
Optimizing a Ring-Based Private Line
Telecommunication Network Using

Tabu Search

Jiefeng Xu • Steve Y. Chiu • Fred Glover
Delta Technology, Inc., 1001 International Boulevard, Atlanta, Georgia 30354-1801

jiefeng.xu@delta-air.com

GTE Laboratories, Inc., 40 Sylvan Road, Waltham, Massachusetts 02254

schiu@gte.com

Graduate School of Business, University of Golorado at Boulder, Boulder, Colorado 80309-0419

fred.glover@colorado.edu

One of the private line network design problems in the telecommunications industry is to
intercormect a set of customer locations through a ring of end offices so as to minimize

the total tariff cost and provide reliability. We develop a Tabu Search method for the problem
that incorporates long term memory, probabilistic move selections, hierarchical move
evaluation, candidate list strategies and an elite solution recovery strategy. Computational
results for test data show that the Tabu Search heuristic finds optimal solutions for all test
problems that can be solved exactly by a branch-and-cut algorithm, while running about three
orders of magnitude faster than the exact algorithm. In addition, for larger size problems that
cannot be solved exactly, the tabu search algorithm outperforms the best local search heuristic
currently available. The performance gap favoring Tabu Search increases significantly for
more difficult problem instances.
{Digital Data Service; Telecommunications Network Desigix; Traveling Salesman Problem; Tabu

Search; Heuristic)

1. Introduction
Digital Data Service (DDS) is a high-quality digital
transport service in the telecommunications industry
using permanent network connections and dedicated
transmission facilities. In this paper, we address a par-
ticular DDS network design problem that is encountered
by a major telecommunications company in the United
States. The input elements of the problem include a set of
end offices, a set of digital hubs, and a set of customer
locations that are geographically distributed on a plane.
Each customer location is connected directly to its own
designated end office, which in turn needs to be con-
nected to exactly one selected hub. Then the selected'

330 MANAGEMENT SCIENCE/VOI. 45, No. 3, March 1999

hubs must be connected by a ring. (The ring topology is
widely used in communications network designs to
provide reliability.) Each hub has a fixed cost for being
chosen and each link has a connection cost for being
included in the solution. The objective is to design such
a network at minimum cost.

Figure 1 shows a real scenario of a small ring-based
DDS network. The number of dedicated lines required
for the link between an end office and its assigned hub
is equal to the number of customer locations con-
nected to the end office. The links between customer
locations and end offices are not really part of the
network design problem because they are uniquely

0025-1909/99/4503/0330$05.00
Copyright © 1999, Institute for Operations Research

and the ManagemenI Sciences

XU, CHIU, AND GLOVER
Optimizing a Private Line Telecommunication Network

determined by the (nonoverlapping) serving areas of
the end offices. Each customer location is always
connected to its designated end office serving the area.

In practice, the link cost is sensitive to distance and
is calculated according to the current tariff charges.
These charges include a fixed cost and a variable cost
per mile that both vary with the distance. For each
active (selected) hub, the bridging cost is proportional
to the number of lines connected to the hub. To
illustrate how these costs are calculated, suppose the
monthly cost data are given as follows:

Figure 1 A Ring-Based DDS Network

n K_)

Fixed bridging cost:
Bridging cost per line:
Link cost:

$82.00
$41.00
Mileage
<1 mile
1-15 miles
^16 miles

Fixed Cost
$30.00
$125.00
$130.00

Variable Cost
$0.00
$1.20
$1.50.

Then the monthly costs for the network in Figure 1 are

Bridging Cost
fixed cost:
variable cost:

Link Cost
fixed cost:
variable cost:

Total monthly cost: $2211.40.

$82.00 X 3 - $246.00
$41.00 X 14 = $574.00

$30.00 X 1 + $125.00 X 9 + $130.00 X 1 - $1285.00
$1.20 X (3 X 8 + 1 0 + 2 X 6 + 1 2 + 9 + 5) + $1.50 X 16 = $106.40

Note that a line connecting two active hubs has two
bridging facilities at its ends, so it should be counted
as twice in calculating the variable bridging cost.
Consequently the decisions faced by the network
designers are:

• Select a subset of hubs among all potential hubs
and connect them via a ring (a travelling salesman
tour over the selected hubs).

• Connect each end office to a selected hub (so that
the original customer locations can communicate to
each other).

The objective of the design is to minimize the total
monthly cost as calculated in the above example.

In practice, the Federal Communications Commission
(FCC) demands that telecommunication companies pro-
vide the best DDS design to customers. For real world
instances, the number of customer locations (or end
offices) can vary from 2 to over 100, and the number of
potential hubs can be as large as 300. The algorithm
reported in this paper is used in an automatic quoting
system that requires the response time (solution time) to
be within one nunute, so that the sales representative can
give the customer a quote over the phone. The challenge
is to develop an algoritl\m that not only achieves such a
response time, but that also provides optimal or near-
optimal solutions for DDS design.

MANAGEMENT SCIENCE/VOI. 45, No. 3, March 1999
331

XU, CHIU, AND GLOVER
Optimizing a Private Line Telecommunication Network

Throughout the paper, the huhs are referred to as
steiner nodes, and the end offices are referred to as
target nodes. Also notice that the cost for connecting a
target node to a steiner node and the cost for connect-
ing two steiner nodes can both he precalculated.

In this paper, we explore an implementation of
Tahu Search (TS) for solving this ring-based DDS
network design problem. TS is a metaheuristic that
proves effective for many combinatorial optimization
problems. For a comprehensive overview of TS, see
Glover and Laguna (1997). In recent years, a growing
number of TS applications have appeared in the area
of telecommunications. Such applications include
bandwidth packing (Laguna and Glover 1993), path
assignment for dynamic routing (Anderson et al.
1993), SONET ring design (Laguna 1994), hub faciHty
location (Skorin-Kapov and Skorin-Kapov 1994), dig-
ital line network design (Xu et al. 1996a, 1996b) and
dynamic routing communication network design (Xu
et al. 1997). The highly successful outcomes of these
applications motivate us to develop and test a TS
method designed specifically for the ring-based DDS
network design problem.

This paper is organized as follows. We present the
mathematical formulation in the next section. In §3 we
describe a TS-based heuristic for the problem and
examine several relevant issues such as long term
memory, probabilistic move selection, neighborhood
structure, hierarchical move evaluation and candidate
list strategies. Section 4 reports computational results
with two sets of carefully designed test problems,
including comparisons with other exact and heuristic
approaches. In the concluding section, we summarize
our methodology and findings.

2. Mathematical Formulation
The problem addressed in this paper can be formu-
lated as a 0-1 integer programming problem as fol-
lows. First the input data are:

M: set of target nodes;
N: set of steiner nodes;
Cif. cost of connecting target node / to steiner node /;
dik'. cost of connecting two steiner nodes / and k;
hf. cost of using steiner node ;.

The decision variables are:

X,,: a binary variable equal to 1 if and only if target
node /' is linked to steiner node ;;

i/̂ fci a binary variable equal to 1 if and only if steiner
node j is linked to steiner node k {j < k));

Zf. a binary variable equal to 1 if and only if steiner
node j is selected to be active.
Then the formulation is

minimize E c,,x,̂ + E E /̂ty/t + E /̂2, (1)
(SM

subject to: E ^ij - M, (2)

X , ^ i SMJG N, (3)

; , j<k,j,keN, (4)

E yfk + E ykj = 22,, ; G N , (5)
fcSN

^ E 2̂ H
jEH

H,

{0, 1}, ieM,jSN,

{0, 1}, k>j,j,kGN,

z,G{0, 1}, jSN.

