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Abstract. This paper studies the polyhedral structure of dynamic fixed-charge problems that have nested
relationships constraining the flow or activity variables. Constraints of this type might typically arise in
hierarchical or multi-period models and capacitated lot-sizing problems, but might also be induced among
choices of key variables via an LP-based post-optimality analysis. We characterize several classes of valid
inequalities and inductively derive convex hull representations in a higher dimensional space using lifting
constructs based on the Reformulation-Linearization Technique. Relationships with certain known classes
of valid inequalities for single item capacitated lot-sizing problems are also identified.
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Fixed-charge problems, notably including network flow and facility location fixed-charge
problems, occupy a central place among classical mixed-integer programming models.
An extensive literature of practical applications and of proposed solution procedures has
emerged, attesting to the importance and challenge of this class of problems. Applications
include natural gas pipeline systems (Rothfarb et al., 1970), offshore platform drilling
(Balas and Padberg, 1976), bank account location (Cornuejol, Fisher, and Nemhauser
1977), distribution center location (Nozick and Turnquist, 1998a, 1998b), telecommuni-
cation network switching (Luna, Ziviani, and Cabral, 1987), and network design (Mirzain,
1985; Crainic, Frangioni, and Gendron, 2001). Several other network-related applications
are also discussed in Glover, Klingman, and Phillips, 1992.

Solution methods for various types of fixed-charge problems have ranged across
the spectrum of approaches spanning Lagrangian relaxation with branch-and-bound
(Cruz, Smith, and Mateus, 1998), Lagrangian relaxation with heuristics (Hochbaum
and Segev, 1989), bundle-based relaxations (Crainic, Frangioni, and Gendron, 2001),
branch-and-bound with Benders decomposition (Magnanti, Mireault, and Wong, 1986),
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branch-and-bound with cutting planes (Cabot and Erenguc, 1984; Suhl, 1985; Padberg,
van Roy, and Wolsey, 1985), tabu search (Sun et al., 1998) and iterated scaling (Glover,
1994; Kim and Pardalos, 1999). For the setting of network problems, specialized cut-
ting planes have also been proposed (Barahona, 1986; Bienstock and Günlük, 1996;
Bienstock and Muratore, 1997; Stallaert, 2000).

In this paper, we address the issue of generating cutting planes for dynamic fixed-
charge problems without restriction to network flow models, but where the feasible region
is constrained by inequalities exhibiting a certain nesting property that typically arise in
hierarchical or multi-period decision process models (hence, the term dynamic).

Accordingly, let us consider the following mixed-integer 0-1 region, Xn , defined in
terms of some n continuous variables x ∈ Rn along with an associated set of n binary
variables y ∈ Bn , where each x j is bounded on [0, α j ] if y j = 1, and is zero otherwise,
and where the flow or activity levels x1, . . . , xn satisfy a nested set of generalized upper
bounding (GUB) constraints as stated below.

Xn = {(x, y) ∈ Rn
+ × Bn :

0 ≤ x j ≤ α j y j , ∀ j = 1, . . . , n (1a)
k∑

j=1

x j ≤ βk, ∀k = 2, . . . , n (1b)

y binary}, (1c)

where we assume that α j > 0, ∀ j = 1, . . . , n, and that

max{α1, α2} ≤ β2 < α1 + α2, and max{αk, βk−1} ≤ βk < αk + βk−1, ∀k = 3, . . . , n.

(2)

Observe that Assumption (2) simply obviates possible coefficient reductions and elimi-
nation of redundant constraints. For example, if either α1 or α2 is greater than β2, then
noting (1a) and that x1 + x2 ≤ β2 from (1b), we could reduce such an α-coefficient to
β2. Likewise, if β2 ≥ α1 + α2, then x1 + x2 ≤ β2 is implied by (1a), and would then be
redundant. Similarly, if either αk or βk−1 exceeds βk , then it can be legitimately reduced
to βk , and if βk ≥ αk + βk−1, then (1b) for k is implied by (1b) for (k − 1) along with
xk ≤ αk from (1a).

The constraints defining Xn might typically be a subset of the restrictions that model
some dynamic fixed-charge problem that exhibits such a nested structure. Alternatively,
this nested inequality structure could be generated for some key subset of variables as
desired via a suitable LP post-optimization, if it is not otherwise already explicitly present.
This could be done by successively maximizing the closely-related expressions on the
left-hand-side of (1b) for k = 2, . . . , n. The set Xn also arises in the context of single
item capacitated lot-sizing problems as demonstrated by Atamturk and Munoz (2003).
In this context, considering the demand dt for some product over periods t = 1, . . . , n,
and letting wt denote the production or order quantity during period t , it denote the
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available inventory at the beginning of period t (or at the end of period t − 1), and
letting ct denote the production capacity during period t , we can model this multi-period
production-inventory lot-sizing scenario as follows:

it + wt = it+1 + dt , ∀t = 1, . . . , n

0 ≤ wt ≤ ct zt , ∀t = 1, . . . , n

zt ∈ {0, 1}, ∀t = 1, . . . , n and in+1 ≡ 0.

