

Chapter 2

A MULTISTART SCATTER SEARCH
HEURISTIC FOR SMOOTH NLP AND MINLP
PROBLEMS

Zsolt Ugray1, Leon Lasdon2, John C. Plummer3, Fred Glover4, Jim Kelly5

and Rafael Martí6
1Business Information Systems Department, Utah State University, 3515 Old Main Hill
Logan, UT 84322-3515, zsolt.ugray@ucr.edu
2The University of Texas at Austin, McCombs School of Business, Management and
Information Systems Dept. B6500, Austin, TX 78712-0212, asdon@mail.utexas.edu
3Dept of CIS/QMST, Texas State University, 601 University Dr, San Marcos, TX 78666,
jcplummer@mail.utexas.edu
4Leads School of Business, University of Colorado, Boulder, CO 80309-0419,
fred.glover@colorado.edu
5OptTek Systems, Inc 1919 Seventh St., Boulder, CO 80302, Kelly@opttek.com
6Departamento de Estadística e I.O., Facultad de Matemáticas, Universitat de Valencia,
Dr. Moliner 50, 46100 Burjassot, Valencia, Spain, rafael.marti@uv.es

Abstract: The algorithm described here, called OptQuest/NLP or OQNLP, is a
heuristic designed to find global optima for pure and mixed integer
nonlinear problems with many constraints and variables, where all problem
functions are differentiable with respect to the continuous variables. It uses
OptQuest, a commercial implementation of scatter search developed by
OptTek Systems, Inc., to provide starting points for a gradient-based local
NLP solver. This solver seeks a local solution from a subset of these
points, holding discrete variables fixed. The procedure is motivated by
our desire to combine the superior accuracy and feasibility-seeking
behavior of gradient-based local NLP solvers with the global optimization
abilities of OptQuest. Computational results include 144 smooth NLP
and MINLP problems due to Floudas et al, most with both linear and
nonlinear constraints, coded in the GAMS modeling language. Some are
quite large for global optimization, with over 100 variables and many
constraints. Global solutions to almost all problems are found in a small
number of NLP solver calls, often one or two.

Keywords: Global Optimization, Multistart Heuristic, Mixed Integer Nonlinear
Programming, Scatter Search, Gradient Methods

2

1. Introduction
This paper describes a multistart heuristic algorithm designed to find

global optima of smooth constrained nonlinear programs (NLPs) and
mixed integer nonlinear programs (MINLPs). It uses the widely used
scatter search software OptQuest (Laguna and Martí, 2000) to generate
trial points, which are candidate starting points for a local NLP solver.
These are filtered to provide a smaller subset from which the local solver
attempts to find a local optimum. Our implementation uses the
generalized reduced gradient NLP solver GRG (Smith and Lasdon, 1993),
but in principle any local NLP solver can be used, including ones that do
not require derivatives. However, we focus on gradient-based solvers
because they are by far the most widely used, and currently are the only
ones capable of solving NLPs with hundreds or thousands of variables
and constraints.

• Problem Statement

The most general problem this algorithm can solve has the form

minimize f(x,y) (1.1)

subject to the nonlinear constraints

guy)G(x,gl ≤≤ (1.2)

the linear constraints

uyAxAl ≤+≤ 21 (1.3)

YySx ∈∈ , (1.4)

where x is an n-dimensional vector of continuous decision variables, y is a
p-dimensional vector of discrete decision variables, and the vectors gl, gu,
l, u, contain upper and lower bounds for the nonlinear and linear
constraints respectively. The matrices 1A and 2A are 2m by n and

2m by p respectively, and contain the coefficients of any linear
constraints. The set S is defined by simple bounds on x, and we assume
that it is closed and bounded, i.e., that each component of x has a finite
upper and lower bound. This is required by the OptQuest procedure.
The set Y is assumed to be finite, and is often the set of all p-dimensional
binary or integer vectors y. The objective function f and the 1m -

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 3

dimensional vector of constraint functions G are assumed to have
continuous first partial derivatives at all points in S x Y. This is needed
in order that a gradient-based local NLP solver be applicable to relaxed
NLP subproblems formed from (1)-(3) by allowing the y variables to be
continuous.

• Multi-start Algorithms

In this section, which reviews past work on multi-start algorithms, we
focus on unconstrained problems where there are no discrete variables,
since to the best of our knowledge multi-start algorithms have been
investigated theoretically only in this context. These problems have the
form

minimize f(x) (1.5)

subject to Sx∈ (1.6)

where all global minima of f are assumed to occur in the interior of S.
By multi-start we mean any algorithm that attempts to find a global
solution to (1.5)-(1.6) by starting a local NLP solver, denoted by L, from
multiple starting points in S. The most basic multi-start method
generates uniformly distributed points in S, and starts L from each of
these. This is well known to converge to a global solution with
probability one as the number of points approaches infinity--in fact, the
best of the starting points converges as well. This procedure is very
inefficient because the same local solution is located many times. A
convergent procedure that largely overcomes this difficulty is called
multi-level single linkage (MLSL) (Rinnooy Kan and Timmer, 1987).
This uses a simple rule to exclude some potential starting points. A
uniformly distributed sample of N points in S is generated, and the
objective, f, is evaluated at each point. The points are sorted according
to their f values, and the qN best points are retained, where q is an
algorithm parameter between 0 and 1. L is started from each point of
this reduced sample, except if there is another sample point within a
certain critical distance which has a lower f value. L is also not started
from sample points which are too near the boundary of S, or too close to a
previously discovered local minimum. Then, N additional uniformly
distributed points are generated, and the procedure is applied to the union
of these points and those retained from previous iterations. The critical
distance referred to above decreases each time a new set of sample points
is added. The authors show that, if the sampling continues indefinitely,
each local minimum of f will be located, but the total number of local
searches is finite with probability one. They also develop Bayesian
stopping rules, which incorporate assumptions about the costs and

4

potential benefits of further function evaluations, to determine when to
stop the procedure.

When the critical distance decreases, a point from which L was
previously not started may become a starting point in the next cycle.
Hence all sample points generated must be saved. This also makes the
choice of the sample size, N, important, since too small a sample leads to
many revised decisions, while too large a sample will cause L to be
started many times. Recently, Locatelli and Schoen (1999) introduce a
class of “Random Linkage” (RL) multi-start algorithms that retain the
good convergence properties of MLSL, and do not require that past
starting decisions be revised. Uniformly distributed points are generated
one at a time, and L is started from each point with a probability given by
a nondecreasing function)(dφ , where d is the distance from the current
sample point to the closest of the previous sample points with a better
function value. Assumptions on this function that give RL methods the
same theoretical properties as MLSL are derived in the above reference.

Recently, Fylstra et al. have implemented a version of MLSL which
can solve constrained problems (Frontline Systems, Inc., 2000). See also
www.frontsys.com. Limited to problems with no discrete variables y, it
uses the 1L exact penalty function, defined as

))(()(),(
1

1 ∑
=

+=
m

i
ii xgviolwxfwxP (1.7)

where the iw are nonnegative penalty weights, 21 mmm += , and the
vector g has been extended to include the linear constraints (1.4). The
function))((xgviol i is equal to the absolute amount by which the ith
constraint is violated at the point x. It is well known (see (Nash and
Sofer, 1996) that if *x is a local optimum of (1.1)-(1.4), *u is a
corresponding optimal multiplier vector, and the second order sufficiency
conditions are satisfied at),(** ux , then if

)(*
ii uabsw > (1.8)

*x is a local unconstrained minimum of 1P . If (1.1)-(1.4) has several
local minima, and each iw is larger than the maximum of all absolute
multipliers for constraint i over all these optima, then 1P has a local
minimum at each of these local constrained minima. Even though 1P
is not a differentiable function of x, MLSL can be applied to it, and when
a randomly generated trial point satisfies the MLSL criterion to be a
starting point, any local solver for the smooth NLP problem can be started
from that point. The local solver need not make any reference to the
exact penalty function 1P , whose only role is to provide function values
to MLSL. We will use 1P in the same way in our OQNLP algorithm.
We are not aware of any theoretical investigations of this extended MLSL

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 5

procedure, so it must currently be regarded as a heuristic. Comparative
testing of this extension of MLSL and OQNLP is planned.

2. Scatter Search and the Optquest Callable Library
We provide only a brief description of Scatter Search and its

implementation in the OptQuest callable library here, since it is discussed
in Laguna and Martí (2001) and in Laguna and Martí (2000). See also
www.opttek.com. Like genetic algorithms (GAs) and other meta-
heuristics, scatter search operates on a set of solutions, called the
population in the GA literature and the reference set in scatter search
papers, that is maintained and updated from iteration to iteration. Scatter
search (SS) is a novel instance of evolutionary methods, because it
violates the premise that evolutionary approaches must be based solely on
randomization. SS is also novel, in comparison to GAs, by being
founded on strategies that were proposed as augmentations to GAs more
than a decade after their debut in scatter search. Scatter search embodies
principles and strategies that are still not emulated by other evolutionary
methods, and that prove advantageous for solving a variety of complex
optimization problems.

Scatter Search is designed to operate on a set of points, called
reference points, which constitute good solutions obtained from previous
solution efforts. Notably, the basis for defining “good” includes special
criteria such as diversity that purposefully go beyond the objective
function value. The approach systematically generates combinations of
the reference points to create new points, each of which may (optionally)
be mapped into an associated feasible point. The underlying combination
mechanism uses linear combinations.

OptQuest is available as a callable library written in C, which can be
invoked from any C program, or as a dynamic linked library (DLL) which
can be called from a variety of languages including C, Visual Basic, and
Java. The callable library consists of a set of functions which (a) input
the problem size and data, (b) set options and tolerances, (c) create an
initial reference set, (d) retrieve a trial solution to be evaluated and, (e)
communicate these objective and constraint values back to OptQuest,
which uses them as the input to update the reference set. For a complete
description, see Laguna and Martí (2001).

