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Abstract: The algorithm described here, called OptQuest/NLP or OQNLP, is a 
heuristic designed to find global optima for pure and mixed integer 
nonlinear problems with many constraints and variables, where all problem 
functions are differentiable with respect to the continuous variables. It uses 
OptQuest, a commercial implementation of scatter search developed by 
OptTek Systems, Inc., to provide starting points for a gradient-based local 
NLP solver.  This solver seeks a local solution from a subset of these 
points, holding discrete variables fixed.  The procedure is motivated by 
our desire to combine the superior accuracy and feasibility-seeking 
behavior of gradient-based local NLP solvers with the global optimization 
abilities of OptQuest.  Computational results include 144 smooth NLP 
and MINLP problems due to Floudas et al, most with both linear and 
nonlinear constraints, coded in the GAMS modeling language. Some are 
quite large for global optimization, with over 100 variables and many 
constraints.  Global solutions to almost all problems are found in a small 
number of NLP solver calls, often one or two.  

Keywords: Global Optimization, Multistart Heuristic, Mixed Integer Nonlinear 
Programming, Scatter Search, Gradient Methods  
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1.  Introduction  
This paper describes a multistart heuristic algorithm designed to find 

global optima of smooth constrained nonlinear programs (NLPs) and 
mixed integer nonlinear programs (MINLPs).  It uses the widely used 
scatter search software OptQuest (Laguna and Martí, 2000) to generate 
trial points, which are candidate starting points for a local NLP solver.  
These are filtered to provide a smaller subset from which the local solver 
attempts to find a local optimum. Our implementation uses the 
generalized reduced gradient NLP solver GRG (Smith and Lasdon, 1993), 
but in principle any local NLP solver can be used, including ones that do 
not require derivatives.  However, we focus on gradient-based solvers 
because they are by far the most widely used, and currently are the only 
ones capable of solving NLPs with hundreds or thousands of variables 
and constraints. 

 
• Problem Statement 

The most general problem this algorithm can solve has the form 

minimize f(x,y) (1.1) 

subject to the nonlinear constraints 

guy)G(x,gl ≤≤                                      (1.2) 

the linear constraints 

uyAxAl ≤+≤ 21  (1.3) 

YySx ∈∈ ,  (1.4) 

where x is an n-dimensional vector of continuous decision variables, y is a 
p-dimensional vector of discrete decision variables, and the vectors gl, gu, 
l, u, contain upper and lower bounds for the nonlinear and linear 
constraints respectively.  The matrices 1A  and 2A  are 2m  by n and 

2m  by p respectively, and contain the coefficients of any linear 
constraints.  The set S is defined by simple bounds on x, and we assume 
that it is closed and bounded, i.e., that each component of x has a finite 
upper and lower bound.  This is required by the OptQuest procedure.  
The set Y is assumed to be finite, and is often the set of all p-dimensional 
binary or integer vectors y.  The objective function f and the 1m -
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dimensional vector of constraint functions G are assumed to have 
continuous first partial derivatives at all points in S x Y.  This is needed 
in order that a gradient-based local NLP solver be applicable to relaxed 
NLP subproblems formed from (1)-(3) by allowing the y variables to be 
continuous. 
 
• Multi-start Algorithms 

In this section, which reviews past work on multi-start algorithms, we 
focus on unconstrained problems where there are no discrete variables, 
since to the best of our knowledge multi-start algorithms have been 
investigated theoretically only in this context.  These problems have the 
form 

minimize f(x) (1.5) 

subject to Sx∈  (1.6) 

where all global minima of f are assumed to occur in the interior of S.  
By multi-start we mean any algorithm that attempts to find a global 
solution to (1.5)-(1.6) by starting a local NLP solver, denoted by L, from 
multiple starting points in S.  The most basic multi-start method 
generates uniformly distributed points in S, and starts L from each of 
these.  This is well known to converge to a global solution with 
probability one as the number of points approaches infinity--in fact, the 
best of the starting points converges as well.  This procedure is very 
inefficient because the same local solution is located many times.  A 
convergent procedure that largely overcomes this difficulty is called 
multi-level single linkage (MLSL) (Rinnooy Kan and Timmer, 1987).  
This uses a simple rule to exclude some potential starting points.  A 
uniformly distributed sample of N points in S is generated, and the 
objective, f, is evaluated at each point.  The points are sorted according 
to their f values, and the qN best points are retained, where q is an 
algorithm parameter between 0 and 1.  L is started from each point of 
this reduced sample, except if there is another sample point within a 
certain critical distance which has a lower f value.  L is also not started 
from sample points which are too near the boundary of S, or too close to a 
previously discovered local minimum.  Then, N additional uniformly 
distributed points are generated, and the procedure is applied to the union 
of these points and those retained from previous iterations.  The critical 
distance referred to above decreases each time a new set of sample points 
is added.  The authors show that, if the sampling continues indefinitely, 
each local minimum of f will be located, but the total number of local 
searches is finite with probability one.  They also develop Bayesian 
stopping rules, which incorporate assumptions about the costs and 
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potential benefits of further function evaluations, to determine when to 
stop the procedure. 

When the critical distance decreases, a point from which L was 
previously not started may become a starting point in the next cycle.  
Hence all sample points generated must be saved.  This also makes the 
choice of the sample size, N, important, since too small a sample leads to 
many revised decisions, while too large a sample will cause L to be 
started many times.   Recently, Locatelli and Schoen (1999) introduce a 
class of “Random Linkage” (RL) multi-start algorithms that retain the 
good convergence properties of MLSL, and do not require that past 
starting decisions be revised.  Uniformly distributed points are generated 
one at a time, and L is started from each point with a probability given by 
a nondecreasing function )(dφ , where d is the distance from the current 
sample point to the closest of the previous sample points with a better 
function value.  Assumptions on this function that give RL methods the 
same theoretical properties as MLSL are derived in the above reference. 

Recently, Fylstra et al. have implemented a version of MLSL which 
can solve constrained problems (Frontline Systems, Inc., 2000). See also 
www.frontsys.com.  Limited to problems with no discrete variables y, it 
uses the 1L  exact penalty function, defined as 

))(()(),(
1

1 ∑
=

+=
m

i
ii xgviolwxfwxP  (1.7) 

where the iw  are nonnegative penalty weights, 21 mmm += , and the 
vector g has been extended to include the linear constraints (1.4).  The 
function ))(( xgviol i is equal to the absolute amount by which the ith 
constraint is violated at the point x.  It is well known (see (Nash and 
Sofer, 1996) that if *x  is a local optimum of (1.1)-(1.4), *u  is a 
corresponding optimal multiplier vector, and the second order sufficiency 
conditions are satisfied at ),( ** ux , then if  

)( *
ii uabsw >  (1.8) 

*x  is a local unconstrained minimum of 1P .  If (1.1)-(1.4) has several 
local minima, and each iw  is larger than the maximum of all absolute 
multipliers for constraint i over all these optima, then 1P  has a local 
minimum at each of these local constrained minima.  Even though 1P  
is not a differentiable function of x, MLSL can be applied to it, and when 
a randomly generated trial point satisfies the MLSL criterion to be a 
starting point, any local solver for the smooth NLP problem can be started 
from that point.  The local solver need not make any reference to the 
exact penalty function 1P , whose only role is to provide function values 
to MLSL. We will use 1P  in the same way in our OQNLP algorithm. 
We are not aware of any theoretical investigations of this extended MLSL 
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procedure, so it must currently be regarded as a heuristic.  Comparative 
testing of this extension of MLSL and OQNLP is planned. 

2.  Scatter Search and the Optquest Callable Library 
We provide only a brief description of Scatter Search and its 

implementation in the OptQuest callable library here, since it is discussed 
in Laguna and Martí (2001) and in Laguna and Martí (2000). See also 
www.opttek.com. Like genetic algorithms (GAs) and other meta-
heuristics, scatter search operates on a set of solutions, called the 
population in the GA literature and the reference set in scatter search 
papers, that is maintained and updated from iteration to iteration.  Scatter 
search (SS) is a novel instance of evolutionary methods, because it 
violates the premise that evolutionary approaches must be based solely on 
randomization.  SS is also novel, in comparison to GAs, by being 
founded on strategies that were proposed as augmentations to GAs more 
than a decade after their debut in scatter search.  Scatter search embodies 
principles and strategies that are still not emulated by other evolutionary 
methods, and that prove advantageous for solving a variety of complex 
optimization problems. 

Scatter Search is designed to operate on a set of points, called 
reference points, which constitute good solutions obtained from previous 
solution efforts.  Notably, the basis for defining “good” includes special 
criteria such as diversity that purposefully go beyond the objective 
function value.  The approach systematically generates combinations of 
the reference points to create new points, each of which may (optionally) 
be mapped into an associated feasible point. The underlying combination 
mechanism uses linear combinations. 

OptQuest is available as a callable library written in C, which can be 
invoked from any C program, or as a dynamic linked library (DLL) which 
can be called from a variety of languages including C, Visual Basic, and 
Java.  The callable library consists of a set of functions which (a) input 
the problem size and data, (b) set options and tolerances, (c) create an 
initial reference set, (d) retrieve a trial solution to be evaluated and, (e) 
communicate these objective and constraint values back to OptQuest, 
which uses them as the input to update the reference set.  For a complete 
description, see Laguna and Martí (2001). 