(6)

(7)

(8)

(9)

In this formulation, the objective function (1) seeks
to minimize the sum of the connection cost between
target nodes and steiner nodes, the connection cost
between steiner nodes, and the setup cost for the
steiner nodes. Gonstraint (2) specifies that each target
node must be connected to exactly one steiner node.
Gonstraint (3) indicates that the target nodes can only
be connected to the active steiner nodes. Gonstraint (4)
stipulates that two steiner nodes can be connected if
and only if both nodes are active. Gonstraints (5) and
(6) express the ring (or tour) structure over the active
steiner nodes. In particular, (5) specifies the condition
that each active steiner node must have a degree of
two, while (6) is an subtour-eliminating constraint that
compels all active steiner nodes to form a single tour.
Finally, all decision variables are defined as binary.

Glearly, the ring-based DDS problem is NP-hard
since the well-known Traveling Salesman Problem

332 MANAGEMENT SCIENCE/VOI. 45, No. 3, March 1999

XU, CHIU, AND GLOVER

Optimizing a Private Line Telecommunication Network

(TSF) can be easily reduced to it. (For a complete
review of the TSP, we refer readers to the two books
(Lawler et al. 1985 and Reinelt 1994) and the two
algorithm surveys by Laporte (1992) and Johnson and
McGeoch (1996).) Only small size ring-based DDS
problems (e.g., with 10 target nodes and 30 steiner
nodes) can be solved exactly within a reasonable time
period for the requirements of this application (i.e.,
one minute) by state-of-the-art integer programming
techniques such as branch-and-cut. In fact, this holds
true for a specialized branch-and-cut method based on
the foregoing mathematical formulation which is tai-
lored to generate constraints (or cuts) of type (6) on a
needed basis. (See Lee et al. 1996a and 1996b.)

3, The Tabu Search Heuristic
Tabu Search is an aggressive search procedure that
proceeds iteratively from one solution to another by
moves in a neighborhood space with the assistance of
adaptive memory. To exploit this memory effectively, the
method makes use of several key strategic principles and
associated algorithm designs. In this section, we first
introduce an elementary TS heuristic, then describe each
of the customary and more advanced components de-
veloped for the ring-based DDS problem.

3.1. Elementary Tabu Search Procedure
Tabu Search is an iterative method which can be used
to guide traditional local search methods to escape the
trap of local optimality. TS operates through neigh-
borhood moves, that proceed from one solution to
another at each iteration. Some moves are marked
Tabu and are forbidden unless they lead to highly
desirable outcomes. Let x_nozu be the solution at the
current iteration, and x_best the best solution found so
far, iter the current iteration counter, and Tabii{iter) the
set of Tabu moves at iteration iter. We define a move
to be admissible by aspiration if it belongs to Tabu(iter),
but if the solution produced by the move has a
sufficiently high quality to allow its tabu status to be
disregarded. A simplified (short-term memory) ver-
sion of TS may be expressed as follows.

Step 0. iter - 0; Initialize x_now; x_best = x_now;
Tabu{iter) = 0 .

Step 1. Construct a list of candidate moves from the

neighborhood of x_noiv. Evaluate each candidate
move.

Step 2. Select the highest evaluation move that does
not belong to Tahii{iter), or which qualifies to be
selected as a result of being admissible by aspiration.
Perform the move, and update xjxoxv.

Step 3. lix_ijoio is better than x_best, update x_best.
Step 4. If stopping criteria are satisfied, terminate

with x_best. Otherwise, iter — iter + 1; update
Tabu{iter); go to Step 1.

Numerous advanced strategies exist that can effec-
tively enhance this rudimentary short-term memory
form of tabu search (see Glover and Laguna 1997). To
illustrate our TS approach for this network design
problem, the following subsections describe the issues
of neighborhood structure and moves, memory struc-
tures, hierarchical move evaluations and candidate
lists, probabilistic move selection and advanced inten-
sification strategies.

3.2. Neighborhood Structure and Moves
We partition the steiner nodes into the disjoint subsets
of active nodes (A) and inactive nodes (A). The moves
that define the neighborhood structure for our proce-
dure consist of transferring a chosen node from one of
these two subsets to another, and of exchanging two
nodes between these subsets. Specifically, we divide
the transfer moves into the following two elementary
types:

(1) Constructive move: transfer a selected steiner
node from A to A. This move inserts a node into the
current TSP tour, and therefore increases the cardinal-
ity of the set A by one. This move is disallowed if the
set A is empty.

(2) Destructive move: transfer a steiner node from A
to A. This move deletes the active steiner node from
the current TSP tour, and therefore decreases the
cardinality of the set A by one. This move is disallowed
if the set A is empty.

Any set A can be reached via a sequence of construc-
tive and/or destructive moves starting from any so-
lution configuration. Thus, constructive and destruc-
tive moves are considered to be elementary moves in
the search process. Pairwise exchange (swap) moves,
which exchange one active steiner node with one
inactive steiner node, can be viewed as a combination

MANAGEMENT SCIENCE/VOI 45, No. 3, March 1999 333

xu, CHIU, AND GLOVER
Optimizing a Private Line Telecommunication Netzvork

of a constructive and a destructive move. Such a move
leaves the cardinalities of both set A and A unchanged,
but introduces a more significant change to the current
TSP tour. The swap move is disallowed if either the set
A or A is empty.

We observe that our simple set of fundamental
moves is somewhat different from those customarily
used in TSP applications. That is, while standard TSP
heuristics may incorporate constructive steps (and
Tabu Search variants also incorporate destructive
steps), the exchanges used in such TSP heuristics are
not the same as the exchanges we describe here. Our
divergence from the classical choice of neighborhoods
is motivated by the findings of Xu et al. (1996a, 1996b),
which identified the current neighborhood structure
to be highly effective when properly exploited, in a
Tabu Search approach for a related class of telecom-
munication problems. In addition, we also make use
of classical TSP neighborhoods, as noted later.

For a swap move evaluation, effort must be taken to
reduce the computational expense when the number
of steiner nodes is moderately large. For that purpose,
a natural candidate list is constructed to isolate a
promising subset of the swap moves. This candidate
list restricts attention to pairs (x, y) whose elements are
drawn from the K best destructive and constructive
moves where K is an integer in the range of 5 to 15.
This candidate list strategy is motivated in part by the
idea of the Proximate Optimality Principle (POP) that
says good solutions at one level are likely to be found
close to good solutions at an adjacent level. (For
example, we may conceive constructive and destruc-
tive moves as mechanisms for moving between levels,
and swap moves as mechanisms for searching within
a given level.) As a consequence, this candidate list is
used to screen for the good partial moves whose
composition may give a good candidate to evaluate.
Such a candidate list strategy proves to be much faster
than evaluating the whole swap neighborhood, yet
can be implemented without sacrificing overall solu-
tion quality (see Xu et al. 1996a, 1996b).