Here, whenever a production run is made during period t (i.e., wt > 0), then the binary
variable zt necessarily takes on a value of one, and would correspondingly incur some
fixed-charge cost. Now, consider the transformation

x j = wn− j+1, ∀ j = 1, . . . , n, and y j = zn− j+1, ∀ j = 1, . . . , n (3a)

and set

α j = cn− j+1, ∀ j = 1, . . . , n, and β j =
j∑

k=1

dn−k+1, ∀ j = 1, . . . , n. (3b)

Then, eliminating the inventory variables it , for t = 1, . . . , n by considering the above
production-inventory balance constraints in the reverse order for t = n,. . . ,1, produces
the following equivalent set of constraints for the above lot-sizing polytope, where the
slack in the first set of constraints is given by the inventory variable in−k+1, for each
k = 1, . . . , n.

k∑

j=1

x j ≤ βk, ∀ k = 1, . . . , n (3c)

0 ≤ x j ≤ α j y j , ∀ j = 1, . . . , n (3d)

y j ∈ {0, 1}, ∀ j = 1, . . . , n. (3e)

Observe that if we take α1 = β1, then (3c)–(3e) is precisely the set Xn described by (1).
We note here that it is also usually assumed that the initial inventory i1 at the beginning
of period t = 1 is known and, without loss of generality, taken to be zero, so that (3c)
for k = n becomes

n∑

j=1

x j = βn. (3f)

Barany, van Roy, and Wolsey (1984a) have considered the uncapacitated version of
(3c)–(3f) in which α j ≡ βn, ∀ j = 1, . . . , n, and have provided a complete convex
hull description for this polytope. Pochet (1988) has extended this work to derive a
family of valid inequalities for the capacitated version (3c)–(3f), focusing mainly on the
equal capacity case for which he demonstrates that a large subclass of these inequalities is
facet-defining. Loparic, Marchand, and Wolsey (2003) have examined dynamic knapsack
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polytopes as multi-dimensional knapsack sets having an additional continuous variable,
and have explored relationships of such sets with (relaxations of) discrete and continuous
single item capacitated lot-sizing problems in order to derive strong valid inequalities for
the latter problems. Atamturk and Munoz (2003) have introduced a new class of so-called
bottleneck cover valid inequalities for (3c)–(3e) that are shown to delete all fractional
vertices of the corresponding continuous linear programming relaxation. They have also
studied various liftings and facet-inducing properties of this class of valid inequalities.
As a further extension to (3c)–(3e), Atamturk and Kucukyavuz (2003) have additionally
imposed either constant or fixed-charge-based bounds on the inventory variables (slacks
in (3c)), and have studied the polyhedral structure of the resulting set, describing various
facet-defining inequalities along with separation routines. We also refer the interested
reader to the paper by Van Vyve and Ortega (2003) for related convex hull results, and
to the survey by Pochet and Wolsey (1995) for a further discussion on the literature
pertaining to lot-sizing problems.

In what follows, we will characterize certain valid inequalities and higher dimen-
sional convex hull representations for Xn , in order to tighten the relaxation of this under-
lying parent problem. Some of these classes of valid inequalities are related to certain
known inequalities for the lot-sizing polytope, while others are new, as discussed in the
sequel. We remark here that if the constraints (1b) have some general positive coefficients
a j for each x j , j = 1, . . . , n, in the form

k∑

j=1

a j x j ≤ βk, ∀k = 2, . . . , n,

then we can simply scale the problem to transform it into the form of Xn by defining
variables x ′

j = a j x j , j = 1, . . . , n. For such a transformed or scaled region, given that
(2) is satisfied, all the results derived herein would continue to hold true.

We begin in the next section by deriving a class of nested valid inequalities for Xn .
We provide some insights into deriving these inequalities via either an application of the
Reformulation-Linearization Technique (RLT) of Sherali and Adams (1990, 1994), or via
a specific related lifting process. Following this, we show in Section 2 that for the case of
n = 2, this produces the convex hull of X2. However, we demonstrate that this is not the
case when n ≥ 3, and this illustration leads to additional classes of valid inequalities for
Xn in Section 3, for n ≥ 3. We also discuss relationships with certain known classes of
valid inequalities for the lot-sizing polytope. Finally, we close in Section 4 by developing
an inductive scheme for constructing the convex hull representation for Xn in a higher
dimensional space.

1. A class of nested valid inequalities

Let us begin by considering the case of n = 2 as addressed in Proposition 1 below.
Note that this case has no nested structure, and so, the corresponding valid inequality
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described in Proposition 1 is precisely the special case (S, ∅) of the (S, L) flow cover
inequality defined by Proposition 3 of Padberg, van Roy, and Wolsey (1985) for arbitrary
n. Nonetheless, we provide a proof to demonstrate an insightful alternative derivation
process, which will then lead to an inductive scheme for deriving a new prescribed class
of valid inequalities in closed-form for n ≥ 3.