3. Gradient-Based NLP Solver and GRG
There are many papers and texts discussing gradient-based NLP

solvers, e.g., Nash and Sofer (1996), Nocedal and Wright (1999), Edgar,
Himmelblau and Lasdon (2001). These solve problems of the form
(1.1)-(1.4), but with no discrete (y) variables. They require a starting
point as input, and use values and gradients of the problem functions to
generate a sequence of points which, under fairly general smoothness and
regularity conditions, converges to a local optimum. The main classes

6

of algorithms in widespread use today are Successive Quadratic
Programming (SQP) and Generalized Reduced Gradient (GRG)-see
Edgar, Himmelblau and Lasdon (2001), Chapter 8. The algorithm
implemented in the widely used MINOS solver (Murtagh and Saunders,
1982) is similar to SQP. If there are nonlinear constraints, SQP and
MINOS generate a sequence of points that usually violate the nonlinear
constraints, with the violations decreasing to within a specified feasibility
tolerance as the sequence converges to a local optimum. GRG
algorithms have a simplex-like phase 1-phase 2 structure. Phase 1
begins with the given starting point and, if it is not feasible, attempts to
find a feasible point by minimizing the sum of constraint violations. If
this effort terminates with some constraints violated, the problem is
assumed to be infeasible. However, this local optimum of the phase 1
objective may not be global, so a feasible point may exist. If a feasible
point is found, phase 2 uses it as its starting point, and proceeds to
minimize the true objective. Both phases consist of a sequence of line
searches, each of which produces a feasible point with an objective value
no worse (and usually better) than its predecessor.

There are several parameters and options that strongly influence the
reliability and efficiency of a GRG implementation. The feasibility
tolerance, ft, (default value 1.e-4) determines when a constraint is
satisfied. If the constraint has the form lxg ≥)(, it is considered
satisfied in the GRG code used here if

))(0.1())((labsftlxgabs +−≥− .

The optimality tolerance, ot, (default value 1.e-4) and a number of
consecutive iterations, nstop, (default value 10) determine when the
current point is declared optimal. This occurs when

otkterrnorm ≤

where kterrnorm is the infinity norm of the error in the Kuhn-Tucker
conditions, or when

))((0.1())()((1 kkk xfabsotxfxfabs +≤− +

for nstop consecutive values of the iteration index, k.
Several good commercially available implementations of GRG and

SQP solvers exist—see Nash (1998) for a review. As with any
numerical analysis software, a local NLP solver can fail to find a local
solution from a specified starting point. The problem may be too badly
conditioned, badly scaled, or too large for the solver, causing it to
terminate at a point (feasible or infeasible) which is not locally optimal.
While the reliability of the best current NLP solvers is quite high, these

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 7

difficulties occurred several times in our computational testing, and we
discuss this in more detail later.

Let L be a local NLP solver capable of solving (1.1)-(1.4), and assume
that L converges to a local optimum for any starting point Sx ∈0 . Let

)(0xL be the locally optimal solution found by L starting from 0x , and
let *

ix , i = 1,2,...,nloc be all the local optima of the problem. The basin
of attraction of the ith local optimum relative to L, denoted by B(*

ix), is
the set of all starting points in S from which the sequence of points
generated by L converges to *

ix . Formally:

B(*
ix) = })(,|{ *

000 ixxLSxx =∈ . (3.1)

One measure of difficulty of a global optimization problem with
unique global solution *

1x is the volume of B(*
1x) divided by the volume

of the rectangle, S, the relative volume of B(*
1x). The problem is trivial

if this relative volume is 1, as it is for convex programs, and problem
difficulty increases as this relative volume approaches zero.

4. Comparing Search Methods and Gradient-Based
NLP Solvers

For smooth problems, the relative advantages of a search method like
OptQuest over a gradient-based NLP solver are its ability to locate an
approximation to a good local solution (often the global optimum), and
the fact that it can handle discrete variables. Gradient-based NLP solvers
converge to the “nearest” local solution, and have no facilities for discrete
variables, unless they are imbedded in a rounding heuristic or branch-and-
bound method. Relative disadvantages of search methods are their limited
accuracy, and their weak abilities to deal with equality constraints (more
generally, narrow feasible regions). They find it difficult to satisfy many
nonlinear constraints to high accuracy, but this is a strength of gradient-
based NLP solvers. Search methods also require an excessive number of
iterations to find approximations to local or global optima accurate to
more than 2 or 3 significant figures, while gradient-based solvers usually
achieve 4 to 8-digit accuracy rapidly.

The motivation for combining search and gradient-based solvers in a
multi-start procedure is to achieve the advantages of both while avoiding
the disadvantages of either. Surprisingly, we have been unable to locate
any published efforts in this direction, besides the Frontline extended
MLSL method discussed in Section 2.

8

5. The OQNLP Algorithm
A pseudo-code description of the simplest OQNLP algorithm follows:

• INITIALIZATION
Read_Problem_Parameters (n, p, 1m , 2m , bounds, starting point);
Setup_OptQuest_Parameters (size, iteration limits, population,

accuracy, variables, bounds, constraints);
Initialize_OptQuest_Population;

• STAGE 1: INITIAL OPTQUEST ITERATIONS AND FIRST GRG
CALL
WHILE (unevaluated trial points from initial population remain) DO
{
 Get (trial solution from OptQuest);
 Evaluate (objective and constraint values at trial solution,);
 Put (trial solution , objective and constraint values to OptQuest
 database);
}
ENDDO
Get_Best_Point_from_OptQuest_database (starting point);
Call_GRG (starting point, local solution);
threshold = 1P value of local solution;

• STAGE 2: MAIN ITERATIVE LOOP
 WHILE (stopping criteria not met) DO
 {
 Get (trial solution from OptQuest);
 Evaluate (objective and constraint values at trial solution,);
 Put (trial solution, objective and constraint values to OptQuest

database);
Calculate_ Penalty_ Function (trial solution, 1P);

 IF (distance and merit filter criteria are satisfied) THEN
 {
 Call_GRG (trial solution, local solution);
 Analyze_Solution (GRG Terminating Condition);
 Update_Local_Solutions_Found;
 Update_Largest_Lagrange_Multipliers_Found;
 }

ELSE IF (1P > threshold for waitcycle consecutive iterations)
increase threshold

 }
 ENDDO

After initialization, there are two main stages. In the “initial

OptQuest iterations” stage, the objective and constraint values at all trial
points generated by the initial OptQuest population (including the

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 9

population points themselves) are evaluated, and these values are returned
to OptQuest, which computes its penalty function, P, at each point. The
point with the best P value is selected, and GRG is started from this point.
If there are any discrete variables, y, they are fixed at their current values
during the GRG solution. In general, the trial points are scattered within
the rectangle defined by the bounds on the variables, so choosing the best
corresponds to performing a coarse search over this rectangle. If the
best point falls inside the basin of attraction of the global optimum
relative to the GRG solver (as it often does), then if the subsequent GRG
call is successful, it will find a global optimum. This call also determines
optimal Lagrange multiplier values, *u , for the constraints. These are
used to determine initial values for the penalty weights, iw , satisfying
(1.8), which are used in the exact penalty function, 1P , defined in (1.7).
All local optima found are stored in a linked list, along with the associated
Lagrange multipliers and objective values. Whenever a new local
optimum is found, the penalty weights are updated so that (1.8) is
satisfied over all known local optima.

The main iterative loop of stage 2 obtains trial points from OptQuest,
and starts GRG from the subset of these points determined by two filters.
The distance filter helps insure that the GRG starting points are diverse, in
the sense that they are not too close to any previously found local
solution. Its goal is to prevent GRG from starting more than once within
the basin of attraction of any local optimum, so it plays the same role as
the rule in the MLSL algorithm of Section 2, which does not start at a
point if it is within a critical distance of a better point. When a local
solution is found, it is stored in a linked list, ordered by its objective
value, as is the Euclidean distance between it and the starting point that
led to it. If a local solution is located more than once, the maximum of
these distances, maxdist, is updated and stored. For each trial point, t, if
the distance between t and any local solution already found is less than
distfactor*maxdist, GRG is not started from the point, and we obtain the
next trial solution from OptQuest.

This distance filter implicitly assumes that the attraction basins are
spherical, with radii at least maxdist. The default value of distfactor is
0.75, and it can be set to any positive value. As distfactor approaches
zero, the filtering effect vanishes, as would be appropriate if there were
many closely spaced local solutions. As it becomes larger than 1, the
filtering effect increases until eventually GRG is never started.

The merit filter helps insure that the GRG starting points have high
quality, by not starting from candidate points whose exact penalty
function value 1P (see (1.7)) is greater than a threshold. This threshold is
set initially to the 1P value of the best candidate point found in the first
stage of the algorithm. If trial points are rejected by this test for more
than waitcycle consecutive iterations, the threshold is increased by the
updating rule:

10

threshold threshold +thfact*(1.0+abs(threshold)) (4.2)

where the default value of thfact is 0.2 and that for waitcycle is 20. The
additive 1.0 term is included so that threshold increases by at least thfact
when its current value is near zero. When a trial point is accepted by the
merit filter, threshold is decreased by setting it to the 1P value of that
point.

The combined effect of these 2 filters is that GRG is started at only a
few percent of the OptQuest trial points, yet global optimal solutions are
found for a very high percentage of the test problems. Some insight is
gained by examining Figure 2.1, which shows the stationary point at the
origin and the 6 local minima of a 2 variable unconstrained function
(called the six-hump camelback function) as dark squares, labeled with
their objective value. The ten points from which OQNLP starts GRG
are shown as white diamonds. The local minima occur in pairs with equal
objective value, located symmetrically about the origin. There were 144
trial points generated in stage 1, and 10 points in the initial population.
The best of these 154 points is the population point (0,0), so this becomes
the first starting point for GRG. This happens to be a stationary point of
F, so it satisfies the GRG optimality test (that the norm of the gradient of
the objective be less than the optimality tolerance), and GRG terminates
there. The next GRG start is at iteration 201, and this locates the global
optimum at (.0898, -.7127), which is located two times. The other global
optimum at (-.0898, .7127) is found first at iteration 268, and is located 6
times.

The limit on total OQNLP iterations in this run was 1000. GRG was
started at only 9 of the 846 OptQuest trial points generated in the main
iterative loop of stage 2. All but 2 of the starting points are in the basin of
attraction of one of the two global optima. This is mainly due to the
merit filter. In particular, the threshold values are always less than
1.6071,so no starts are ever made in the basin of attraction of the two
local optima with this objective value. The merit filter alone rejected
498 points, the distance filter alone 57, and both rejected 281.

Figure 2.2 illustrates the dynamics of the merit filtering process for
iterations 155 to 407 of this problem, displaying the objective values for
the trial points as white diamonds, and the threshold values as dark lines.
All objective values greater than 2.0 are set to 2.0.