We blend the elementary moves with the swap
moves to produce the complete neighborhood search.
Because a swap move involves a more significant
change in the TSP tour (and hence requires a more

complex evaluation of its consequences), we perform
it more sparingly in the search process. In particular,
we apply it chiefly in the roles of periodic perturbation
and conditional oscillation. A perturbation step is
guided by elementary moves and executed once for
every certain number of iterations. The conditional
oscillation step is designed to achieve a greater inten-
sification of the search, by executing swap moves for
some number of iterations when the search cannot
improve the solution for a predefined duration. This
mixed mechanism proves effective and efficient in our
applications, since we find that a dominant reliance on
the elementary moves, when handled intelligently,
yields good decisions with only occasional reliance on
more complex moves.

3.3. Tabu Search Memory
TS memory structures play a fimdamental role in our
algorithm to guide the search process. We use the
short-term memory to prevent the search from being
trapped in a local optimum and use the long-term
memory to provide the diversification strategy.

Short-Term Tabu Search Memory. The short-term
memory operates by imposing restrictions on the
composition of new solutions generated (typically
expressed as a restriction on attributes of these solu-
tions). For elementary moves, we impose restrictions
that assure a move cannot be "reversed." In particular,
if the node x is currently dropped from the active
steiner node set A, we forbid this node to move back to
A for several iterations. For swap moves, we impose
the restrictions on moves in both direction. If an active
node X is swapped with an inactive node y in the
current move, the restriction inhibits both moving
node X back to A and moving node y back to A. Such a
restrictive mechanism prevents the search from revis-
iting a local optimum in the short term and greatly
diminishes the chance of cycling in the long term.

How long a given restriction is in effect depends on
a parameter called the Tabu Tenure, which identifies
the number of iterations a particular Tabu restriction
remains in force. The Tabu Tenure can be either fixed
or variable, but a tenure that varies within a small
range about a central value often proves more robust.
Moreover, in our application, we allow the central

334 MANAGEMENT SCIENCE/VOI. 45, No. 3, March 1999

XU, CHIU, AND GLOVER
Optimizing a Private Une Telecommunication Network

value to differ according to the move type. Since
adding a node introduces a fixed cost, and thus makes
the move appear less attractive than a destructive one,
we assign a longer Tabu Tenure to avoid destructive
moves than to avoid constructive moves.

A TS restriction may be overridden by means of
aspiration criteria if the outcome of the move under
consideration is sufficiently desirable. We use the
simple criterion of overriding the restriction if the
current candidate move would lead to a new best
solution.

We implement the short-term memory using a
recency-based memory structure as follows. Let iter
denote the current iteration number, and let
tabu_add(x) and tabu_drop(y) denote the future iteration
values governing the duration that will forbid a rever-
sal of the moves of adding node X and dropping node
y (i.e. by preventing node X from being dropped and
node y from being added). Similarly, let tabu_add_tenure
and tabu_dropjenure be the values of Tabu Tenures for
these two moves. Initially, tabu_add(x) and tabu_drop(x)
are set to zero for all nodes X, and iter starts at one.
When the TS restriction is imposed, we update the
recency memory as:

tabu_add(x) = iter + tabu_add_tenure

{for the constructive move of adding node x),

tabu_drop(y) = iter + tabu_drop_tenure

ifor the destructive move of dropping node y).

Thus the restriction to prevent x from being
dropped is enforced when tabu_add(x) > iter, and the
restriction to prevent y from being added is enforced
when tabu_drop(y) > iter. As previously noted, we select
the central value for tabu_add_tenure to be smaller than
that of tabu_dropjenure. Let best_soLcost be the cost of
the best solution found so far, and best_move_COSt be
the evaluation (estimated cost) of the move we select.
Also define COSt(-) as the move evaluation value. Then
the move selection procedure incorporating the TS
restrictions and aspiration criteria proceeds as follows:

Assign a large value to best_move_cost.
For each inactive steiner node x, do

if cost(x) < best_move_cost do

i f cost(x) < best_sol_cost or tabu_add(x) < iter do
best_move_cost ^ cost(x).

For each active steiner node y, do
if cost(y) < best_move_cost do

if cost{y) < best_sol_cost or tabu_drop{y) < iter do
besLmove - cost(y).

For the exchange move, we have
Assign a large value to best_move_COSt.
For each candidate node pair composed of inactive

steiner node x and active steiner node y, do
if cost(x, y) < best_move_cost do

if cost(x, y) < best_sol_cost or
{tabu_add(x) < iter and tabu_drop(y) < iter) do

best_move_cost = cost(x, y).

Long Term Tabu Search Memory. The long-term
TS memory we employ makes use of a frequency-
based memory structure to achieve a diversification
effect, encouraging the search to explore regions less
frequently visited.

More specifically, we use this memory to discourage
moves that occurred frequently during the search (and
consequently to encourage moves that occurred less
frequently). A transition measure is used to record the
number of times each steiner node changes from an
active status to an inactive status or vice versa. Let
frequencyO(x) be the number of times that steiner node X
is changed from active to inactive, frequencyi(x) be the
number of times that steiner node x is changed from
inactive to active. These frequencies can easily be
updated as follows:

frequencyO(x) - frequencyO(x)

+ 1 if the move is destructive;

frequencyi(x) = frequencyi(x)

+ 1 if the move is constructive.

This transition measure is then normalized to Ue in
the interval [0, 1] by dividing by the maximum of
frequencyO() or frequencyK) as appropriate. This nor-
malized value is then linearly scaled by a selected
constant to create a penalt}' term. The penalty term is
added to the corresponding move evaluation so that
the frequency factor is taken into account in the move
selection procedure. It should be noted that dtis

MANAGEMENT SCIENCE/VOL 45, No. 3, March 1999
335

xu, CHIU, AND GLOVER
Optimizing a Private Line Telecommunication Network

long-term memory is designed strictly for diversifica-
tion, without any counterbalancing consideration of
intensification effects. A more advanced strategy
would seek to integrate diversification and intensifi-
cation issues, and we will examine such an integration
in future research work.

3.4, Hierarchical Move Evaluation
Once the subset A is determined, the cost of the current
solution can be calculated by: (1) constructing a min-
imum cost TSP tour over A and identifying the result-
ing cost; (2) linking every target node to its cheapest
(i.e. cheapest-link) active steiner node and finding the
sum of the resulting connection costs; and (3) siim-
ming all node costs (set-up costs) for A. The second
part can be easily implemented by maintaining a
presorted list for every target node, which records the
connection costs from this target node to every steiner
node. Thus, (2) can be found in linear time for each
target node. The calculation of (3) is trivial. Therefore
the key issue in the move evaluation becomes the TSP
tour construction.

Since finding the optimal TSP tour is a NP-hard
problem, it is not practical to use exact methods to
evaluate the tour even when the number of nodes in
the tour is moderate. Among the heuristics, some local
search approaches such as 2-opt, 3-opt, or-opt, etc.,
work fast, but unless they are embedded in a design
for going beyond local optimality, the solutions they
obtain are often myopic. Metaheuristic approaches,
which may incorporate simple heuristics within them,
can overcome the limitation of the local search and can
yield much better solutions, though typically at the
expense of considerably more computation time. In
our TS algorithm, we devise a hierarchical evaluation
mechanism with the goal of achieving an effective
tradeoff between the solution quality and the speed.
This hierarchical evaluation employs the evaluators at
three different levels (basic, intermediate, advanced),
each associated with different types of neighborhood
moves and appropriate candidate lists. The evaluators
are based on identifing the cost of the corresponding
TSP tour. (Note that this is not the full cost to be
considered, since the costs of (2) and (3) must also be
included in the complete evaluation of each move.)
The higher level evaluator is more powerful and

time-consuming than the lower level evaluator, and
hence is applied more restrictively. We describe these
evaluators as follows.

