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 Convexity Cuts and Cut Search

 Fred Glover

 University of Colorado, Boulder, Colorado

 (Received July 21, 1970)

 This note focuses on two new and related cut strategies for integer program-

 ming: the 'convexity-cut' and 'cut-search' strategies. The fundamental

 notions underlying the convexity-cut approach are due to RICHARD D. YOUNG

 and EGON BALAS, whose 'hypercylindrical' and 'intersection' cuts provide the
 conceptual starting points for the slightly more general framework developed

 here. We indicate the utility of our framework (and hence the importance
 of the original Young and Balas ideas) by specifying a variety of new cuts that
 can be obtained from it. The second new strategy, cut search, shares with

 the convexity-cut strategy the notion of generating a cut by passing a hyper-

 plane through the terminal endpoints of edges extended from the vertex of a
 cone. However, whereas the convexity-cut approach determines the exten-

 sions of these edges by reference to a convex set that contains the vertex of

 the cone in its interior, the cut-search approach determines these extensions

 by reference to associations between certain 'proxy' sets of points (e.g., col-
 lections of hyperplanes) and 'candidate solutions' to the integer program. The
 cut-search approach typically involves more work than the convexity-cut ap-
 proach, but offers the chance to identify feasible solutions in the process, and
 can sometimes also yield somewhat stronger cuts than the convexity cuts.

 THIS PAPER generalizes the important new 'hypercylindrical' and 'intersection'
 Tcut ideas of YOUNG1151 and BALAS[11 to provide a broader class of cuts called
 convexity cuts, and describes several specific new subclasses of this general class.
 In addition, it describes a new approach to cut generation, called cut search, that

 appears to provide stronger cuts than the convexity cuts, although at greater com-

 putational effort. An auxiliary feature of the cut-search approach is the generation
 of a set of candidate solutions that can be tested for feasibility.

 NOTATION

 THE MIXED integer programming (MIP) problem will be written:

 maximize xo = aoo+ ZJeN aoj( - tj), subject to:

 xi =ao+ IEjN aij(-ttj), i'EM; xi> iM= I{1, *,m};

 tjO, jeN = {1,, nJ; and xi integer, iEI= {1, WI*, n'Jo.

 Without the integer restriction, this is the ordinary linear programming (LP)
 problem. The tj, jEN, represent the current nonbasic variables and are assumed to
 be a subset of the xi, ijM. In particular, the tj of the initial tableau representation
 of the LP problem are identified by the first n equations x 1 (-ti), iEN.

 123
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 124 Fred Glover

 We also write the MIP problem in matrix notation as

 maximize xo = aoo+A( -t), subject to x ==Ao+A(-t),

 x>O t>O and xi integer for iEI,

 where superscripted vectors refer to row vectors and subscripted vectors refer to
 column vectors.

 CONVEXITY CUTS

 THE CONVEXITY CUTS apply to any mathematical programming problem whose
 constraints include or imply

 y=Bo-Bt, t>0, (1)
 and

 yES, (2)

 where S may be any of a rather broad class of sets, but in the present context will
 generally consist of those y satisfying one or more of the three conditions y > 0, yi
 integer for iEP, or yt = 0 or 1 for iEP (where P is some subset of the index set Q for
 the components of y).

 Thus, for example, (1) and (2) may simply be another way of formulating the

 constraints of the MIP problem (with y = x) ; or, alternatively, (1) may be obtained
 by identifying each yt as an integer combination of the xi for ifl, and (2) may stipu-
 late that ys is integer for each ioQ. The general characterization of convexity cuts
 is given by the following result. (See Note 1.)

 CONVEXITY-CUT LEMMA. Let R be any convex set whose interior contains Bo but no
 points of S. Then for any constants t*> 0 such that Bo-Bjtj*ER for all jEN, the cut

 EjfN ( lltj* )tj 1 (3)

 is consistent with all y satisfying (1) and (2). (By convention, 1/tj* 0 if ti*= X.)
 Proof. Consider any y that is a convex combination of the points Bo, Bo -Bjtj*,

 jEN; i.e., y = XoBo? ZjN Xj(Bo-Bjtj*), where Xo+ Y2jN Xj==l and Xj3?O for j=O
 and jtN. From the assumptions, Ej>eN Xj< 1 implies y is in the interior of R.
 But the set of convex combinations satisfying this latter inequality is just the set of

 y satisfying (1) and YjOv (1/tj*) tj< I (equating tj with Xjtj*). Hence all y sat-
 isfying (1) that are also in S (and therefore not in the interior of R) must satisfy