3.  Gradient-Based NLP Solver and GRG 
There are many papers and texts discussing gradient-based NLP 

solvers, e.g., Nash and Sofer (1996), Nocedal and Wright (1999), Edgar, 
Himmelblau and Lasdon (2001).  These solve problems of the form 
(1.1)-(1.4), but with no discrete (y) variables.  They require a starting 
point as input, and use values and gradients of the problem functions to 
generate a sequence of points which, under fairly general smoothness and 
regularity conditions, converges to a local optimum.  The main classes 
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of algorithms in widespread use today are Successive Quadratic 
Programming (SQP) and Generalized Reduced Gradient (GRG)-see 
Edgar, Himmelblau and Lasdon (2001), Chapter 8.  The algorithm 
implemented in the widely used MINOS solver (Murtagh and Saunders, 
1982) is similar to SQP.  If there are nonlinear constraints, SQP and 
MINOS generate a sequence of points that usually violate the nonlinear 
constraints, with the violations decreasing to within a specified feasibility 
tolerance as the sequence converges to a local optimum.  GRG 
algorithms have a simplex-like phase 1-phase 2 structure.  Phase 1 
begins with the given starting point and, if it is not feasible, attempts to 
find a feasible point by minimizing the sum of constraint violations.  If 
this effort terminates with some constraints violated, the problem is 
assumed to be infeasible.  However, this local optimum of the phase 1 
objective may not be global, so a feasible point may exist.  If a feasible 
point is found, phase 2 uses it as its starting point, and proceeds to 
minimize the true objective.  Both phases consist of a sequence of line 
searches, each of which produces a feasible point with an objective value 
no worse (and usually better) than its predecessor. 

There are several parameters and options that strongly influence the 
reliability and efficiency of a GRG implementation.  The feasibility 
tolerance, ft, (default value 1.e-4) determines when a constraint is 
satisfied.  If the constraint has the form lxg ≥)( , it is considered 
satisfied in the GRG code used here if 

))(0.1())(( labsftlxgabs +−≥− . 

The optimality tolerance, ot, (default value 1.e-4) and a number of 
consecutive iterations, nstop, (default value 10) determine when the 
current point is declared optimal.  This occurs when 

otkterrnorm ≤  

where kterrnorm is the infinity norm of the error in the Kuhn-Tucker 
conditions, or when 

))((0.1())()(( 1 kkk xfabsotxfxfabs +≤− +  

for nstop consecutive values of the iteration index, k.   
Several good commercially available implementations of GRG and 

SQP solvers exist—see Nash (1998) for a review.  As with any 
numerical analysis software, a local NLP solver can fail to find a local 
solution from a specified starting point.  The problem may be too badly 
conditioned, badly scaled, or too large for the solver, causing it to 
terminate at a point (feasible or infeasible) which is not locally optimal. 
While the reliability of the best current NLP solvers is quite high, these 
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difficulties occurred several times in our computational testing, and we 
discuss this in more detail later.  

Let L be a local NLP solver capable of solving (1.1)-(1.4), and assume 
that L converges to a local optimum for any starting point Sx ∈0 .  Let 

)( 0xL  be the locally optimal solution found by L starting from 0x , and 
let *

ix , i = 1,2,...,nloc be all the local optima of the problem.  The basin 
of attraction of the ith local optimum relative to L, denoted by B( *

ix ), is 
the set of all starting points in S from which the sequence of points 
generated by L converges to *

ix .  Formally:  

B( *
ix ) = })(,|{ *

000 ixxLSxx =∈ . (3.1) 

One measure of difficulty of a global optimization problem with 
unique global solution *

1x is the volume of B( *
1x ) divided by the volume 

of the rectangle, S, the relative volume of B( *
1x ).  The problem is trivial 

if this relative volume is 1, as it is for convex programs, and problem 
difficulty increases as this relative volume approaches zero.  

 

4. Comparing Search Methods and Gradient-Based       
NLP Solvers 

For smooth problems, the relative advantages of a search method like 
OptQuest over a gradient-based NLP solver are its ability to locate an 
approximation to a good local solution (often the global optimum), and 
the fact that it can handle discrete variables. Gradient-based NLP solvers 
converge to the “nearest” local solution, and have no facilities for discrete 
variables, unless they are imbedded in a rounding heuristic or branch-and-
bound method. Relative disadvantages of search methods are their limited 
accuracy, and their weak abilities to deal with equality constraints (more 
generally, narrow feasible regions). They find it difficult to satisfy many 
nonlinear constraints to high accuracy, but this is a strength of gradient-
based NLP solvers. Search methods also require an excessive number of 
iterations to find approximations to local or global optima accurate to 
more than 2 or 3 significant figures, while gradient-based solvers usually 
achieve 4 to 8-digit accuracy rapidly. 

The motivation for combining search and gradient-based solvers in a 
multi-start procedure is to achieve the advantages of both while avoiding 
the disadvantages of either.  Surprisingly, we have been unable to locate 
any published efforts in this direction, besides the Frontline extended 
MLSL method discussed in Section 2. 
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5.  The OQNLP Algorithm 
A pseudo-code description of the simplest OQNLP algorithm follows: 
 

• INITIALIZATION 
Read_Problem_Parameters (n, p, 1m , 2m , bounds, starting point); 
Setup_OptQuest_Parameters (size, iteration limits, population, 

accuracy, variables, bounds, constraints); 
Initialize_OptQuest_Population; 
 

• STAGE 1: INITIAL OPTQUEST ITERATIONS AND FIRST GRG 
CALL 
WHILE (unevaluated trial points from initial population remain) DO    
{ 
 Get (trial solution from OptQuest); 
 Evaluate (objective and constraint values at trial solution,); 
 Put (trial solution , objective and constraint values to OptQuest 
 database);  
}  
ENDDO 
Get_Best_Point_from_OptQuest_database (starting point); 
Call_GRG (starting point, local solution); 
threshold = 1P  value of local solution; 
 

• STAGE 2: MAIN ITERATIVE LOOP 
   WHILE (stopping criteria not met) DO  
   { 
 Get (trial solution from OptQuest); 
 Evaluate (objective and constraint values at trial solution,); 
 Put (trial solution, objective and constraint values to OptQuest 

database); 
Calculate_ Penalty_ Function (trial solution, 1P ); 

 IF (distance and merit filter criteria are satisfied) THEN  
      { 
    Call_GRG (trial solution, local solution); 
    Analyze_Solution (GRG Terminating Condition); 
    Update_Local_Solutions_Found; 
    Update_Largest_Lagrange_Multipliers_Found; 
 } 

ELSE IF ( 1P  > threshold for waitcycle consecutive iterations) 
increase threshold 

   }  
   ENDDO 

 
After initialization, there are two main stages.  In the “initial 

OptQuest iterations” stage, the objective and constraint values at all trial 
points generated by the initial OptQuest population (including the 
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population points themselves) are evaluated, and these values are returned 
to OptQuest, which computes its penalty function, P, at each point.  The 
point with the best P value is selected, and GRG is started from this point.  
If there are any discrete variables, y, they are fixed at their current values 
during the GRG solution. In general, the trial points are scattered within 
the rectangle defined by the bounds on the variables, so choosing the best 
corresponds to performing a coarse search over this rectangle.  If the 
best point falls inside the basin of attraction of the global optimum 
relative to the GRG solver (as it often does), then if the subsequent GRG 
call is successful, it will find a global optimum. This call also determines 
optimal Lagrange multiplier values, *u , for the constraints.  These are 
used to determine initial values for the penalty weights, iw , satisfying 
(1.8), which are used in the exact penalty function, 1P , defined in (1.7). 
All local optima found are stored in a linked list, along with the associated 
Lagrange multipliers and objective values.  Whenever a new local 
optimum is found, the penalty weights are updated so that (1.8) is 
satisfied over all known local optima. 

The main iterative loop of stage 2 obtains trial points from OptQuest, 
and starts GRG from the subset of these points determined by two filters.  
The distance filter helps insure that the GRG starting points are diverse, in 
the sense that they are not too close to any previously found local 
solution.  Its goal is to prevent GRG from starting more than once within 
the basin of attraction of any local optimum, so it plays the same role as 
the rule in the MLSL algorithm of Section 2, which does not start at a 
point if it is within a critical distance of a better point. When a local 
solution is found, it is stored in a linked list, ordered by its objective 
value, as is the Euclidean distance between it and the starting point that 
led to it.  If a local solution is located more than once, the maximum of 
these distances, maxdist, is updated and stored.  For each trial point, t, if 
the distance between t and any local solution already found is less than 
distfactor*maxdist, GRG is not started from the point, and we obtain the 
next trial solution from OptQuest. 

This distance filter implicitly assumes that the attraction basins are 
spherical, with radii at least maxdist. The default value of distfactor is 
0.75, and it can be set to any positive value. As distfactor approaches 
zero, the filtering effect vanishes, as would be appropriate if there were 
many closely spaced local solutions.  As it becomes larger than 1, the 
filtering effect increases until eventually GRG is never started. 