Basic Evaluator. The basic evaluator is used to
evaluate every constructive, destructive and swap
move in the candidate list. For constructive moves, the
evaluator identifies the minimum insertion cost by
inserting the new node into its cheapest insertion
position. For destructive moves, the evaluator identi-
fies the cost of removing the given node and simply
connecting its two adjacent nodes in the current tour.
For swap moves, the evaluator identifies the cost of
first removing the given node and then inserting the
new node as described above.

Intermediate Evaluator. The intermediate evalua-
tor employs the 2-opt heuristic to improve the current
tour. The 2-opt proceeds by considering all possible
ways of removing two arcs from the current tour and
then reconnecting the two resulting chains to form a
new complete TSP tour. If the a new tour is found to
be shorter than the current tour, then accept this tour
and continue to proceed from this tour. The 2-opt
terminates when no improvement can be obtained.
The theoretical complexity of the 2-opt for finding the
first improving move is 0(I A\'), though in practice
many implementation tricks can reduce this complex-
ity significantly (see Johnson and McGeoch 1996).

The 2-opt procedure can be significantly simplified
with our destructive and constructive moves. Suppose
that the current tour is already a local optimum (e.g.,
improved by 2-opt), then the destructive move and the
constructive move only introduce one and two new
edges in the tour respectively. Therefore, the 2-opt
needs to evaluate only the options that remove at least
one of these new edges. Tlie complexity of this sim-
plified 2-opt for finding the first improving move is
thereby reduced to O(I A\). The changes brought by
the swap moves can be exploited in a more compli-
cated, but for simplicity we apply the standard 2-opt
procedure for those tours since we do not execute the
swap moves as frequently.

The intermediate evaluator is applied to a subset of
selected neighborhood moves, that is, the candidate
list maintained for the probabilistic move seletion (as

336
MANAGEMENT SCIENCE/VO1. 45, No. 3, March 1999

XU, CHIU, AND GLOVER

Optimizing a Private Line Telecommunication Network

described in the next subsection), which consists of the
non-Tabu neighborhood moves at the current iteration
that have the K highest evaluations, based on the
complete evaluation using the basic evaluator.

Advanced Evaluator. The advanced evaluator uses
more complicated search teniques for improvement.
First, it applies 3-opt local search to the current tour.
The 3-opt application improves the tour by evaluting
all possible ways of removing 3 arcs and reconnecting
them to produce a new tour.

After the tour is improved by 3-opt, we employ a
stand-alone simple TS algorithm for the TSP (TS-TSP).
The TS-TSP uses simple ejection and swap moves
applied to the nodes in the tour. A rudimentary
short-term memory structure is used to discourage the
search from revisiting previous solutions. At each
iteration, the admissable move with the highest eval-
uation is selected and performed. The search termi-
nates at a predetermined maximum number of itera-
tions while the best solution over the entire search is
recorded. The TS-TSP was first successfully used as a
tour-improvement tool in the Vehicle Routing Prob-
lem (VRP) by Xu and Kelly (1996). Computational
experience disclosed that the TS-TSP provides a sim-
ple approach to yield shorter TSP tours than 3-opt and
significantly improves the search quality for the VRP.

Since the advanced evaluator is more complicated
and time-consuming, we execute this evaluator on a
more restrictive basis. The scenarioes where we run
the advanced evaluator are: (1) when a "new best"
solution is found; (2) when a current solution accumu-
lates a certain degree of estimation error from the use
of the intermediate evaluator; and (3) when the esti-
mation errors of a set of "elite solutions" need to be
corrected periodically.

The periodic correction in (3) seeks to balance the
tradeoff between expected accuracy and speed of
executing the algorithm. To achieve this, we manipu-
late a priority queue that includes a selected number
of elite solutions encountered so far during the search,
where these solutions consist of those actually visited
and also of those that may potentially be visited by
means of currently available candidate moves.

Before applying the error correction operation, the
priority queue is ordered by the estimated costs (pro-

duced by intermediate evaluator) of its component
solutions. Error correction using the advanced evalu-
ator is then periodically performed on each element in
this queue. Once an element's corrected cost is thus
identified, this element is marked so that no error
correction is executed on this element in the future. At
the same time, the element is repositioned in the
queue according to its new cost. Thus, when a new
elite element is encountered whose estimated cost is
better (smaller) than the cost of the current worst
element of the queue, the new element is added and
marked for error correction while the worst element is
dropped from the queue. Because of periodic updat-
ing, the costs associated with queue elements can be a
mix of estimated and corrected costs. The updating of
the priority queue is further enhanced by applying a
sorted pointer list to facilitate the add and drop
operations.

Based on our empirical experience, the 2-opt based
intermediate evaluator works quite well for tours
containing 10 or fewer nodes. Thus, we do not bother
performing the time-consuming advanced evaluator
on those tours. Furthermore, since our TS algorithm
generally starts from a poor solution (e.g., many
solutions contain unnecessarily large number of active
nodes), and this solution can be rapidly improved by
our TS algorithm, there is no need to find the more
accurate costs for these inferior solutions using the
advanced evaluator. Consequently, we disable the
advanced evaluator in the very early stage of the
search.

Estimation errors can have a significant influence on
move selection, especially for the large problem in-
stances. To further compensate for the effects of ap-
proximation, we also use a move selection rule based
on probabilistic Tabu Search, as described in the next
subsection.

3.5. Probabilistic Move Selection
Tlie fundamental idea of the move selection approach
of probabilistic Tabu Search (Glover 1989) is simply to
translate Tabu restrictions and aspirations into penal-
ties and inducements that modify the standard eval-
uations, and then to map these modified evaluations
into probabilities that are strongly biased to favor the
highest evaluations. We are particularly motivated to

MANAGEMENT SCIENCE/VOL 45, No. 3, March 1999
337

xu, CHIU, AND GLOVER
Optimizing a Private Line Telecommunication Network

apply this approach in the present setting as a result of
observations of Glover and Lokketangen (1996) con-
cerning the uses of probabilities to combat "noise."
Since we refine the candidate list and create the move
evaluation based on a cost approximation, the move
evaluation is contaminated by a form of noise, so that
a "best evaluation" does not necessarily correspond to
a "best move." Therefore we seek a way to assign
probabilities that somehow compensates for the noise
level.

We apply probabilistic Tabu Search in the following
simple form.

Step 1 Generate the candidate list and evaluate the
moves of this list, assigning penalties to moves that
are tabu.

Step 2 Take the move from the candidate list with
the highest evaluation value.

If the move satisfies the aspiration criterion, accept
it and exit; otherwise, continue to Step 3.

Step 3 Accept the move with probability p and exit;
or reject the move with probability 1 - p, go to Step 4.

Step 4 Remove the move from the candidate list.
If the list is now empty, accept the first move of the
original candidate list and exit. Otherwise, go to Step 2.

