J′′ ∪ J+
with |J+| = r, x∗ would yield an objective value less than p′ + r = p, contradict-
ing that v(P1) = p. Hence,

∑
j∈J′′ xj ≥ p′ is a valid inequality with J′′ ⊂ J′,

contradicting the LND Condition (12a).
Case (ii) r′ = 0 In this case, if r = 1, then we have a direct contradiction to
the LND Condition (12b); hence, suppose that r ≥ 2. Select any k ∈ J+ and

Second-order cover inequalities 213

consider the problem

P3: Min

⎧
⎨

⎩

∑

j∈J′
xj + xk : x ∈ X

⎫
⎬

⎭
.

To complete the proof, let us show that v(P3) = p′ + 1, which would mean
that

∑
j∈J′ xj+xk ≥ p′ +1 is a valid SOC inequality that locally dominates (10b)

via Condition (12b), contradicting that (10b) is LND. Observe from (10b) that
if v(P3) �= p′ +1, then we have that v(P3) = p′ and that there exists an optimum
x∗ to Problem P3 having x∗k = 0. But again, this solution x∗ would be feasible to
P1 and yield an objective value lesser than p′ + r = p = v(P1), a contradiction.

	

Our focus in this paper will be on characterizing and deriving the entire class
of non-dominated SOC inequalities via the equivalent criteria (12a, b) under-
lying the LND second-order cover inequalities. To emphasize our reliance on
(12a, b), we shall refer to these SOC inequalities as LND (rather than ND)
inequalities.

Henceforth, to ease notation, we will denote the sets J∪{j} for any j �∈ J, and
J − {j}, for any j ∈ J, simply as J + j and J − j, respectively.

Proposition 4 Consider an SOC inequality (7) of the form
∑

j∈J xj ≥ p, and

suppose that aĵ ≤ 0 for some ĵ ∈ J. Then this inequality is dominated by the valid
inequality

∑
j∈J−ĵ xj ≥ p.

Proof By the condition aĵ ≤ 0 and the validity of (7), we have from (8) that
x∗

ĵ
= 0 in an optimal solution x∗ to the problem min{∑j∈J xj : x ∈ X}, where

the optimal objective value equals p. But because aĵ ≤ 0, we also have that
min{∑j∈J−ĵ xj : x ∈ X} = p, or that

∑
j∈J−ĵ xj ≥ p is valid, which by (12a),

dominates (7). 	

Proposition 4 asserts that in determining (locally) non-dominated second-
order cover inequalities (7), we can simply focus on the positive coefficient
indices for composing J. In fact, suppressing all nonpositive coefficient indices
from S, we get a set that is implied by X and we can derive valid inequalities (7)
for this set, which would then be valid for X as well. The nonpositive coefficient
indices could then be accommodated in NJ for each such J determined for (7),
in order to compose the complement inequality (9) as necessary. Therefore,
noting (4), we will henceforth assume that

n > u ≥ 1, a0 ≥ a1 ≥ a2 ≥ · · · ≥ an > 0, and that
u∑

j=1

aj ≥ a0, (13)

214 F. Glover, H. D. Sherali

where observe that in the inequality
∑

j∈N ajxj ≥ a0, if aj > a0 for any j ∈ N, we
can perform a standard coefficient-reduction and validly tighten this knapsack
inequality by making aj = a0; hence, the assumption a0 ≥ aj, ∀j ∈ N, in (13).

3 Preprocessing routines

In addition to the pre-processing that led to (13), we can further fix some vari-
ables at values 1 or 0 as implied by x ∈ X, thereby eliminating these variables, or,
in effect, forcing variables to J or NJ, respectively, in composing non-dominated
inequalities.

Proposition 5 Let SN(u + 1) ≡ ∑u+1
j=1 aj. If aĵ > SN(u + 1) − a0 for any ĵ ∈

{1, . . . , u}, then x ∈ X ⇒ xĵ = 1.

Proof If any such xĵ = 0, then the sum of the remaining u largest aj-coefficients
equals SN(u+ 1)− aĵ < a0, which contradicts feasibility to X. 	

Proposition 6 Let SN(u − 1) ≡ ∑u−1
j=1 aj. If aĵ < a0 − SN(u − 1) for any ĵ ∈

{u+ 1, . . . , n}, then x ∈ X ⇒ xĵ = 0.

Proof If any such xĵ = 1, then aĵ plus the remaining (u−1) largest aj-coefficients
sum to aĵ + SN(u− 1) < a0, which contradicts feasibility to X. 	

Remark 1 Naturally, for any ĵ ∈ N of the type identified by Propositions 5
and 6, we should simply fix the corresponding xĵ to 1 or 0, respectively, and
eliminate it from the problem under consideration. On the other hand, if we
do not eliminate such indices from the problem, then any non-dominated SOC
inequality (7) must include ĵ in J for a ĵ of the type identified by Proposition 5,
and must exclude ĵ from J for a ĵ of the type identified by Proposition 6. To see
this, suppose that ĵ satisfies the condition of Proposition 5, but that ĵ �∈ J for a
valid SOC inequality (7). Hence, by (8), we have min{∑j∈J xj : x ∈ X} = p, but
since x ∈ X ⇒ xĵ = 1, we also have that min{∑j∈J+ĵ xj : x ∈ X} = p+ 1, or that

(7) is dominated by
∑

j∈J+ĵ xj ≥ p+ 1 according to (12b). Likewise, if ĵ satisfies

the condition of Proposition 6 but ĵ ∈ J in a valid inequality (7), then we also
have that

∑
j∈J−ĵ xj ≥ p is valid, which dominates (7) by (12a). Therefore, we

will henceforth assume that we have fixed and eliminated variables from the
problem according to Propositions 4 and 5, and that (13) holds true for the
remaining set of variables, appropriately re-indexed. 	

Example 1 Consider the following constraints of type (1) and (2):

13x1 + 9x2 + 6x3 + 5x4 + 5x5 + 4x6 + 4x7 + 3x8 + 3x9 + 3x10 ≥ 27 (14a)

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 ≤ 3. (14b)

Second-order cover inequalities 215

[
…

j∗+j∗

0
j

+j
0

j[p]

aj − values for j ∈J(p)

aj − values for j ∈NJ(u –p)(for p = 3).

[
…

(for u − p = 3).

NJ:J:]]

Fig. 1 Illustration of indices defined by CUT(J)

Note that n = 10, u = 3, and that SN(u + 1) − a0 = 33 − 27 = 6, and
a0 − SN(u− 1) = 27− 22 = 5. Hence, by Proposition 5, we can fix x1 = x2 = 1,
and by Proposition 6, we can fix x6 = x7 = x8 = x9 = x10 = 0. This reduces
(14a) to 6x3 + 5x4 + 5x5 ≥ 5, which by coefficient-reduction [see (13)], results
in 5x3 + 5x4 + 5x5 ≥ 5, or that x3 + x4 + x5 ≥ 1. Moreover, since (14b) reduces
to x3 + x4 + x5 ≤ 1, the set X in this case collapses to the simple restriction
x3 + x4 + x5 = 1, in the remaining binary variables (x3, x4, x5).