Proposition 1. For n = 2, the following is a valid inequality for X2:

x1 + x2 ≤ (β2 − α2)y1 + (β2 − α1)y2 + (α1 + α2 − β2). (4)

Proof. Adopting the RLT process, let us define y12 as the linearization of the product
term y1 y2, and note that

y12 ≥ y1 + y2 − 1 (5)

for any binary values of y1 and y2. Now, consider the surrogate formed by multiplying
the constraints from (1a) and (1b) by the nonnegative factors y12 and (1 − y12) as shown
below, and summing these inequalities (where ⊕ denotes this surrogation or summing
process):

[x1 ≤ α1 y1](1 − y12) ⊕ [x2 ≤ α2 y2](1 − y12) ⊕ [x1 + x2 ≤ β2]y12. (6)

Upon using the fact that y1 y12 = y2 y12 = y12, we get

x1 + x2 ≤ α1 y1 + α2 y2 − y12(α1 + α2 − β2). (7)

Noting that (α1 +α2 −β2) > 0 from (2), and using −y12 ≤ −y1 − y2 +1 from (5) within
(7), we get (4). This completes the proof.

The following result inductively generates a nested class of valid inequalities of
type (4) for n ≥ 3. For notational convenience, we will henceforth adopt the RLT
terminology whereby [•]L represents the linearization of [•] under the RLT substitution of
a single variable for each specific product term. For example, in particular, y12 ≡ [y1 y2]L .
Furthermore, let us denote

Jk = {1, . . . , k}, and let yJk =
[

k∏

j=1

y j

]

L

. (8)

Observe that we have the following readily verified relationship holding true:

yJk ≥
k∑

j=1

y j − (k − 1), ∀k = 2, . . . , n. (9)
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Proposition 2. The following class of nested inequalities are valid for Xn for each
k = 2, . . . , n:

k∑

j=1

x j ≤
k∑

j=1

π k
j y j + π k

0 (10a)

where for each k = 3, . . . , n, we have

π k
j = π k−1

j − (βk−1 + αk − βk), ∀ j = 1, . . . , k − 1 (10b)

π k
k = (βk − βk−1) (10c)

and

π k
0 = π k−1

0 + (k − 1)(βk−1 + αk − βk) (10d)

and where for k = 2, we have

π2
1 = (β2 − α2), π2

2 = (β2 − α1), and π2
0 = (α1 + α2 − β2). (10e)

In particular, we have the sum of the valid inequality coefficients yielding

k∑

j=1

π k
j + π k

0 = βk, ∀k = 2, . . . , n. (11)

Proof. We establish this result by induction on k. For k = 2, the inequality given by
(10a, e) is valid from (4) of Proposition 1. Moreover, noting (10e), we have that (11)
holds true.

Hence, suppose that the result is true for some k − 1, and consider the case for k,
where k ∈ {3, . . . , n}. Using (10a) for the case of k − 1, and (1a) and (1b) for the case of
k, consider the following RLT product constraint surrogate as in the proof of Proposition
1, where yJk is defined by (8).

[
k−1∑

j=1

x j ≤
k−1∑

j=1

π k−1
j y j + π k−1

0

]
(
1 − yJk

) ⊕ [xk ≤ αk yk]
(
1 − yJk

) ⊕
[

k∑

j=1

x j ≤ βk

]
(
yJk

)
.

(12)

Using the fact that y j yJk ≡ yJk , ∀ j ∈ Jk ≡ {1, . . . , k}, we get

k∑

j=1

x j ≤
k−1∑

j=1

π k−1
j y j + αk yk + π k−1

0 − yJk

[
k−1∑

j=1

π k−1
j + π k−1

0 + αk − βk

]
. (13)
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By the induction hypothesis on (11), the term [•] in (13) is equal to [βk−1 + αk − βk],
which is positive by (2). Consequently, applying the inequality (9) in (13), we get

k∑

j=1

x j ≤
k−1∑

j=1

π k−1
j y j + αk yk + π k−1

0 −
[

k∑

j=1

y j − (k − 1)

]
(βk−1 + αk − βk),

which is precisely of the form (10). Moreover, from (10b, c, d) and the induction hypoth-
esis on (11) for the case of k − 1, we obtain

k∑

j=1

π k
j + π k

0 =
[

k−1∑

j=1

π k−1
j + π k−1

0

]
+ (βk − βk−1) = βk,

or that (11) continues to hold true for the case of k. This completes the proof.

Remark 1 (Derivation via a Lifting Argument). The inequalities (4), in particular, and
(10) in general, can also be derived via a lifting argument. To illustrate, consider the
inequality (4). Note that from (1a), we have the following valid inequality:

(x1 + x2) ≤ α1 y1 + α2 y2. (14)

We can lift this in the dimension of the product variable y12 as follows, using a coefficient
α ≥ 0 for y12:

(x1 + x2) ≤ α1 y1 + α2 y2 − αy12. (15)

From (14), we have that (15) remains valid whenever y12 = 0, i.e., y1 or y2 equals zero.
To maintain validity of (15) in the remaining case of y1 = y2 = 1, whenever y12 = 1,
we must have

α ≤ α1 + α2 − max{(x1 + x2) : (x, y) ∈ X2 with y1 = y2 = 1}. (16)

By (1b) and (2), the maximum value in (16) is given by β2, by which we can take
α = (α1 + α2 − β2), whereby (15) leads to the valid inequality (7). This in turn yields
the desired inequality (4) upon using (5) as in the proof of Proposition 1.