 (3).
 Note that, by the foregoing lemma, if (1) and (2) are implied by the constraints

 of the MIP problem, then -(3) is a valid cut for the MIP problem, and, moreover,
 (3) excludes x = Ao from the set of feasible continuous solutions. Also, the stipula-
 tion of the lemma that R contains Bo in its interior is not strictly necessary; i.e.,
 Bo may be on the boundary of R as long as there is a neighborhood of Bo such that
 all y( -Bo) satisfying (1) in this neighborhood are in the interior of R.

 The following easily proved results indicate the scope of the convexity cuts and
 also provide guidelines for creating acceptable sets R relative to which these cuts
 may be defined.

 Remark 1. Assume (1) and (2) correspond to the constraints of the MIP prob-
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 Convexity Cuts and Cut Search 125

 lem (with y=x) and moreover, (2) implies (1). (This of course can always be

 ensured.) Then the convexity cuts defined by (3) include all half spaces H(x) _0
 such that H(Ao) ( <0) minimizes H(x) over the cone defined by (1), and such that
 H(x*) >?0 for all x* that are feasible for the MIP problem. [In particular, (3) in-
 cludes all half spaces corresponding to the faces of the convex hull of feasible solu-

 tions to the MIP problem for which H(x) achieves its minimum over the cone at

 Ao.]
 Remark 2. Assume yES implies yi ?1 or yHi<.0 iEP. Then yi2 ys, and hence

 Eitp h(yi2-yi) ?0 for any nonnegative numbers hi, ijP. Thus, the convex set of
 y satisfying

 uieP hi(yl2-yl ) ?0 (4)
 contains no points of S in its interior. (The set constitutes a sphere when all hi
 assume the same value, and more generally constitutes an ellipsoid when some of

 the hi differ in value.) Moreover, this convex set will contain y =Bo in its interior
 if 1 > bo > 0 (where bio is the ith component of Bo) for all iEP, and 1> bio> 0 for some
 ijP such that hi>O. Thus, under the stated assumptions, the convex set defined
 by (4) may serve as an acceptable R for determining a convexity cut.

 Remark 3. It is easy to create ys and bio satisfying the assumptions of Remark

 2 for any problem containing the constraints x = Ao-At, t _>O and "xi >f. or xi < gs"
 for iEP, provided fi > a >_g for all iEP and ft> ajo> gi for some iEP. To do this
 one defines yi=(xi-gi)/(fj-gq), which, from the equation xi=aio-EjENaijtj,
 gives bio= (ao-qgi)/(fi-qg) and bij=ajl/(f-qgi) for jeN.

 The specific application of these comments to the MIP problem is elaborated

 in Remark 5.

 Remark 4. While Remark 2 identifies a set of ellipsoids that can serve as R
 without taking into account any restrictions except those imposed by the discrete
 character of the ys variables, it is also possible to identify intersections of ellipsoids
 that can serve as R by explicit reference to additional constraining relations (whose
 structure determines the structure of the convex sets whose intersection defines R).

 Specifically, assume yES implies that y?-<O or yi> 1 for ijP and that the inequality

 Ei phriyi > hro (5)

 holds for at least one r = 1, *, r'. Furthermore, suppose that for each r<r', the
 solution y = Bo either violates (5) or satisfies it with equality. Then if 1 > bio> 0
 for all iEP, and if for each r< r' there is at least i such that hri 50 and 1> bio> 0
 then R can be given by the intersection of the convex sets

 Zifp|hrili2< h/o, (r=1, ,r') (6)

 where hro is hro minus the sum of the negative hri, iEP, and where the variables Zri
 are given by Zri = Yi if hri_> 0, and Zri = 1- Yi if hri< 0. [The restrictions indicated
 for y =Bo assure that Bo is in the interior of r, but may be replaced by any other
 conditions that imply (6) is satisfied as a strict inequality for y=Bo and all r<r'.]