4 Generating SOC inequalities and checking for non-dominance

Let X be defined by (1) and (2), where (13) holds true, but none of the con-
ditions specified in Propositions 5 and 6 are satisfied. Let us abbreviate this
statement as Assumption A, and treat this as a standing assumption throughout
the remainder of this paper. Consider any J ⊆ N where J �= Ø. The follow-
ing routine generates an SOC inequality of the type (7) predicated on the set
J, and based on (8). Its operation follows the thought-process in the proof of
Proposition 1.
Routine CUT(J) given J ⊆ N, J �= Ø
Initialization: Set p = 0, � = SNJ(u) [see Eq. (6)].
Step 1 If � ≥ a0, go to Output. Else, increment p by 1.
Step 2 Update � ≡ SJ(p)+ SNJ(u− p) and return to Step 1.
Output: CUT(J) produces the value 0 ≤ p ≤ u, along with the following indices
(see Fig. 1 for a conceptual illustration), where each index below is taken as 0
if undefined:

j[p] = pth smallest index in J (15a)

j0 = largest index in J(note: j0 > j[p], else, we can fix

xj ≡ 1, ∀j ∈ J) (15b)

j+0 = smallest index in NJ (15c)

j∗ = largest index in NJ(u− p) (15d)

j∗+ = smallest index in NJ that exceeds j∗. (15e)

216 F. Glover, H. D. Sherali

Note that (15b) and (15c) are characteristics of the set J itself, but are included
in the output of CUT(J) for convenience in discussion. Furthermore, note that
while any J ⊆ N produces a unique SOC inequality (7) via the optimal value
of Problem (8), the procedure CUT(J) identifies a particular optimal solution
(among possible alternative optimal solutions) to Problem (8), and the indi-
ces (15) (see also Fig. 1) correspond to this specified solution. Henceforth, we
assume that whenever a J ⊆ N produces an SOC inequality (7), the correspond-
ing optimal solution to (8) is identified as the particular solution produced by
CUT(J) and recorded in the definition of the indices in (15). The following
proposition lays the foundation of our dominance results.

Proposition 7 Suppose that a nonempty J ⊆ N produces an SOC inequality (7)
with p ≥ 1, and let j[p], j0, j+0 , j∗, and j∗+ be as defined in (15). Then (7) is LND
if and only if the following two conditions hold true:

(a) The set J′ ≡ J − j0 produces an SOC inequality having p′ = p− 1.
(b) The set J′ ≡ J + j+0 produces an SOC inequality having p′ = p.

Moreover, if (7) is LND (with p ≥ 1), then aj0 > aj∗+ and aj[p] > aj+0
(where

aĵ ≡ 0 if any ĵ = 0).

Proof Suppose that (7) is LND. If J′ ≡ J − j0 yields an SOC inequality with
p′ = p, then (7) would be locally dominated by (12a). Hence, since we cannot
have p′ > p nor p′ ≤ p − 2 in this case, we must have p′ = p − 1. Like-
wise, if J′ ≡ J + j+0 yields an SOC inequality with p′ = p + 1 (we must have
p+1 ≥ p′ ≥ p), then (7) would be locally dominated by (12b). Therefore, p′ = p
in this case. Hence, Conditions (a) and (b) of the proposition hold true.

Conversely, suppose that Conditions (a) and (b) are satisfied. Let us show
that neither (12a) nor (12b) can hold true, i.e., we cannot find a J0 ⊆ N with an
accompanying p0 for the corresponding SOC inequality such that

J0 ⊂ J and p0 = p (16a)

or

J0 = J + j for some j �∈ J and p0 = p+ 1. (16b)

Note that for any J0 ⊂ J, by the definition of j0 in (15b), we have from (8) that,
p0 ≡ min{∑j∈J0

xj : x ∈ X} ≤ min{∑j∈J−j0 xj : x ∈ X} = (p − 1) by Condition
(a) of the proposition, and so, (16a) cannot hold true. Similarly, (16b) cannot
be satisfied, because otherwise, if there exists such a J0 and p0, then noting that
aj+0
≥ aj, ∀j ∈ NJ, we have, (p + 1) = min{∑j∈J+j xj : x ∈ X} ≤ min{ ∑

j∈J+j+0
xj :

x ∈ X} = p by Condition (b) of the proposition, which is a contradiction.
Moreover, suppose that (7) is LND (with p ≥ 1) and that x∗ solves (8). Since

j0 > j[p] exists by Assumption A (else we could have fixed all xj = 1 for j ∈ J),
in case j∗+ > 0 (the condition aj0 > aj∗+ ≡ 0 is trivial if j∗+ = 0), we must have

Second-order cover inequalities 217

aj0 > aj∗+ , because otherwise, if aj0 ≤ aj∗+ , then x∗ would remain as an optimal
solution to the problem min{∑J−j0 xj : x ∈ X} with objective value p. Hence,
∑

j∈J−j0 xj ≥ p would be valid and locally dominate (7), a contradiction.
Finally, let us establish that if (7) is LND (with p ≥ 1), then aj[p] > aj+0

.

Suppose that j+0 > 0 (else the result is trivial), and that aj+0
≥ aj[p]. Define

� ≡ SJ(p) + SNJ(u − p) ≥ a0, so that, since J yields an SOC inequality having
p ≥ 1, we must have

� + aj∗+ − aj[p] < a0, (17)

else, the set J would yield an SOC inequality having a smaller p-value. Further-
more, since (7) is LND, then by Condition (b) of the proposition and assuming
that aj+0

≥ aj[p], and noting that � then includes aj+0
(else we can reduce p), we

get

� − aj[p] + aj∗+ ≥ a0, (18)

which contradicts (17). 	

Corollary 2 Let Kmax ≥ 1 be the largest index in N for which aKmax = a1. Then
{1, . . . , Kmax} ⊆ J for all LND SOC inequalities (7) having p ≥ 1.

Proof On the contrary, suppose that
∑

j∈J xj ≥ p ≥ 1 is an LND SOC inequality

but that there exists a ĵ = min{1 ≤ j ≤ Kmax : j �∈ J}. By definition then, we
have j+0 ≡ ĵ. But this yields aj+0

= a1 ≥ aj[p], which contradicts the last assertion
of Proposition 7. 	

In the following section, we will use the characterizations provided by Prop-
osition 7 and Corollary 2 to derive additional dominance results and to help
construct the set of LND second-order cover inequalities. We close this sec-
tion with the statement of a routine LND(J) that checks the non-dominance
of (7) produced by CUT(J), returning LND(J) = TRUE if (7) is LND and
LND(J) = FALSE, otherwise. This routine is directly based on checking the
conditions of Proposition 7.
Local non-dominance routine LND(J) given the output of CUT(J), for
J ⊆ N, J �= Ø
Initialization Given p, j0, j+0 , and j∗ from the output of CUT(J), let � ≡ SJ(p)+
SNJ(u− p). If p = 0, return FALSE.
Step 1 If �+ aj0 − aj[p] ≥ a0, proceed to Step 2. Else, return FALSE (Condition
(a) of Proposition 7 is violated).
Step 2 If aj[p] > aj+0

, proceed to Step 3. Else, return FALSE (the final condition
in Proposition 7 is violated).
Step 3 If (the updated value of � given by) SJ+j+0

(p)+ SNJ−j+0
(u− p) ≥ a0, then

return TRUE. Else, return FALSE [Condition (b) of Proposition 7 is violated].