The merit filter helps insure that the GRG starting points have high 
quality, by not starting from candidate points whose exact penalty 
function value 1P  (see (1.7)) is greater than a threshold. This threshold is 
set initially to the 1P  value of the best candidate point found in the first 
stage of the algorithm.  If trial points are rejected by this test for more 
than waitcycle consecutive iterations, the threshold is increased by the 
updating rule: 
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threshold  threshold +thfact*(1.0+abs(threshold)) (4.2) 

where the default value of thfact is 0.2 and that for waitcycle is 20.  The 
additive 1.0 term is included so that threshold increases by at least thfact 
when its current value is near zero. When a trial point is accepted by the 
merit filter, threshold is decreased by setting it to the 1P  value of that 
point. 

The combined effect of these 2 filters is that GRG is started at only a 
few percent of the OptQuest trial points, yet global optimal solutions are 
found for a very high percentage of the test problems.  Some insight is 
gained by examining Figure 2.1, which shows the stationary point at the 
origin and the 6 local minima of a 2 variable unconstrained function 
(called the six-hump camelback function) as dark squares, labeled with 
their objective value.  The ten points from which OQNLP starts GRG 
are shown as white diamonds. The local minima occur in pairs with equal 
objective value, located symmetrically about the origin.  There were 144 
trial points generated in stage 1, and 10 points in the initial population.  
The best of these 154 points is the population point (0,0), so this becomes 
the first starting point for GRG.  This happens to be a stationary point of 
F, so it satisfies the GRG optimality test (that the norm of the gradient of 
the objective be less than the optimality tolerance), and GRG terminates 
there. The next GRG start is at iteration 201, and this locates the global 
optimum at (.0898, -.7127), which is located two times. The other global 
optimum at (-.0898, .7127) is found first at iteration 268, and is located 6 
times. 

The limit on total OQNLP iterations in this run was 1000. GRG was 
started at only 9 of the 846 OptQuest trial points generated in the main 
iterative loop of stage 2. All but 2 of the starting points are in the basin of 
attraction of one of the two global optima.  This is mainly due to the 
merit filter. In particular, the threshold values are always less than 
1.6071,so no starts are ever made in the basin of attraction of the two 
local optima with this objective value.  The merit filter alone rejected 
498 points, the distance filter alone 57, and both rejected 281. 

Figure 2.2 illustrates the dynamics of the merit filtering process for 
iterations 155 to 407 of this problem, displaying the objective values for 
the trial points as white diamonds, and the threshold values as dark lines.  
All objective values greater than 2.0 are set to 2.0. 

The initial threshold value is zero, and it is raised twice to a level of 
0.44 at iteration 201, where the trial point objective value of  -0.29 falls 
below it. GRG is then started and locates the global optimum at  (.0898, 
-.7127), and the threshold is reset to –0.29.  This cycle then repeats. Nine 
of the ten GRG starts are made in the 252 iterations shown in the graph. 
In this span, there are 12 points where the merit filter allows a start and 
the threshold is decreased, but GRG is not started at three of these 
because the distance filter rejects them. 
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Figure 2.3 shows the same information for iterations 408 to 1000. 
There is only one GRG start in this span.  This is not due to a lack of 
high quality trial points: there are more good points than previously, many 
with values near or equal to –1.0310 (the global minimum is –1.0316), 
and the merit threshold is usually –1.0310 as well. Every time this 
threshold is raised, the merit filter accepts one of the next trial points, but 
51 of the 52 accepted points are too near one of the 2 global optima, and 
they are rejected by the distance filter. 

Figure 2.1. Local Optima and 10 GRG starting points for Six-Hump Camelback function 
 
 

This simple example illustrates a number of important points: 
1. Setting the bounds on the continuous or discrete variables to be too 

large in magnitude is likely to slow the OQNLP algorithm (or any 
search algorithm) and may lead to a poorer final solution.  In the 
above example, if the variable bounds had been [-2,2] rather than 
[10,10], the trial points generated by the initial population would have 
had much lower objective values. OptQuest can overcome this when 
the initial population is updated. 

2. GRG found a highly accurate approximation to the global solution of 
this unconstrained problem at its second call.  OptQuest alone would 
have taken many more iterations to achieve this accuracy.  

3. The best trial point generated by the initial reference set may not have 
as good an objective value as those generated from the second or 
succeeding ones, especially if the variable bounds are too large. Using 
the best “first generation” point as the initial GRG starting point may 
not lead to as good a local solution as if some “second generation” 
points had been considered.  For this reason our base case 
computational results use a first stage of 200 OptQuest trial points, 
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which in this example would include all 144 first generation points 
and 56 from the second generation. 

 
 

Figure 2.2. Objective and threshold values for Six-Hump Camelback function for 
iterations 155 to 407 

 
Figure 2.3. Objective and threshold values for Six-Hump Camelback function: 

iterations 408 to 100 
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Filtering Logic for Problems with Discrete Variables 
The filtering logic described above must be extended when there are 

discrete variables (the y variables in the problem statement (1.1)-(1.4)).  
When a trial point (xt, yt) provided by OptQuest passes the two filtering 
tests and is passed to GRG, xt acts as a starting point and is changed by 
GRG, but the yt values are fixed and are not changed.  Each new set of yt 
values defines a different NLP for GRG to solve, say NLP(yt), with its 
own set of local minima in x space, so both filters must be made specific 
to NLP(yt). For the distance filter, it is irrelevant if xt is close to any local 
minima (in x space) previously found which correspond to problems 
NLP(y) with y different from yt.  Hence the distance filter is based on the 
distance from xt to local minima of NLP(yt) only. Similarly, the tests and 
threshold values in the merit filter must be specific to the problem 
NLP(yt) currently being solved. However, the weights w in the exact 
penalty function 1P (x,y,w) used in the merit filter are based on the 
maximum absolute multipliers over all local optima for all vectors yt, 
because these weights are large enough to ensure that  this function is 
exact for all problems NLP(y). 

Therefore, in stage 2 of the algorithm, the exact penalty 
function, 1P (xt,yt,w), is calculated at each trial point (xt,yt), and GRG is 
started at (xt,yt) if 1P  is smaller than the current threshold for NLP(yt). 
This threshold is initialized to plus infinity, so if the values yt have not 
occurred in a previous stage 2 trial point, GRG will be called at this point.  
This leads to many more GRG calls in problems with discrete variables, 
as we show later in the computational results sections. 

This OQNLP algorithm should be regarded as a base case from which 
extensions will be explored and compared.  The most significant of these 
involves the return of information from GRG to OptQuest, which is 
absent in the above procedure, i.e. local solutions found by GRG are not 
returned to OptQuest.  Such solutions are generally of very high quality, 
and might aid the search process if they were incorporated into the 
OptQuest population, because at least a subset would likely be retained 
there.  However, this should be done so as to preserve the diversity of 
the population.  We discuss this option further in Section 9. 

6. C Language Implementation, Games Interface, and   
the Floudas Test Problem Set 

The algorithm described in the previous section has been implemented 
as a callable C-language function.  In this form, the user supplies a C 
function that evaluates the objective and constraint functions, an optional 
routine that evaluates their first partial derivatives (finite difference 
approximations are used otherwise), and a calling program that supplies 
problem size, bounds, and an initial point, and invokes the algorithm.  
Algorithm parameters and options are in an options text file.  We have 
developed an interface between this C implementation and the GAMS 
algebraic modeling language (see www.gams.com), using C library 



14 

routines generously provided by GAMS Development Company.  The 
user function routine is replaced by one that calls the GAMS interpreter, 
and a special derivative routine accesses and evaluates expressions 
developed by GAMS for first derivatives of all nonlinear problem 
functions.  GAMS identifies all linear terms in each function, and 
supplies their coefficients separately, thus identifying all linear 
constraints. This enables us to invoke the OptQuest option which maps 
each trial point (generated as described in Section 2) into a point which 
satisfies the linear constraints.  This is done by solving a linear program 
that minimizes the 1L  distance between the trial point and the feasible 
region defined by the linear constraints.  The derivative information 
supplied by GAMS also significantly enhances the performance of 
gradient-based NLP solvers, since only non-constant derivatives are re-
evaluated, and these are always available to full machine precision. 

Part of the motivation for developing this GAMS interface was the 
existence of a large set of global optimization test problems coded in 
GAMS, described in Floudas et al. (1999).  This text describes some 
problems that cannot be represented in GAMS, but there are many that 
can, and these can be downloaded from http://titan.princeton.edu/ 
TestProblems/ or from www.gams.com, linking to gams world and then 
global.  Characteristics of 142 of these problems (excluding the 8_6_1 
and 8_6_2 sets) are contained in Table 2.1. 