 Remark 5. If the statement of an MIP problem does not otherwise include the
 type of constraining relations indicated in Remark 4, it is always possible to gener-
 ate such relations using the ideas of Remark 3 if x = Ao does not assign xi an integer
 value for all iJ. Let P be any subset of I for which ajo is not integer for at least
 one iEP, and define yi = xi- [aio]+?.i, where i = 0 if ajo is not an integer and other-
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 126 Fred Glover

 wise 6i=O or 1, as desired ([ajo] denotes the greatest integer ?<ajo). Then each yi,
 iEP, satisfies the conditions of Remark 2, and furthermore, for bio=aio-[aio]+bi at
 least one of EjP Yj>[Zjfp bjo]+1 and EiP- yi -[Zifp bio] must be violated
 for y= Bo, and neither can be satisfied except as an equality. Yet at least one of
 these inequalities is valid. Consequently, by Remark 4 it follows that R may be

 given by the inequalities

 EiZpyji2<7 and EiZp (1-yi)2<72, (7)

 where yl= [Zifp bio]+1 and Y2= IPI+ 1-yi, and where IPI is the order of P. The
 derivation of (7) is of course valid for any integer y'< I?P and 72 = IPI + 1 --y, and
 usually there is more than one such '1 for which R is given by (7) contains y =Bo
 in its interior. Also, (7) can be generalized in the obvious way by replacing yi

 with hjyj, where hi is an integer, and further replacing yi by yj =1 - yi if hi is nega-
 tive.

 Remark 6. An alternative way to take advantage of Remark 4 is to note that
 every MIP problem either contains or can be made to contain constraints of the

 form

 EiP hixi =K, (8)

 where iEP implies xi is integer. [For example, if (8) is an inequality and the hi are
 integers, then it can be made into an equality of the desired form by adding an in-

 teger slack variable and enlarging P.] By using the approach of Remark 5, (7)

 becomes ZieP hiyi=K', where each ys is <0 or > 1. Then, if bio is not 0 or 1 for
 some iEP (which occurs whenever the corresponding aio is not integer), and if

 hi-0 for this i, it follows by Remark 4 that R can be given by

 EiP lhijz!2 < K", (9)
 where K" equals K' minus the sum of the negative hi and where zi = yi or 1-yi
 according to the sign of hi.

 Two special cases of interest are: (i) equation (8) is xi+wi=K, where wi is the
 slack variable for the upper-bound inequality xi<K; and (ii) P=I, hi= 1 for all i,
 and each xi is a 0-1 variable. Case (i) [in which K" of (9) is always equal to 1]
 gives the cuts due to RALPH GOMORY,[121 and case (ii) gives the cuts due to R. D.
 Young. [15]

 Remark 7. The creation of ellipsoids to serve as R can be accomplished in a
 manner different from that in Remark 2 (disregarding constraining relations of the

 type accommodated in Remarks 4-6). In particular, assume yES implies lyi|_ Ki
 for all iEP. Then if Jbiol < Ki for all iEP and Jbiol < Ki for some iEP, then R can be
 given by

 EieP hiy 2= ZieP h Ki2 (10)

 for any positive numbers hi, iEP. (The restrictions involving bio serve only to as-
 sure that y =Bo will be in the interior of R, and are more stringent than necessary.)

 Remark 8. Remark 7 can always be implemented for the i\IP problem if
 x = Ao does not yield xi integer for all iEl. For example, suppose that xi is not in-
 teger for at least one iEPCJ, and define yi=xi-[aio]+bi-an (where bi is as in Re-
 mark 5), for iEP. Then xi integer implies 1yi4 2 , but jbiolj /% and biol <12 if
 aj0 is not an integer (where bio=aio-[aio]+6i-?/6). Thus (10) becomes
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 Convexity Cuts and Cut Search 127

 The Balas cutsl11 are given by (11) when P=1 and all hi= 1, and the Gomory
 cuts are given by (11) when P has exactly one element.

 It is interesting to note that Remark 7 is equivalent to Remark 2 upon scaling

 and translating the yi variables (as in Remark 3) and hence (11) gives the same
 convexity cuts as (4). We have stated the latter remark in addition to the former

 to point up a connection between the cut derivations of Balas and Young, which

 develop these remarks (Balas Remark 7 and Young Remark 2) under the assump-

 tion P = I and all hi =1 (where Young limits consideration to y. = 0 or 1). (See
 Note 2.)

