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1. Introduction

Tabu Search(TS) is increasinglybeing usedas an effective methodto get good solutionsto
difficult optimizationproblems(seee.g.,the surveyof applicationsn GloverandLaguna,1997).The
approach relies on adaptive neighborhood modification using memory-basedstrategies, whose
componentsinclude multilevel candidatelists, short term and long term memory structures,and
blendingof neighborhoodso guide the search.The notion of adaptiveneighborhoodmodification by
meansof memory-basediesignshasled to the developmenbf many interestingapproache®ver the
pastfew years.However,thereare somefundamentatabu searchstrategieghat are often not applied
effectively. A plausible explanationfor this is that the rationale underlying thesestrategiesis not
completelyunderstoodasdescribedn the following (Glover, 1996; Glover andLaguna,1997 andthe
collectionof papersn Glover,1997).The currentpaperamplifiesthis themewith specialfocuson the
domain of candidatelist strategies.Although candidate list strategieshave been successfully
implementedn someapplications(Woodruff and Spearmar(1992), Lokketangerand Glover, (1997),
Minghe Sun et al. (1997), Jamesand Buchanan(1997)), there is still a broad scopefor better
implementationsespeciallyin the areaof scheduling.We discusssome candidatelist strategiesin
general,and commenton their applicability to the schedulingdomain.In orderto provide a unified
contextfor numericalillustrations,all exampleausedin this papercomefrom the resource-constrained

scheduling area.

The remainder of the paper is organized as follows. In Sectiva iZview candidatdist strategies
that have notable potential for more efficient and effective implementationsput that have received
inadequateattentionin the literature. In Section3, we describethe problem context used for the
numericalillustrations. Section4 providesconcreteexampleso describethe processof creatingand
implementing various types of intelligent candidatelists, together with an elaboration of their
underlyingrationale.Section5 providespreliminary computationatesultsthat disclosethe sometimes
surprising gains that can be obtained by usitgjligentcandidatdists. Finally, Section6 offers useful

pointers for further work.

2. 0 Candidate List Strategies in Tabu Search

Thefirst motivationfor building candidatdists is the observatiorthat both efficiency and efficacy
of the search can lggeatlyinfluencedby isolatinggoodcandidatenoves— in contrastfor exampleto
evaluating all possible moves in a current neighborhood. (The accent here is on generedindidate
movesby someintelligent processatherthanby a randomor naiveprocess.)The secondmotivation

comes from the need to reduce the tieguiredto evaluatemoves especiallywhereeachmovemaybe



expensiveto generateor analyze,or wherethe current neighborhoodmnay containa large numberof
moves. A third motivation comesfrom the goal of exploiting problem structure, where particular
problem domains give a basis for special constructions to create intelligent candidate lists (gitang rise

context related ruleas described in Glover and Laguna, 1997).

This paperstresseghe importanceof accountingfor multiple factorswhoseappropriatebalance
can vary at different points in the search.We find it useful to differentiate among candidatelist
strategies of five fundamental typ@sthe successive filtration strategy, the etitsmdidatdist strategy,
the aspiration plus strategy,the sequentialfan strategy and the boundedchangestrategy. These

strategies are first reviewed here in a general sense, following the lines of Glover and Laguna, 1997.

2. 1 Successive Filtration Strategy

This candidatdist strategyhasa particularly stronginfluenceon searchquality in the contextof
schedulingln manycombinatorialoptimizationproblems the outcomeof a movecanbe thoughtof as
the combinedeffect of severalfundamentalprocessesBy separatingheseprocessesand restricting
attentionto one processat a time, effective candidatdists can be constructed For example,in many
graphproblemsa commonlyusedmoveis to replacean edgein the currentsolutionwith anotheredge
not in the solution. Such movescan thereforenaturally be brokendown into two components] an
“add edge”componenthatintroducesan edgeanda “drop edge”componenthat deletesan edge.We
can isolatethe top few outcomesfor the “add edge” componentto createa set of “best add edge”
selectionsand similarly, isolate the top “drop edge” componentio createa set of “best drop edge”
selectionslf therewere 100 possibleindividual “add edge”and“drop edge”componentsfor example,
a completeexaminationstrategywould requireconsideratiorof 10,000moves.Instead by considering
the 10 to 20 best individual componentseach from the “best add edge” and “best drop edge”
componentspnly 100to 400 completemovesneedto be evaluated- a reductionof nearlytwo orders
of magnitudein effort, evenafter consideringthe work of identifying the componenimove. The basic
premisehere is that although the evaluationof the separatecomponentsis only an approximate
indicator of the evaluationof the move that resultsby their combination,this approximationis good

enough for most applications.