Most of these problems arise from chemical engineering, but some are 
from general problem classes.  Most are small, but a few have over 100 
variables and comparable numbers of constraints, and some have both 
continuous and discrete variables.  Almost all of the problems without 
discrete variables have local solutions distinct from the global solution, 
and the majority of problems have constraints. Sometimes all constraints 
are linear, as with the concave quadratic programs of series EX2_1_x, but 
many problems have nonlinear constraints, and these are often the source 
of the nonconvexities. For example, there are many problems arising from 
pooling and blending applications with bilinear constraints. The best 
known objective value and (in most cases) the corresponding variable 
values are provided in Floudas, et al. (1999).  The symbol N in the rows 
for the series EX8_6_1 and EX8_6_2 is the number of particles in a 
cluster whose equilibrium configuration is sought via potential energy 
minimization.  Each particle has 3 coordinates, so there are 3N variables. 
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Table 2.1. Characteristics of Floudas GAMS test problems 

 
    

7. Computational Results on the Floudas Set of Test 
Problems  

This section describes the results obtained when the OQNLP 
algorithm described in Section 6 is applied to the Floudas GAMS test 
problems. The main algorithm parameters and options used are shown in 
Table 2.2 below. 
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EX2_1_x 14 24 0 10 0 concave QP (min)
EX3_1_x 4 8 0 4 6 quadratic obj and constraints
EX4_1_x 9 2 0 0 2 obj or constraints polynomial
EX5_2_x 2 32 0 8 11 bilinear-pooling
EX5_3_x 2 62 0 19 34 distillation column sequencing
EX5_4_x 3 27 0 13 6 heat exchanger network
EX6_1_x 4 12 0 3 6 gibbs free energy min
EX6_2_x 10 9 0 3 0 gibbs free energy min
EX7_2_x 4 8 0 3 12 generalized geometric prog
EX7_3_x 6 17 0 10 11 robust stability analysis
EX8_1_x 8 6 0 0 5 small unconstrained, constrained
EX8_2_x 5 55 0 6 75 batch plant design-uncertainty
EX8_3_x 14 141 0 43 65 reactor network synthesis
EX8_4_x 8 62 0 0 40 constrained least squares
EX8_5_x 6 6 0 2 2 min tangent plane distance
EX8_6_1 N from 4 to 147 3N 0 0 0 Lenard-Jones energy min
EX8_6_2 N from 5 to 80 3N 0 0 0 Morse energy min
EX9_1_x 10 29 0 27 5 bilevel LP
EX9_2_x 9 16 0 11 6 bilevel QP

EX12_2_x 6 11 8 9 4 MINLP
EX14_1_x 9 10 0 4 17 infinity norm solution of equations
EX14_2_x 9 7 0 1 10 infinity norm solution of equations

Total 142
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Table 2.2. OptQuest, GRG, and OQNLP parameters and options used 
OptQuest and OQNLP Parameters GRG Parameters 
Use linear constraints = yes Feasibility tolerance = 1.e-4, except 

series 8_3_x uses 1.e-6 
Total iterations = 1000 Optimality tolerance = 1.e-4, except 

series 8_3_x uses 1.e-6 
Total stage 1 iterations = 200 Consecutive iterations for fractional 

change termination = 20 
Waitcycle = 20    
Thfact = 0.2    (see (5.2))  
Distfact = 0.75  
OptQuest search type = boundary  
Boundary search parameter = 0.5  
OptQuest Variable Precision = 1.e-4  
Check for duplicates in database = yes  

 
As discussed in Section 6, OptQuest can insure that all trial points 

satisfy any linear constraints, and we use this option in our tests below.  
The boundary search strategy is the OptQuest default, as is its parameter 
value of 

As discussed in Section 6, OptQuest can insure that all trial points 
satisfy any linear constraints, and we use this option in our tests below.  
The boundary search strategy is the OptQuest default, as is its parameter 
value of 0.5.  This strategy directs the trial points generated towards the 
boundary of the region defined by the variable bounds and general linear 
constraints 50% of the time. For the problem series 8_3_x, the largest of 
the group with 9 of 10 problems having over 100 variables, we used GRG 
optimality and feasibility tolerances of 1.e-6 because the default values of 
1.e-4 led to GRG termination significantly short of local optimality. 

Table 2.3, found in the Appendix, contains the results for 120 of the 
131 problems with no discrete variables, sorted by increasing number of 
variables, with averages for six groups of problems. We exclude the 
8_6_1 and 8_6_2 series, which are described separately below.  We also 
exclude eleven problems which were either extremely large, or for which 
GRG could not find local solutions from most or all starting points.  This 
was almost always due to failure to find a feasible solution, due to 
termination at a local minimum of the phase one objective.  These 
computations used a 1.3 ghz Dell Optiplex GX400 PC with the Windows 
2000 OS.  The “fcn call” columns record the total number of times all 
problem functions are evaluated.  The column headed “% gap” is the 
percentage difference between the best feasible objective value found by 
OQNLP and the best known value, i.e., the ratio gap = 100*(OQNLP obj 
– bestobj)/(1+abs(bestobj)). 

For minimization problems, and its negative for maximization. Hence 
a negative gap indicates that OQNLP found a feasible point with better 
objective value than the “best known” value provided in Floudas, et al. 
(1999). All but 6 of the 120 problems have gaps less than 1%, most much 
smaller.  These 6 are solved to very small gaps using 5000 iterations 
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and, for 2 problems, increasing the boundary parameter, as is discussed 
shortly. There are 2 problems with sizeable negative gaps, indicating that 
OQNLP found a better value than the best reported.  The column headed 
“max abs x” is the largest absolute component of the decision vector, x, in 
the best solution found.  Large values indicate a more difficult problem, 
in the sense that the rectangle defined by the variable bounds is larger, so 
the search must cover a larger volume. 

This “base case” OQNLP algorithm finds its best solution very 
quickly.  The best OQNLP solution is found by the first GRG call in 88 
of the 120 problems, and in the second GRG call in 7 more, confirming 
the effectiveness of stage 1 of the algorithm in finding an initial GRG 
starting point within the basin of attraction of the global optimum. This 
happens most often in the smaller problems, but occurs 11 times in the 20 
largest. 

Table 2.4 aggregates the averages for the six groups of problems in 
Table 2.3, and includes the following ratios: GRG ratio = average GRG 
calls to best/average total GRG calls with similar definitions for 
iterations, function calls, and computation time.  

The groups are ordered in terms of increasing number of variables, 
and the number of local optima found increases with problem size, with 
an average of 22.6 for the largest group. The measures of computational 
effort to find the best solution (iterations to best, grg calls to best, function 
calls to best, and time to best) are all gratifyingly small, and most increase 
slowly with problem size. Function calls are much higher for the largest 
group (110 to 141 variables), reflecting the GRG effort required to solve 
these problems, which have many nonlinear constraints.   

 
Table 2.4. Average performance statistics for 6 groups of problems 

V
A

R
 R

A
N

G
E 

N
O

. O
F 

PR
O

B
S 

IT
N

S 
TO

 B
ES

T 

G
R

G
 C

A
LL

S 
TO

 

B
ES

T  
TO

TA
L 

G
R

G
 

C
A

LL
S  

G
R

G
 R

A
TI

O
 

LO
C

A
LS

 F
O

U
N

D
 

FC
N

 C
A

LL
S 

TO
 

B
ES

T  

TO
TA

L 
FC

N
 

C
A

LL
S  

FC
N

 R
A

TI
O

 

TI
M

E 
TO

 B
ES

T 

TO
TA

L 
TI

M
E 

TI
M

E 
R

A
TI

O
 

1 to 4 31 213.9 1.3 9.2 0.14 2.3 281.7 1582.8 0.18 0.5 2.4 0.21 

5 to 7 31 212.5 1.3 11.0 0.12 3.0 361.0 3827.5 0.09 0.3 1.1 0.28 

8 to 12 21 293.3 3.2 17.2 0.19 6.1 841.5 3416.6 0.25 0.5 1.5 0.35 

14 to 21 17 212.8 1.8 25.6 0.07 6.8 446.8 5030.7 0.09 1.7 4.4 0.38 

22 to 78 11 310.2 7.3 34.0 0.21 12.4 1423.4 10528.3 0.14 1.5 4.4 0.33 

110 to 141 9 392.4 9.3 26.7 0.35 22.6 20654.7 55580.3 0.37 23.6 54.4 0.43 

Overall 120 272.5 4.0 20.6 0.18 8.8 4001.5 13327.7 0.19 4.7 11.4 0.33 

 
Average total GRG calls are fairly stable at between 17 to 34 over the 

last four groups, and do not increase rapidly with problem size.  This 
further demonstrates the effectiveness of the distance and merit filters 
described in Section 5. 
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The ratio columns provide additional evidence that the best solution is 
found early in the iterative process.  The smallest of these is the GRG 
ratio, which varies from 0.07 to 0.35, meaning that the best solution is 
found in the first 7% to 35% of GRG calls. This ratio is highly correlated 
with the function call ratio, because function calls due to GRG (all those 
over 1000) dominate as problem size increases. This implies that, for 
these problems, a criterion that stops OQNLP when the fractional change 
in the best feasible objective value found thus far is below a small 
tolerance for some (reasonably large) number of successive iterations, 
would rarely terminate before the best solution was found. 

Table 2.5 shows the results of using 5000 iterations to solve the 6 
problems whose gaps in Table 2.3 are greater than 1%. 

All problems are solved to within very small gaps.  To achieve an 
essentially zero gap for problems 2_1_6 and 2_1_7_5, we had to change 
the OptQuest boundary strategy parameter from its default value of 0.5 to 
1.0.  This causes a strategy that drives trial points towards the boundary 
of the feasible region defined by the bounds and linear constraints to be 
used 100% of the time, rather than 50% (see the OptQuest User guide, 
page 32).  These two problems are quadratic programs with concave 
objectives (to be minimized), so all locally optimal solutions are at 
extreme points of the feasible region.  One would expect a strategy that 
generates points near the boundary of the feasible region 100% of the 
time to be most effective on such problems. 