In practice, if the candidate list is moderately large,
the above procedure can be simplified by considering
a reduced number of moves for probabilistic selection.
For that, a pool is created to store a certain number of
best moves from the candidate list (penalizing tabu
moves as before), thus effectively creating a new and
smaUer candidate list. This simplification is based on
the high probability of choosing one of the first d
moves, for modest values of p, even if d is relatively
small. Note that the probability of choosing one of the
d best moves in the candidate list is 1 - (1 - p)^

Thus if p - 0.3, the probability is about 0.832 for
picking one of the top five moves, and about 0.972 for
picking one of the top ten moves. We selected p = 0.3
as a basis for our subsequent experiments.

Instead of using the static value of selection proba-
bility p in Step 3, we introduce a modification to take
fuller account of the relative move evaluations. Spe-
cifically, we fine-tune the probability of selection
based on the ratio of the move evaluation currently
examined to the value of the best solution found so'

far. This selection probability is calculated by p"' ^
where r represents the indicated ratio and a and ^ are
positive parameters. With the values of a and /3 set
appropriately, the new probability function provides a
fine-tuned probability to discriminate among different
evaluations, and favor those proportionately closer to
the best solution value. This increases the chance of
selecting "good" moves. For example, if a is set to 1.0
and j3 is set to 0.15, then a move with an evaluation
1.01 times the best solution cost (r - 1.01) has a
selection probability of 0.355, which is higher than the
base probability 0.3; for a move with r = 1.2, the
selection probability is 0.282, which is lower than the
base probability 0.3. In particular, the additional fine-
tuned mechanism yields probabilities greater than p
for r ^ (1 -\- (3)/a, and probabilities less than p for r >

3.6. Advanced Recovery
The use of advanced recovery strategies as an inten-
sification component in Tabu Search has proved effec-
tive in a number of applications (see Glover 1996). In
this application, we employ a variant proposed in Xu
et al (1996a, 1996b) and Xu and Kelly (1996) that
postpones the recovery of elite solutions until the last
stage of the search. Each recovered solution launchs a
search that constitutes a fixed number of iterations
before selecting the next solution to recover. The same
elite solution list maintained for error correcting by
the advanced evaluator, described in §3.3, serves
naturally as a pool of solution for this final stage.
Solutions are recovered from this pool in reverse order,
that is, by starting from the solution with the worst
evaluation and working toward the solution with the
best evaluation. The list is updated each time a solu-
tion is found better than the current worst solution in
this elite pool. We merely insert the new solution in its
proper location, dropping the worst solution. To en-
able more elite solutions to be recovered, we thus
allow the number of solutions recovered to be larger
than the size of the original size of the elite pool. We
implement the elite pool for advanced recovery as a
circular list, that is, when the best solution (last
element) in this pool is recovered, we move back
around to the current worst solution (first element)
and work toward the best solution again. For each

338 MANAGEMENT SCIENCE/VOI. 45, No. 3, March 1999

XU, CHIU, AND GLOVER
Optimizing a Private Une Telecommunication Netivork

solution recovered, all tabu restrictions are overridden
and reinitialized.

4. Computational Results
In this section, we first report our computational
outcomes for two sets of test problems. The problems
are generated randomly from distributions whose
parameters are selected to create the most difficult
problem instances for randomly generated problems
from a computational standpoint. The locations of
target nodes and steiner nodes are randomly gener-
ated in Euclidean space with coordinates from the
interval [0, 1000]. Euclidean distances are used for
calculating the link costs. The fixed cost of selecting a
steiner node is generated randomly from the interval
[0, 1000]. We observed that a small fixed cost in tJiis
case tends to produce difficult instances because of the
"steiner" nature of the problem. The first set of test
problems is taken from Lee et al. (1996a), and is
restricted to problems of relatively small dimensions
that were capable of being solved by the branch and
cut approach of their study. Problems from the second
test set have larger dimensions, and are beyond the
ability of current exact methods to solve. The tables
that report our results represent the problem dimen-
sions by m and n, which identify the number of target
and steiner nodes respectively.

We conducted all our tests on a Sun Sparc worksta-
tion 20, Model 512 and report CPU time in seconds.

4.1. Parameter Description
An initial solution for our TS approach is produced by
linking every target node to its closest steiner node,
and then constructing a TSP tour using 2-opt on the set
of selected steiner nodes. Since this initial solution
does not address the tradeoff between steiner node
costs and link costs, it is usually a very poor quality
solution. Our TS approach starts from this solution to
search for progressively better solutions.

Tabu Tenures for the three types of moves in the TS
procedure are randomly generated from an associated
(relatively small) interval each time a move is exe-
cuted. The interval [1, 3] is used for constructive
moves and the interval [2, 5] is used for destructive
moves. In the case of swap moves, an interval of [1, 3]

is used for each of the two elementary moves compos-
ing the swap. Most TS applications use intervals that
are centered around somewhat larger values. Appar-
ently, the ability to use these small intervals success-
fully, without cycling, is aided by the oscillation
strategy whereby the search alternates between the
different types of moves. The smaller Tabu Tenures
conceivably help the search explore promising regions
more thoroughly under these conditions.

Swap moves are executed either once every seven
iterations or in a block of five consecutive iterations
when no "new best" solution is found during the most
recent 100 iterations. The candidate list for swap
moves consists of the top (up to) ten best destructive
moves and top (up to) ten constructive moves from
the last iteration. At each iteration, the intermediate
evaluator is always appHed to the top ten best candi-
date moves estimated by the basic evaluator. The error
correction procedure (by the advanced evaluator) is
executed each time a "new best" solution is found,
and is applied to the current solution after every three
accumulated moves, not counting destructive moves
that drop nodes of degree one. Error correction is also
applied every 100 iterations to the priority queue that
stores the 30 best solutions. Also, as mentioned in §3.3,
the error correction is not executed before iteration 200
and is omitted when the current TSP tour contains less
than ten nodes. The embedded TS-TSP procedure is
terminated at 200 iterations. The maximum allowable
number of iterations for our complete method is set to
150 for the first test set (which we found to be trivially
easy for our method) and 5000 for the second set.

Long-term memory is activated after 500 iterations,
so that it can be based on relatively reliable frequency
information. The penalty term based on long term
memory is calculated by multiplying 320 by the nor-
malized frequency for elementary moves, and multi-
plying 135 by the sum of the two respective normal-
ized frequencies for swap moves. In probabilistic
move selection, we choose the probability of accep-
tance p = 0.3, as previously noted. The parameters for
fine-tuned probability described in §3.4 are set as: a
= 1.0 and /3 = 0.15. We additionally use the simplifi-
cation of shrinking the candidate list for the probabi-
listic rule to contain the ten best moves id = 10), since

MANAGEMENT SCIENCE/VOL 45, No. 3, March 1999 339

XU, CHIU, AND GLOVER

Optimizing a Private Line Telecommunication Network

the probability of selecting a move outside the re-
duced list would be less than 0.03.

Note that all the above parameters are selected
intuitively or based on several preliminary experi-
ments, without any attempt at fine tuning. An effort to
fine-tune these parameters, for example, using a sys-
tematic procedure based on statistical tests (see Xu et
al. 1998), may significantly improve the performance
of our algorithm.