 Remark 9. Implementation of Remarks 5, 6, and 8 to determine values tj*
 that give the convexity cut (3) may be handled as follows. In each instance, the

 yi variables are given by yi-xi-Ki for some constant Ki, so that the equations
 yi= b0o- Zjo bijti, i EP, hold with bio=aio-Ki and bij=aij for all jeN.

 The set R in Remarks 5, 6, and 8 is given by the intersection of one or more
 convex sets having the form

 ,iep, hiy2+ EP2 hi( 1-yi) 2< ho, (12)

 where all h> 0 and P1 and P2 constitute a partition of P. The largest value of tj
 for which y=Bo-Bjtj satisfies (12) is obtained by requiring (12) to hold as an
 equality with ys replaced by bio-bijtj. This gives the quadratic equation atj2-
 ltj+?y=O, where a= Zifp hib~h, f3=-2 ZiEP hibiobij+ 2 Ep2 ij and

 ,y= ZiaP hbo+ Zfp2 hi (1-2bio) -ho.

 The sought-after value of tj is the positive root of this quadratic, which exists
 and is unique under the stated assumptions unless bij=O for all iEP, in which case

 tj= oo . [Recall that the roots of the quadratic are given by tj= ( 4- //F2_4ay
 2a.] Thereupon the minimum over these positive values of tj for each inequality
 (12) whose intersection determines R gives the appropriate value of tj*. (There
 are two such inequalities for Remark 5, and one for Remarks 6 and 8.)

 Remark 10. The assumptions of Remark 7 can alternatively be exploited by

 allowing R to be given by EiZp hi|yji| j ifP hiKi. Moreover, the resulting cut
 must be uniformly stronger than the cut based on Remark 7. These observations

 were first made (independently) by V. Joseph Bowman and David Sommer. How-

 ever, a substantially more complicated procedure is required to determine the tj*
 values for the indicated choice of R than for the R of Remark 7. (The specification
 of such a procedure is developed in BALAS, BOWMAN, GLOVER, AND SOMMER.[31)

 Remark 11. The strength of the convexity cut increases as the values of the

 tj* increase, and hence (roughly) as the absolute values of the bij become closer to
 0. (The cut becomes uniformly stronger if a 'blocking subset' of the bij strictly
 decreases in absolute value without changing sign. It may or may not become

 stronger if such bj do not decrease in absolute value but change their sign.)
 Strengthening of the convexity cuts in this manner can be accomplished for the cuts

 of Remarks 4-8 and 10 by allowing the yi to be defined from the xi in two steps.
 The first step gives an 'intermediate' ys equation as an integer combination of the

 xi equations for icl. The second step defines ys and bio as before, but with the in-
 termediate ys equation providing the coefficients and variables in place of an origi-

 nal xi equation. In particular, since each integer valued tj variable is identified
 by an equation xi= - (- tj) for some iEl, these equations can be used to make the
 absolute value of bij less than 1 for each such tj and all iEP. This corresponds to
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 128 Fred Glover

 the approach used by Gomory to strengthen the mixed integer cuts of reference 12.

 Since stronger cuts are thus obtained from integer nonbasic variables, it is reasonable

 to modify the convexity cut when possible so that its slack variable will be integer

 valued. For the pure integer problem, one way to do this is of course to use (3)

 as a source inequality for the Gomory all-integer cut, reference 13. Balas proposes

 such an 'integerizing' of his cuts [1] (although not as part of a strategy for obtaining
 stronger cuts in the manner indicated here). A reasonable alternative might be to

 express the convexity cut first in terms of the initial tableau, and then to take an

 all-integer cut from this expression, whereupon the all-integer cut could be reflected

 back to the current tableau. (The all-integer cut must sufficiently mirror the con-

 vexity cut to be violated by t=O in the current tableau.)

 Remark 12. Assume yES implies ys is integer for iEP. Any closed convex set
 whose boundary contains all points of a unit hypercube (with integer vertices)

 cannot contain an integer point in its interior, and hence such a convex set is ac-

 ceptable in the role of R if its interior contains Bo (and the unit- hypercube is defined
 relative to the yi for iEP). Also, if yES further implies 1 ypi_ 0 for all iEP, then any
 convex set is acceptable in the role of R whose interior contains Bo but no points y
 such that yi = 0 or 1 for all iEP.