Table 2.5. Solving previously unsolved problems in 5000 iterations 
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EX8_3_7 126 308 12 164 92 7125 505273 15.4 436.3 0.0009  
EX2_1_1 5 893 2 14 12 896 5055 0.12 0.85 0.0000  
EX2_1_6 11 253 2 8 4 256 5042 0.73 8.17 15.0000 0.5 
EX2_1_6 11 2591 18 27 12 2703 5171 5.64 8.92 0.0000 1 
EX2_1_8 24 2318 32 44 11 3411 6270 6.8 16.91 0.0000  
EX2_1_7_5 21 362 9 36 22 975 7360 3.7 37.7 1.0866 0.5 
EX2_1_7_5 21 520 23 90 15 2397 11341 7.18 52.23 0.0002 1 
EX14_1_7 11 299 9 220 64 6518 119049 0.51 11.1 0.0000  

 
 
Solving Problems with Discrete Variables 
Table 2.6 contains results of solving the 11 problems in the Floudas 

test set which have discrete variables, using 1000 total and 200 stage one 
iterations.  The problems are sorted first by number of discrete variables, 
then by number of all variables. 
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Table 2.6. Solution statistics for 13 problems with discrete variables 
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EX12_2_2 4 1 2 1 201 1 1 2 1 209 1008 0.53 2.04 0.0000 
EX12_2_1 6 3 3 2 249 6 18 8 7 296 1164 0.54 1.25 0.0000 
EX12_2_6 6 3 4 1 201 1 7 6 2 202 1045 0.31 0.4 0.0000 
EX9_2_9 13 3 11 1 201 1 3 8 3 202 1010 0.42 1.73 0.0000 
EX12_2_3_N 8 4 5 4 441 17 20 16 10 1004 1667 0.85 1.25 0.0000 
EX12_2_3 12 4 9 4 390 11 20 16 10 1016 1761 1.11 1.96 0.0000 
EX9_1_9 18 5 16 1 201 1 21 32 18 202 1069 2.41 8.01 0.0024 
EX12_2_5 9 6 9 1 201 1 6 25 1 202 1136 0.91 2.65 0.0000 
EX9_1_6 21 6 19 1 201 1 32 64 27 202 1097 1.53 6.73 0.0000 
EX9_1_7 24 6 21 1 204 4 41 64 31 256 1328 4 9.64 0.0000 
EX9_1_3 30 6 27 1 207 2 42 64 23 214 1212 2.49 11.1 0.0000 
EX12_2_4 12 8 4 3 924 78 88 256 16 2145 2501 3.67 4.06 5.4320 
EX12_2_4N 12 8 4 3 207 3 40 256 13 218 1191 0.87 2.96 7.1918 

averages 13.5 4.8 10.3 1.8 294.5 9.8 26.1 26.1 12.5 489.8 1322 1.5 4.1 1.0 

 
All problems are solved to very small gaps except 12_2_4 and its 

reformulation, 12_2_4N, which have the same optimal solutions, and 
have final gaps of 5.4% and 7.2% respectively.  Increasing the number 
of iterations to 5000 or 10,000 does not yield better solutions for these 2 
problems.  For the other 11 problems, 7 are solved on the first or second 
GRG call.  The column headed “total enum” contains the number of 
GRG calls needed to solve the problem by complete enumeration of all 
integer combinations.  The total number of GRG calls used by OQNLP 
is larger than this value in 3 of the 13 problems, and the two averages are 
about the same. However, the number of GRG calls to find the best 
solution is larger than that for complete enumeration in only one instance, 
and the average is 9.8 versus 26.1 for complete enumeration.  As with 
the continuous variable problems, the best solutions are found in roughly 
the first 30% of the 1000 iterations on average.  

Clearly, the number of discrete variables in these problems is too 
small to infer whether or not this “base-case” OQNLP algorithm will be 
competitive with alternative MINLP solvers like DICOPT (interfaced to 
GAMS) or branch-and-bound (Biegler, et al., 1997, Floudas, 1995).  We 
believe that OQNLP performance with discrete variables can be 
significantly enhanced by sending information on GRG solutions back to 
OptQuest.  For example, an option that begins by calling GRG to solve a 
relaxed MINLP (with all discrete variables allowed to be continuous), 
could terminate immediately if all discrete variables had discrete values in 
the GRG solution.  Otherwise, the discrete variables could be rounded, 
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and the resulting high quality solution could be returned to OptQuest, 
influencing the generation of successor trial points. 

In 12_2_3 and 12_2_4 the discrete variables appear linearly.  (This is 
required by the widely used DICOPT MINLP solver.)  Since OQNLP 
allows discrete variables to appear nonlinearly, we reformulated these 
problems into 12_2_3N and 12_2_4N, respectively, where the discrete 
variables appear nonlinearly.  The resulting models have the advantage 
that when the discrete variables are fixed for the NLP solver, the 
continuous variables appear linearly.  That is why all measures of 
computational effort are much smaller for the reformulated versions. 

For comparison purposes we ran the 11 MINLP problems from the 
Floudas problem set using DICOPT, with CONOPT2 as the NLP solver 
and CPLEX as the MILP solver.  It solves a NLP and a MILP at each 
major iteration.  The only changes to the models were slight adjustments 
to lower bounds on some variables to avoid numerical problems 
encountered otherwise.  The statistics are shown in Table 2.7 below, 
with some OQNLP data repeated for easier comparison.  DICOPT 
solved all but one of the problems to the best-known solution.  In the 
case of EX_12_2_1 the DICOPT NLP Solver was unable to find a 
feasible solution for the relaxed NLP, and the problem was incorrectly 
diagnosed as infeasible.  Five of the problems are MILP’s, and DICOPT 
simply invokes CPLEX to solve them.  For the other five problems, 
DICOPT found the optimum in 2 or 3 major iterations.  Its runtimes are 
much shorter than OQNLP, and the number of NLP solver calls is much 
less.  Termination was caused by the NLP solver objective worsening, 
an infeasible MILP, and the relaxed NLP having an integer solution.   

It is difficult to infer much from such small problems.  However, we 
expect that DICOPT will be much faster than OQNLP when it succeeds.  
As a primal method, OQNLP has the potential to find a good solution in 
cases where DICOPT fails to find a feasible integer solution, and it may 
sometimes be useful to study the multiple integer feasible solutions that 
OQNLP can provide.   

 
Varying the Length of Stage One 
We have solved the 120 Floudas problems with no discrete variables 

with three values for the number of stage one iterations: 200 as described 
above, 300, and as many as are required to generate all “first generation” 
trial points (those created from the initial population), called the “1gen” 
strategy. With 1gen and 200 stage one iterations, there were 1000 total 
iterations, while with 300 we used 1100 total, in order to provide at least 
800 iterations in stage 2 for all strategies. The averages for various 
measures of computational effort and achievement over all 120 problems 
for these three stage one strategies are shown in Table 2.8 below. The 
column headed “probs < 1%”, shows the number of problems solved to a 
gap of 1% or less by the strategy, while the last column gives the number 
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of these successful runs where the best solution was found at the first or 
second GRG call. 

 
 

Table 2.7. OQNLP and DICOPT results for MINLP problems 
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EX12_2_2 1 2.04 0.53 0.00 2 infes mip 2.26 0.00 
EX12_2_1 18 1.25 0.54 0.00 F nlp 1 infes 0.06 F 
EX12_2_6 7 0.4 0.31 0.00 0 Relaxed nlp integer 0.05 0.00 
EX9_2_9 3 1.73 0.42 0.00 0 milp 0.05 0.00 
EX12_2_3 20 1.96 1.11 0.00 3 worsen 0.48 0.00 
EX9_1_9 21 8.01 2.41 0.00 0 milp 0.11 0.00 
EX12_2_5 6 2.65 0.91 0.00 3 worsen 0.4 0.00 
EX9_1_6 32 6.73 1.53 0.00 0 milp 0.11 0.00 
EX9_1_7 41 9.64 4 0.00 0 milp 0.28 0.00 
EX9_1_3 42 11.1 2.49 0.00 0 milp 0.11 0.00 
EX12_2_4 88 4.06 3.67 5.43 3 worsen 0.45 0.00 

 

Table 2.8. Effects of varying the number of stage one iterations 
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163.4 235.6 5.1 27.4 12.6 2127.2 13263.2 5.0 15.9 114 (78,11) 
200 272.5 4.0 20.6 8.8 4001.5 13327.7 4.7 11.4 114 (87,7) 
300 392.4 5.0 23.0 12.1 6549.9 17672.4 8.1 16.4 109 (90,2) 

 
Examining this table, we see that the iterations and function calls to 

find the best solution increase with the number of stage one iterations.  
This is as expected, since the first GRG call comes at the end of stage 
one, whose purpose is to provide a high quality starting point for GRG.  
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However, several other effort measures show a minimum at 200 initial 
iterations: grg calls to best, total grg calls, time to best, and total time.  
The number of problems solved in one or two GRG calls is also 
maximized for 200 initial iterations, although the differences between the 
three strategies are small.  Since both  the “1gen” and “200” strategies 
have the same number of problems solved to within a 1% gap, these 
results imply a mild preference for the (200,1000) strategy.  