Sometimesthe evaluationof the componentprocessesannotbe treatedindependentlyi.e., the
evaluationof one components strongly conditional upon the prior choice of another.For example,
feasibility requirementsmay require the coupling of two different variablesselectedby successive
filters. (Such situationsoccur frequently in schedulingapplicationswhere two tasks linked by a

precedenceelation cannotbe executedduring the sametime window.) A simpleway of implementing



this is to perform sequentiakvaluationsgnsuringfeasibility at eachstep. Section4.0 illustrateshow

this is done in the context of project scheduling.

2. 2 Elite Candidate List Strategy

The elite candidatelist strategyrecordsthe best (elite) solutionsor their attributesand usesthe
recordedinformationin the subsequeniterations.Fundamentato the useof this strategyis a Master
List that is built by recording the bdstmoves encountered in the examination of alternative movas on
given iteration. The Master List is periodically constructed, and is based on exanrielatyalylarge
numberof moves.Thenat eachsubsequeriterationuntil a newlist is createdthe bestmovecurrently
availablefrom the MasterList is choserandexecutedThe processcontinueso selectmovesfrom the
masterlist until either a prescribednumber of moveshave beenmade,or the quality of the best
availablemovefalls below a threshold.At that point the MasterList is reconstitutedand the process

repeats.

The assumptiorhereis thata collectionof bestmovesis likely to containa subcollectionthat will
continueto be goodfor a numberof iterations,althoughwe cannotpredictin advancepreciselywhat
this subcollectiorwill be. Propermonitoringof the evaluationandidentity of the movesin the Master
List is essentiakincethe executionof eachcurrentmove can changenot only the evaluationbut in

some cases the character of remaining moves.

2. 3 Aspiration Plus Strategy

In the Aspiration Plus strategy, thresholds for the quality of a move cestdddishedlynamically,
basedon the searchhistory. The examinationof currentmovescontinuesuntil encounteringhe first
move that meetsthe thresholdquality. After that, the examinationis continuedfor a further Plus
iterations (wherélusis a parameter of the process) and the best fioovel overallis selectedIf Plus
is defined to be zero, the procedure reducestapproachthatalwaysselectghefirst movethatmeets
the threshold quality. To maintain the flexibility of the processto adapt dynamically to search
requirementsthe total numberof movesexamineds allowedto changebetweentwo limiting values,
Min andMax. (This ensureghatat leastMin movesandat mostMax movesare considered.)f Max
movesare examinedwithout finding a move that attainsat leastthe thresholdquality, then the best
movefoundsofar is selectedThe strategyis explainedfor a minimizationproblemin Figure 1 andis
adaptedrom Glover andLaguna(1997).In the figure, Plusis definedto be 5, Min is 7 andMax 15.
Thefirst movethat meetsthe Aspirationlevel is movenumber6, andthis is calledFirst. As Plusis 5,
the value of First + Plusis 11, andthis valuefalls within the limits imposedby Min and Max. So a

maximumof 11 moveswill be examinedn this case,andthe bestmoveoverallis selectedlf First +



Plusis lessthanMin, thenat leastMin movesareexaminedglseif First + Plusis greaterthanMax, a

maximum ofMax moves is examined.
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Figure 1. lllustrating Aspiration Plus Strategy

2. 4 Sequential Fan Candidate List Strategy

This strategy accommodatestself very well to parallel processing,and has an interesting
connectionwith the beamsearch approachusedin tree searchmethods(see Morton and Pentico,
1993).At aninitial stepof this approachmultiple parallel solution streamsare generatedrom the p
bestalternativemoves(therebyidentifying p associatedolutions).The q bestavailablemovesfor each
solution streamare then examined,where q is generally somewhatsmaller than p, and the p best

solutions from thespq alternatives form the seeds for the next step in generating the streams.