218 F. Glover, H. D. Sherali

5 Generating the set of LND second-order cover inequalities

Consider the development of a binary tree to conduct an implicit enumeration
of the potential sets J ⊆ N, based on the dichotomy that j ∈ J or j ∈ NJ, and
where the branching decisions are made in the order of the indices 1, 2, . . . , n.
Following the proposal of Glover [4] (also see [3]), we shall explore this tree in
a depth-first fashion by maintaining a partial solution list PS that contains the
signed index + j if j is restricted to lie in J at the current node of the enumeration
tree, –j if j is restricted to lie in NJ, and where these indices are underlined as+j
or −j in case the brother node has already been previously explored. Note that
by the branching order considered, if |PS| = k, then PS contains the indices
1,…, k in this order, with possibly± signs and with elements underlined or not.
The indices not present in PS are currently unassigned to either of the sets J
or NJ. Furthermore, the backtracking process upon fathoming PS amounts to
identifying the right-most non-underlined element in PS, complementing the
sign on this index and underlining it, and deleting all the (underlined) elements
to the right of it. By Corollary 2, we shall initialize PS as

PS = {1, . . . , Kmax}, (19)

and we shall terminate the process whenever PS = Ø upon some fathoming
process. Note that since Kmax ≥ 1, we always have J �= Ø in any partial solution
implied by PS because of (19). Furthermore, given that PS contains indices ±j
for j = 1, . . . , k (by this notation, we include the underlined signed indices as
well), when we increment PS by the next index jnext ≡ k + 1, we shall do so
as PS ← PS ∪ {−jnext}, i.e., we will first include jnext in NJ. Moreoever, by
a completion of PS that is based on the indices {1, . . . , k}, we will mean the
assignment of ±j for all the remaining indices j = k+ 1, . . . , n to PS.

Now, suppose that we have a partial solution list PS based on the indices
{1, . . . , k} that induces a set J and NJk, defined as NJk ≡ {1, . . . , k} − J, where

k < n, J �= Ø and
k∑

j=1

aj ≥ a0. (20)

Define the routine ̂CUT(PS) to be the routine CUT(J) described in Sect. 4
based on the indices {1, . . . , k}, i.e., using the sets J and NJk. (We analogously
define NJk(h) and SNJk(h) as in (5b) and (6), respectively, with respect to the
set NJk.) Consider the following result that prescribes a completion to PS for
the resulting inequality (7) to be LND.

Proposition 8 Given a partial solution PS based on the indices {1, . . . , k} and
with induced sets J and NJk such that (20) holds true, suppose that the routine
̂CUT(PS) produces a p and j∗ such that j∗+ exists (i.e., j∗+ �= 0). Then, in any
possible LND SOC inequality arising from a completion of PS, we must have
NJ = {1, . . . , n} − J, and yielding the same value of p.

Second-order cover inequalities 219

Proof Let J(p) and NJk(u − p) be as identified by ̂CUT(PS), and define x∗ as
x∗j = 1, ∀j ∈ J(p)∪NJk(u− p), x∗j = 0, ∀j ∈ N, otherwise. Then x∗ is an optimal
solution to the problem

min

⎧
⎨

⎩

∑

j∈J

xj : x ∈ X, xj = 0,∀j > k

⎫
⎬

⎭
(21)

with objective value p. Note that the inequality

∑

j∈J

xj ≥ p (22)

(with the same value of p) is a valid SOC inequality that is derived by the
same solution x∗ to the problem min{∑j∈J xj : x ∈ X} since aj ≤ aj∗+ for
j = k + 1, . . . , n, and x∗j∗+ = 0 because j∗+ > j∗ exists. Moreover, if we put any
subset of the indices in {k+ 1, . . . , n} into J to get J′, the same solution x∗ would
evaluate min{∑j∈J′ xj : x ∈ X} because aj ≤ aj0 , ∀j > k. But then, the resul-
tant inequality

∑
j∈J′ xj ≥ p would be (locally) dominated by (22). Hence, any

LND inequality arising from a completion of PS must include all the remaining
indices k+ 1, . . . , n in NJ. 	

Proposition 8 tells us that as we build J and its complement while considering
indices in the order 1, 2,…, the moment we discover for a partial solution PS
that ̂CUT(PS) yields an index j∗+ > j∗, we can include all the remaining indices
in NJ, check for non-dominance, and fathom the given PS. The following prop-
osition refines this result somewhat further and permits an earlier fathoming of
PS without a non-dominance check.

Proposition 9 Given a partial solution PS based on the indices {1, . . . , k} and
with induced sets J and NJk such that (20) holds true, suppose that the routine
̂CUT(PS) produces a p ≥ 1 and j∗ ≥ 0, along with j0 and j+0 ≥ 0. Let jnext = k+1,

and tentatively consider PS′ = PS ∪ {−jnext}. If ̂CUT(PS′) produces the same
value of the index j∗, and if aj0 ≤ ajnext , or aj[p] ≤ aj+0

, then we can fathom PS in
that no completion to it can lead to an LND SOC inequality.

Proof For the partial solution PS′, since j∗+ ≡ jnext exists by the statement
of the proposition, then by Proposition 8, any possible LND cut arising from a
completion to PS′ must include all the remaining indices within NJ. However,
by hypothesis, since either aj0 ≤ ajnext = aj∗+ , or aj[p] ≤ aj+0

holds true, the final
part of Proposition 7 asserts that the resulting inequality would not be LND.
Hence, we can fathom PS′ and examine the resulting partial solution PS′′ =
PS∪{jnext}, which adds jnext to J instead. If jnext = n, then since we know that
x∗jnext

= 0 in an optimal solution x∗ to the problem min{∑j∈J−jnext
xj : x ∈ X},

which has objective value equal to p, the same solution x∗ remains optimal

220 F. Glover, H. D. Sherali

for min{∑j∈J xj : x ∈ X} with objective value p, and so,
∑

j∈J xj ≥ p would be
locally dominated by

∑
j∈J−jnext

xj ≥ p. On the other hand, if jnext < n, then
the same outcome of the result would be obtained with respect to the revised
jnext = k + 2, again leading to a fathoming as above. In essence, therefore, we
can fathom PS′′ ≡ PS ∪ {jnext} as well, which is equivalent to fathoming PS.

	

Propositions 8 and 9 prompt the following strategy. Given a partial solution

PS based on the indices {1, . . . , k} and with induced sets J and NJk such that
(20) holds true, suppose that ̂CUT(PS) produces a p ≥ 1 and j∗ ≥ 0, along
with j0 and j+0 ≥ 0. Let jnext ≡ k+ 1. Then define TEST(PS) to return TRUE

if ̂CUT(PS ∪ {−jnext}) produces the same value of the index j∗, and FALSE
otherwise. Accordingly, in the case that TEST(PS) returns TRUE, then if either
aj0 ≤ ajnext or aj[p] ≤ aj+0

holds true, we fathom PS (by Proposition 9), and
otherwise, using Proposition 8, we increment PS ← PS ∪ {−jnext}, check the
potential LND status of the cut

∑
j∈J xj ≥ p based on J and NJ ≡ N − J, and

then fathom PS.
A flow-chart for generating all LND second-order cover inequalities is given

in Fig. 2 based on Propositions 7 (including Corollary 2), 8, and 9, and under
Assumption A based on Propositions 5 and 6, and Remark 1.