4.2. Test Results
The first set consists of 175 test problems where m
ranges from 10 to 90, n ranges from 10 to 50, and m -I-
n does not exceed 100. For each problem size, we
generate five instances using different seeds for ran-
dom num.ber generator. We report average results for
these five instances.

For comparison, we also list the average results for
the branch and cut algorithm described in Lee et al.
(1996a). We also include solution information for a
special heuristic (denoted LS) that is described in Lee
et al. (1996a) and provides the upper bound for their
exact algorithm. This heuristic strategically generates
a set of initial solutions and then improves them using
local search. We enclose the description of this heuris-
tic in the appendix. In addition, the LS approach can
be significantly enhanced by iteratively restarting the
process. That is, at each iteration, we randomly gen-
erate an initial solutions and then apply the LS to
improve it. The best solution found in all iterations is
reported. Since in this restarting extension, the move
selections are probabilistically selected based solely on
the LS choice criteria, it can be classified as a mem-
oryless variant of probabilistic Tabu Search (see
Glover 1996). We denote this latter method by LS-PTS
where the number of iterations for restarting is set to
150. Since the exact method based on the mathematical
formulation in §2 requires at least three nodes for the
TSP tour, we disallow any heuristic solution with less
than three active nodes for an equitable comparison.

Since problems of the first test set are relatively
small and easy for our algorithm, we reduced the
maximum number of iterations to 150. With tliis
stopping criterion, a few advanced features in our TS
algorithm, such as the long term memory strategy,
and the elite solution error correction and recovery

strategies, are disabled. In Table 1, we report the
percentage of the error relative to the optimum objec-
tive values obtained by the exact method and CPU
times of our TS, LS, and LS-PTS methods. In the last
colunrm, we list the CPU time required by the branch
and cut method on the same machine. Recall that all
results are the average values over five instances for
the same problem size, and aU CPU times are mea-
sured in seconds.

Table 1 Computational Results on Small Size Random Problems

Problem

{m

(10

(10

(10

(10

(10

(20

(20

(20

(20

(20

(30

(30

(30

(30

(30

{40

(40

(40

(40

(40

(50

(50

(50

(50

(50

(60

(60

(60

(60

(70

(70

(70

(80

(80

(90

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

n)

10)

20)

30)

40)

50)

10)

20)

30)

40)

50)

10)

20)

30)

40)

50)

10)

20)

30)

40)

50)

10)
20)

30)

40)

50)

10)

20)

30)

40)

10)

20)

30)

10)

20)

10)

TS

Error

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

CPU

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0,2

0.8

0

0

0.2

0

0

0

LS

Error

11.82

8.72

4.38

3.09

9.83

4.20

2,96

1.01

2.39

0.82

0.70

2,60

3.79

2.91

1.08

0.66

2,39

2,80

3.71

1.79

0.43

1,72

2.48

2,38

1,20

1,15

0.89

0,01

1,37

0.80

2.35

1.23

0,55

1,60

0,81

CPU

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

LS-PTS

Error

0.08

0

0.28

0

0

0

0

0

0

0

0

D

0

0

0

0

0

0,06

0

0.03

0

0

0.05

0

0

0

0

0

0.04

0

0

0

0

0.20

0

CPU

0

0

0

0

0

0

0

0

0

0

0

0

0

0,6

1

0

0

0.8

1.0

1.0

0

0.4

1.0

1.0

2.4

0

1

1.2

2.4

0

1,0

2.0

0

1.4

0.4

Exact Method

CPU

1.4

12.0

45.0

164.2

292,4

2,2

13.8

57,4

287.8

854.8

2.8

21,6

224.0

351.8

411.6

2.6

22,6

80.2

719.8

1037.6

3.6

37.8

139.6

384.8

1003.8

4.6

30.2

108.6

368.6

5.0

35.6

175.0

6.0

34.4

5,8

340 MANAGEMENT SCIENCE/VOI. 45, No. 3, March 1999

xu, CHIU, AND GLOVER
Optimizing a Private Line Telecommunication Network

From Table 1, we Hnd that the computation times
for the exact method increase exponentially with n for
each fixed m. Consequently, it is truly hard to solve
the larger instances of the ring-based DDS problem
using the current exact method. The LS is very fast and
obtains good solutions, but it cannot find the optimal
solutions for all five problem instances for any prob-
\em size. LS-PTS significantly improves LS at very
reasonable extra computational effort, finding optimal
solutions for the five problem instances in 28 out of the
35 different problem sizes tested (hence in 80% of
these problem sizes). Our TS performs extremely well
by finding optimal solutions for all problem instances
in all problem sizes (hence for all 175 test problems).
We emphasize that the TS procedure we are testing in
these cases is a simple TS algorithm without the
assistance of advanced features.

We then extended our tests to larger problem in-
stances. The dimensions for the second set of test
problems are as follows. The value of n for the first 15
problems ranges from 100 to 200 in increments of 25.
For each n, three problems are generated by setting m
equal to n, n + 50 and n + 100 respectively. The last
six problems in this set are designed to be particularly
large and have dimensions 250 x 250, 300 X 250, 350
X 250,100 X 300,200 X 300, and 300 X 300. Since exact
methods are unable to handle problems of this second
set and it is also difficult to find a reasonably good
lower bound from the mathematical formulation, we
evaluate the TS heuristic by comparing its perfor-
mance to those of the LS and LS-PTS heuristics, which
proved capable of finding optimal or near-optimal
solutions for the first set of problems. Since the prob-
lems are large, the search termination condition is
extended to 5000 iterations, which enables the ad-
vanced features of our TS algorithm.

As for the first problem set, we generate five in-
stances for each problem size in the second problem
set. Since our Tabu Search algorithm outperforms the
LS and LS-PTS, we report the outcomes in the form of
error percentages of the LS and LS-PTS over TS. We
list the maximum (MAX), minimum (MIN), and aver-
age (AVG) error percentages for each problem size in
Table 2. In addition, we also list the number (NUM) of

problems where TS improves the LS or LS-PTS among
the five instances.

From Table 2, we observe that TS consistently
outperforms LS and LS-PTS. In particular, TS im-
proves LS solutions in 104 instances out of 105 test
problems with average cost savings of 3.64%. Com-
pare with the solutions obtained by LS-PTS, TS im-
proves 79 LS-PTS solutions and the average improve-
ment is 0.23%. The magnitude of improvement is
more noticeable for larger problem size. Given the
relatively good performance of LS-PTS in the first
problem set (where 80% of the LS-PTS solutions are in
fact optimal solutions), the improvement by our TS
method on this larger test set is quite significant. Such
an improvement provides a valuable competitive edge
in attracting customers, with the associated benefit of
increasing the company's market share and profits.

We also compare the CPU time required by TS with
those required by LS and LS-PTS. We list the maxi-
mum (MAX), minimum (MIN), and average (AVG)
CPU time (in second) by each algorithm among the
five instances for each problem size in Table 3. The
times reported herein are tin:\es required by obtaining
the best solutions for the corresponding heuristic.

Table 3 discloses that the TS uses very reasonable
CPU times to obtain high quality solutions and can
meet the time requirement for real-world applications.
LS uses much less CPU time, however, it can be easily
improved by LS-PTS and TS. The enhanced local
search method, LS-PTS, though taking advantages of
using more CPU time and randomly escaping local
optima, is stiU outperformed by our TS heuristic. This
confirms the more "intelligent" nature of Tabu Search
over the local search techniques.