The initial threshold value is zero, and it is raised twice to a level of
0.44 at iteration 201, where the trial point objective value of -0.29 falls
below it. GRG is then started and locates the global optimum at (.0898,
-.7127), and the threshold is reset to –0.29. This cycle then repeats. Nine
of the ten GRG starts are made in the 252 iterations shown in the graph.
In this span, there are 12 points where the merit filter allows a start and
the threshold is decreased, but GRG is not started at three of these
because the distance filter rejects them.

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 11

Figure 2.3 shows the same information for iterations 408 to 1000.
There is only one GRG start in this span. This is not due to a lack of
high quality trial points: there are more good points than previously, many
with values near or equal to –1.0310 (the global minimum is –1.0316),
and the merit threshold is usually –1.0310 as well. Every time this
threshold is raised, the merit filter accepts one of the next trial points, but
51 of the 52 accepted points are too near one of the 2 global optima, and
they are rejected by the distance filter.

Figure 2.1. Local Optima and 10 GRG starting points for Six-Hump Camelback function

This simple example illustrates a number of important points:
1. Setting the bounds on the continuous or discrete variables to be too

large in magnitude is likely to slow the OQNLP algorithm (or any
search algorithm) and may lead to a poorer final solution. In the
above example, if the variable bounds had been [-2,2] rather than
[10,10], the trial points generated by the initial population would have
had much lower objective values. OptQuest can overcome this when
the initial population is updated.

2. GRG found a highly accurate approximation to the global solution of
this unconstrained problem at its second call. OptQuest alone would
have taken many more iterations to achieve this accuracy.

3. The best trial point generated by the initial reference set may not have
as good an objective value as those generated from the second or
succeeding ones, especially if the variable bounds are too large. Using
the best “first generation” point as the initial GRG starting point may
not lead to as good a local solution as if some “second generation”
points had been considered. For this reason our base case
computational results use a first stage of 200 OptQuest trial points,

1.6071

1.6071

--1.0316

0

-.2155

-1.0316
-.2155

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

12

which in this example would include all 144 first generation points
and 56 from the second generation.

Figure 2.2. Objective and threshold values for Six-Hump Camelback function for
iterations 155 to 407

Figure 2.3. Objective and threshold values for Six-Hump Camelback function:

iterations 408 to 100

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

407 507 607 707 807 907

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

150 200 250 300 350 400

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 13

Filtering Logic for Problems with Discrete Variables
The filtering logic described above must be extended when there are

discrete variables (the y variables in the problem statement (1.1)-(1.4)).
When a trial point (xt, yt) provided by OptQuest passes the two filtering
tests and is passed to GRG, xt acts as a starting point and is changed by
GRG, but the yt values are fixed and are not changed. Each new set of yt
values defines a different NLP for GRG to solve, say NLP(yt), with its
own set of local minima in x space, so both filters must be made specific
to NLP(yt). For the distance filter, it is irrelevant if xt is close to any local
minima (in x space) previously found which correspond to problems
NLP(y) with y different from yt. Hence the distance filter is based on the
distance from xt to local minima of NLP(yt) only. Similarly, the tests and
threshold values in the merit filter must be specific to the problem
NLP(yt) currently being solved. However, the weights w in the exact
penalty function 1P (x,y,w) used in the merit filter are based on the
maximum absolute multipliers over all local optima for all vectors yt,
because these weights are large enough to ensure that this function is
exact for all problems NLP(y).

Therefore, in stage 2 of the algorithm, the exact penalty
function, 1P (xt,yt,w), is calculated at each trial point (xt,yt), and GRG is
started at (xt,yt) if 1P is smaller than the current threshold for NLP(yt).
This threshold is initialized to plus infinity, so if the values yt have not
occurred in a previous stage 2 trial point, GRG will be called at this point.
This leads to many more GRG calls in problems with discrete variables,
as we show later in the computational results sections.

This OQNLP algorithm should be regarded as a base case from which
extensions will be explored and compared. The most significant of these
involves the return of information from GRG to OptQuest, which is
absent in the above procedure, i.e. local solutions found by GRG are not
returned to OptQuest. Such solutions are generally of very high quality,
and might aid the search process if they were incorporated into the
OptQuest population, because at least a subset would likely be retained
there. However, this should be done so as to preserve the diversity of
the population. We discuss this option further in Section 9.

6. C Language Implementation, Games Interface, and
the Floudas Test Problem Set

The algorithm described in the previous section has been implemented
as a callable C-language function. In this form, the user supplies a C
function that evaluates the objective and constraint functions, an optional
routine that evaluates their first partial derivatives (finite difference
approximations are used otherwise), and a calling program that supplies
problem size, bounds, and an initial point, and invokes the algorithm.
Algorithm parameters and options are in an options text file. We have
developed an interface between this C implementation and the GAMS
algebraic modeling language (see www.gams.com), using C library

14

routines generously provided by GAMS Development Company. The
user function routine is replaced by one that calls the GAMS interpreter,
and a special derivative routine accesses and evaluates expressions
developed by GAMS for first derivatives of all nonlinear problem
functions. GAMS identifies all linear terms in each function, and
supplies their coefficients separately, thus identifying all linear
constraints. This enables us to invoke the OptQuest option which maps
each trial point (generated as described in Section 2) into a point which
satisfies the linear constraints. This is done by solving a linear program
that minimizes the 1L distance between the trial point and the feasible
region defined by the linear constraints. The derivative information
supplied by GAMS also significantly enhances the performance of
gradient-based NLP solvers, since only non-constant derivatives are re-
evaluated, and these are always available to full machine precision.

Part of the motivation for developing this GAMS interface was the
existence of a large set of global optimization test problems coded in
GAMS, described in Floudas et al. (1999). This text describes some
problems that cannot be represented in GAMS, but there are many that
can, and these can be downloaded from http://titan.princeton.edu/
TestProblems/ or from www.gams.com, linking to gams world and then
global. Characteristics of 142 of these problems (excluding the 8_6_1
and 8_6_2 sets) are contained in Table 2.1.

Most of these problems arise from chemical engineering, but some are
from general problem classes. Most are small, but a few have over 100
variables and comparable numbers of constraints, and some have both
continuous and discrete variables. Almost all of the problems without
discrete variables have local solutions distinct from the global solution,
and the majority of problems have constraints. Sometimes all constraints
are linear, as with the concave quadratic programs of series EX2_1_x, but
many problems have nonlinear constraints, and these are often the source
of the nonconvexities. For example, there are many problems arising from
pooling and blending applications with bilinear constraints. The best
known objective value and (in most cases) the corresponding variable
values are provided in Floudas, et al. (1999). The symbol N in the rows
for the series EX8_6_1 and EX8_6_2 is the number of particles in a
cluster whose equilibrium configuration is sought via potential energy
minimization. Each particle has 3 coordinates, so there are 3N variables.

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 15

Table 2.1. Characteristics of Floudas GAMS test problems

7. Computational Results on the Floudas Set of Test
Problems

This section describes the results obtained when the OQNLP
algorithm described in Section 6 is applied to the Floudas GAMS test
problems. The main algorithm parameters and options used are shown in
Table 2.2 below.

 S
ER

IE
S

 P
R

O
B

LE
M

S

 M
A

X
 V

A
R

S

 M
A

X
 D

IS
C

R
ET

E
V

A
R

S

 M
A

X
 L

IN
EA

R
 C

O
N

ST
R

A
IN

S

 M
A

X
 N

O
N

LI
N

EA
R

 C
O

N
ST

R
A

IN
S

 P
R

O
B

LE
M

 T
Y

PE

EX2_1_x 14 24 0 10 0 concave QP (min)
EX3_1_x 4 8 0 4 6 quadratic obj and constraints
EX4_1_x 9 2 0 0 2 obj or constraints polynomial
EX5_2_x 2 32 0 8 11 bilinear-pooling
EX5_3_x 2 62 0 19 34 distillation column sequencing
EX5_4_x 3 27 0 13 6 heat exchanger network
EX6_1_x 4 12 0 3 6 gibbs free energy min
EX6_2_x 10 9 0 3 0 gibbs free energy min
EX7_2_x 4 8 0 3 12 generalized geometric prog
EX7_3_x 6 17 0 10 11 robust stability analysis
EX8_1_x 8 6 0 0 5 small unconstrained, constrained
EX8_2_x 5 55 0 6 75 batch plant design-uncertainty
EX8_3_x 14 141 0 43 65 reactor network synthesis
EX8_4_x 8 62 0 0 40 constrained least squares
EX8_5_x 6 6 0 2 2 min tangent plane distance
EX8_6_1 N from 4 to 147 3N 0 0 0 Lenard-Jones energy min
EX8_6_2 N from 5 to 80 3N 0 0 0 Morse energy min
EX9_1_x 10 29 0 27 5 bilevel LP
EX9_2_x 9 16 0 11 6 bilevel QP

EX12_2_x 6 11 8 9 4 MINLP
EX14_1_x 9 10 0 4 17 infinity norm solution of equations
EX14_2_x 9 7 0 1 10 infinity norm solution of equations

Total 142

16

Table 2.2. OptQuest, GRG, and OQNLP parameters and options used
OptQuest and OQNLP Parameters GRG Parameters
Use linear constraints = yes Feasibility tolerance = 1.e-4, except

series 8_3_x uses 1.e-6
Total iterations = 1000 Optimality tolerance = 1.e-4, except

series 8_3_x uses 1.e-6
Total stage 1 iterations = 200 Consecutive iterations for fractional

change termination = 20
Waitcycle = 20
Thfact = 0.2 (see (5.2))
Distfact = 0.75
OptQuest search type = boundary
Boundary search parameter = 0.5
OptQuest Variable Precision = 1.e-4
Check for duplicates in database = yes

As discussed in Section 6, OptQuest can insure that all trial points

satisfy any linear constraints, and we use this option in our tests below.
The boundary search strategy is the OptQuest default, as is its parameter
value of

As discussed in Section 6, OptQuest can insure that all trial points
satisfy any linear constraints, and we use this option in our tests below.
The boundary search strategy is the OptQuest default, as is its parameter
value of 0.5. This strategy directs the trial points generated towards the
boundary of the region defined by the variable bounds and general linear
constraints 50% of the time. For the problem series 8_3_x, the largest of
the group with 9 of 10 problems having over 100 variables, we used GRG
optimality and feasibility tolerances of 1.e-6 because the default values of
1.e-4 led to GRG termination significantly short of local optimality.