Example 2 Consider the following constraints of type (1) and (2):

13x1 + 12x2 + 9x3 + 7x4 + 5x5 + 4x6 + 3x7 + 2x8 + 2x9 + 2x10 ≥ 25 (23a)

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 ≤ 3. (23b)

Here, n = 10, u = 3, and it may be readily verified that Assumption A holds
true. Note that there are 1,023 possible sets J ⊆ N for this example. The algo-
rithm in Fig. 2 fathomed a majority of these sets, invoking the non-dominance
routine LND for 58 sets, and generated the following six LND SOC inequali-
ties based on the corresponding then-current partial solution list PS identified
below.

PS = {1, −2, 3, −4} yielding x1 + x3 ≥ 1 (24a)

PS = {1, 2, −3, −4, −5} yielding x1 + x2 ≥ 1 (24b)

PS = {1, 2, 3, −4, 5, −6} yielding x1 + x2 + x3 + x5 ≥ 2 (24c)

PS = {1, 2, 3, 4, −5, −6} yielding x1 + x2 + x3 + x4 ≥ (24d)

PS = {1, −2, −3, 4, 5, 6, −7} yielding x1 + x4 + x5 + x6 ≥ 1 (24e)

PS = {1, 2, −3, 4, 5, 6, 7,−8} yielding x1+x2 + x4 + x5+x6+x7 ≥ 2.

(24f)

To illustrate the algorithmic procedure, consider a stage when we have just
fathomed a partial solution to obtain the revised list PS = {1, 2, −3, 4, 5, 6, 7},
so that j0 = 7, j+0 = 3, jnext = 8, and � = 53 > a0. Applying ̂CUT(PS)

Second-order cover inequalities 221

Fig. 2 Flow-chart for generating all LND second-order cover inequalities

with k = 7 we get p = 2, with J(p) = {1, 2}, NJk(u − p) = {3}, yielding
j∗ = 3 and j[p] = 2. Since p ≥ 1 (see Fig. 2), we now apply TEST(PS).
Since ̂CUT(PS ∪ {−8}) reproduces j∗ = 3, TEST(PS) returns TRUE. Since
aj0 = 3 > ajnext = 2 and aj[p] = 12 > aj+0

= 9, we increment PS← PS ∪ {−8}
and apply LND(J) with J = {1, 2, 4, 5, 6, 7}, NJ−{3, 8, 9, 10}, and p = 2. Note
that � ≡ SJ(p)+SNJ(u−p) = 13+12+9 = 34. Since �+aj0 −aj[p] = 25 ≥ a0,
and SJ+j+0

(p) + SNJ−j+0
(u − p) = 13 + 12 + 2 = 27 ≥ a0, LND(J) returns

TRUE and produces the LND SOC inequality (24f). We now fathom PS to

222 F. Glover, H. D. Sherali

produce PS = {1, 2, −3, 4, 5, 6, 7, 8}. This time, with jnext = 9, TEST(PS)
again returns TRUE because ̂CUT(PS ∪ {−9}) reproduces j∗ = 3, but now,
aj0 ≡ a8 = 2 = a9 ≡ ajnext . Hence, we fathom PS, yielding PS = {1, 2, 3}, and
we continue the algorithmic process.

We can compare the LND SOC inequalities derived above to analogous
knapsack cover inequalities. It is easy to demonstrate that the SOC inequality
(7) with p ≥ 1 will dominate a knapsack cover inequality defined on the same
set J if and only if

SJ(p− 1)+
∑

j∈NJ

aj ≥ a0

because then, the knapsack cover inequality induced by (1) would be∑
j∈J xj ≥ p′ with p′ ≤ p − 1. Checking this condition shows that each of

the SOC inequalities of the preceding example dominates the corresponding
knapsack cover inequality. If we examine just the minimal cover knapsack
inequalities (see [14]) as a basis for comparison, we see for example that the
minimal cover x1+ x2+ x3+ x4 ≥ 1 is strictly dominated by the SOC inequality
(24d) given by x1 + x2 + x3 + x4 ≥ 2. Even the non-dominated knapsack cover
inequality x1 + x2 + x3 + x4 + x5 + x6 ≥ 2 is strictly dominated by the SOC
inequality (24c) given by x1 + x2 + x3 + x5 ≥ 2. It is interesting to observe that
if the knapsack constraint (1) for this example is expanded to contain addi-
tional variables having coefficients of 2, the SOC inequalities (24a–f) will not
change, but all the classical knapsack cover inequalities will be weakened. For
example, if two additional variables having coefficients of 2 are introduced, the
classical knapsack cover inequality given by x1 + x2 + x3 + x4 + x5 + x6 ≥ 2 is
weakened to become x1+x2+x3+x4+x5+x6 ≥ 1. (The addition of these vari-
ables, although not visibly affecting the inequalities (7), actually does evidently
strengthen the implied inequalities (9) since these “≤” inequalities will now
contain unit coefficients on the left-hand side for a larger number of variables.)

Finally, let us comment on a possible strategy for generating particular SOC
inequalities to delete a particular fractional solution. Such separation strategies
are well known for minimal cover inequalities based on knapsack constraints,
as popularized by Crowder et al. [2] in their seminal paper. In our context,
we could commence with a minimal cover inequality, or even a lifted mini-
mal cover inequality, which is generated as in Crowder et al. [2] based on a
knapsack constraint of the form (1), then impose a suitable restriction (2), and
further lift or strengthen the resultant inequality by commencing the proce-
dure of Fig. 2 with a partial solution list corresponding to the associated set
J for the given inequality, and terminating this process with the first resul-
tant non-dominated SOC inequality. Indeed, applying this idea for the above
example with the minimal cover inequality x1 + x2 + x3 + x4 ≥ 1, as well
as with the lifted minimal cover inequality x1 + x2 + x3 + x4 + x5 + x6 ≥ 2,
and commencing the procedure of Fig. 2 with the respective partial solution
lists PS = {1, 2, 3, 4} and PS = {1, 2, 3, 4, 5, 6} yielded the strengthened SOC

Second-order cover inequalities 223

inequality x1 + x2 + x3 + x4 ≥ 2 in both cases. In the first case, this inequality
was produced in the initial loop itself, and in the second case, it was generated
after invoking Routine LND 17 times, both instances requiring negligible effort.
Ideas of this type, with related computational studies, will be explored in future
research.

6 Facets and related lifting process

In this section, we identify conditions under which the derived SOC inequali-
ties (7) would be facets of Xc ≡ conv{X}, the convex hull of X, and describe a
sequential lifting process (see [14]) that could be used otherwise. (Also, see [17]
for a polynomial-time lifting of minimal covers for GUB constrained knapsack
problems into underlying facets.)

We assume throughout that the following assumption (in addition to Assump-
tion A) holds true, where u ≥ 2 (the case of u = 1 is addressed in [17]).
Assumption A′ u ≥ 2, Assumption A holds, and also,

SN(u− 1) ≥ a0. (25)

Note that, as propounded by Proposition 10 below, (25) ensures that (2) does
not necessarily hold as an equality, and therefore, that Xc is full-dimensional.

Proposition 10 The polytope Xc is full-dimensional.