Finally we present an algorithmic analysis to inves-
tigate the relative conti'ibutions made by the various
components of our TS algorithm. We test a series of
variants which disable certain TS components on the
second problem set. The variants under investigation
include the one without short-term memory (STM),
the one without long-term memory (LTM), the one
without probabilistic selection rule (PSR), the one
without advanced recovery strategy (ARS), the one
without the use of advanced evaluator (AE), and the
simple TS (STS) wMch we tested in the first set of

MANAGEMENT SCIENCE/VOI. 45, No. 3, March 1999 341

XU, CHIU, AND GLOVER

Optimizing a Private Line Telecommunication Network

Table 2 Cost Comparisions on Larger Size

Problem (m x n)

(100 X 100)

(150 X 100)

(200 X100)

(125 X 125)

(175 X 125)

(225 X 125)

(150 X 150)

(200 X 150)

(250 X 150)

(175 X 175)

(225 X 175)

(275 X175)

(200 X 200)

(250 X 200)

(300 X 200)

(250 X 250)

(300 X 250)

(350 X 250)

(100 X 300)

(200 X 300)

(300 X 300)

Average

MAX

4.77

3.42

3.32

3.93

3.03

3.94

7.02

2.94

4.01

2.37

4.31

2.99

2.31

3.25

2.73

3.47

3.15

2.37

4.53

3.64

4.94

3.64

Random

LS

MIN

1.89

0.8

0.78

1.15

0.36

0.08

1.5

0.26

1.31

0.83

0.98

1.16

0

0.51

1.91

2.07

2.04

0.75

0.61

2,15

2.27

1.11

Problems

over TS

AVG

2.93

1.94

2.06

2.28

1.17

2.35

4.58

1.49

2.96

1.46

2.54

2.02

1,04

1.71

2.2

2.69

2,56

1.48

2.88

2,73

3.41

2,31

NUM

5

5

5

5

5

5

5

5

5

5

5
5

4

5

5

5

5

5

5

5

5

4.95

MAX

0.33

0.5

0.48

0.39

0.3

0.6

0.36

0.38

0.58

0.38

0.25

0.22

0.56

0.2

0.44

0.59

0.7

0.5

0,83

0,98

0.7

0.49

LS-PTS

MIN

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0.03

0.13

0.39

0.05

0

0.12

0.11

0.04

over TS

AVG

0.07

0.2
0.17

0.2

0.1

0.2

0.13

0.11

0.24

0.21

0.12

0.06

0.27

0.12

0.29

0.32

0.57

0.29

0.28

0.39

0.39

0.23

NUM

1

3

4

4

3

4

2

3

3

4

4

3

3

4

5

5

5

5

4
5

5
3.76

problem (which disables the LTM, ARS, AE, and
terminates at 150 iterations). For ease of exposition
and to simplify the comparisons, we only report the
percentage of problems in which the variant could not
match the best TS solutions reported in Table 2. In
other words, this percentage indicates the degree of
improvement that the corresponding component can
contribute. The comparisons are presented in Table 4.

The outcomes from Table 4 validate that all compo-
nents can significantly enhance the basic Tabu Search
algorithm. In particular, the long-term memory and
the probabilistic selection rule play Important roles in
diversification and therefore improve the overall
search quality. The advanced recovery strategy pro-
vides an effective intensification role and helps locate
better solutions in late stages of the search. The
short-term memory is primarily used to prevent the
search from revisiting local optima and to reduce the
chance of cycling. Though these functions are dimin-
ished by the introduction of the probabilistic move

selection strategy, the short-term memory still make a
notable impact. The use of probabilistic move selec-
tion additionally affords an effective means to com-
pensate for the noise caused by the approximate move
evaluation. Incidentally, we note that the advanced
evaluator (incorporating TS-TSP) is impressive in
finding better TSP tours than 2-opt, and it can be
efficiently executed within a hierarchical framework.
The impact of integrating the more advanced TS
components such as LTM, PSR, ARS and AE becomes
even more evident since they improve the solutions in
nearly 70% of the problem instances, by comparison
with the elementary TS heuristic (which in this appli-
cation embraces probabilistic move choice and short-
term memory).

5. Conclusion
We have developed and tested alternative Tabu
Search implementations for solving a ring-based

342
MANAGEMENT SCIENCE/VOI. 45, No. 3, March 1999

xu, CHIU, AND GLOVER
Optimizing a Private Line Teleconmmnication Network

Table 3 CPU Time

Problem (m x n)

(100 X 100)

(150 xlOO)

(200 X 100)

(125 X125)

(175 X 125)

(225 X125)

(150 X 150)

(200 X150)

(250 X150)

(175 X 175)

(225 X 175)

(275 X 175)

(200 X200)

(250 X 200)

(300 X200)

(250 X 250)

(300 X250)

(350 X250)

(100 X300)

(200 X300)

(300 X300)

Comparisions on

MAX

0
0
0
1
1
1
1
1
1
1
2
2
2
2
2

4

4

5

1

3

8

Larger Size

LS

MIN

0

0

0

0

1
1
1
1
1
1
1
2

2

2

2

3

3

4

1

2

5

Random Problems

AVG

0

0

0

0.2

1

1
1
1
1
1
1.8

2
2
2
2

3,6

3.2

4.2

1

2.2

6.2

MAX

31

62

104

58

104

164

96

163

250

148

230

334

219

331

473

431

598

771

98

344

729

LS-PTS

MIN

31

61

101

57

102

158

95

158

238

146

227

332

214

324
461

420

585

763

96

338

709

AVG

31

61.6

102.4

57.4

103

160.2

95.6

159.8

242

146.8

228.8

332.6

216.4

326.8

465.6

424.4

588.6

767.4

96.4

341

719

MAX

4
85
9

36
51

143

133

95

115

85

118

307

23

387

178

448

420

537

116

280

649

TS

MIN

1

2

2
2
3

4

3

5
29

8

11

44

6

12

15

120

21

61

4

17

23

AVG

2.6

26.4

5

12.2

20.2

37.8

40

42

74.6

42.8

55.4

161.6

10.6

164.2

63.2

249.8

254.4

301

46

209

356

DDS network design problem encountered in tele-
communications industry. In our approach, the
search incorporates constructive and destructive
moves as well as exchange moves to explore differ-
ent neighborhood structures. We introduce evalua-
tion estimates to allow moves to be selected more
efficiently, and accompany these estimates with an
error correction procedure that employs hierarchical
move evaluators in order to offset the risk of making
improper choices. Long-term memory and probabi-

Table 4 Tests on Various TS

Components

Variant

STM

LTM

PSR

ARS

AE
STS

Contribution (%)

12.4

32.4

14.3

32.4

48.6

68.9

listic move selection are also included for diversifi-
cation while the advanced recovery strategy is im-
plemented for intensification.