Similarly, we can derive (10), in general, via such a lifting process. This can be
accomplished by inductively starting with the valid inequality (10a) for the case of k −1,
for some k ≥ 3, along with (1a) for the case k, to get

k∑

j=1

x j ≤
k−1∑

j=1

π k−1
j y j + π k−1

0 + αk yk . (17)
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Lifting this with a coefficient −αyJk on the right-hand side, we can derive α as in (16)
under the relevant condition y1 = · · · = yk = 1 via

α ≤
k−1∑

j=1

π k−1
j + π k−1

0 + αk − max

[
k∑

j=1

x j : (x, y) ∈ Xk with y1 = . . . = yk = 1

]
.

Hence, noting (1b) and (11), we can take

α =
k−1∑

j=1

π k−1
j + π k−1

0 + αk − βk = (βk−1 + αk − βk), (18)

which leads to (13), and thereby to (10) for the case of k as in the proof of Proposition 2.

Example 1. To illustrate Propositions 1 and 2, consider the case of n = 3, with X3 being
described as follows.

0 ≤ x1 ≤ 6y1 (19a)

0 ≤ x2 ≤ 7y2 (19b)

0 ≤ x3 ≤ 8y3 (19c)

x1 + x2 ≤ 10 (19d)

x1 + x2 + x3 ≤ 11 (19e)

(y1, y2, y3) binary. (19f)

Hence, we have α1 = 6, α2 = 7, α3 = 8, β2 = 10, and β3 = 11, with (2) holding true.
Applying Proposition 1 for the case of n = 2, we have that the inequality (4) is given
by

x1 + x2 ≤ 3y1 + 4y2 + 3. (20)

Next, inductively applying Proposition 2 for the case of k = 3, we get from (10b, c, d)
using (βk−1 + αk − βk) = (10 + 8 − 11) = 7, and ( βk − βk−1) = 11 − 10 = 1, that
π3

1 = 3 − 7 = −4, π3
2 = 4 − 7 = −3, π3

3 = 1, and π3
0 = 3 + (2)(7) = 17. This leads to

(10a) as given by

x1 + x2 + x3 ≤ −4y1 − 3y2 + y3 + 17. (21)

We mention here that not only is (20) facet-defining for conv(X2), but also, as shown
in general in the next section, it serves to completely describe conv(X2). On the other
hand, as we show later in Example 2, the inequality (21) is dominated by the facet-
defining inequality x1 + x2 + x3 ≤ 10 + y3. Observe that as shown in Remark 1, (21) is
essentially derived by lifting the facet (20) for conv(X2) combined with (19c) according
to x1+x2+x3 ≤ 3y1+4y2+8y3+3−αyJ3 , where α = 7 in this case. Evidently, using the
projection of this onto the original variable space via the inequality yJ3 ≥ y1+y2+y3−2,
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which yields (21), fails to preserve the facet-inducing property in this inductive process.
Nonetheless, we describe later in Section 4 an inductive process for generating conv(Xn)
in a higher dimensional representation.

Remark 2. Note that in lieu of following the inductive scheme of Proposition 2 for k = 3,
if we had directly adopted the strategy of Proposition 1 that was used for k = 2, we would
have derived a weaker cut than (21) (this is generally true). To illustrate, note that such
a direct derivation would have used the RLT construct

(x1 ≤ α1 y1)(1 − y123) ⊕ (x2 ≤ α2 y2)(1 − y123) ⊕ (x3 ≤ α3 y3)(1 − y123)

⊕ (x1 + x2 + x3 ≤ β3)y123

leading to the cut

(x1 + x2 + x3) ≤ α1 y1 + α2 y2 + α3 y3 − y123(α1 + α2 + α3 − β3).

Using −y123 ≤ −y1 − y2 − y3 + 2 from (9) for Jk = {1, 2, 3}, this yields

(x1 + x2 + x3) ≤ −(α2 + α3 − β3)y1 − (α1 + α3 − β3)y2

− (α1 + α2 − β3)y3 + 2(α1 + α2 + α3 − β3). (22)

On the other hand, using (4) and (10) for the case k = 3, Proposition 2 yields the following
valid inequality for this case:

(x1 + x2 + x3) ≤ −(α2 + α3 − β3)y1 − (α1 + α3 − β3)y2

+ (β3 − β2)y3 + (α1 + α2 + 2α3 + β2 − 2β3). (23)

Observe that (23) implies (22) in general, because its right-hand-side is generally smaller
than that of (22), as seen by noting that the former minus the latter is given by

(α1 + α2 − β2)y3 − (α1 + α2 − β2) = −(α1 + α2 − β2)(1 − y3) ≤ 0

for any y3 ≤ 1, noting that α1 + α2 − β2 > 0 by (2). For Example 1 above, (22) is given
by

x1 + x2 + x3 ≤ −4y1 − 3y2 − 2y3 + 20, (24)

while the inequality (23) is given by (21), where the right-hand-side of (21) minus that
of (24) equals −3(1 − y3) ≤ 0.