Proof We establish the result by demonstrating the existence of n+ 1 affinely
independent vectors v0, v1, . . . , vn belonging to Xc. Letting ei denote the ith
unit vector in Rn, consider the following definitions of these vectors: v0 =∑u−1

i=1 ei, vi = v0 − ei + [eu + eu+1] for i = 1, . . . , u − 1, and vi = v0 + ei
for i = u, . . . , n. Note that v0 ∈ Xc by (25), vi ∈ Xc for i = 1, . . . , u − 1
by Proposition 5, and vi ∈ Xc for i = u, . . . , n by Proposition 6. Moreover,
the vectors v′i ≡ vi − v0 for i = 1, . . . , n are linearly independent because
−∑u−1

i=1 eiλi + [eu + eu+1]
∑u−1

i=1 λi +∑n
i=n eiλi = 0 implies that λ1, . . . , λn = 0.

	

Now, let us first consider the case of p = 1 and suppose that we have an LND

SOC inequality

∑

j∈J

xj ≥ p ≡ 1. (26)

The following result identifies a sufficient condition under which (26) would
be a facet of Xc.

Proposition 11 Consider the SOC inequality (26) with p = 1 that is generated
based on the set J ⊆ N, and suppose that j∗+ > 0 exists. Furthermore, define

224 F. Glover, H. D. Sherali

Fig. 3 Matrix B in the proof
of Proposition 11

J (1)NJ u − (1)NJ NJ u− −

1λ Jλ
1 2γ γ qγ

1δ
r

δ

0Row j+

Row j∗

Row j∗+

1 1 1 1

1 1 1 1 1 1

1 1 1

1 0 0

Row 1

Row of ones

[NJ − NJ(u − 1)]-Rows

NJ(u − 1)-Rows

J-Rows{
{
{

{

columns columns columns

I 0

0 I

0 1 1

1 1 1 0

1E 2 I−E 3E
1

1
0

1

1

0

0

� = SJ(1)+ SNJu− 1) and suppose that

[∑]
− aj+0

+ aj∗+ ≥ a0 (27a)

and that
[∑]

− aj ≥ a0, ∀j ∈ NJ(u− 1)/{ j+0 }. (27b)

Then (26) is a facet of Xc.

Proof It is sufficient to identify n affinely independent points v1, . . . , vn in Xc
at which (26) is active. Figure 3 displays a matrix B identifying such a collection
[v1, . . . , vn] that is augmented by an additional last row having all elements
equal to one. Here, the matrices E1, E2, and E3 are appropriately sized matri-
ces having all elements equal to 1 (see the corresponding rows and columns
identified in Fig. 3).

First, examine the three sets of identified columns in Fig. 3, except for the
last row, which represent a partition of {v1, . . . , vn}. Note that all these vectors
v1, . . . , vn satisfy (2) as well as satisfy (26) as an equality. Moreover, the first |J|
columns satisfy (1) because Condition (a) of Proposition 7 implies by the LND
property that aj0 + SNJ(u − 1) ≥ a0, so that aj + SNJ(u − 1) ≥ a0, ∀j ∈ J. The
first column in the second set satisfies (1) because of (27a), while the remaining
columns in this set, as well as the columns in the third set, satisfy (1) because
of (27b). Hence {v1, . . . , vn} ⊆ Xc and (26) is active at each of these points. To
complete the proof, we need to show that

Bw = 0⇒ w ≡ 0, where w ≡ [λ1, . . . , λ |J|, γ1, . . . , γq, δ1, . . . , δr]T (28)

and where these components of w are associated with the columns of B as
displayed in Fig. 3, with q ≡ |NJ(u− 1)| and r ≡ |NJ −NJ(u− 1)|.

Second-order cover inequalities 225

Accordingly, consider the system Bw = 0. The rows 2, . . . , |J| in the J-Rows
imply that

λ2 = · · · = λ |J| = 0. (29a)

The Row j+0 and the last row imply that

γ1 = 0, (29b)

which together with the [NJ −NJ(u− 1)]-Rows yield

δ1 = · · · = δr = 0. (29c)

Now, Row 1, and the NJ(u − 1)-Rows excepting Row j+0 , respectively yield,
noting (29a, b, c),

λ1 +
q∑

i=2

γi = 0

λ1 +
q∑

i=2
i �=k

γi = 0, ∀k = 2, . . . , q.

These two equations imply that

λ1 = 0 and γ2 = · · · = γq = 0. (29d)

Therefore, from (29a, b, c, d), we get w ≡ 0. 	

Example 3 Consider X defined by (23a, b) of Example 2. Observe that SN
(u− 1) = 25 ≥ a0; hence, by Proposition 10, Xc is full-dimensional. Now, let us
examine the LND inequalities (24a, b, e) having p = 1 in light of Proposition 11
in turn below.
Case of 24(a)(x1 + x3 ≥ 1) Here, � ≡ SJ(1) + SNJ(u − 1) = 32, j+0 = 2, NJ
(u − 1) = {2, 4}, and j∗+ = 5. Checking (27a, b), we see that � − aj+0

+ aj∗+ =
32 − 12 + 5 = 25 ≥ a0, and that � − a4 = 32 − 7 = 25 ≥ a0. Hence, this is a
facet of Xc.
Case of 24(e)(x1 + x4 + x5 + x6) ≥ 1 Here, � ≡ SJ(1) + SNJ(u − 1) = 34,
j+0 = 2, NJ(u − 1) = {2, 3}, and j∗+ = 7. Again, checking (27a, b), we see
that � − a2 + a7 = 34 − 12 + 3 = 25 ≥ a0, and � − a3 = 34 − 9 = 25 ≥ a0.
Hence, (24e) is also a facet of Xc.
Case of 24(b)(x1 + x2 ≥ 1) Here, � ≡ SJ(1) + SNJ(u − 1) = 29, j+0 = 3, NJ
(u − 1) = {3, 4}, and j∗+ = 5. However, while (27a) yields � − a3 + a5 =
29 − 9 + 5 = 25 ≥ a0, (27b) yields � − a4 = 29 − 7 = 22 < a0. Hence, the
sufficient condition does not hold true.

226 F. Glover, H. D. Sherali

In such a case, we can perform a sequential lifting of this SOC inequality by
lifting-down from a value of 1 for each j ∈ NJ(u − 1) = {3, 4}, and lifting-up
from a value of 0 for each j ∈ NJ − NJ(u − 1) = {5, 6, 7, 8, 9, 10} as follows
(see [14] for a general discussion on such sequential liftings). Given a current
valid inequality

πx ≥ π0, (30a)

for lifting-down from a value of 1 with respect to some presently considered
k ∈ NJ(u− 1) in a sequential process, we examine lifting (30a) to

πx ≥ π0 + θ(1− xk), where θ = min {πx− π0 : x ∈ X, xk = 0}. (30b)

(Note that the lifted inequality is valid when xk = 1 regardless of θ , given the
validity of (30a), and we are interested in a value of θ ≥ 0.) Likewise, for lift-
ing-up from a value of 0 with respect to some k ∈ NJ −NJ(u− 1), we lift (the
current inequality) (30a) to

πx ≥ π0 + θxk, where θ = min {πx− π0 : x ∈ X, xk = 1}. (30c)

In our example, starting with (24b) representing (30a), we get θ = 0 in (30b)
for all k ∈ NJ(u − 1), and also θ = 0 in (30c) for k = 5, 6, and 7 from the
set NJ − NJ(u − 1). However, consider x8, where 8 ∈ [NJ − NJ(u − 1)]. For
this, (30c) yields θ = min {x1 + x2 − 1 : x ∈ X, x8 = 1} = 1 at the solution
x1 = x2 = x8 = 1, thereby producing the lifted inequality x1 + x2 − x8 ≥ 1.
Likewise, sequentially, we obtain θ = 1 for each of the liftings with respect to x9
and x10, producing the following strengthened valid inequality

x1 + x2 − (x8 + x9 + x10) ≥ 1. (31)

Next, let us address the case of p = 2 in a valid LND SOC inequality

∑

j∈J

xj ≥ p = 2. (32)

Similar to Proposition 11, the following result identifies a sufficient condition
under which (32) would be a facet of Xc. For this case, in addition to Assump-
tion A′, we assume that u ≥ 3, else, (32) would imply that xj = 0, ∀j ∈ NJ. Note
also that we must have j0 > j[p], else, we could have fixed xj = 1, ∀j ∈ J.