The benefits of starting stage 2 earlier are: (1) the best solution is often 
found earlier, since the first GRG call usually finds the best solution, and 
(2) trial points which would be skipped in a longer stage one are eligible 
to be GRG starting points, and can lead to good GRG solutions. Since the 
population loses diversity as it is updated by the aggressive update 
currently used in OptQuest, these missed opportunities may not recur 
before the population is reinitialized.  The advantages of a longer stage 
one are:  (1) The best point found by OptQuest in a longer stage one 
should, on average, have higher quality than in a shorter one, which leads 
to somewhat better results on the first GRG call, and (2) these higher 
quality best points should have lower values for the exact penalty 
function, 1P , which becomes the initial value for the merit filter 
threshold.  This lower value leads to fewer GRG calls in stage 2, as 
shown in Table 2.8.  The number of GRG calls is also influenced by 
other factors, so the effect is not monotonic. We believe that the superior 
performance of the (200,1000) strategy is due to its achieving a best 
balance between these competing effects. 

8. Minimizing the Potential Energy of a Cluster of 
Particles 

The Floudas set of test problems includes two GAMS models that 
minimize the potential energy of a cluster of N particles, using two 
different potential energy functions.  The decision variables are the x, y, 
and z components of each particle.  For the Lennard-Jones family of 
potential energy minimization problems the objective is the summed 
difference between the sixth and third powers of the reciprocal of the 
squared Euclidean distance between each distinct pair of particles, where 
the sixth power term arises from a strong short-range repulsive force and 
the other term from a longer-range attractive force. Nonlinear constraints 
are included to avoid objective function singularities where the distance 
between one or more pairs of points is very small.  If they are not 
included, GAMS encounters many thousands of domain violations-these 
still occur in the above formulation, but are less frequent. Particle 1 is 
located at the origin, and three position components of particles 2 and 3 
are fixed, so this family of problems has N-6 variables and N(N-1) 
nonlinear constraints. 

The second set of problems uses the Morse potential, where the 
Euclidean distance appears in the argument of an exponential function.  
There is no need to protect against domain violations here, so there are no 
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constraints except for upper and lower bounds of 5 and –5 on the 
coordinates of each particle, as in the Lennard-Jones case.  According to 
Floudas (1999), pp. 186-194, these problems have a large number of local 
minima, and this number increases rapidly with problem size.  Thus they 
are a rigorous test for global optimization algorithms. 

Results of applying OQNLP to these two problem classes using 200 
stage one and 1000 total iterations for several values of N are shown in 
Tables 2.9 and 2.10 below. 

Table 2.9. Minimizing the Lennard-Jones potential function 
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5 9 10 201 1 16 0.06 8 447 6669 0.07 0.1 1.21 0.08 0.00 
10 24 45 437 7 15 0.47 14 6296 13220 0.48 5.07 10.32 0.49 0.00 
15 39 105 252 4 17 0.24 17 4775 20641 0.23 9.07 37.39 0.24 0.00 
20 54 190 476 11 21 0.52 21 11607 20402 0.57 39.49 69.25 0.57 0.00 
25 69 300 478 9 58 0.16 58 13900 109183 0.13 74.87 570.2 0.13 2.71 
30 84 435 730 27 48 0.56 48 51221 85873 0.60 399.17 668.8 0.60 1.71 

avg 46.5 180.8 429 9.8 29.2 0.3 27.7 14707.7 42664.7 0.3 88.0 226.2 0.4 0.7 
       

Table 2.10. Minimizing the Morse potential function 

 
OQNLP finds the Morse potential easier to minimize, and solves the 7 

smallest instances to essentially zero gaps and the N=50 case to a .14% 
gap.  The 4 smallest instances of the Lennard-Jones problems are also 
solved to near-zero gaps, but the two largest have gaps of 2.7% and 1.7% 
respectively.  We attribute this partially to the occurrence of many 
domain violations during the GRG runs.  The N=25 run had 93,926 
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5 9 0 201 1 12 0.08 9 328 2666 0.12 0.05 0.31 0.16 0.00 
10 24 0 201 1 7 0.14 7 663 3420 0.19 0.37 1.66 0.22 0.00 
15 39 0 201 1 14 0.07 14 687 7826 0.09 0.9 8.32 0.11 0.00 
20 54 0 284 4 23 0.17 23 1593 10427 0.15 3.42 20 0.17 0.00 
25 69 0 300 3 59 0.05 59 2125 31294 0.07 7.2 88.67 0.08 0.00 
30 84 0 268 4 41 0.10 41 3196 28385 0.11 15.23 117.2 0.13 0.00 
40 114 0 476 12 51 0.24 51 9848 41782 0.24 76.89 306 0.25 0.00 
50 144 0 262 4 11 0.36 11 4233 11824 0.36 56.39 151.6 0.37 0.14 

avg   274.13 3.75 27.25 0.15 26.88 2834.13 17203 0.17 20.06 86.72 0.19 0.02 
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divides by zero and 6717 integer power overflows, while the 
corresponding figures for N=30 were 133,490 and 9551. 

The computational effort needed to achieve these excellent results is 
quite modest.  As before, the ratio columns are the effort to find the best 
solution divided by total effort, and these ratios are generally less than 0.3 
for the Morse potential, but occasionally above 0.5 for the Lennard-Jones.  
Both function calls and GRG calls to achieve the best solution are quite 
small, and, for the Morse function, they do not increase rapidly with N.  
The number of local minima found increases rapidly with N, and is 
around 60 for N=30 or above.  This number is usually equal to the 
number of GRG calls, so GRG almost always finds a different local 
solution at each start. 

Results of solving the two Lennard-Jones problems with gaps larger 
than 1% using 200 stage one and 5000 total iterations are shown in Table 
2.11 below 

Table 2.11. Solving with 5000 iterations 
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25 69 300 4089 339 436 0.78 436 664754 820883 0.81 3472.6 4290 0.81 0.00 5

30 84 435 240 5 33 0.15 33 9856 69471 0.14 80.11 554.8 0.14 3.18 5

30 84 435 2486 162 414 0.39 414 188479 432148 0.44 1496 3405 0.44 0.67 3

 
The N=25 problem is solved to a near-zero gap, but the gap for the 

N=30 problem (row 2 of the table) actually increases from 1.71% with 
1000 iterations to 3.18% with 5000.  This is because some aspects of the 
OptQuest solution strategy depend on the iteration limit, so the two runs 
use a different sequence of trial points in their first 1000 iterations. The 
search is more aggressive when there are only 1000 iterations allowed, 
and this aggressiveness leads to a better final solution in the shorter run.  
However, if the parameter bnd (each variable has bounds of (-bnd,bnd)) is 
decreased from 5 to 3, the gap for 5000 iterations decreases to 0.67%, 
showing the benefits of searching within a smaller rectangle. The 
computational effort to achieve these improved outcomes, compared to 
the shorter runs, increases roughly by factors of 5 to 8. 

9.  Comparison with Random Starts 
OptQuest was chosen as the provider of starting points because we felt 

it would find good points quickly.  As a first step to investigating this, 
we selected the Morse and Lenard_jones potential functions described in 
section 8, generated either 100 or 200 independent uniformly distributed 
starting points, started CONOPT2 from each of these, and observed how 
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many calls found the best known solution, as well as how many distinct 
local solutions were found.  This was done with a LOOP statement in the 
GAMS models discussed in section 8, and compared with the number of 
OQNLP calls required before CONOPT2 found the best solution.  The 
results provide a crude estimate of the relative volume of the basin of 
attraction of the global optimum, as the ratio f=nglob/ncalls, where nglob 
is the number of NLP solver calls leading to the global solution.  The 
expected number of calls before the global solution is first located is 
simply 1/f.  Results are shown in Tables 2.12 and 2.13 below.  Since 
CONOPT2 is used rather than LSGRG2, the number of OQNLP calls to 
find the best solution differ from those in Tables 2.9 and 2.10.   

 

Table 2.12. Morse potential function, random starts 
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5 9 200 13 17 15.4 1 

10 24 200 1 107 200 1 

15 39 200 9 161 22.2 1 

20 54 200 10 189 20 2 

25 69 200 2 185 100 4 

30 84 200 2 188 100 17 

40 114 200 3 191 66.7 7 

50 144 200 3 181 66.7 20 

 

Table 2.13. Lennard-Jones potential, random starts 
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5 9 100 99 2 1.0 1 

10 24 100 4 27 25.0 21 

15 39 100 3 85 33.3 6 

20 54 200 2 167 100 67 

 
For both problems, OQNLP finds the best solution in fewer solver 

calls than the expected number of calls to the best solution for random 
starts, much fewer for the Morse potential function.  For both problem 
sets, the relative volume estimate f decreases quickly as problem size 
increases, and many more than 200 solver calls are needed to estimate it 
accurately.  For the larger numbers of atoms, almost every solver call 
leads to a different local minimum. 
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10.   Summary and Future Research 
While the performance of this “base case” OQNLP algorithm on 

problems with only continuous variables is quite good, there are options 
which promise improvements. OptQuest’s search is usually more efficient 
when the initial population contains high quality solutions.  No such 
solutions are supplied in the computational experiments described here.  
A way to provide one good solution is to call GRG at the start of stage 
one, communicating the local optimum found to OptQuest as a possible 
member of its initial population.  GRG’s starting point could be either 
user-provided, or the best point found in some initial set of OptQuest 
iterations (perhaps a few hundred as in the current stage one). The latter 
option is equivalent to adding a new stage one consisting of these initial 
OptQuest iterations, calling GRG from the best stage one solution (stage 
2), and doing a stage 3 by placing the GRG solution as a candidate point 
in a newly initialized population, before performing another set of 
OptQuest iterations. In our computational experiments, the GRG solution 
resulting from a start at the best point from 200 or so OptQuest iterations 
is globally optimal in about 75% of the problems solved.  Hence the 
initial stage 3 population would often contain the global optimum, plus 
points diverse from it. The final stage (4) would be the current stage 2, 
where GRG is called repeatedly at points which are accepted by the 
distance and merit filters.  We are currently implementing this option. 