Table 2.3, found in the Appendix, contains the results for 120 of the
131 problems with no discrete variables, sorted by increasing number of
variables, with averages for six groups of problems. We exclude the
8_6_1 and 8_6_2 series, which are described separately below. We also
exclude eleven problems which were either extremely large, or for which
GRG could not find local solutions from most or all starting points. This
was almost always due to failure to find a feasible solution, due to
termination at a local minimum of the phase one objective. These
computations used a 1.3 ghz Dell Optiplex GX400 PC with the Windows
2000 OS. The “fcn call” columns record the total number of times all
problem functions are evaluated. The column headed “% gap” is the
percentage difference between the best feasible objective value found by
OQNLP and the best known value, i.e., the ratio gap = 100*(OQNLP obj
– bestobj)/(1+abs(bestobj)).

For minimization problems, and its negative for maximization. Hence
a negative gap indicates that OQNLP found a feasible point with better
objective value than the “best known” value provided in Floudas, et al.
(1999). All but 6 of the 120 problems have gaps less than 1%, most much
smaller. These 6 are solved to very small gaps using 5000 iterations

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 17

and, for 2 problems, increasing the boundary parameter, as is discussed
shortly. There are 2 problems with sizeable negative gaps, indicating that
OQNLP found a better value than the best reported. The column headed
“max abs x” is the largest absolute component of the decision vector, x, in
the best solution found. Large values indicate a more difficult problem,
in the sense that the rectangle defined by the variable bounds is larger, so
the search must cover a larger volume.

This “base case” OQNLP algorithm finds its best solution very
quickly. The best OQNLP solution is found by the first GRG call in 88
of the 120 problems, and in the second GRG call in 7 more, confirming
the effectiveness of stage 1 of the algorithm in finding an initial GRG
starting point within the basin of attraction of the global optimum. This
happens most often in the smaller problems, but occurs 11 times in the 20
largest.

Table 2.4 aggregates the averages for the six groups of problems in
Table 2.3, and includes the following ratios: GRG ratio = average GRG
calls to best/average total GRG calls with similar definitions for
iterations, function calls, and computation time.

The groups are ordered in terms of increasing number of variables,
and the number of local optima found increases with problem size, with
an average of 22.6 for the largest group. The measures of computational
effort to find the best solution (iterations to best, grg calls to best, function
calls to best, and time to best) are all gratifyingly small, and most increase
slowly with problem size. Function calls are much higher for the largest
group (110 to 141 variables), reflecting the GRG effort required to solve
these problems, which have many nonlinear constraints.

Table 2.4. Average performance statistics for 6 groups of problems

V
A

R
 R

A
N

G
E

N
O

. O
F

PR
O

B
S

IT
N

S
TO

 B
ES

T

G
R

G
 C

A
LL

S
TO

B
ES

T
TO

TA
L

G
R

G

C
A

LL
S

G
R

G
 R

A
TI

O

LO
C

A
LS

 F
O

U
N

D

FC
N

 C
A

LL
S

TO

B
ES

T

TO
TA

L
FC

N

C
A

LL
S

FC
N

 R
A

TI
O

TI
M

E
TO

 B
ES

T

TO
TA

L
TI

M
E

TI
M

E
R

A
TI

O

1 to 4 31 213.9 1.3 9.2 0.14 2.3 281.7 1582.8 0.18 0.5 2.4 0.21

5 to 7 31 212.5 1.3 11.0 0.12 3.0 361.0 3827.5 0.09 0.3 1.1 0.28

8 to 12 21 293.3 3.2 17.2 0.19 6.1 841.5 3416.6 0.25 0.5 1.5 0.35

14 to 21 17 212.8 1.8 25.6 0.07 6.8 446.8 5030.7 0.09 1.7 4.4 0.38

22 to 78 11 310.2 7.3 34.0 0.21 12.4 1423.4 10528.3 0.14 1.5 4.4 0.33

110 to 141 9 392.4 9.3 26.7 0.35 22.6 20654.7 55580.3 0.37 23.6 54.4 0.43

Overall 120 272.5 4.0 20.6 0.18 8.8 4001.5 13327.7 0.19 4.7 11.4 0.33

Average total GRG calls are fairly stable at between 17 to 34 over the

last four groups, and do not increase rapidly with problem size. This
further demonstrates the effectiveness of the distance and merit filters
described in Section 5.

18

The ratio columns provide additional evidence that the best solution is
found early in the iterative process. The smallest of these is the GRG
ratio, which varies from 0.07 to 0.35, meaning that the best solution is
found in the first 7% to 35% of GRG calls. This ratio is highly correlated
with the function call ratio, because function calls due to GRG (all those
over 1000) dominate as problem size increases. This implies that, for
these problems, a criterion that stops OQNLP when the fractional change
in the best feasible objective value found thus far is below a small
tolerance for some (reasonably large) number of successive iterations,
would rarely terminate before the best solution was found.

Table 2.5 shows the results of using 5000 iterations to solve the 6
problems whose gaps in Table 2.3 are greater than 1%.

All problems are solved to within very small gaps. To achieve an
essentially zero gap for problems 2_1_6 and 2_1_7_5, we had to change
the OptQuest boundary strategy parameter from its default value of 0.5 to
1.0. This causes a strategy that drives trial points towards the boundary
of the feasible region defined by the bounds and linear constraints to be
used 100% of the time, rather than 50% (see the OptQuest User guide,
page 32). These two problems are quadratic programs with concave
objectives (to be minimized), so all locally optimal solutions are at
extreme points of the feasible region. One would expect a strategy that
generates points near the boundary of the feasible region 100% of the
time to be most effective on such problems.

Table 2.5. Solving previously unsolved problems in 5000 iterations

 P
R

O
B

 V
A

R
S

 I
TN

S
TO

 B
ES

T

G
R

G
 C

A
LL

S
 T

O

 B
ES

T
 B

ES
T

 T
O

TA
L

G
R

G
 C

A
LL

S

 L
O

C
A

LS
 F

O
U

N
D

 F
C

N
 C

A
LL

S
TO

B
ES

T

 T
O

TA
L

FC
N

 C
A

LL
S

 T
IM

E
TO

 B
ES

T

 T
O

TA
L

TI
M

E

 G
A

P

 B
N

D
Y

 P
A

R
A

M

EX8_3_7 126 308 12 164 92 7125 505273 15.4 436.3 0.0009
EX2_1_1 5 893 2 14 12 896 5055 0.12 0.85 0.0000
EX2_1_6 11 253 2 8 4 256 5042 0.73 8.17 15.0000 0.5
EX2_1_6 11 2591 18 27 12 2703 5171 5.64 8.92 0.0000 1
EX2_1_8 24 2318 32 44 11 3411 6270 6.8 16.91 0.0000
EX2_1_7_5 21 362 9 36 22 975 7360 3.7 37.7 1.0866 0.5
EX2_1_7_5 21 520 23 90 15 2397 11341 7.18 52.23 0.0002 1
EX14_1_7 11 299 9 220 64 6518 119049 0.51 11.1 0.0000

Solving Problems with Discrete Variables
Table 2.6 contains results of solving the 11 problems in the Floudas

test set which have discrete variables, using 1000 total and 200 stage one
iterations. The problems are sorted first by number of discrete variables,
then by number of all variables.

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 19

Table 2.6. Solution statistics for 13 problems with discrete variables

 P
R

O
B

 V
A

R
S

 D
IS

C
 V

A
R

S

 L
IN

 C
O

N
ST

 N
LI

N
 C

O
N

ST

 I
TN

S
TO

 B
ES

T

 G
R

G
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

G
R

G
 C

A
LL

S

 T
O

TA
L

EN
U

M

 L
O

C
A

L
FO

U
N

D

 F
C

N
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

FC
N

 C
A

LL
S

 T
IM

E
TO

 B
ES

T

 T
O

TA
L

 T
IM

E

 G
A

P,
 %

EX12_2_2 4 1 2 1 201 1 1 2 1 209 1008 0.53 2.04 0.0000
EX12_2_1 6 3 3 2 249 6 18 8 7 296 1164 0.54 1.25 0.0000
EX12_2_6 6 3 4 1 201 1 7 6 2 202 1045 0.31 0.4 0.0000
EX9_2_9 13 3 11 1 201 1 3 8 3 202 1010 0.42 1.73 0.0000
EX12_2_3_N 8 4 5 4 441 17 20 16 10 1004 1667 0.85 1.25 0.0000
EX12_2_3 12 4 9 4 390 11 20 16 10 1016 1761 1.11 1.96 0.0000
EX9_1_9 18 5 16 1 201 1 21 32 18 202 1069 2.41 8.01 0.0024
EX12_2_5 9 6 9 1 201 1 6 25 1 202 1136 0.91 2.65 0.0000
EX9_1_6 21 6 19 1 201 1 32 64 27 202 1097 1.53 6.73 0.0000
EX9_1_7 24 6 21 1 204 4 41 64 31 256 1328 4 9.64 0.0000
EX9_1_3 30 6 27 1 207 2 42 64 23 214 1212 2.49 11.1 0.0000
EX12_2_4 12 8 4 3 924 78 88 256 16 2145 2501 3.67 4.06 5.4320
EX12_2_4N 12 8 4 3 207 3 40 256 13 218 1191 0.87 2.96 7.1918

averages 13.5 4.8 10.3 1.8 294.5 9.8 26.1 26.1 12.5 489.8 1322 1.5 4.1 1.0

All problems are solved to very small gaps except 12_2_4 and its

reformulation, 12_2_4N, which have the same optimal solutions, and
have final gaps of 5.4% and 7.2% respectively. Increasing the number
of iterations to 5000 or 10,000 does not yield better solutions for these 2
problems. For the other 11 problems, 7 are solved on the first or second
GRG call. The column headed “total enum” contains the number of
GRG calls needed to solve the problem by complete enumeration of all
integer combinations. The total number of GRG calls used by OQNLP
is larger than this value in 3 of the 13 problems, and the two averages are
about the same. However, the number of GRG calls to find the best
solution is larger than that for complete enumeration in only one instance,
and the average is 9.8 versus 26.1 for complete enumeration. As with
the continuous variable problems, the best solutions are found in roughly
the first 30% of the 1000 iterations on average.

Clearly, the number of discrete variables in these problems is too
small to infer whether or not this “base-case” OQNLP algorithm will be
competitive with alternative MINLP solvers like DICOPT (interfaced to
GAMS) or branch-and-bound (Biegler, et al., 1997, Floudas, 1995). We
believe that OQNLP performance with discrete variables can be
significantly enhanced by sending information on GRG solutions back to
OptQuest. For example, an option that begins by calling GRG to solve a
relaxed MINLP (with all discrete variables allowed to be continuous),
could terminate immediately if all discrete variables had discrete values in
the GRG solution. Otherwise, the discrete variables could be rounded,

20

and the resulting high quality solution could be returned to OptQuest,
influencing the generation of successor trial points.