 The foregoing remarks give rise to some speculations about possible equivalences

 and dominances among certain classes of convexity cuts:

 1. The class of convexity cuts given by Remark 5 is equivalent to the class of convexity

 cuts given by Remark 6 when the hi are integers and at least one hi = 1 or -1 in equation
 (8).

 2. The class of cuts given by Remark 7 is equivalent to the class of cuts given by Remark
 5, if the yi of Remark 7 are permitted to be taken from integer combinations of the xi, iEI,
 as indicated in Remark 11.

 These speculations have not, to this time, been demonstrated to be either true
 or false. Two additional speculations, originally motivated by geometric example,
 have since been demonstrated to be false. However, the only counterexamples

 presently known (due to E. G. P. Harran) occur for certain restricted 'obtuse
 angle' situations. This gives rise to the interesting question of whether it may not

 be possible to assert that these speculations are 'almost always' true by showing that
 the conditions under which they are false can be narrowly confined, or circumvented.
 (For example, in Harran's examples, it is possible to transform the space to an

 'acute angle' coordinate system that yields stronger cuts and in which the counter-
 example no longer holds.) These additional speculations are:

 3. If Hit > 1 is the strongest convexity cut obtained for R = {y: F1(y) ?KI } and if H2t _ 1
 is the strongest convexity cut obtained for R = {y: F2(y) <K2 }, where F1 and F2 are convex

 functions, then the cut (XH?+X2H2)t-> X1 +X2 with XI, N2>0, is at least as strong as the
 strongest convexity cut obtained for R = {y: X1FI(y) +X2F2(y) ?< XK1 +XN2K2.

 4. The cuts given by Remark 7 are dominated by positive linear combinations of the
 Gomory cuts.[121 Speculation 4 is a special case of the preceding one. (See Note 3.)

 CUT SEARCH

 THE IDEAS OF cut search are based on associating certain 'proxy' sets of points
 (usually hyperplanes) with points in the feasible solution space, and probing the
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 Convexity Cuts and Cut Search 129

 space with the edges of the cone (1) for these proxy sets. (See Note 4.) Once an

 appropriate collection of these sets has thus been encountered, the associated 'solu-

 tion points' are tested for feasibility. The probing is terminated when bounds in-

 dicate that one of the candidate solutions is optimal, or when a selected cut is
 reached off the limit. In the latter case a cut is adjoined, based upon the informa-

 tion generated by the probe. Thus, cut search differs from the convexity-cut

 approach in that no convex set that contains Bo and excludes points of S is specified
 in advance, or even necessarily ever identified. (The cut may in fact exclude points

 of S contained in the cone, but only if these points have been located via the proxy

 sets and considered as candidates for optimality.)

 A key result underlying our initial application of cut-search ideas is stated as
 follows.

 FIRST CUT-SEARCH LEMMA. Assume y' is contained in the truncated cone of points
 satisfying both (1) and

 EjeN ( 1/tj*) tj _`~1, (13)

 where tj*>O for all jEN. Then every hyperplane L(y-y') = 0 through y' (for L a
 nonzero row vector) intersects at least one of the edges of the truncated cone incident at

 Bo (one of the line segments y = Bo-B jtj, tj* > tj > O) .
 Proof. Let t'> 0 be a vector satisfying (13) for which y'= Bo-Bt'. The repre-

 sentation of L(y- y') =0 in terms of the t variables (for y contained in the cone)

 is H(t-t') =0, where H=LB. If Ht'=0, it is clear that y=Bo lies on the hyper-
 plane L(y-y') = 0, and the lemma is proved. Thus, suppose Ht' 0, and, more

 specifically, Ht'>0 (replacing H by -H, if necessary). The assumptions imply
 that the set J = {jEN:njtj'>n 0 cannnot be empty (where hj denotes the jth com-
 ponent of H). Furthermore, identify an index kEJ such that hktk* = maxjeJ Ihjtj*},
 and define a = Ht'/hk(a > 0). Note that the hyperplane L(y -y') = 0 contains the
 point y=BO-Bka, and consequently intersects the half line y=Bo-Bktk, tk> O.
 Thus, to establish the lemma it must be shown that a?tk*. By assumption,