2. Convex hull characterization for n = 2

Let the set X2 be defined as in (1), restated explicitly below for the sake of convenience:

X2 = {(x1, x2, y1, y2) : 0 ≤ x j ≤ α j y j for j = 1, 2, x1 + x2 ≤ β2, (y1, y2) binary}. (25)
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Consider the set Z2 defined as follows, by incorporating the valid inequality (4) into X2

and relaxing the binary restrictions.

Z2 = {(x1, x2, y1, y2) :

0 ≤ x j ≤ α j y j for j = 1, 2, (26a)

x1 + x2 ≤ (β2 − α2)y1 + (β2 − α1)y2 + (α1 + α2 − β2) (26b)

0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1}. (26c)

Observe that we have dropped x1 + x2 ≤ β2 in Z2 since this is implied by (26b), because
noting (2), we have that the right-hand-side in (26b) for any 0 ≤ y j ≤ 1, ∀ j, satisfies
(β2 −α2)y1 + (β2 −α1)y2 + (α1 +α2 −β2) ≤ (β2 −α2)+ (β2 −α1)+ (α1 +α2 −β2) = β2.
Indeed, as established by the next result, Z2 characterizes conv(X2), where conv(•)
denotes the convex hull operation. (The convex hull of the uncapacitated version of Xn

under (3f) and with α j = βn, ∀ j = 1, . . . , n, is described in Barany, van Roy and Wolsey
(1984). To our knowledge, the following result is new.)

Proposition 3. conv(X2) = Z2.

Proof. Since (26b) is valid for X2 by Proposition 1, we have that conv(X2) ⊆ Z2.
Hence, it is sufficient to show that all vertices of Z2 (denoted vert(Z2)) are feasible to
X2. In particular, noting that (26b, c) implies x1 + x2 ≤ β2 in (25), it is sufficient to
show that y is binary valued at all points in vert(Z2). Observe that for any vertex of Z2

at which (26b) is inactive, by the separable structure of (26a) and (26c) over the (x1, y1)
and (x2, y2) spaces, we see that this claim is true. Hence, let us establish that y is binary
at any vertex of Z2 on the hyperplane (26b). That is, in addition to the active constraint
(26b), let us explore three additional active constraints from the remaining inequalities
that would yield a unique feasible solution.

Case (i): x1 = 0 is active (the case of x2 = 0 being active is symmetric).
Hence, from (26b) being assumed active, we have

x2 = (β2 − α2)y1 + (β2 − α1)y2 + (α1 + α2 − β2). (27)

• If in addition, x2 = 0 is active, then noting from (2) that the right-hand side in (27)
must be positive, we have a contradiction.

• On the other hand, if x2 = α2 y2 is active, then we must have from (27) that

(β2 − α2)y1 + (α1 + α2 − β2)(1 − y2) = 0. (28)

The additional linearly independent hyperplane must come from (26c), implying
that y1 or y2 is binary, and the other y-variable is determined by (28). Noting from
(2) that (β2 − α2) ≥ 0 and (α1 + α2 − β2) > 0, if y2 = 0 then (28) leads to a
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contradiction, and if y2 = 1, then (28) implies that y1 = 0. Likewise, if y1 = 0,
then (28) implies that y2 = 1, and if y1 = 1, then (28) yields

y2 = α1/(α1 + α2 − β2). (29)

However, note that β2 ≥ α2, whereby if β2 = α2, then we have y2 = 1, but if
β2 > α2, then y2 > 1 (noting α1 + α2 > β2), yielding infeasibility.

• Else, if neither x2 = 0 nor x2 = α2 y2 is active, then x2 is given by (27) while y is
determined solely by (26c) and is therefore binary valued.

Case (ii): x1 = α1 y1 is active (the case of x2 = α2 y2 being active is symmetric).
Hence, from (26b) being assumed active, we have,

x2 = (α1 + α2 − β2)(1 − y1) + (β2 − α1)y2. (30)

• If either x1 or x2 is zero, then the proof follows from Case (i).

• If x2 = α2 y2 is also active, then (30) yields (noting α1 + α2 > β2 by (2)) that
y1 + y2 = 1, and then in concert with active constraints from (26c), we get binary
values of y.

• Finally, if no other constraint from (26a) is active, then x1 = α1 y1, x2 is given by
(30), and y is determined solely from (26c), and is therefore binary valued. This
completes the proof.

The question that arises is whether for any n ≥ 3 as well, if we were to incorporate the
class of inequalities (10) for each k = 2, . . . , n within Xn , we would derive conv(Xn).
The answer is negative, even for n = 3 as the following example illustrates.