The above idea is naturally extended by communicating other GRG 
solutions to OptQuest during (the current) stage 2, but this must be done 
in a way that maintains enough diversity in the population.  Hence only 
unique local solutions should be sent to OptQuest, and these should not be 
too close to one another. Some distance threshold must be devised, and 
OptQuest would receive only local solutions whose distance from the 
nearest previously found local solution is greater than the threshold. 

In problems with discrete variables, high quality points for OptQuest’s 
initial population can be determined by solving the relaxed MINLP, 
where all discrete variables are allowed to be continuous within their 
bounds.  If all discrete variables take on allowed values, this solution is 
at least locally optimal.  If not, various rounding procedures can be 
applied to it to generate one or more high quality discrete solutions. We 
are currently implementing this option as well. 

Another promising option for MINLP’s is to “hide” the continuous 
variables from OptQuest, which searches only over the space of discrete 
variables. It is aware only of the constraints involving only discrete 
variables. This allows it to focus its attention on these key variables, 
which GRG cannot vary.  That is, OptQuest is applied to the projection 
of the problem (1.1)-(1.4) onto y-space.  This projected problem is to 
minimize  

),,),(|),((min)( 21 SxuyAxAlguyxGglyxfyF x ∈≤+≤≤≤=  
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over all constraints involving only y. GRG is then applied to the x sub-
problem on the right hand side of the above equation.  As is done 
currently, GRG would fix the discrete variables at values specified by 
OptQuest, and optimize over the continuous variables.  If GRG finds a 
feasible solution, its optimal objective value is returned to OptQuest.  If 
not, the exact penalty function value of this solution is returned, using 
some set of sufficiently large penalty weights. These GRG solutions 
should be of much higher quality than the continuous variable values 
generated by OptQuest in the current algorithm, where the continuous 
variables are nowhere near locally optimal for the associated discrete 
variables. 

Comparative tests of OQNLP and alternative global optimization 
methods are also needed.  GAMS Development Company has interfaced 
several global and MINLP solvers, including OQNLP, to GAMS, and this 
will make the comparison process much easier by providing a common 
computing environment and model base.  The model base has been 
expanded by a website recently introduced by GAMS Development 
Company called “GAMS World” at www.gamsworld.org (see ad on the 
back cover of ORMS Today, Aug 2001). This is divided into “MINLP 
world” and “Global world”.  MINLP world currently contains a set of 
MINLP test problems coded in GAMS, facilities for converting models in 
several other algebraic modeling languages to GAMS models, and other 
information on MINLP.  Global world contains similar information for 
global optimization. We also plan comparative tests with the global 
optimizers in Frontline Systems Premium Excel Solver. 

Appendix 
Detailed computational results for 120 Floudas test problems. 
 

Table 2.3. Results for Floudas GAMS problems with no discrete variables 
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EX4_1_1 1 0 0 200 201 1 5 1 211 1139 0.17 0.61 1.19 0.000 

EX4_1_2 1 0 0 200 201 1 6 1 211 1208 0.22 0.99 1.09 0.000 

EX4_1_3 1 0 0 200 201 1 4 1 212 1068 0.17 0.5 6.33 0.000 

EX4_1_4 1 0 0 200 201 1 8 2 202 1090 0.16 0.49 2 0.000 

EX4_1_6 1 0 0 200 201 1 7 2 212 1119 0.17 0.55 3 0.000 

EX4_1_7 1 0 0 200 201 1 12 1 207 1190 0.16 0.71 1 0.000 
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Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d) 
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EX8_1_2 1 0 0 200 201 1 15 3 208 1161 0.16 0.71 5.17 0.010 

EX14_1_9 2 0 2 200 201 1 3 2 215 1069 0.22 0.6 347.31 0.000 

EX4_1_5 2 0 0 200 201 1 8 2 202 1113 0.17 0.61 1.75 0.000 

EX4_1_8 2 0 1 200 201 1 3 3 839 1392 0.66 0.94 3 -0.001 

EX4_1_9 2 0 2 200 251 4 9 4 331 1186 0.28 0.66 3.44 -0.001 

EX8_1_1 2 0 0 200 201 1 6 2 210 1110 0.16 0.6 2 0.000 

EX8_1_3 2 0 0 200 201 1 2 1 226 1054 0.17 0.44 1 0.000 

EX8_1_4 2 0 0 200 201 1 11 1 202 1154 0.16 0.66 0 0.000 

EX8_1_5 2 0 0 200 201 1 6 2 218 1134 0.17 0.61 0.71 0.000 

EX8_1_6 2 0 0 200 205 2 6 3 231 1098 0.22 0.55 8 0.000 

EX14_1_1 3 0 4 200 201 1 7 4 223 1367 0.28 0.93 3.39 0.003 

EX14_1_3 3 0 4 200 201 1 12 6 216 2016 0.17 1.6 6.94 0.002 

EX14_1_4 3 0 4 200 201 1 9 4 235 1633 0.27 1.26 3.14 0.000 

EX3_1_4 3 2 1 200 201 1 13 3 202 1329 0.39 1.93 3 0.000 

EX6_2_11 3 1 0 200 201 1 9 2 229 1529 1.15 5.66 0.99 0.000 

EX6_2_6 3 1 0 200 201 1 10 2 211 1379 1.1 5.11 0.94 0.000 

EX6_2_8 3 1 0 200 201 1 23 3 235 1893 1.26 6.37 0.97 -0.001 



Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d) 
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EX14_1_8_N 3 0 0 200 548 6 9 2 726 1256 0.54 0.98 0.65 0.013 

EX6_1_2 4 1 2 200 201 1 8 2 233 1890 0.82 4.06 1 0.006 

EX6_2_12 4 2 0 200 201 1 14 4 232 1716 0.99 5.06 0.5 0.000 

EX6_2_14 4 2 0 200 201 1 17 2 207 1221 0.66 3.63 0.5 -57.797 

EX6_2_9 4 2 0 200 201 1 23 2 260 2885 1.05 7.03 0.5 0.000 

EX7_3_1 4 6 1 200 201 1 10 1 805 8361 1.31 11.59 1073.39 0.003 

EX7_3_2 4 6 1 200 201 1 4 1 381 1288 1.53 5.43 1.28 0.000 

EX9_2_8 4 3 2 200 201 1 5 1 202 1020 0.44 2.64 1 0.000 

averages 2.5 0.9 0.8 200.0 213.9 1.3 9.2 2.3 281.7 1582.8 0.5 2.4 47.9 -1.9 

      

EX14_2_1 5 1 6 200 201 1 13 1 247 1812 0.34 1.11 54.25 0.000 

EX14_2_4 5 1 6 200 201 1 13 1 271 1990 0.38 1.22 72.97 0.000 

EX14_2_6 5 1 6 200 201 1 9 1 245 1549 0.38 1.16 61.59 0.000 

EX14_2_8 5 1 4 200 201 1 1 1 230 1029 0.29 0.78 55.73 0.000 

EX2_1_1 5 1 0 200 201 1 4 4 202 1007 0.05 0.16 1 2.778 

EX3_1_2 5 0 6 200 201 1 8 1 235 1364 0.04 0.14 78 -0.002 

EX7_3_3 5 6 2 200 201 1 7 2 254 11992 0.36 2 2.81 0.002 

EX8_1_7 5 0 5 200 291 3 7 3 905 3191 0.06 0.16 2.84 0.001 

EX8_5_3 5 3 2 200 201 1 8 3 223 1393 0.39 1.24 0.98 -0.013 

EX8_5_4 5 3 2 200 201 1 12 4 303 2004 0.43 1.53 0.78 -0.006 

EX8_5_5 5 3 2 200 346 4 10 3 692 2066 0.53 1.41 0.8 -0.345 

EX14_1_2 6 0 9 200 201 1 20 1 480 6125 0.05 0.33 31.33 0.000 

EX14_1_5 6 4 2 200 201 1 5 2 202 1084 0.47 1.48 1.42 0.000 

EX14_2_2 6 1 4 200 201 1 9 1 222 1207 0.34 0.86 58.13 0.000 

EX14_2_5 6 1 4 200 201 1 12 1 225 1320 0.37 1 77.19 0.000 

EX14_2_7 6 1 8 200 201 1 5 1 233 1229 0.61 2.02 63.56 0.000 
 



 

Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d) 
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EX14_2_9 6 1 4 200 201 1 12 1 219 1253 0.36 1.08 60.63 0.000 

EX2_1_2 6 2 0 200 201 1 16 1 202 1246 0.16 0.63 20 0.000 

EX2_1_4 6 5 0 200 201 1 8 1 208 1116 0.35 0.76 6 0.000 

EX3_1_3 6 4 2 200 201 1 9 5 202 1062 0.18 0.5 10 0.000 

EX6_1_4 6 1 3 200 201 1 4 2 546 1974 0.45 1.25 1 -0.004 

EX6_2_10 6 3 0 200 201 1 6 1 242 1426 0.46 2.01 0.4 -0.557 

EX6_2_13 6 3 0 200 201 1 16 13 202 1695 0.45 2.28 0.62 -0.001 

EX7_2_2 6 0 5 200 201 1 9 6 242 1458 0.04 0.14 11.02 0.000 

EX8_1_8 6 0 5 200 201 1 9 6 242 1458 0.04 0.14 11.02 -0.001 

EX8_5_1 6 3 2 200 224 3 13 11 559 3437 0.46 1.77 0.83 0.931 

EX8_5_2 6 2 2 200 282 2 3 2 591 1860 0.47 1.75 0.69 -0.123 

EX8_5_6 6 2 2 200 201 1 8 1 283 1661 0.48 1.64 0.67 0.003 

EX14_2_3 7 1 8 200 201 1 3 1 240 1150 0.5 1.58 57.16 0.000 

EX5_2_4 7 3 3 200 201 1 50 1 335 7541 0.24 0.98 100 0.000 

EX7_2_1 7` 2 12 200 218 3 31 10 1709 49954 0.32 2.29 3031.6 -2.176 

averages 5.7 1.9 3.7 200.0 212.5 1.3 11.0 3.0 361.0 3827.5 0.3 1.1 125.0 0.0 

      

EX3_1_1 8 3 3 200 201 1 11 1 1084 8837 0.29 0.74 5109.9 -0.001 

EX5_4_2 8 3 3 200 201 1 11 1 539 4761 0.24 0.75 5485.3 0.000 

EX6_1_1 8 2 4 200 872 12 14 10 1622 1762 0.66 0.76 1 0.246 

EX7_2_3 8 3 3 200 291 5 5 3 2388 3097 0.33 0.8 5110.2 0.003 

EX7_2_4 8 0 4 200 657 6 12 6 3586 8191 0.17 0.33 9.81 -0.673 

EX9_2_4 8 5 2 200 201 1 34 1 210 1357 0.32 1.28 3 0.000 

EX9_2_5 8 4 3 200 201 1 2 1 211 1019 0.55 1.64 7 0.000 

EX14_1_6 9 1 14 200 201 1 13 4 290 2822 0.57 1.96 1 0.000 

EX6_2_5 9 3 0 200 519 16 22 20 1961 3205 1.52 2.65 31.46 -0.003 

EX6_2_7 9 3 0 200 201 1 14 3 272 2373 0.51 2.25 0.45 -0.004 

EX14_1_7 11 0 17 200 209 2 22 13 1099 10871 0.14 1.02 10 13.499 

EX2_1_5 10 11 0 200 201 1 85 1 266 5570 0.84 3.4 1 0.002 

EX2_1_6 11 0 5 200 253 2 3 2 256 1007 0.77 1.85 1 15.000 

EX2_1_9 11 1 0 200 201 1 11 3 212 1333 0.31 1.09 0.33 0.000 

EX9_1_2 10 5 4 200 201 1 4 1 202 1013 0.37 1.27 4 0.000 
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Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d) 
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EX9_1_4 10 5 4 200 201 1 2 1 202 1009 0.54 1.58 24 0.000 

EX9_2_1 10 5 4 200 293 2 17 15 296 1038 0.68 2.02 16.38 0.000 

EX9_2_2 10 7 4 200 201 1 31 3 207 1216 0.36 1.36 20 -0.021 

EX9_2_7 10 5 4 200 293 2 17 15 296 1038 0.69 1.95 16.38 0.000 

EX6_1_3 12 0 9 200 361 8 24 23 1679 4837 1.07 2.26 1 0.354 

EX7_3_4 12 0 17 200 201 1 7 1 793 5393 0.04 0.25 731.97 0.000 

averages 9.5 3.1 5.0 200 293.3 3.2 17.2 6.1 841.5 3416.6 0.5 1.5 789.8 1.4 

      

EX2_1_3 14 9 0 200 201 1 13 5 202 1199 0.31 0.9 3 0.000 

EX9_1_1 14 7 5 200 201 1 1 1 211 1010 0.72 2.69 14 0.000 

EX9_1_5 14 7 5 200 201 1 12 12 202 1023 0.34 1.33 50.59 0.000 

EX8_4_6 14 0 8 200 263 3 52 28 3293 44031 0.23 2.17 10 0.001 

EX9_1_10 15 7 5 200 201 1 27 9 209 1197 0.32 1.41 100 0.000 

EX9_1_8 15 7 5 200 201 1 27 9 209 1197 0.35 1.49 100 -54.545 

EX8_4_5 16 0 11 200 201 1 14 2 341 2704 0.1 0.3 0.23 0.000 

EX5_4_3 17 9 4 200 340 12 58 2 789 3762 0.77 1.95 310 0.001 

EX9_2_3 17 9 6 200 201 1 5 1 202 1051 0.7 2.36 30 0.000 

EX9_2_6 17 6 6 200 201 1 8 1 202 1051 0.37 1.28 1 0.000 

EX8_4_4 18 0 12 200 201 1 71 1 293 8462 0.07 0.67 5.13 0.000 

EX2_1_10 21 10 0 200 201 1 79 3 283 9854 0.73 2.08 66.35 0.000 

EX2_1_7_1 21 10 0 200 201 1 10 6 217 1474 4.91 12.62 28.8 0.000 

EX2_1_7_2 21 10 0 200 201 1 20 13 217 2245 4.92 10.62 28.8 0.000 

EX2_1_7_3 21 10 0 200 201 1 18 10 217 2078 4.84 10.56 28.8 0.000 

EX2_1_7_4 21 10 0 200 201 1 12 7 217 1600 4.99 12.43 28.8 0.000 

EX2_1_7_5 21 10 0 200 201 1 9 6 291 1584 3.66 9.95 28.8 1.087 

averages 17.5 7.1 3.9 200 212.8 1.8 25.6 6.8 446.8 5030.7 1.7 4.4 49.1 -3.1 
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Table 2.3. Results for Floudas GAMS problems with no discrete variables (cont’d) 
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EX8_4_1 22 0 10 200 201 1 8 1 257 1774 0.08 0.26 7.5 0.001 

EX5_3_2 22 7 9 200 201 1 42 1 471 13484 0.56 1.58 300 0.000 

EX2_1_8 24 10 0 200 605 15 20 6 1041 1506 1.6 2.5 24 27.391 

EX8_4_2 24 0 10 200 201 1 4 1 300 1400 0.1 0.3 7.45 -0.004 

EX5_4_4 27 13 6 200 564 29 75 6 5346 14621 2.15 4.17 200 0.002 

EX5_2_5 32 8 11 200 556 21 50 43 4550 15865 2.15 4.21 200 0.000 

EX8_4_3 52 0 25 200 201 1 10 1 260 3176 0.36 1.42 4.51 0.000 

EX8_2_1 55 6 25 200 222 2 40 7 447 4851 1.44 5.26 236.25 0.001 

EX8_2_4 55 6 75 200 201 1 37 7 377 7041 1.74 6.18 216 0.003 

EX8_4_7 62 0 40 200 201 1 21 2 340 30603 0.75 5.13 754.96 0.022 

EX8_3_9 78 18 27 200 259 7 67 61 2268 21490 5.11 17.32 1000 -0.100 

averages 41.2 6.2 21.6 200.0 310.2 7.3 34.0 12.4 1423.4 10528.3 1.5 4.4 268.2 2.5 

       

EX8_3_1 115 17 59 200 307 10 38 28 67165 152573 30.72 81.99 10000 0.29 

EX8_3_2 110 27 49 200 945 15 18 18 12254 16103 33.82 35.21 243.85 0.00 

EX8_3_3 110 27 49 200 201 1 19 18 2357 28809 8.65 37.17 223.22 0.00 

EX8_3_4 110 27 49 200 203 2 23 22 4875 31568 10.49 39.66 105.54 0.00 

EX8_3_5 110 27 49 200 201 1 13 11 2442 12746 10.54 39.59 127.28 0.10 

EX8_3_6 110 27 49 200 511 14 37 29 6760 56896 20.21 44.97 1000 0 

EX8_3_7 126 27 65 200 201 1 8 7 2868 6401 10.99 32.76 100 9.7517 

EX8_3_8 126 28 65 200 414 20 45 42 79983 156082 51.32 101.55 10000 0.0004 

EX8_3_10 141 43 65 200 549 20 39 28 7188 39045 35.68 76.39 6000 0.3604 

averages 117.6 27.8 55.4 200.0 403.1 9.3 25.3 21.9 14840.9 43456.3 22.7 50.9 2225.0 1.3 
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