In 12_2_3 and 12_2_4 the discrete variables appear linearly. (This is
required by the widely used DICOPT MINLP solver.) Since OQNLP
allows discrete variables to appear nonlinearly, we reformulated these
problems into 12_2_3N and 12_2_4N, respectively, where the discrete
variables appear nonlinearly. The resulting models have the advantage
that when the discrete variables are fixed for the NLP solver, the
continuous variables appear linearly. That is why all measures of
computational effort are much smaller for the reformulated versions.

For comparison purposes we ran the 11 MINLP problems from the
Floudas problem set using DICOPT, with CONOPT2 as the NLP solver
and CPLEX as the MILP solver. It solves a NLP and a MILP at each
major iteration. The only changes to the models were slight adjustments
to lower bounds on some variables to avoid numerical problems
encountered otherwise. The statistics are shown in Table 2.7 below,
with some OQNLP data repeated for easier comparison. DICOPT
solved all but one of the problems to the best-known solution. In the
case of EX_12_2_1 the DICOPT NLP Solver was unable to find a
feasible solution for the relaxed NLP, and the problem was incorrectly
diagnosed as infeasible. Five of the problems are MILP’s, and DICOPT
simply invokes CPLEX to solve them. For the other five problems,
DICOPT found the optimum in 2 or 3 major iterations. Its runtimes are
much shorter than OQNLP, and the number of NLP solver calls is much
less. Termination was caused by the NLP solver objective worsening,
an infeasible MILP, and the relaxed NLP having an integer solution.

It is difficult to infer much from such small problems. However, we
expect that DICOPT will be much faster than OQNLP when it succeeds.
As a primal method, OQNLP has the potential to find a good solution in
cases where DICOPT fails to find a feasible integer solution, and it may
sometimes be useful to study the multiple integer feasible solutions that
OQNLP can provide.

Varying the Length of Stage One
We have solved the 120 Floudas problems with no discrete variables

with three values for the number of stage one iterations: 200 as described
above, 300, and as many as are required to generate all “first generation”
trial points (those created from the initial population), called the “1gen”
strategy. With 1gen and 200 stage one iterations, there were 1000 total
iterations, while with 300 we used 1100 total, in order to provide at least
800 iterations in stage 2 for all strategies. The averages for various
measures of computational effort and achievement over all 120 problems
for these three stage one strategies are shown in Table 2.8 below. The
column headed “probs < 1%”, shows the number of problems solved to a
gap of 1% or less by the strategy, while the last column gives the number

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 21

of these successful runs where the best solution was found at the first or
second GRG call.

Table 2.7. OQNLP and DICOPT results for MINLP problems
 P

R
O

B

 O
Q

N
LP

: G
R

G
 C

A
LL

S

 O
Q

N
LP

: T
O

TA
L

R
U

N
TI

M
E

 O
Q

N
LP

: T
IM

E
TO

 B
ES

T
SO

L.

 O
Q

N
LP

: %
 G

A
P

TP
 B

ES
T

K
N

O
W

N
 S

O
L.

 D
IC

O
PT

 IT
N

S

 D
IC

O
PT

TE

R
M

IN
A

TI
O

N

 D
IC

O
PT

: R
U

N
TI

M
E

 D
IC

O
PT

: %
 G

A
P

TP
 B

ES
T

K
N

O
W

N
 S

O
L.

EX12_2_2 1 2.04 0.53 0.00 2 infes mip 2.26 0.00
EX12_2_1 18 1.25 0.54 0.00 F nlp 1 infes 0.06 F
EX12_2_6 7 0.4 0.31 0.00 0 Relaxed nlp integer 0.05 0.00
EX9_2_9 3 1.73 0.42 0.00 0 milp 0.05 0.00
EX12_2_3 20 1.96 1.11 0.00 3 worsen 0.48 0.00
EX9_1_9 21 8.01 2.41 0.00 0 milp 0.11 0.00
EX12_2_5 6 2.65 0.91 0.00 3 worsen 0.4 0.00
EX9_1_6 32 6.73 1.53 0.00 0 milp 0.11 0.00
EX9_1_7 41 9.64 4 0.00 0 milp 0.28 0.00
EX9_1_3 42 11.1 2.49 0.00 0 milp 0.11 0.00
EX12_2_4 88 4.06 3.67 5.43 3 worsen 0.45 0.00

Table 2.8. Effects of varying the number of stage one iterations

 S
TA

G
E

1
IT

N
S

 I
TN

S
TO

 B
ES

T

 G
R

G
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

G
R

G
 C

A
LL

S

 L
O

C
A

LS
 F

O
U

N
D

 F
C

N
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

FC
N

 C
A

LL
S

 T
IM

E
TO

 B
ES

T

 T
O

TA
L

TI
M

E

 P
R

O
B

S
<1

%

 P
R

O
B

S
IN

 1
 O

R
 2

 G
R

G
 C

A
LL

S

163.4 235.6 5.1 27.4 12.6 2127.2 13263.2 5.0 15.9 114 (78,11)
200 272.5 4.0 20.6 8.8 4001.5 13327.7 4.7 11.4 114 (87,7)
300 392.4 5.0 23.0 12.1 6549.9 17672.4 8.1 16.4 109 (90,2)

Examining this table, we see that the iterations and function calls to

find the best solution increase with the number of stage one iterations.
This is as expected, since the first GRG call comes at the end of stage
one, whose purpose is to provide a high quality starting point for GRG.

22

However, several other effort measures show a minimum at 200 initial
iterations: grg calls to best, total grg calls, time to best, and total time.
The number of problems solved in one or two GRG calls is also
maximized for 200 initial iterations, although the differences between the
three strategies are small. Since both the “1gen” and “200” strategies
have the same number of problems solved to within a 1% gap, these
results imply a mild preference for the (200,1000) strategy.

The benefits of starting stage 2 earlier are: (1) the best solution is often
found earlier, since the first GRG call usually finds the best solution, and
(2) trial points which would be skipped in a longer stage one are eligible
to be GRG starting points, and can lead to good GRG solutions. Since the
population loses diversity as it is updated by the aggressive update
currently used in OptQuest, these missed opportunities may not recur
before the population is reinitialized. The advantages of a longer stage
one are: (1) The best point found by OptQuest in a longer stage one
should, on average, have higher quality than in a shorter one, which leads
to somewhat better results on the first GRG call, and (2) these higher
quality best points should have lower values for the exact penalty
function, 1P , which becomes the initial value for the merit filter
threshold. This lower value leads to fewer GRG calls in stage 2, as
shown in Table 2.8. The number of GRG calls is also influenced by
other factors, so the effect is not monotonic. We believe that the superior
performance of the (200,1000) strategy is due to its achieving a best
balance between these competing effects.

8. Minimizing the Potential Energy of a Cluster of
Particles

The Floudas set of test problems includes two GAMS models that
minimize the potential energy of a cluster of N particles, using two
different potential energy functions. The decision variables are the x, y,
and z components of each particle. For the Lennard-Jones family of
potential energy minimization problems the objective is the summed
difference between the sixth and third powers of the reciprocal of the
squared Euclidean distance between each distinct pair of particles, where
the sixth power term arises from a strong short-range repulsive force and
the other term from a longer-range attractive force. Nonlinear constraints
are included to avoid objective function singularities where the distance
between one or more pairs of points is very small. If they are not
included, GAMS encounters many thousands of domain violations-these
still occur in the above formulation, but are less frequent. Particle 1 is
located at the origin, and three position components of particles 2 and 3
are fixed, so this family of problems has N-6 variables and N(N-1)
nonlinear constraints.

The second set of problems uses the Morse potential, where the
Euclidean distance appears in the argument of an exponential function.
There is no need to protect against domain violations here, so there are no

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 23

constraints except for upper and lower bounds of 5 and –5 on the
coordinates of each particle, as in the Lennard-Jones case. According to
Floudas (1999), pp. 186-194, these problems have a large number of local
minima, and this number increases rapidly with problem size. Thus they
are a rigorous test for global optimization algorithms.

Results of applying OQNLP to these two problem classes using 200
stage one and 1000 total iterations for several values of N are shown in
Tables 2.9 and 2.10 below.

Table 2.9. Minimizing the Lennard-Jones potential function

 N

 V
A

R
S

 N
LI

N
 C

O
N

ST

 I
TN

S
TO

 B
ES

T

 G
R

G
 T

O
 B

ES
T

 T
O

TA
L

G
R

G

 G
R

G
 R

A
TI

O

 L
O

C
A

LS
 F

O
U

N
D

 F
N

C
 T

O
 B

ES
T

 T
O

TA
L

FC
N

 F
C

N
 R

A
TI

O

 T
IM

E
TO

 B
ES

T

 T
O

TA
L

TI
M

E

 T
IM

E
R

A
TI

O

 G
A

P
, %

5 9 10 201 1 16 0.06 8 447 6669 0.07 0.1 1.21 0.08 0.00
10 24 45 437 7 15 0.47 14 6296 13220 0.48 5.07 10.32 0.49 0.00
15 39 105 252 4 17 0.24 17 4775 20641 0.23 9.07 37.39 0.24 0.00
20 54 190 476 11 21 0.52 21 11607 20402 0.57 39.49 69.25 0.57 0.00
25 69 300 478 9 58 0.16 58 13900 109183 0.13 74.87 570.2 0.13 2.71
30 84 435 730 27 48 0.56 48 51221 85873 0.60 399.17 668.8 0.60 1.71

avg 46.5 180.8 429 9.8 29.2 0.3 27.7 14707.7 42664.7 0.3 88.0 226.2 0.4 0.7

Table 2.10. Minimizing the Morse potential function

OQNLP finds the Morse potential easier to minimize, and solves the 7

smallest instances to essentially zero gaps and the N=50 case to a .14%
gap. The 4 smallest instances of the Lennard-Jones problems are also
solved to near-zero gaps, but the two largest have gaps of 2.7% and 1.7%
respectively. We attribute this partially to the occurrence of many
domain violations during the GRG runs. The N=25 run had 93,926

 N

 V
A

R
S

 N
LI

N
 C

O
N

ST

 I
TN

S
TO

 B
ES

T

 G
R

G
 T

O
 B

ES
T

 T
O

TA
L

G
R

G

 G
R

G
 R

A
TI

O

 L
O

C
A

LS
 F

O
U

N
D

 F
N

C
 T

O
 B

ES
T

 T
O

TA
L

FC
N

 F
C

N
 R

A
TI

O

 T
IM

E
TO

 B
ES

T

 T
O

TA
L

TI
M

E

 T
IM

E
R

A
TI

O

 G
A

P,
 %

5 9 0 201 1 12 0.08 9 328 2666 0.12 0.05 0.31 0.16 0.00
10 24 0 201 1 7 0.14 7 663 3420 0.19 0.37 1.66 0.22 0.00
15 39 0 201 1 14 0.07 14 687 7826 0.09 0.9 8.32 0.11 0.00
20 54 0 284 4 23 0.17 23 1593 10427 0.15 3.42 20 0.17 0.00
25 69 0 300 3 59 0.05 59 2125 31294 0.07 7.2 88.67 0.08 0.00
30 84 0 268 4 41 0.10 41 3196 28385 0.11 15.23 117.2 0.13 0.00
40 114 0 476 12 51 0.24 51 9848 41782 0.24 76.89 306 0.25 0.00
50 144 0 262 4 11 0.36 11 4233 11824 0.36 56.39 151.6 0.37 0.14

avg 274.13 3.75 27.25 0.15 26.88 2834.13 17203 0.17 20.06 86.72 0.19 0.02

24

divides by zero and 6717 integer power overflows, while the
corresponding figures for N=30 were 133,490 and 9551.