 tj'/tj*< 1, and hence E (tk*/tj*) t' tk*. But a = > (hj/hk) tj', and the
 definition of the index k implies hy/hk _ tk*/tj* for all j. The conclusion a ? tk*
 thus follows from the nonnegativity of the t,', completing the proof. (The proof

 also holds for J = {jEN:hj> 0} .)
 Remark 13. One application of this cut-search lemma arises by letting the proxy

 set of points corresponding to a point yES be the collection of coordinate hyper-

 planes passing through y. Relative to this collection of hyperplanes, the state-

 ment of the lemma becomes: if y = y' lies in the truncated cone defined by (1) and

 (13), with tj*>O for all pEN, then for each iEQ (the index set of y) there is some
 jEN and some number t' t *> t '>, such that yj = bo- bjt11.

 To apply this observation to the pure integer programming problem (where
 I = N), assume Bo = Ao and B = A (hence y corresponds to x). Further, suppose
 yES is equivalent to the statement that y is a feasible (integer) solution to the pure
 IP problem. Then all y'ES can be discovered by parametrically increasing tj (in
 discrete increments) on each of the half lines Bo-B jtj, t, ?0, jEN, where the suc-
 cessive values of tj, denoted tjl, t^2, , are given by

 tjm=min{tj:tj>0 and b0o-bijtj is a nonnegative integer for some iEN
 and

 = min{tI:tj>tj> and bio-bijtj is a nonnegative integer for some ieN}.

 (r ? 1)
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 130 Fred Glover

 If there is no value of t3 that satisfies the indicated restrictions for tj' or tj+', then
 ti' or ty+' (as appropriate) is defined to equal Occ Also, if yi has an upper bound,
 then bo- bijtj may be required to satisfy this bound in the foregoing definitions.

 A 'parametric search' procedure for identifying candidate solution points is

 then given by the following instructions:

 1. Begin with tj =tjl for all jeN. Create two integer numbers Ui and Li for each iEN,
 with the interpretation that all integer values of yi currently found are precisely those in the
 interval Ui ?yi ?Li. Since [bi0]+1>bi0-bijtj1>[bioI, the initial Ui and Li values are
 readily determined for all iEN such that bio-b jtj1 is an integer for some jEN. By convention,
 if Ui and Li are not thus determined for some iEN, then let Ui = [bioI and Li - [bio] +1 for
 this i.

 2. If Ui <Li for some iEN, go to Step 3. Otherwise, identify all integer vectors y > 0 (if
 any exist that were not examined on a previous execution of this step) such that U >?yi >Li
 for all iEN, and record these as feasible solutions to the IP problem. (The condition y ?0

 can be tested in the initial tableau from the indicated assignment of values to the yi for
 iEN.)

 3. Select any jEN such that the current value tjr of tj is finite (r depends on j). Increase
 tjr to its next value tj' (i.e., increment r by 1) where the definition of t7+' given earlier is
 modified to further stipulate that bio-bijtj-Ui+1 or L,-1, according to whether bij is
 negative or positive. If now tjr = .0 (for r incremented by 1), repeat Step 3, selecting another
 j. Otherwise, identify the new Li or Ui value that results (for one or more iEN) as a conse-
 quence of increasing tj. Then return to Step 2. (If all tjr= 00, then the best feasible solu-
 tion found is optimal and the procedure stops. Other stopping criteria can be specified by
 determining bounds on the objective function by reference to the cut of Remark 14 to follow.)

 The number of y vectors to examine for nonnegativity in Step 2 will be small

 (perhaps = 0) for the first several executions of this step, but then will tend to grow

 rapidly. On the other hand, Step 3 permits tj to bypass a number of irrelevant
 values by the modified definition of t1r+. The significance of this in the cutting
 context is provided by the next result.

 SECOND CUT-SEARCH LEMMA. Assume L?Bo-Bjtj< U for all t, satisfying
 O _ tj? tj'. Let S* = {y:L <y < U}, and further assume that vectors L' and U' are
 known for which: L'<L, U'> U; Li'<Li and U.'> U. for all finite Li and U.; and
 yES-S* implies yi, U.'> U. or y_ Li'<Li for at least one i. Finally, for each ],
 let tj* be the largest value of tj such that L'<Bo-Bit,< U'. Then the cut (3) is satis-
 fied by all y in the cone (1) for which yeS-S*.