Example 2. Consider X3 as given by (19) in Example 1, and suppose that we construct
Z3 by incorporating the inequalities (10) for k = 2 and k = 3 as given respectively by
(20) and (21):

Z3 = {(x, y) : 0 ≤ x1 ≤ 6y1, 0 ≤ x2 ≤ 7y2, 0 ≤ x3 ≤ 8y3, x1 + x2 + x3 ≤ 11,

x1 + x2 ≤ 3y1 + 4y2 + 3, x1 + x2 + x3 ≤ −4y1 − 3y2 + y3 + 17, and

0 ≤ y j ≤ 1, ∀ j = 1, 2, 3}. (31)

Note that while (19d) is implied by (20) and y j ≤ 1, ∀ j , (19e) is not necessarily implied
and is explicitly incorporated within (31). Now, consider the vertex of (31) formed by the
intersection of the following six linearly independent hyperplanes (note that Z3 ⊆ R6):

y1 = 0, x1 = 0, y2 = 1, x2 = 7y2, x3 = 8y3, and x1 + x2 + x3 = 11. (32)
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The system (32) yields the unique solution

x1 = 0, x2 = 7, x3 = 4, y1 = 0, y2 = 1, y3 = 1

2
, (33)

which is feasible to the remaining constraints in Z3, and is hence a (fractional) vertex of
Z3. Therefore, Z3 �= conv(X3). In fact, the following valid inequality for X3 deletes this
fractional vertex:

x1 + x2 + x3 ≤ 10 + y3. (34)

Note that when y3 = 1, this is precisely (19e), while when y3 = 0, (19c) implies that
we must have x3 = 0, whence (34) asserts that x1 + x2 ≤ 10, which is valid by (19d).
Moreover, (34) deletes the solution (33) and dominates (21) because (10+ y3) ≤ −4y1 −
3y2 + y3 +17, i.e., 4y1 +3y2 ≤ 7. Indeed, incorporating (34) within Z3 (and deleting the
constraint x1 + x2 + x3 ≤ 11, which is now implied), we obtain a set Z ′

3, say, where we
can demonstrate that Z ′

3 = conv(X3). But more importantly, this example has revealed
another class of valid inequalities that we expose in the following section.

3. Other classes of valid inequalities

The following result presents a class of valid inequalities that is prompted by Example
2. This particular class of inequalities is equivalent to the special case of the (�, S)
inequality from Barany, van Roy and Wolsey (1984a, b) where S = {1, . . . , � − 1}. We
provide a simple independent proof for this result, and then discuss several other such
classes of valid inequalities that can be derived following this same philosophy.

Proposition 4. The following are valid inequalities for Xn:

k∑

j=1

x j ≤ (βk − βk−1)yk + βk−1, ∀k = 3, . . . , n. (35)

Proof. Consider any k ∈ {3, . . . , n}. Note that if yk = 0, then xk = 0 by (1a), whence
(35) reduces to (1b) for the case of k − 1. On the other hand, if yk = 1, then (35) is
precisely (1b) for the case of k. This completes the proof.

The inequality (35) can be conceived as a “depth-one” cut that examines a right-
hand-side value predicated on the case of yk being zero or one for the case of k. In
a similar vein, we can derive a variety of cuts by designing a right-hand-side of (35)
based on multiple binary variables. For example, the following result derives a “depth-
two” cut for k ≥ 4 based on exploring binary values of yk and yk−1. This cut is a
special case of the bottleneck cover inequality of Atamturk and Munoz (2003) and of the
submodular inequality of Wolsey (1989), and bears some relationship to other classes of
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capacitated inequalities of Pochet (1988) and the dynamic knapsack induced inequalities
for capacitated lot-sizing by Marchand (1998).

Proposition 5. The following are valid inequalities for Xn:

k∑

j=1

x j ≤ (βk−1 + β ′
k − βk) + (βk − β ′

k)yk−1 + (βk − βk−1)yk, for k = 4, . . . , n, (36)

where,

β ′
k = min {βk, βk−2 + αk}. (37)

Moreover, (36) uniformly dominates (35) for k ≥ 4.

Proof. Consider the following inequality, where β ′
k is given by (37):

k∑

j=1

x j ≤ [βk yk−1 yk + βk−1 yk−1(1 − yk) + β ′
k yk(1 − yk−1)

+ βk−2(1 − yk−1)(1 − yk)]L . (38)

Observe that for binary values of (yk−1, yk), exactly one binary product term on the
right-hand-side of (38) is one, with the corresponding coefficient yielding a valid bound
on

∑k
j=1 x j . By (1a,b), this bound is clearly given by βk when (yk−1, yk) = (1, 1),

by βk−1 when (yk−1, yk) = (1, 0), and by βk−2 when (yk−1, yk) = (0, 0). Finally, when
(yk−1, yk) = (0, 1), we have xk−1 = 0 by (1a), and then,

∑k−2
j=1 x j +xk ≤ min {βk, βk−2+

αk} = β ′
k , as defined in (37), by virtue of (1a, b). This establishes the validity of (38).

Now, (38) is of the form

k∑

j=1

x j ≤ βk−2 + (βk−1 − βk−2)yk−1 + (β ′
k − βk−2)yk

− yk−1,k(βk−1 + β ′
k − βk−2 − βk). (39)

Note that (βk−1 + β ′
k − βk−2 − βk) = (βk−1 − βk−2) ≥ 0 when β ′

k = βk , and also, when
β ′

k = βk−2 +αk , we get (βk−1 +β ′
k −βk−2 −βk) = (βk−1 +αk −βk) > 0 by (2). Hence,

using – yk−1,k ≤ −yk−1 − yk +1 in (39), as given by (9), we get the valid inequality (36).
Moreover, observe that when β ′

k = βk , then (36) is precisely of the form (35).
Otherwise, if β ′

k < βk , then (36) implies (35), because then, the right-hand-side of (35)
minus that of (36) is given by (βk − β ′

k)(1 − yk−1) ≥ 0. This completes the proof.