The computational effort needed to achieve these excellent results is
quite modest. As before, the ratio columns are the effort to find the best
solution divided by total effort, and these ratios are generally less than 0.3
for the Morse potential, but occasionally above 0.5 for the Lennard-Jones.
Both function calls and GRG calls to achieve the best solution are quite
small, and, for the Morse function, they do not increase rapidly with N.
The number of local minima found increases rapidly with N, and is
around 60 for N=30 or above. This number is usually equal to the
number of GRG calls, so GRG almost always finds a different local
solution at each start.

Results of solving the two Lennard-Jones problems with gaps larger
than 1% using 200 stage one and 5000 total iterations are shown in Table
2.11 below

Table 2.11. Solving with 5000 iterations

N

V
A

R
S

N
LI

N
 C

O
N

ST

IT
N

S
TO

 B
ES

T

G
R

G
 T

O
 B

ES
T

TO
TA

L
G

R
G

G
R

G
 R

A
TI

O

LO
C

A
LS

 F
O

U
N

D

FC
N

 T
O

 B
ES

T

 TO
TA

L
FC

N

FC
N

 R
A

TI
O

TI
M

E
TO

 B
ES

T

TO
TA

L
TI

M
E

TI
M

E
R

A
TI

O

G
A

P,
 %

B
N

D

25 69 300 4089 339 436 0.78 436 664754 820883 0.81 3472.6 4290 0.81 0.00 5

30 84 435 240 5 33 0.15 33 9856 69471 0.14 80.11 554.8 0.14 3.18 5

30 84 435 2486 162 414 0.39 414 188479 432148 0.44 1496 3405 0.44 0.67 3

The N=25 problem is solved to a near-zero gap, but the gap for the

N=30 problem (row 2 of the table) actually increases from 1.71% with
1000 iterations to 3.18% with 5000. This is because some aspects of the
OptQuest solution strategy depend on the iteration limit, so the two runs
use a different sequence of trial points in their first 1000 iterations. The
search is more aggressive when there are only 1000 iterations allowed,
and this aggressiveness leads to a better final solution in the shorter run.
However, if the parameter bnd (each variable has bounds of (-bnd,bnd)) is
decreased from 5 to 3, the gap for 5000 iterations decreases to 0.67%,
showing the benefits of searching within a smaller rectangle. The
computational effort to achieve these improved outcomes, compared to
the shorter runs, increases roughly by factors of 5 to 8.

9. Comparison with Random Starts
OptQuest was chosen as the provider of starting points because we felt

it would find good points quickly. As a first step to investigating this,
we selected the Morse and Lenard_jones potential functions described in
section 8, generated either 100 or 200 independent uniformly distributed
starting points, started CONOPT2 from each of these, and observed how

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 25

many calls found the best known solution, as well as how many distinct
local solutions were found. This was done with a LOOP statement in the
GAMS models discussed in section 8, and compared with the number of
OQNLP calls required before CONOPT2 found the best solution. The
results provide a crude estimate of the relative volume of the basin of
attraction of the global optimum, as the ratio f=nglob/ncalls, where nglob
is the number of NLP solver calls leading to the global solution. The
expected number of calls before the global solution is first located is
simply 1/f. Results are shown in Tables 2.12 and 2.13 below. Since
CONOPT2 is used rather than LSGRG2, the number of OQNLP calls to
find the best solution differ from those in Tables 2.9 and 2.10.

Table 2.12. Morse potential function, random starts

A
TO

M
S

V
A

R
S

C
A

LL
S

N
G

LO
B

D
IS

TI
N

C
T

LO
CA

LS

EX
P

CA
LL

S
TO

 B
ES

T

O
Q

N
LP

C
A

LL
S

TO

B
ES

T

5 9 200 13 17 15.4 1

10 24 200 1 107 200 1

15 39 200 9 161 22.2 1

20 54 200 10 189 20 2

25 69 200 2 185 100 4

30 84 200 2 188 100 17

40 114 200 3 191 66.7 7

50 144 200 3 181 66.7 20

Table 2.13. Lennard-Jones potential, random starts

A
TO

M
S

V
A

R
S

C
A

LL
S

N
G

LO
B

D
IS

TI
N

C
T

LO
C

A
LS

EX
P

C
A

LL
S

TO
 B

ES
T

O
Q

N
LP

C

A
LL

S
TO

B

ES
T

5 9 100 99 2 1.0 1

10 24 100 4 27 25.0 21

15 39 100 3 85 33.3 6

20 54 200 2 167 100 67

For both problems, OQNLP finds the best solution in fewer solver

calls than the expected number of calls to the best solution for random
starts, much fewer for the Morse potential function. For both problem
sets, the relative volume estimate f decreases quickly as problem size
increases, and many more than 200 solver calls are needed to estimate it
accurately. For the larger numbers of atoms, almost every solver call
leads to a different local minimum.

26

10. Summary and Future Research
While the performance of this “base case” OQNLP algorithm on

problems with only continuous variables is quite good, there are options
which promise improvements. OptQuest’s search is usually more efficient
when the initial population contains high quality solutions. No such
solutions are supplied in the computational experiments described here.
A way to provide one good solution is to call GRG at the start of stage
one, communicating the local optimum found to OptQuest as a possible
member of its initial population. GRG’s starting point could be either
user-provided, or the best point found in some initial set of OptQuest
iterations (perhaps a few hundred as in the current stage one). The latter
option is equivalent to adding a new stage one consisting of these initial
OptQuest iterations, calling GRG from the best stage one solution (stage
2), and doing a stage 3 by placing the GRG solution as a candidate point
in a newly initialized population, before performing another set of
OptQuest iterations. In our computational experiments, the GRG solution
resulting from a start at the best point from 200 or so OptQuest iterations
is globally optimal in about 75% of the problems solved. Hence the
initial stage 3 population would often contain the global optimum, plus
points diverse from it. The final stage (4) would be the current stage 2,
where GRG is called repeatedly at points which are accepted by the
distance and merit filters. We are currently implementing this option.

The above idea is naturally extended by communicating other GRG
solutions to OptQuest during (the current) stage 2, but this must be done
in a way that maintains enough diversity in the population. Hence only
unique local solutions should be sent to OptQuest, and these should not be
too close to one another. Some distance threshold must be devised, and
OptQuest would receive only local solutions whose distance from the
nearest previously found local solution is greater than the threshold.

In problems with discrete variables, high quality points for OptQuest’s
initial population can be determined by solving the relaxed MINLP,
where all discrete variables are allowed to be continuous within their
bounds. If all discrete variables take on allowed values, this solution is
at least locally optimal. If not, various rounding procedures can be
applied to it to generate one or more high quality discrete solutions. We
are currently implementing this option as well.

Another promising option for MINLP’s is to “hide” the continuous
variables from OptQuest, which searches only over the space of discrete
variables. It is aware only of the constraints involving only discrete
variables. This allows it to focus its attention on these key variables,
which GRG cannot vary. That is, OptQuest is applied to the projection
of the problem (1.1)-(1.4) onto y-space. This projected problem is to
minimize

),,),(|),((min)(21 SxuyAxAlguyxGglyxfyF x ∈≤+≤≤≤=

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 27

over all constraints involving only y. GRG is then applied to the x sub-
problem on the right hand side of the above equation. As is done
currently, GRG would fix the discrete variables at values specified by
OptQuest, and optimize over the continuous variables. If GRG finds a
feasible solution, its optimal objective value is returned to OptQuest. If
not, the exact penalty function value of this solution is returned, using
some set of sufficiently large penalty weights. These GRG solutions
should be of much higher quality than the continuous variable values
generated by OptQuest in the current algorithm, where the continuous
variables are nowhere near locally optimal for the associated discrete
variables.

Comparative tests of OQNLP and alternative global optimization
methods are also needed. GAMS Development Company has interfaced
several global and MINLP solvers, including OQNLP, to GAMS, and this
will make the comparison process much easier by providing a common
computing environment and model base. The model base has been
expanded by a website recently introduced by GAMS Development
Company called “GAMS World” at www.gamsworld.org (see ad on the
back cover of ORMS Today, Aug 2001). This is divided into “MINLP
world” and “Global world”. MINLP world currently contains a set of
MINLP test problems coded in GAMS, facilities for converting models in
several other algebraic modeling languages to GAMS models, and other
information on MINLP. Global world contains similar information for
global optimization. We also plan comparative tests with the global
optimizers in Frontline Systems Premium Excel Solver.

Appendix
Detailed computational results for 120 Floudas test problems.