 Proof. First, note that tj* > t,! for all t j'< oo, and L' <Bo -Bjtj < U' for all tj
 satisfying 0? tj ? tj*. Suppose the lemma is wrong and there is a yeS- S* in the
 cone (1) for which E (1/tj*)tP<1 (where yo-Bo-Bto, t0>O). We replace all
 infinite tj* by finite numbers that yield E (1/tj*)tP0=b for some positive 6<1.
 Defining tj" = at, we obtain tj" <tj* for all tj* such that tj*> tj'. Thus, bi0 -
 bi jtj< U.' for all t1 such that 0< tj < tjj" and for all i such that Ui< Ui'. Similarly,
 bio-b1jtj>Li' for all tj such that 0<tj<tj" and for all i such that Lk<Li. Thus,
 y0 lies in the truncated cone defined by (1) and E (1/tj")tj<1, and furthermore,
 none of the edges of this truncated cone incident at Bo are intersected by a hyper-

 plane of the form yi= 0, where 6<Li'<Li or 0> Ui'> Ui. But by assumption yo
 must be contained in at least one such hyperplane. The first cut-search lemma

 thus provides a contradiction, implying that y cannot be in the truncated cone.
 This completes the proof.

This content downloaded from 132.174.250.143 on Mon, 20 Feb 2017 18:43:52 UTC
All use subject to http://about.jstor.org/terms



 Convexity Cuts and Cut Search 131

 It should be noted that this lemma also holds by replacing inequalities such as
 L y?U and LBo-Bt<U with L?FyU, L<F(Bo-Bt)<U, etc., where F

 is a suitably dimensioned matrix. In this case the variable ys is replaced by FPy,
 where FP is the ith row of R (except for the components of y in the statement
 yeS-S*).

 Remark 14. A useful consequence of the second cut-search lemma in applica-
 tion to the procedure of Remark 13 is the implication that, after completing the
 execution of Step 2, one can introduce the cut (3) with tj*= t+1 for all jeN (using
 the modified definition of t'+ indicated in Step 3). This is significant, since once
 Lj< Uj for all j, the parametric search procedure accumulates new y vectors to be

 _\ ,

 Figure I

 examined at Step 2 each time tj increased to jil for a single j at Step 3. But
 the cut is valid by increasing qj to t. +1 for all j, and does not require examination of

 new integer y vectors before it is enforced. The situation is illustrated in F~ig. l.
 The cone ( l) is shown with its vertex Bo in the lower left square. The edges of

 the cone are extended to the first intersecting coordinate hyperplanes (correspond-
 ing to the values til), and the integer point determined by these hyperplanes is
 examined for feasibility. (It is clearly feasible relative to the cone, but other prob-
 lem constraints that may be applicable have not been shown.) If the search pro-
 cedure is stopped at this point, then the edges of the cone may be extended as indi-
 cated by the dotted lines to yield the cut depicted by the line that passes diagonally
 through the upper right square. (See Note 5.)

 Remark 15. There are several ways that the procedures of Remarks 13 and 14
 can be systematized for greater efficiency. F~or example, after adjoining the cut
 and reoptimizing to a new linear programming extretne point (as with a variety of
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 standard cutting methods), the Us and Li values from previous extreme points can

 be used to help bypass the examination of some of the integer y vectors and tj
 values applicable to the current extreme point. Also, as the tj values are increased,
 the cut of Remark 14 can be kept 'updated' in terms of the yi variables (by reference
 to the initial tableau) and the y vectors first checked for feasibility with respect to

 this cut. If the initial tableau representation of the cut is EN hiyi < ho, then a
 simple 'implicit enumeration' procedure that begins with yis U for hi < 0 and yi = L
 for hi > 0, and that 'backtracks' whenever the inequality is violated, makes it possi-
 ble to avoid examination of many of the y vectors altogether. (Note that to avoid
 reexamining y vectors already examined on previous steps, one automatically

 excludes an assignment of values to the yi variables that satisfies Ui ? yU Li for all
 iEN relative to the Us and Li of the preceding execution of Step 2.) One can also
 pass the coordinate hyperplanes Yk= bko -1 and Yk = bko+ 1 through the cone to
 identify the edge intersections (if any) that minimize or maximize the variables yi,
 i k. The utility of such information is that it is applicable to all coordinate hyper-

 planes Yk`=Yk* that intersect the cone. Finally, one can specify alternative co-
 ordinate systems for the integers and apply the procedure relative to one or more

 of these new systems. (See Note 6.)