Proposition 12 Consider the SOC inequality (32) with p = 2 that is generated
based on the set J ⊆ N, and suppose that j∗+ > 0 exists. Furthermore, define
� ≡ SJ(2)+SNJ(u−2), denote j[p+1] as the (p+1)st ≡ third-ordered (smallest)

Second-order cover inequalities 227

Fig. 4 Matrix B in the proof
of Proposition 12

(2NJ u − (u – 2)NJ –

Jλ
1 2γ γ γ

1δ
r

δ

1

1 0

1

1

ns

I

1 1
0 0

columns

0

ns

1

1
1

0

0 1

11 1

1E 2 −E I 3E

J) NJ

1 2 3λ λ λ q

0
Row j

+

Row j
∗

Row j
∗+ 0

Row 1

Row of ones

[NJ − NJ(u − 2)]-Rows

NJ(u − 2)-Rows

J-Rows{
{
{

{

colum colum

0

I

0 1
1 1
1 0
0 0

0 0
1 1 1 1
1 1

1 1 1 1

Row 2
Row 3

1 1

1

1 1

1 1 1
1 1 1

1

0

1

0

1

1

0

index in J, and suppose that

[∑]
− a1 + aj[p+1] ≥ a0 (33a)

[∑]
− aj+0

+ aj∗+ ≥ a0 (33b)

and
[∑]

− aj ≥ a0, ∀j ∈ NJ(u− 2)/{j+0 }. (33c)

Then (32) is a facet of Xc.

Proof Similar to the proof for Proposition 11, consider the matrix B displayed

in Fig. 4 having n columns of the type
[

v1, . . . , vn
1, . . . , 1

]

where again, E1, E2, and E3

are appropriately sized matrices having all elements equal to 1. Observe that
each of the vectors v1, . . . , vn belongs to Xc by virtue of the following: (33a)
applied to the first column; Condition (b) of the LND property of Proposition 7
applied to the columns 2, . . . , |J|; (33b) applied to the first column within the
second set of columns, and (33c) applied to the remaining columns. Moreover,
(32) is active for each of v1, . . . , vn. Hence, to complete the proof, we need to
verify that (28) holds true for the matrix B of Fig. 4.

By the first row in each set of the J-Rows and the NJ(u− 2)-Rows, we have
that

λ1 = 0 and γ1 = 0. (34a)

From the rows 3, . . . , |J| of the J-Rows then, we get

λ3 = · · · = λ |J| = 0. (34b)

228 F. Glover, H. D. Sherali

Using γ1 = 0 from (34a) in the third set of rows yields

δ1 = · · · = δr = 0. (34c)

Now, the second row in the set of J-Rows, and the rows in the set of NJ(u− 2)-
Rows except for Row j+0 , respectively yield, using (34a, b, c),

λ2 +
q∑

j=2

γj = 0 and λ2 +
q∑

j=2
j �=k

γj = 0, ∀k = 2, . . . , q.

These two equations yield λ2 = 0 and γj = 0, ∀j = 2, . . . , q, which together
with (34a, b, c), gives w ≡ 0 in (28). 	

Example 4 Continuing Example 3, let us now examine the LND inequalities
(24c, d, f). The following table summarizes the computations in applying Prop-
osition 12, and verifies that each of these SOC inequalities are facets of Xc.

Inequality � Index j[p+ 1] j+0 j∗+ Left-hand side of Equation
33(a) 33(b) 33(c)

24(c) 32 3 4 6 28 29 N/A
24(d) 29 3 5 6 25 28 N/A
24(f) 34 4 3 8 28 27 N/A

7 Connections with surrogate constraints and higher-order cover inequalities

There is an intimate connection between surrogate constraints and valid
inequalities derived from knapsack constraints. For example, it is easy to dem-
onstrate that the classical knapsack cover inequalities can all be formed from
elementary types of surrogate constraints obtained as a linear combination of
the knapsack inequality (1) with a weight of 1 and subsets of the inequalities
xj ≤ 1 (in the form −xj ≥ −1) with a positive weight of aj. Then the associ-
ated knapsack cover inequality arises simply by applying the rules of Glover
[4] (the same paper that introduced surrogate constraints) to identify a lower
bound on the sum of the variables having positive coefficients in the surrogate
constraint. In fact, as shown in Glover et al. [6], it is possible to generate valid
inequalities from surrogate constraints involving linear combinations of (1) and
the inequalities xj ≤ 1 and xj ≥ 0 that dominate the classical knapsack cover
inequalities.

Similarly, it is possible to show that the SOC inequalities can be derived by
applying the rules of Glover [4] to surrogate constraints formed using linear
combinations of (1), (2), and the inequalities xj ≤ 1 for j ∈ N. Again, it suffices
to give (1) a weight of 1, whereupon the weight of (2) (written in≥ form) equals
the value of one of the coefficients aj, and finally, the weights for various subsets

Second-order cover inequalities 229

of the inequalities −xj ≥ −1, j ∈ N, are equal to the corresponding positive
coefficients of the intermediate surrogate constraint obtained by combining (1)
and (2). Consequently, we may also equivalently form such intermediate sur-
rogate constraints and generate SOC inequalities by the rules for producing
knapsack cover inequalities. Our results show that this produces every inequal-
ity of the form

∑
j∈J xj ≥ p that is implied by X, and provide special dominance

relationships leading to an effective method for generating all non-dominated
members of such SOC inequalities. In view of these observations, it may be
expected that the results in Glover et al. [6] may be applied to yield additional
useful valid inequalities for X.

Finally, the derivations of the preceding sections can be extended to han-
dle more general considerations in which the knapsack constraint (1) and the
bounded sum constraint (2) are augmented by additional constraints, to give a
system of the form

∑

j∈N

ajxj ≥ a0 (35a)

� ≤
∑

j∈N

xj ≤ u (35b)

�i ≤
∑

j∈Ni

xj ≤ ui, ∀i ∈M ≡ {1, . . . , m}, (35c)

where the sets, Ni, i ∈ M, constitute a partition of N. The inclusion of a lower
bound (�) in (35b) was not necessary in (2) due to reasons explained in Sect. 1,
but provides greater generality when accompanied by the inequalities of (35c).