Numerical tests, for two sets of randomly gener-
ated test problems, show that for the 175 smaller test
problems (up to 100 nodes), a simple variant of our
TS algorithm yields optimal solutions in all cases
while using only a very small fraction of the CPU
time required by the exact method (running about
three orders of magnitude faster). For the 105 larger
problems, the Tabu Search algorithm consistently
outperforms the best local search heuristic previ-
ously available, including a probabilistic enhance-
ment of this heuristic designed in this study. Our
outcomes also demonstrate the relative contribu-
tions of short-term memory, long-term memory,
probabilistic move selection, advanced recovery,
and the advanced move evaluator, showing that the
combination of these components can obtain signif-
icantly better results than the simple TS version. The
gains afforded by the advanced components of tabu

MANAGEMENT SCIENCH/VOI. 45, No. 3, March 1999
343

XU, CHIU, AND GLOVER
Optimizing a Private Une Telecommunication Network

search become more appreciable as the problems
increase in complexity.

Future improvements of our TS approach are antic-
ipated to result by including additional long term
memory functions and by using more refined candi-
date list strategies. We observe that some of the steiner
nodes always reside in the active set for good solu-
tions, while other are always inactive. An intensifica-
tion strategy that takes advantage of this fact could
yield additional useful information for probabilistic
TS desigr\s. In addition, we anticipate that the use of
evolutionary strategies, such as scatter search and
path relinking (Glover 1977, 1996), may provide an
effective post-optimization approach for our TS algo-
rithm.

Appendix
In this appendix, we describe the LS heuristic procedure that has
been used to provide an initial upper bound on the optimal solution
value in the branch-and-cut algorithm in Lee et al. (1996). The
following notation and definitions will be used for that purpose.
First recall that m is the number of target nodes and n is the number
of steiner nodes. A star is a subgraph that consists of a single steiner
node (the center of the star) and a set of target nodes with edges
connecting them to the center. The zveight of a star is equal to the
sum of its edge costs and its steiner node cost The size of a star is
equal to the number of target nodes contained in that star. Finally,
the steiner number and TSP tour of a solution are defined respectively
as the number of steiner nodes being used and the TSF tour
connecting these nodes in that particular solution.

Heuristic Procedure for the King-Based DDS Problems
For star size fc - 2, 3, m, repeat the following steps:
Step 1. (Generating an initial current solution)

Step 1.1. Label all nodes in M U N "unselected" and set i - 1.
While I ^ minlfm/fc!, n], determine the minimum-weigbt
star of size k that contains only unselected nodes (the last
iteration may find a smaller star), and then label all the nodes
in the star "selected"; set i = i + I. Each selected target node
has been currently assigned to the center of its star.

Step 1.2. Reassign each selected target node in M to its closest
selected steiner node in N if necessary.

Step 1.3. If any, assign each unselected target node in M to its
closest steiner node in N and then label it "selected."

Step 1.4. Connect all selected steiner nodes in N with a TSF tour
using random insertion.

Step 2. If the steiner number of the current solurion is greater than
or equal to 4, try to improve the solution as follows:

Step 2.1. Improve the TSF tour using 2-opt heuristic.
Step 2.2. Further improve the TSF tour using Or-opt heurisHc.
Step 3. If the steiner number of the current solution is greater than

or equal to 2, perform the following steps for each selected
steiner node:

Step 3.1. Generate a new temporary solution by deleting the
selected steiner node from the current solution as follows:
remove the selected steiner node from the TSP tour; reassign
its target nodes to the closet remaining steiner nodes in the
tour; connect the two neighbors of the steiner node in the TSP
tour.

Step 3.2. Replace the current solution with the temporary solution
if the latter is better.

Step 4. For each imselected steiner node, perform the following

steps:
Step 4.1. Generate a new temporary solution by adding the

unselected steiner node to tbe current solution as follows:
insert the new steiner node into the TSP tour such that the
increase of the tour length is minimized; reassign target nodes
to the newly-added steiner node if it is closer.

Step 4.2. Replace the current solution with the temporar\' solution
if the latter is better.

Step 5. If any improvement is made to the current solution in Step
3, or 4, go back to Step 2.

If the current solution is better than the best solution found, record the

current solution as the new best solution found.

References
Anderson, A., K. F. Jones,]. Ryan. 1993. Path assignment for call

routing: An application of tabu search. Ann. Oper. Res. 41 (J. C.
Baltzer), 299-312.

Glover, F. 1977. Heuristics for integer programming using surrogate
constraints. Decision Sci. 8 156-166.
. 1989. Tabu search—Fart I. ORSA J. Computing 3 190-206.
. 1996. Tabu search and adaptive memory programming—
Advances, applications and challenges. Barr, Helgason, Ken-
nington, eds. hiterfaces in Computer Science and Operations Re-

search. Kluwer Academic Publishers, Boston, MA. 1-75.
, M. Laguna. 1997. Tabu Search. Kluwer Academic Fublishers,
Boston MA.
, A. Lokketangen. 1996. Frobabilistic move selection in tabu
search for zero-one mixed integer programming problems. 1. H.
Osman and J. F. Kelly, eds, Mcta-Heuristics: Theory and Applica-

tions. Kluwer Academic Pubhshers, Boston, MA. 467-487,
Johnson, D. S., L, A. McGeoch, 1996. Tbe traveling salesman

problem: A case study in local optimization. E. H. L. Aarts, J, K.
Lenstra, eds. Local Search in Combinatorial Optimization. John

Wiley and Sons, New York.
Laguna, M, 1994. Glustering for the design of SONET rings in

interoffice telecommunications. Management Sci. 40(11) 1533-
1544.
, F. Glover. 1993. Bandwidth packing: A tabu search approach.
Management Sci. 39(4) 492-500.

Laporte, G. 1992. The traveling salesman problem: An overview of
exact and approximate algorithms. European /. Oper. Res. 59
231-247.

Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys.

344
MANAGEMENT SCIENCE/VOI . 45, No. 3, March 1999

XU, CHIU, AND GLOVER

Optimizing a Private Line Telecommunication Network

1985. The Traveling Salesman Problem: A Guided Tour of Combina-

torial Optimization. Wiley, Chichester, UK.
Lee, Y., S. Y. Chiu, J. Ryan. 1996a. A branch and cut algorithm for a

steiner ring-star problem. Working Paper. U S WEST Advanced
Technologies Inc., Boulder, CO.
, , . 1996b. A branch and cut algorithm for a steiner
tree-star problem. INFORMS J. Computing 8(3) 194-201.

Reinelt, G. 1994. The Traveling Salesman: Computational Solutions for

TSP Applications. Springer-Verlag, Heidelberg, Germany.
Skorin-Kapov, D., J. Skorin-Kapov. 1994. On tabu search for the

locaUon of interacting hub facilities. E]OR 73 502-509.
Xu, J., S. Y. Chiu, F. Glover. 1996a. Using tabu search to solve the

steiner tree-star problem in telecommunications network de-
sign. Telecommunication Systems 6 117-125.

-, , . 1996b. Probabilistic tabu search for telecommuni-
cations network design. Combinatorial Optimization: Theory and
Practice Vol 1, (1) 69-94.

-, , . 1998. Fine-tuning a tabu search algorithm with
statistical tests. Internat. Trans. Oper. Res. 5(3) 233-244.

-, , . 1997. Tabu search for dynamic routing communi-
cations network design. Telecommunication Systems 8 55-77.

-, J. P. Kelly. 1996. A new network flow-based tabu search
heuristic for the vehicle routing problem. Trans. Sci. 30(4)
379-393.

Accepted by Thomas M. Liebling; received June 1997. This paper has been with the authors 5 months for 1 revision.

MANAGEMENT SCIENCE/VOL 45, No. 3, March 1999 345