Likewise, for k ≥ 5, we can derive depth-three cuts, and so on. Actually, as discussed
in the next section, we can use an inductive process to generate entire convex hull
representations for Xn, n ≥ 2, in a higher-dimensional space.
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4. Inductive process for generating the convex hull representation for Xn

As a preliminary, consider the following general result that lays the groundwork for
inductively constructing conv(Xn) for n ≥ 2 in a higher dimensional space.

Proposition 6. Consider a mixed-integer set X defined in variables (x, y) ∈ Rn × Bm

(i.e., n continuous variables x and m binary variables y), and suppose that for some
suitably defined set S ⊆ Rn × Bm and for its complement S̄ with respect to Rn × Bm ,
we have that

Z0 = conv(X ∩ S) = {(x, y) : Ax + Dy ≤ b} (40a)

and

Z1 = conv(X ∩ S̄) = {(x, y) : Gx + H y ≤ g} (40b)

where (40a) and (40b) define bounded sets. Then,

conv(X ) = Z ≡ {(x, y) : for some w ∈ Rn, v ∈ Rm, and 0 ≤ Y ≤ 1, we have

A(x − w) + D(y − v) ≤ b(1 − Y ) (41)

Gw + Hv ≤ gY }.

Proof. First, let us establish that

conv(X ) = conv(Z0 ∪ Z1). (42)

This follows readily by noting that X ⊆ Z0 ∪ Z1, and so, conv(X ) ⊆ conv(Z0 ∪ Z1).
Conversely, since X ∩ S ⊆ X , we have Z0 = conv(X ∩ S) ⊆ conv(X ), and similarly,
Z1 ⊆ conv(X ), and so, Z0 ∪ Z1 ⊆ conv(X ), i.e., conv(Z0 ∪ Z1) ⊆ conv(X ). Hence, (42)
holds true.

By the disjunctive convex hull generation process of Balas (1998), (see also Balas
(1979) and Sherali and Shetty (1980)), or the RLT process of Sherali and Adams (1990,
1994), we can construct conv(X ) via (42) by multiplying (40a) by (1 − Y ) and (40b) by
Y , where 0 ≤ Y ≤ 1, and then using the substitutions w = [xY ]L , v = [yY ]L . This
yields (41), and the proof is complete.

An important specialization of Proposition 6 is given by the following result.

Corollary 1. In Proposition 6, suppose that

S = {(x, y) ∈ Rn × Bm : at least one yi = 0 for i = 1, . . . , m}, and (43a)

S̄ = {(x, y) ∈ Rn × Bm : yi = 1, ∀i = 1, . . . , m}. (43b)
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Accordingly, let Z0 and Z1 defined in (40a, b) be given by

Z0 = {(x, y) : Ax + Dy ≤ b}, and
(44)

Z1 = {(x, y) : Gx ≤ g, yi = 1, ∀i = 1, . . . , m},
where each of these sets is bounded. Then,

conv(X ) = {(x, y) : for some w ∈ Rn, 0 ≤ Y ≤ 1, we have

A(x − w) + D(y − eY ) ≤ b(1 − Y ) (45)

Gw ≤ gY },
where e = (1, . . . , 1)T ∈ Rm .

Proof. Adopting (42), and multiplying the constraints defining Z0 and Z1 in (44) by
(1 − Y ) and Y respectively, we get upon substituting w = [xY ]L and v = [yY ]L that

conv(X ) = {(x, y) : A(x − w) + D(y − v) ≤ b(1 − Y )
(46)

Gw ≤ gY, vi = Y, ∀i = 1, . . . , m}.
Eliminating v from (46) by substituting v = (e)Y , we get (45). This completes the proof.

Remark 3. Notice in (45) of Corollary 1 that when Y = 1, by the boundedness as-
sumption of Z0 (that would preclude recession directions, i.e., nonzero solutions to the
corresponding homogeneous system), we have, x = w and y = (e)Y , and so, (x, y) ∈ Z1.
Likewise, when Y = 0, we get by the boundedness of Z1 that w = 0, and (x, y) ∈ Z0.
As such, the variable Y is playing the role of

[∏n
i=1 yi

]
L
.

To illustrate the application of Proposition 6 and Corollary 1, let us first consider the
case n = 2, and then inductively demonstrate how one could handle the case of n = 3.
Further generalizations or extensions would then be evident.