 Remark 16. A cut-search procedure patterned after the foregoing can be imple-
 mented for the general MIP problem by solving the linear program that results by

 assigning the integer values to the yi, iEI, indicated at Step 2 of Remark 13. How-
 ever, such an approach can be improved on by creating constraints involving only
 the integer variables. Such constraints automatically result from successive

 attempts to solve the linear programs, as noted by BENDERS.41 However, rather
 than solve a pure integer program involving these constraints each time a new one
 is created (as in Benders' 'partitioning' procedure) one can instead use these con-
 straints in the present context to supply a check for the feasibility of integer vectors
 examined at Step 2. It would seem reasonable to create a number of such con-

 straints initially by generating feasible solutions to the inequalities: Eie M' aijXi> 0
 jfI; XiO, iEM'=M-N, where the aij are from the initial tableau for the MIP
 problem. In particular, one might generate solutions that are optimal or near
 optimal to the linear program whose objective is to minimize ZieM' aioXi subject
 to the foregoing inequalities and ieM' XSi= 1. Each feasible solution Xai=Xi
 then gives the constraint Ej, aj *tj< ao* for aj* = ZiM' aijXi*, j = 0 and jdE.

 Remark 17. Another application of the cut-search ideas can be made in the
 context of the following observation. Assume yES implies YESr for at least one
 r= 1, *, r', where Sr is the set of points in a half space or on a hyperplane. Then,
 if BofS, for all r_ r' an acceptable value of tj* for the cut (3) is given by the smallest
 positive value ti such that Bo-BjtjESr and SrnlS0 for some r<r' (where 0 denotes
 the empty set). One example of a possible application of this remark arises for the
 pure 0-1 IP problem by noting the one-to-one correspondence between the vertices
 of the hypercube and the half spaces

 ZieN bihiyi > 0, (14)
 where each bi, LEN may be -1 or 1, the hi are positive constants, and bo is the sum
 of the positive bihi. [The intersection of the 2' half spaces that result by reversing
 the inequality sign of (14) corresponds to the region R of Remark 10.] The details

 of determining whether Bo- Bjtj is contained in Sr [for Sr given by ( 14) ] are beyond
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 the scope of this paper, but such a determination can be made efficiently for the

 first few S, encountered as tj is increased from 0.

 NOTES

 1. The first use of the ideas underlying this lemma appears to occur in the procedure of
 HOANG Tui[141 for minimizing a concave function over a convex polytope, which has subse-
 quently been adapted to mixed 0-1 programming by RAGAVACHARI.1'31 Connections be-
 tween the work of Tui and Young are developed in GLOVER AND KLINGMAN,1'01 where it is
 shown how to modify Tui's procedure to make it finite for Young's problem. (A finiteness
 proof has not been developed for Tui's procedure in the context of references 13 and 14.)

 2. More recently, Balas and Young have allowed for the possibility of assigning the hi
 coefficients values other than 1. For these and other generalizations, see references 1, 2, 16.

 3. Interesting connections between the convexity cuts developed by Balas and convex
 combinations of Gomory cuts are established by CLAUDE-ALAIN BURDET in reference 6.

 4. Related 'enumerative inequality' approaches for integer programming have been de-
 veloped by Burdet[71 that likewise succeed in obtaining strengthened cuts. For other ap-
 proaches to obtaining strengthened cuts, see also V. J. Bowman and G. Nemhauser.151

 5. The cut can be further strengthened in this example by the following observation.

 If there is an index i and an integer k such that k ?bio - bijtj* <k +1 for all j, then each tj*
 can be increased to the largest value that permits the foregoing inequality to remain satis-
 fied.

 6. Some particularly interesting consequences of these remarks can be inferred for 'posi-
 tive' integer corodinate systems, i.e., for systems defined relative to the integer coordinates of
 a vector w = My, where M is an all integer matrix with an all integer inverse, and MB '0.
 Details of these consequences are developed in reference 9.
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