The relevance of this expanded system for 0–1 programming is illustrated by
two special cases of particular interest. One is the situation where ui = 1 for all
i ∈M, capturing the types of constraints found in multiple-choice 0–1 problems,
which abound in practical applications. Sherali and Lee [17] characterize facets
for such problems. The other case is the situation where (35c) begins as a single
constraint (m = 1) over a specified proper subset N1 of N. The condition that
the sets Ni constitute a partition of N can be satisfied by introducing the set
N2 ≡ N − N1 and adding the redundant inequality 0 ≤ ∑

j∈N2
xj ≤ u2 with

u2 ≡ |N2|. More pertinently, the constraint over N1 in (35c) may be one derived
as an SOC inequality (7) or (9) by the results of the preceding sections. By
embedding this as indicated in (35c), the derived SOC inequality can then be
exploited further relative to other knapsack constraints of the type (35a) accom-
panied by (35b), thereby amplifying the ability to exploit the SOC inequalities
of this paper.

Such an approach has particularly useful applications in settings where knap-
sack constraints arise from surrogate constraints designed to capture different
types of problem structure, as by generating weighted combinations of par-
ent constraints having different forms. For example, in multi-demand multi-
dimensional knapsack problems, which contain two classes of constraints, one

230 F. Glover, H. D. Sherali

consisting of ≤ inequalities and the other comprised of ≥ inequalities, where
all constraints have nonnegative coefficients, it is natural to create “opposing”
surrogate constraints derived from the members of these two classes.

In a sequel paper, we devise mechanisms for generating all valid inequalities
of the form (7) for the system (35a, b, c) and identify dominance relation-
ships leading to an effective method for generating non-dominated members
of these cuts. To provide a foretaste of these more general results, we briefly
sketch a method that applies to the simpler case where the lower bounds �

and �i, ∀i ∈ M, are omitted. That is, we address the system (35a, b, c) with
� = 0 and �i = 0, ∀i ∈M.

7.1 Notation

We maintain the convention that the aj-coefficients are indexed in nonincreas-
ing order and, for reasons similar to those noted previously, we restrict attention
to positive aj-coefficients. (This is not an appropriate restriction for the general
case where the bounds � and �i, i ∈M, are included in (35b, c).) It is also conve-
nient to order the aj-coefficients for each set Ni in a likewise fashion. For ease
in discussion, we also make reference to linked lists that identify

First(i) =Min{j ∈ Ni}(= arg max{aj : j ∈ Ni}) for each i ∈M. (36)

Furthermore, let the linked list Nexti(j), starting with j = First(i), identify the
indices j ∈ Ni in the desired order by iteratively setting j ← Nexti(j). By con-
vention, the last index j of Ni is flagged by setting Nexti(j) = 0.

To facilitate the description of procedures that follow, we further specialize
such a linking by also applying it to the two subsets J and NJ ≡ N − J. That is,
we define

J-First(i) = Min {j ∈ Ni ∩ J}(= arg max{aj : j ∈ Ni ∩ J}) (37a)

NJ-First(i) = Min {j ∈ Ni ∩NJ}(= arg max{aj : j ∈ Ni ∩NJ}). (37b)

Once again, we adopt linked lists NextJ(·) and NextNJ(·) to identify the suc-
cessive elements of each set Ni ∩ J and each set Ni ∩ NJ, respectively, in their
appropriate order. If Ni ∩ J = Ø or Ni ∩ NJ = Ø, we set J-First(i) = 0 or
NJ-First(i) = 0, respectively.

Our goal is to identify a valid higher-order cover (HOC) inequality of the
type

∑

j∈J

xj ≥ p (38)

for any specified subset J, along with an associated value of p. Analogous to (8),
the value p is essentially given by the optimal objective value of the following
problem.

Second-order cover inequalities 231

Minimize

⎧
⎨

⎩

∑

j∈J

xj :
∑

j∈N

ajxj ≥ a0,
∑

j∈N

xj ≤ u,
∑

j∈Ni

xj ≤ ui, ∀i ∈M, x binary

⎫
⎬

⎭
.

(39)

7.2 Algorithm for generating higher-order cover inequalities (38)

For the more general setting considered here, we are no longer able, as in
Proposition 1, to specify a closed-form expression for the conditions that pro-
duce (38), but instead, require an algorithm to generate such an inequality. In
essence, in lieu of solving the problem (39) directly, we examine the following
feasibility problem F(p), for successive values of p = 0, 1, . . .

F(p): Maximize

⎧
⎨

⎩

∑

j∈N

ajxj :
∑

j∈N

xj≤u,
∑

j∈Ni

xj ≤ ui, ∀i ∈M,
∑

j∈J

xj ≤ p, x binary

⎫
⎬

⎭
.

(40)

To begin with, we set p = 0 and devise a simple scheme to solve (40). If the opti-
mal objective value is at least a0, then (38) is a trivial inconsequential inequality
having p ≡ 0. Otherwise, we continue incrementing p by one successively until
the objective value in (40) becomes greater than or equal to a0, whence we will
have solved (39) and thereby generated (38). Note that in this process, for any
value of p, having obtained sets J∗ ⊆ J and NJ∗ ⊆ NJ that correspond to indices
in J and NJ, respectively, for which xj = 1 at optimality in (40), in case the opti-
mal value in (40) is less than a0, then the corresponding sets J∗new and NJ∗new
for F(p+1) can be obtained by updating J∗ and NJ∗, noting that J∗new = J∗∪{j},
for some j ∈ J − J∗. This follows from the observation that in the process for
solving (40) (from scratch), we can adopt a greedy sequential scheme in which
we commence with x = 0, and then at each step, we set xj = 1 corresponding
to the largest aj-coefficient from among all admissible x-variables that can be
switched from 0 to 1 subject to the constraints in (40).

This algorithmic scheme is formalized below, where we adopt the following
additional notation. For j ∈ N, we let IN(j) identify the index i such that j ∈ Ni.
Furthermore, corresponding to the current solution x, we let si ≡∑

j∈Ni
xj, and

� ≡ ∑
j∈N ajxj. Part A of the algorithm solves Problem (40) for p = 0 and

generates the corresponding set NJ∗ (with J∗ = Ø) by sequentially selecting the
smallest possible indices j ∈ NJ (i.e., having the largest possible aj-values) while
ensuring that no more than u total indices are selected from NJ, and no more
than ui indices are selected from each Ni ∩ NJ, i ∈ M. Part B then modifies J∗
and NJ∗ while sequentially incrementing p in (40) by one in each loop. It does
so by identifying (if they exist), the best (smallest) next index j(i) to possibly
select from each J ∩ Ni, i ∈ M, to include into J∗; the worst currently selected

232 F. Glover, H. D. Sherali

index j[i] (smallest aj-value) from Ni ∩ NJ∗, ∀i ∈ M, and the worst currently
selected index j∗ from NJ∗ if u total indices are selected (else j∗ ≡ 0). It also
identifies two sets I1 and I2, where I1 contains i ∈ M for which ui indices are
already selected, but both j(i) and j[i] exist, and I2 contains i ∈ M for which
fewer than ui indices are currently selected and j(i) exists. For each i ∈ I1, it
next computes the best advantage α(i) ≡ aj(i) − aj[i] of swapping by selecting
j(i) in place of j[i]. Similarly, for each i ∈ I2, the procedure computes the best
advantage α(i) = aj(i)−aj∗ of selecting j(i) and dropping j∗ (if j∗ �= 0). The actual
swap made is the one that yields the highest advantage α(i) from i ∈ I1∪ I2, and
the corresponding selected sets J∗ and NJ∗ are updated, along with the counters
si, i ∈ M, and the objective value � of (40). Given feasibility of (39) (which
the procedure automatically detects in this process), the algorithm loops until
� ≥ a0 is obtained.