Table 2.3. Results for Floudas GAMS problems with no discrete variables

 P
RO

B
LE

M
 N

A
M

E

 V
A

R
S

 L
IN

 C
O

N
ST

 N
O

N
LI

N
 C

O
N

ST

IN
IT

 IT
N

S

 I
TN

S
TO

 B
ES

T

 G
R

G
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

G
R

G
 C

A
LL

S

 L
O

C
A

LS
 F

O
U

N
D

 F
CN

 C
A

LL
S

TO
 B

ES
T

 T
O

TA
L

FC
N

 C
A

LL
S

 T
IM

E
TO

 B
ES

T
(S

EC
)

 T
O

TA
L

TI
M

E
(S

EC
)

 M
A

X
 A

B
S

X
 C

O
M

P

 G
A

P,
 %

EX4_1_1 1 0 0 200 201 1 5 1 211 1139 0.17 0.61 1.19 0.000

EX4_1_2 1 0 0 200 201 1 6 1 211 1208 0.22 0.99 1.09 0.000

EX4_1_3 1 0 0 200 201 1 4 1 212 1068 0.17 0.5 6.33 0.000

EX4_1_4 1 0 0 200 201 1 8 2 202 1090 0.16 0.49 2 0.000

EX4_1_6 1 0 0 200 201 1 7 2 212 1119 0.17 0.55 3 0.000

EX4_1_7 1 0 0 200 201 1 12 1 207 1190 0.16 0.71 1 0.000

28

Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d)
 P

RO
B

LE
M

 N
A

M
E

 V
A

RS

 L
IN

 C
O

N
ST

 N
O

N
LI

N
 C

O
N

ST

IN
IT

 IT
N

S

 I
TN

S
TO

 B
ES

T

 G
R

G
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

G
R

G
 C

A
LL

S

 L
O

C
A

LS
 F

O
U

N
D

 F
CN

 C
A

LL
S

TO
 B

ES
T

 T
O

TA
L

FC
N

 C
A

LL
S

 T
IM

E
TO

 B
ES

T
(S

EC
)

 T
O

TA
L

TI
M

E
(S

EC
)

 M
A

X
 A

B
S

X
 C

O
M

P

 G
A

P,
 %

EX8_1_2 1 0 0 200 201 1 15 3 208 1161 0.16 0.71 5.17 0.010

EX14_1_9 2 0 2 200 201 1 3 2 215 1069 0.22 0.6 347.31 0.000

EX4_1_5 2 0 0 200 201 1 8 2 202 1113 0.17 0.61 1.75 0.000

EX4_1_8 2 0 1 200 201 1 3 3 839 1392 0.66 0.94 3 -0.001

EX4_1_9 2 0 2 200 251 4 9 4 331 1186 0.28 0.66 3.44 -0.001

EX8_1_1 2 0 0 200 201 1 6 2 210 1110 0.16 0.6 2 0.000

EX8_1_3 2 0 0 200 201 1 2 1 226 1054 0.17 0.44 1 0.000

EX8_1_4 2 0 0 200 201 1 11 1 202 1154 0.16 0.66 0 0.000

EX8_1_5 2 0 0 200 201 1 6 2 218 1134 0.17 0.61 0.71 0.000

EX8_1_6 2 0 0 200 205 2 6 3 231 1098 0.22 0.55 8 0.000

EX14_1_1 3 0 4 200 201 1 7 4 223 1367 0.28 0.93 3.39 0.003

EX14_1_3 3 0 4 200 201 1 12 6 216 2016 0.17 1.6 6.94 0.002

EX14_1_4 3 0 4 200 201 1 9 4 235 1633 0.27 1.26 3.14 0.000

EX3_1_4 3 2 1 200 201 1 13 3 202 1329 0.39 1.93 3 0.000

EX6_2_11 3 1 0 200 201 1 9 2 229 1529 1.15 5.66 0.99 0.000

EX6_2_6 3 1 0 200 201 1 10 2 211 1379 1.1 5.11 0.94 0.000

EX6_2_8 3 1 0 200 201 1 23 3 235 1893 1.26 6.37 0.97 -0.001

Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d)

PR
O

B
LE

M
 N

A
M

E

 V
A

R
S

 L
IN

 C
O

N
ST

 N
O

N
LI

N
 C

O
N

ST

IN
IT

 IT
N

S

 I
TN

S
TO

 B
ES

T

 G
R

G
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

G
R

G
 C

A
LL

S

 L
O

C
A

LS
 F

O
U

N
D

 F
C

N
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

FC
N

 C
A

LL
S

 T
IM

E
TO

 B
ES

T
(S

EC
)

 T
O

TA
L

TI
M

E
(S

EC
)

 M
A

X
 A

B
S

X
 C

O
M

P

 G
A

P,
 %

EX14_1_8_N 3 0 0 200 548 6 9 2 726 1256 0.54 0.98 0.65 0.013

EX6_1_2 4 1 2 200 201 1 8 2 233 1890 0.82 4.06 1 0.006

EX6_2_12 4 2 0 200 201 1 14 4 232 1716 0.99 5.06 0.5 0.000

EX6_2_14 4 2 0 200 201 1 17 2 207 1221 0.66 3.63 0.5 -57.797

EX6_2_9 4 2 0 200 201 1 23 2 260 2885 1.05 7.03 0.5 0.000

EX7_3_1 4 6 1 200 201 1 10 1 805 8361 1.31 11.59 1073.39 0.003

EX7_3_2 4 6 1 200 201 1 4 1 381 1288 1.53 5.43 1.28 0.000

EX9_2_8 4 3 2 200 201 1 5 1 202 1020 0.44 2.64 1 0.000

averages 2.5 0.9 0.8 200.0 213.9 1.3 9.2 2.3 281.7 1582.8 0.5 2.4 47.9 -1.9

EX14_2_1 5 1 6 200 201 1 13 1 247 1812 0.34 1.11 54.25 0.000

EX14_2_4 5 1 6 200 201 1 13 1 271 1990 0.38 1.22 72.97 0.000

EX14_2_6 5 1 6 200 201 1 9 1 245 1549 0.38 1.16 61.59 0.000

EX14_2_8 5 1 4 200 201 1 1 1 230 1029 0.29 0.78 55.73 0.000

EX2_1_1 5 1 0 200 201 1 4 4 202 1007 0.05 0.16 1 2.778

EX3_1_2 5 0 6 200 201 1 8 1 235 1364 0.04 0.14 78 -0.002

EX7_3_3 5 6 2 200 201 1 7 2 254 11992 0.36 2 2.81 0.002

EX8_1_7 5 0 5 200 291 3 7 3 905 3191 0.06 0.16 2.84 0.001

EX8_5_3 5 3 2 200 201 1 8 3 223 1393 0.39 1.24 0.98 -0.013

EX8_5_4 5 3 2 200 201 1 12 4 303 2004 0.43 1.53 0.78 -0.006

EX8_5_5 5 3 2 200 346 4 10 3 692 2066 0.53 1.41 0.8 -0.345

EX14_1_2 6 0 9 200 201 1 20 1 480 6125 0.05 0.33 31.33 0.000

EX14_1_5 6 4 2 200 201 1 5 2 202 1084 0.47 1.48 1.42 0.000

EX14_2_2 6 1 4 200 201 1 9 1 222 1207 0.34 0.86 58.13 0.000

EX14_2_5 6 1 4 200 201 1 12 1 225 1320 0.37 1 77.19 0.000

EX14_2_7 6 1 8 200 201 1 5 1 233 1229 0.61 2.02 63.56 0.000

Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d)

 P
R

O
B

LE
M

 N
A

M
E

 V
A

R
S

 L
IN

 C
O

N
ST

 N
O

N
LI

N
 C

O
N

ST

IN
IT

 IT
N

S

 I
TN

S
TO

 B
ES

T

 G
R

G
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

G
R

G
 C

A
LL

S

 L
O

C
A

LS
 F

O
U

N
D

 F
C

N
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

FC
N

 C
A

LL
S

 T
IM

E
TO

 B
ES

T
(S

EC
)

 T
O

TA
L

TI
M

E
(S

EC
)

 M
A

X
 A

B
S

X
 C

O
M

P

 G
A

P,
 %

EX14_2_9 6 1 4 200 201 1 12 1 219 1253 0.36 1.08 60.63 0.000

EX2_1_2 6 2 0 200 201 1 16 1 202 1246 0.16 0.63 20 0.000

EX2_1_4 6 5 0 200 201 1 8 1 208 1116 0.35 0.76 6 0.000

EX3_1_3 6 4 2 200 201 1 9 5 202 1062 0.18 0.5 10 0.000

EX6_1_4 6 1 3 200 201 1 4 2 546 1974 0.45 1.25 1 -0.004

EX6_2_10 6 3 0 200 201 1 6 1 242 1426 0.46 2.01 0.4 -0.557

EX6_2_13 6 3 0 200 201 1 16 13 202 1695 0.45 2.28 0.62 -0.001

EX7_2_2 6 0 5 200 201 1 9 6 242 1458 0.04 0.14 11.02 0.000

EX8_1_8 6 0 5 200 201 1 9 6 242 1458 0.04 0.14 11.02 -0.001

EX8_5_1 6 3 2 200 224 3 13 11 559 3437 0.46 1.77 0.83 0.931

EX8_5_2 6 2 2 200 282 2 3 2 591 1860 0.47 1.75 0.69 -0.123

EX8_5_6 6 2 2 200 201 1 8 1 283 1661 0.48 1.64 0.67 0.003

EX14_2_3 7 1 8 200 201 1 3 1 240 1150 0.5 1.58 57.16 0.000

EX5_2_4 7 3 3 200 201 1 50 1 335 7541 0.24 0.98 100 0.000

EX7_2_1 7` 2 12 200 218 3 31 10 1709 49954 0.32 2.29 3031.6 -2.176

averages 5.7 1.9 3.7 200.0 212.5 1.3 11.0 3.0 361.0 3827.5 0.3 1.1 125.0 0.0

EX3_1_1 8 3 3 200 201 1 11 1 1084 8837 0.29 0.74 5109.9 -0.001

EX5_4_2 8 3 3 200 201 1 11 1 539 4761 0.24 0.75 5485.3 0.000

EX6_1_1 8 2 4 200 872 12 14 10 1622 1762 0.66 0.76 1 0.246

EX7_2_3 8 3 3 200 291 5 5 3 2388 3097 0.33 0.8 5110.2 0.003

EX7_2_4 8 0 4 200 657 6 12 6 3586 8191 0.17 0.33 9.81 -0.673

EX9_2_4 8 5 2 200 201 1 34 1 210 1357 0.32 1.28 3 0.000

EX9_2_5 8 4 3 200 201 1 2 1 211 1019 0.55 1.64 7 0.000

EX14_1_6 9 1 14 200 201 1 13 4 290 2822 0.57 1.96 1 0.000

EX6_2_5 9 3 0 200 519 16 22 20 1961 3205 1.52 2.65 31.46 -0.003

EX6_2_7 9 3 0 200 201 1 14 3 272 2373 0.51 2.25 0.45 -0.004

EX14_1_7 11 0 17 200 209 2 22 13 1099 10871 0.14 1.02 10 13.499

EX2_1_5 10 11 0 200 201 1 85 1 266 5570 0.84 3.4 1 0.002

EX2_1_6 11 0 5 200 253 2 3 2 256 1007 0.77 1.85 1 15.000

EX2_1_9 11 1 0 200 201 1 11 3 212 1333 0.31 1.09 0.33 0.000

EX9_1_2 10 5 4 200 201 1 4 1 202 1013 0.37 1.27 4 0.000

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 31

Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d)
 P

RO
B

LE
M

 N
A

M
E

 V
A

R
S

 L
IN

 C
O

N
ST

 N
O

N
LI

N
 C

O
N

ST

IN
IT

 IT
N

S

 I
TN

S
TO

 B
ES

T

 G
R

G
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

G
R

G
 C

A
LL

S

 L
O

C
A

LS
 F

O
U

N
D

 F
CN

 C
A

LL
S

TO
 B

ES
T

 T
O

TA
L

FC
N

 C
A

LL
S

 T
IM

E
TO

 B
ES

T
(S

EC
)