For the case of n = 2, applying the special case of Corollary 1 with S and S̄ given
by (43), we get from (40) and (44) that

Z0 = {(x, y) : 0 ≤ x1 ≤ α1 y1, 0 ≤ x2 ≤ α2 y2, y1 + y2 ≤ 1, y ≥ 0} (47a)

and

Z1 = {(x, y) : 0 ≤ x1 ≤ α1, 0 ≤ x2 ≤ α2, x1 + x2 ≤ β2, y1 = y2 = 1}. (47b)

Observe that Z0 = conv(X2 ∩ S) since x1 + x2 ≤ β2 is redundant under the condition
{y1 = 0 or y2 = 0}, because β2 ≥ max {α1, α2} by (2), and moreover, y is readily verified
to be binary valued at all vertices of Z0. Hence, noting that Y ≡ y12 as in Remark 3, we
can write the system (45) as follows:
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conv(X2) = Z ≡ {(x, y): for some w1, w2, and 0 ≤ y12 ≤ 1, we have,

0 ≤ (x j − w j ) ≤ α j (y j − y12) for j = 1, 2 (48a)

y12 ≤ y j for j = 1, 2, and y12 ≥ y1 + y2 − 1 (48b)

0 ≤ w j ≤ α j y12 for j = 1, 2 (48c)

w1 + w2 ≤ β2 y12}. (48d)

Moreover, as shown below, the set Z , which is the projection of the higher dimensional
set (48) onto the original (x, y) variable space, indeed yields the set Z2 given by (26),
thereby verifying Proposition 3.

Proposition 7. Z = Z2, where Z and Z2 are given by (48) and (26), respectively.

Proof. First, let us verify that Z ⊆ Z2, by demonstrating that the constraints of Z2

are implied by Z . Observe that (48a) and (48c) yield (26a). Also, (48b) along with
0 ≤ y12 ≤ 1 yield (26c). Finally, the constraint (26b) results from (48) by surrogating
(48a) for j = 1, 2, and using (48d) to get

(x1 + x2) ≤ (w1 + w2) + α1(y1 − y12) + α2(y2 − y12)

≤ α1 y1 + α2 y2 − y12(α1 + α2 − β2).

Now, using −y12 ≤ −y1 − y2 +1 from (48b), and that α1 +α2 > β2 by (2), we get (26b).
Conversely, to verify that Z2 ⊆ Z , it is sufficient to show that every vertex of Z2

has a completion w1, w2, and y12 that is feasible to (48). But by Proposition 3, we know
that the vertices of Z2 have binary values of y. Hence, given (x, y) ∈ vert(Z2), by taking
y12 ≡ y1 y2, w1 ≡ x1 y1, and w2 ≡ x2 y2, we readily verify that this yields a feasible
solution to Z . This completes the proof.

To apply the tool of Proposition 6 inductively, consider X3. We can write

conv(X3) = conv(Z0 ∪ Z1) (49)

where,

Z0 = conv[X3 ∩ {(x, y) : at least one yi = 0 for i = 1, 2, 3}] (50a)

and

Z1 = conv[X3 ∩ {(x, y) : yi = 1, ∀ i = 1, 2, 3}]

≡
{

(x, y) : 0 ≤ x j ≤ α j for j = 1, 2, 3,

k∑

j=1

x j ≤ βk (50b)

for k = 2, 3, yi = 1 for i = 1, 2, 3

}
. (50c)
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For describing Z0, so that we could then apply Proposition 6, we use this Proposition 6
in a nested form itself by writing

Z0 = conv(Z00 ∪ Z01) (51)

where,

Z00 = conv[X3 ∩ {(x, y) : y3 = 0}] (52a)

and

Z01 = conv[X3 ∩ {(x, y) : y3 = 1 and at least one of y1 and y2 is zero}]. (52b)

Observe that Z00 is given by Z2 of (26) for the case of n = 2, while

Z01 = conv[(x, y) : 0 ≤ x j ≤ α j y j for j = 1, 2, 0 ≤ x3 ≤ α3, x1 + x2 + x3 ≤ β3,

y1 + y2 ≤ 1, y3 = 1, y binary]. (53)

This set Z01 can now be constructed by applying the special GUB structured RLT process
described in Sherali, Adams, and Driscoll (1998), and then working backwards, we can
derive conv(X3) by this process.

While this mechanism is generalizable for any n in theory, in practice, it can be
applied to relaxations of the type X2 and X3, say, in order to generate tighter higher
dimensional reformulations whose projections could potentially capture several classes
of valid inequalities. In addition, such constructs can be augmented by valid inequalities
as prescribed by Propositions 1, 2, 4, and 5, as well as others that are described in the
literature for the single item capacitated lot-sizing problem as in Pochet (1988), Marchand
(1998), Wolsey (1989), Loparic, Marchand, and Wolsey (2003), and Atamturk and Munoz
(2003). In particular, while Propositions 1, 4, and 5 recover certain special cases of
flow cover, (�, S), submodular, and bottleneck cover inequalities using RLT-based lifting
arguments, it is of interest to explore if this viewpoint might offer a unifying framework for
generating the aforementioned classes of inequalities in general. As another topic of future
research, it is worthwhile to study if the higher dimensional convex hull representations
afforded by RLT might reveal new classes of valid inequalities in the original variable
space based on characterizing specific extreme directions of the dual projection cone
(see Sherali, Lee, and Adams (1995) for an illustration of this approach in the context
of the Boolean quadric polytope). Finally, we propose for future research to conduct a
computational study of applying such cuts to practical problems that have an embedded
nested fixed-charge structure as described by Xn in (1).
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