Higher-order cover inequality algorithm

Begin with � = 0 and si = 0, ∀i ∈M. Also, set J∗ = NJ∗ = Ø, and p = 0.
Part A: Generate NJ∗
A0. Let j(i) = NJ-First(i), ∀i ∈M, and let M(NJ) = {i ∈M : j(i) �= 0}.
A1. If M(NJ) = Ø, or if |NJ∗| = u, proceed to Part B. Otherwise, let j∗ =
min{j(i) : i ∈M(NJ)}. Then set NJ∗ ← NJ∗ + {j∗} and �← � + aj∗ .
A2. If � ≥ a0, the cut (38) is degenerate with p = 0 and the algorithm stops.

Otherwise, let i = IN(j∗), and set si ← si + 1 and j(i) = NextNJ(j∗). If either
si = ui or j(i) = 0, set M(NJ)←M(NJ)− {i}. Return to Step A1.
Part B: Introduce J∗ and modify NJ∗
B0. Redefine j(i) to refer to the set J instead of NJ by setting j(i) = J-First(i),
∀ i ∈M, and let M(J) = {i ∈M : j(i) �= 0}.
B1. (a) For each i ∈M(J) such that si = ui, let j[i] = arg min {aj : j ∈ Ni∩NJ∗}.
If Ni ∩NJ∗ = Ø set j[i] = 0.
(b) Let j∗ = arg min {aj : j ∈ NJ∗}. If NJ∗ = Ø or if |NJ∗ + J∗| < u, set j∗ = 0.
B2. Define I1 = {i ∈ M : si = ui, j(i) �= 0, and j[i] �= 0} and I2 = {i ∈ M : si <

ui, j(i) �= 0}
If I1 ∪ I2 = Ø, stop; Problem (39) is infeasible.

B3. For i ∈ I1, let α(i) = aj(i) − aj[i]. For i ∈ I2, let α(i) = aj(i) − aj∗ if j∗ > 0 and
α(i) = aj(i), otherwise. Then let

i∗ = arg max{α(i) : i ∈ I1 ∪ I2}.

If α(i∗) ≤ 0 stop; Problem (39) is infeasible.
B4. Let J∗ ← J∗ + {j(i∗)}. If i∗ ∈ I1, set NJ∗ ← NJ∗ − j[i∗]. If i∗ ∈ I2, set
si∗ ← si∗ + 1 and if j∗ > 0, set NJ∗ ← NJ∗ − {j∗} and sh ← sh− 1 for h = IN(j∗)
(possibly, h = i∗).
B5. Set � ← � + α(i∗) and p← p+ 1. If � ≥ a0, then the cut (38) is obtained
and the method stops. Otherwise, if p = u, stop; Problem (39) is infeasible.

Second-order cover inequalities 233

Finally, if the foregoing conditions do not hold, set j(i∗) ← NextJ[j(i∗)], and if
j(i∗) = 0, set M(J)←M(J)− {i∗}. Return to Step B1.

The inclusion of the lower bounds � and �i, i ∈ M, to give the more general
system (35a, b, c) requires a somewhat more complex process to generate the
appropriate valid inequalities. The theorems applicable to this system, as well
as to its special case sketched above, yield a set of dominance relationships
that are appreciably different and invite different methods of exploitation than
those for the SOC inequalities. We therefore relegate the consideration of such
generalized HOC inequalities and their generation and dominance results, as
well as associated issues of solving suitable separation problems to generate
SOC or HOC inequalities (see Example 2 for some relevant comments), along
with computational experimental studies, for follow-on research.

Acknowledgements This research has been supported in part by the National Science Founda-
tion under Grant Number DMI-0552676. The authors also thank two anonymous referees for the
comments that led to an improvement of this paper.

References

1. Balas, E.: Facets of the Knapsack Polytope. Math. Program. 8, 146–164 (1975)
2. Crowder, H.P., Johnson, E.L., Padberg, M.W.: Solving large-scale zero-one linear programming

problems. Oper. Res. 31, 803–834 (1983)
3. Geoffrion, A.M.: An improved implicit enumeration approach for integer programming. Oper.

Res. 17, 437–454 (1969)
4. Glover, F.: A multiphase-dual algorithm for the zero-one integer programming problem. Oper.

Res. 13, 879–919 (1965)
5. Glover, F.: Flows in arborescences. Manage. Sci. 17, 568–586 (1971)
6. Glover, F., Sherali, H.D., Lee, Y.: Generating cuts from surrogate constraint analysis for zero-

one and multiple choice programming. Comput. Optim. Appl. 8(2), 152–172 (1997)
7. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Cover inequalities for 0–1 linear programs:

computation. INFORMS J. Comput. 10, 427–437 (1998)
8. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facets of regular 0–1 polytopes. Math. Pro-

gram. 8, 179–206 (1975)
9. Hanafi, S.: Contribution à la résolution de problèmes duaux de grande taille en optimisation

combinatoire. Ph.D. Thesis, University of Valenciennes, France (1993)
10. Hanafi, S., Glover, F.: Exploiting nested inequalities and surrogate constraints. Research

Report, University of Valenciennes, France, and University of Colorado, Boulder, CO, USA
(2005)

11. Hooker, J.N.: Logic-based methods for optimization. In: Borning, A. (ed.) Principles
and Practice of Constraint Programming. Lecture Notes in Computer Science, Vol. 874,
pp. 336–349 (1994)

12. Hooker, J.N., Osorio, M.A.: Mixed logical/linear programming. Discrete Appl. Math. 96–
97, 395–442 (1999)

13. Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.S.: MINTO, a mixed INTeger opti-
mizer. Oper. Res. Lett. 15, 47–58 (1994)

14. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. 2nd edn. Wiley, New
York (1999)

15. Osorio, M.A., Glover, F., Hammer, P.: Cutting and surrogate constraint analysis for improved
multidimensional knapsack solutions. Ann. Oper. Res. 117, 71–93 (2002)

16. Savelsbergh, M.W.P.: Preprocessing and probing for mixed integer programming prob-
lems. ORSA J. Comput. 6, 445–454 (1994)

234 F. Glover, H. D. Sherali

17. Sherali, H.D., Lee, Y.: Sequential and simultaneous liftings of minimal cover inequalities for
generalized upper bound constrained knapsack polytopes. SIAM J. Discrete Math. 8(1), 133–
153 (1995)

18. Spielberg, K., Guignard, M.: A sequential (Quasi) hot start method for BB (0, 1) mixed integer
programming. Mathematical Programming Symposium, Atlanta, GA (2000)

20. Vasquez, M., Vimont, Y.: Improved results on the 0–1 multidimensional knapsack prob-
lem. Eur. J. Oper. Res. 165, 70–81 (2005)

20. Wolsey, L.A.: Faces for a linear inequality in 0–1variables. Math. Program. 8, 165–178 (1975)

	Second-order cover inequalities
	Abstract
	Introduction
	Second-order cover inequalities and non-dominance
	Preprocessing routines
	Generating SOC inequalities and checking for non-dominance
	Generating the set of LND second-order cover inequalities
	Facets and related lifting process
	Connections with surrogate constraints and higher-order cover inequalities
	Notation
	Algorithm for generating higher-order cover inequalities (38)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