 T
O

TA
L

TI
M

E
(S

EC
)

 M
A

X
 A

B
S

X
 C

O
M

P

 G
A

P,
 %

EX9_1_4 10 5 4 200 201 1 2 1 202 1009 0.54 1.58 24 0.000

EX9_2_1 10 5 4 200 293 2 17 15 296 1038 0.68 2.02 16.38 0.000

EX9_2_2 10 7 4 200 201 1 31 3 207 1216 0.36 1.36 20 -0.021

EX9_2_7 10 5 4 200 293 2 17 15 296 1038 0.69 1.95 16.38 0.000

EX6_1_3 12 0 9 200 361 8 24 23 1679 4837 1.07 2.26 1 0.354

EX7_3_4 12 0 17 200 201 1 7 1 793 5393 0.04 0.25 731.97 0.000

averages 9.5 3.1 5.0 200 293.3 3.2 17.2 6.1 841.5 3416.6 0.5 1.5 789.8 1.4

EX2_1_3 14 9 0 200 201 1 13 5 202 1199 0.31 0.9 3 0.000

EX9_1_1 14 7 5 200 201 1 1 1 211 1010 0.72 2.69 14 0.000

EX9_1_5 14 7 5 200 201 1 12 12 202 1023 0.34 1.33 50.59 0.000

EX8_4_6 14 0 8 200 263 3 52 28 3293 44031 0.23 2.17 10 0.001

EX9_1_10 15 7 5 200 201 1 27 9 209 1197 0.32 1.41 100 0.000

EX9_1_8 15 7 5 200 201 1 27 9 209 1197 0.35 1.49 100 -54.545

EX8_4_5 16 0 11 200 201 1 14 2 341 2704 0.1 0.3 0.23 0.000

EX5_4_3 17 9 4 200 340 12 58 2 789 3762 0.77 1.95 310 0.001

EX9_2_3 17 9 6 200 201 1 5 1 202 1051 0.7 2.36 30 0.000

EX9_2_6 17 6 6 200 201 1 8 1 202 1051 0.37 1.28 1 0.000

EX8_4_4 18 0 12 200 201 1 71 1 293 8462 0.07 0.67 5.13 0.000

EX2_1_10 21 10 0 200 201 1 79 3 283 9854 0.73 2.08 66.35 0.000

EX2_1_7_1 21 10 0 200 201 1 10 6 217 1474 4.91 12.62 28.8 0.000

EX2_1_7_2 21 10 0 200 201 1 20 13 217 2245 4.92 10.62 28.8 0.000

EX2_1_7_3 21 10 0 200 201 1 18 10 217 2078 4.84 10.56 28.8 0.000

EX2_1_7_4 21 10 0 200 201 1 12 7 217 1600 4.99 12.43 28.8 0.000

EX2_1_7_5 21 10 0 200 201 1 9 6 291 1584 3.66 9.95 28.8 1.087

averages 17.5 7.1 3.9 200 212.8 1.8 25.6 6.8 446.8 5030.7 1.7 4.4 49.1 -3.1

32

Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d)
 P

R
O

B
LE

M
 N

A
M

E

 V
A

R
S

 L
IN

 C
O

N
ST

 N
O

N
LI

N
 C

O
N

ST

IN
IT

 IT
N

S

 I
TN

S
TO

 B
ES

T

 G
R

G
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

G
R

G
 C

A
LL

S

 L
O

C
A

LS
 F

O
U

N
D

 F
C

N
 C

A
LL

S
TO

 B
ES

T

 T
O

TA
L

FC
N

 C
A

LL
S

 T
IM

E
TO

 B
ES

T
(S

EC
)

 T
O

TA
L

TI
M

E
(S

EC
)

 M
A

X
 A

B
S

X
 C

O
M

P

 G
A

P,
 %

EX8_4_1 22 0 10 200 201 1 8 1 257 1774 0.08 0.26 7.5 0.001

EX5_3_2 22 7 9 200 201 1 42 1 471 13484 0.56 1.58 300 0.000

EX2_1_8 24 10 0 200 605 15 20 6 1041 1506 1.6 2.5 24 27.391

EX8_4_2 24 0 10 200 201 1 4 1 300 1400 0.1 0.3 7.45 -0.004

EX5_4_4 27 13 6 200 564 29 75 6 5346 14621 2.15 4.17 200 0.002

EX5_2_5 32 8 11 200 556 21 50 43 4550 15865 2.15 4.21 200 0.000

EX8_4_3 52 0 25 200 201 1 10 1 260 3176 0.36 1.42 4.51 0.000

EX8_2_1 55 6 25 200 222 2 40 7 447 4851 1.44 5.26 236.25 0.001

EX8_2_4 55 6 75 200 201 1 37 7 377 7041 1.74 6.18 216 0.003

EX8_4_7 62 0 40 200 201 1 21 2 340 30603 0.75 5.13 754.96 0.022

EX8_3_9 78 18 27 200 259 7 67 61 2268 21490 5.11 17.32 1000 -0.100

averages 41.2 6.2 21.6 200.0 310.2 7.3 34.0 12.4 1423.4 10528.3 1.5 4.4 268.2 2.5

EX8_3_1 115 17 59 200 307 10 38 28 67165 152573 30.72 81.99 10000 0.29

EX8_3_2 110 27 49 200 945 15 18 18 12254 16103 33.82 35.21 243.85 0.00

EX8_3_3 110 27 49 200 201 1 19 18 2357 28809 8.65 37.17 223.22 0.00

EX8_3_4 110 27 49 200 203 2 23 22 4875 31568 10.49 39.66 105.54 0.00

EX8_3_5 110 27 49 200 201 1 13 11 2442 12746 10.54 39.59 127.28 0.10

EX8_3_6 110 27 49 200 511 14 37 29 6760 56896 20.21 44.97 1000 0

EX8_3_7 126 27 65 200 201 1 8 7 2868 6401 10.99 32.76 100 9.7517

EX8_3_8 126 28 65 200 414 20 45 42 79983 156082 51.32 101.55 10000 0.0004

EX8_3_10 141 43 65 200 549 20 39 28 7188 39045 35.68 76.39 6000 0.3604

averages 117.6 27.8 55.4 200.0 403.1 9.3 25.3 21.9 14840.9 43456.3 22.7 50.9 2225.0 1.3

References
Biegler, L.T., I.E. Grossman and A.W. Westerberg (1997) Systematic

Methods of Chemical Process Design, Prentice-Hall, Englewood
Cliffs, NJ.

Brooke, A., D. Kendrick, A. Meeraus and R. Raman (1992) GAMS: A
User's Guide, Boyd and Fraser, Danvers, MA.

Dixon, L. and G.P. Szego (1975) “Towards Global Optimization,” in
Proceedings of a Workshop at the University of Cagliari, Italy, North
Holland.

A Multistart SS Heuristic for Smooth NLP and MINLP Problems 33

Drud, A. (1994) “CONOPT—A Large-Scale GRG-Code,” ORSA Journal
on Computing, 6(2):207-216.

Floudas, C. (1995) Nonlinear and Mixed-Integer Optimization, Oxford
University Press, New York.

Floudas C.A., P.M. Pardalos, C.S. Adjiman, W.R. Esposito, Z. Gumus,
S.T. Harding, J.L. Klepeis, C.A. Meyer and C.A. Schweiger (1999)
Handbook of Test Problems in Local and Global Optimization, Kluwer
Academic Publishers.

Frontline Systems, Inc. (2000) “Premium Solver Platform User Guide,”
95-96.

Laguna, M. and R. Martí (2000) “Experimental Testing of Advanced
Scatter Search Designs for Global Optimization of Multimodal
Functions,” Working Paper, Department D’Estadistica i Investigacio
Operativa, Universitat de Valencia, Burjassot 46100, Spain.

Laguna, M. and R. Martí (2001) “The OptQuest Callable Library,” to
appear in Optimization Software Class Libraries, Stefan Voβ and D.
Woodruff, eds., Kluwer Academic Publishers, Boston.

Locatelli, M. and F. Schoen (1999) “Random Linkage: A Family of
Acceptance/Rejection Algorithms for Global Optimization,” Math.
Programming, 85(2): 379-396.

Murtagh, B.A. and M.A. Saunders (1982) “A Projected Lagrangian
Algorithm and Its Implementation for Sparse Nonlinear Constraints,”
Mathematical Programming Study, 16: 84-117.

Nash, S.G. (1998) “Nonlinear Programming,” OR/MS Today, 36-45.
Nash, S.G and A. Sofer (1996) Linear and Nonlinear Programming, the

McGraw-Hill Companies, Inc.
Nocedal, J., and S. J. Wright (1999) Numerical Optimization, Springer

Series in Operations Research.
Rinnooy Kan, A.H.G. and G.T. Timmer (1987) “Stochastic Global

Optimization Methods; part I: Clustering Methods”, Mathematical
Programming, 37: 27-56.

Rinnooy Kan, A.H.G. and G.T. Timmer (1987) “Stochastic Global
Optimization Methods; part II: Multi Level Methods”, Mathematical
Programming, 37: 57-78.

Smith, S. and L. Lasdon (1992) “Solving Large Sparse Nonlinear
Programs Using GRG,” ORSA Journal on Computing, 4(1): 3-15.