As the depthof the streamdncreasesg typically diminishes.In somevariants,q quickly dropsto
1, so that eachsolution streamsimply selectsits bestmoveto perpetuatea single continuation.The
streamscontinueto somecutoff depth(which canbe adaptivelydeterminedand neednot be the same
for each stream), while keeping tramkthe bestsolutionfound on eachstream subjectto lying at least
a minimumdepthfrom theinitiating solution. (It is possible andoftenlikely, thatfewerthanp distinct

solutionswill be recordedpecausdwo or morestreamanay sharea common“ancestorsolution” that

is best for each of them.)

Ther bestof thesesolutions(for r < p) are then selectedwhereuporthe r partial streamsthat
terminateat theser solutionsbecomethe starting points for repeatingthe process.Then, for a new
valueof g (restoredto be largerthanat the pointswheretheser solutionswere found), rq optionsare

now examined,from which p are selected.This re-establisheghe standardexaminationof pq



alternativesat eachsubsequerstep.(Fewerthan pq alternativesof courseresultwheresomestreams
are terminated at smaller depths than othemsiofe conservativestrategyis alsopossiblethat doesnot
resumefrom ther bestsolutionsidentified, but from somewhatarlier solutionson the streamghatled
to theser solutions.)Sincesomeof the alternativesexamineduponrestartingthe streamscoincidewith
alternativesexaminedon the previouspass,appropriatebookkeepingcan be useful to accelerateghe

process.

2. 5 Bounded Change Candidate List

The use of this strategyis indicatedin those situationswhere the domain of choicesfor each
solution components restrictedat eachiteration. The degreesof permittedchangeare definedby a
distancemeasurethat dependson the problem context. By varying the extentof changepermitted
acrossdifferent dimensionscontrolled amountsof intensificationcan be obtained.In the contextof
generalizedesource-constrainegroject scheduling,sucha strategyhas beenimplementedusing the
notion of shift vectorsby Sampsorand Weiss (1993). This idea can be exploitedin other problem

contexts as well.

It is not essentialpr evenusuallya goodidea,to useall the foregoingcandidatdist strategiesn
any oneimplementatiorof tabusearchRather the choiceof the strategiego useshouldbe dictatedby
the problem characteristics and the purposes to be achieved during particulaopbaaeshWe now

provide illustrations of how such strategies can be applied in the context of scheduling.

3. Resource-Constrained Scheduling

Resource-Constrained Scheduling geaericterm appliedto a rangeof problemsthatincludesthe
resource-constrained projestthedulingoroblem(RCPSP)the job-shopschedulingoroblem(JSP),and
the Multi-ProcessoiTask SchedulingProblem(MPTSP).The generalframeworkfor theseproblemsis
as follows: A set of activities (also called operationsor tasks)N = {1,...,n} is accompaniedoy
precedenceelationsof thefinish-starttype with zerotime lags. Theseprecedenceelationsare defined
by a setH of orderedpairs,where(i, j) 00 H indicatesthat activity i is an immediatepredecessoof
activity j. (This implies that activity j cannotbe processedintil activity i is processedcompletely.)
Without loss of generality,we specifythat activity 1 is a uniquedummy startnodeandn is a unique
dummyfinish node.(By definition, activities 1 and n have zero durationand consumeno resources.

Further, we assume that activitys available for processing at tihe 0.)

Associated with each activify{l N is a release datgand a due datd. An activity is notavailable
for processingoeforeits releasedateeventhoughthe precedencendresourceconstraintamay permit

this. Eachactivity demandsesourcest a constantate equalto K, during eachperiodit is in progress
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drawing from r [0 R resourcetypes. The cap on the maximumavailability (againassumecdconstant
throughoutthe time horizon) of eachresourcetyper O R is B,. We further assumethat eachactivity
canbe donein only a singlemode(i.e., the durationof the activity cannotbe crashedoy pumpingin
moreresourcesandthateachactivity oncestartedis putin progresscontinuouslywithout interruption

until it is completed (called the “no-preemption” condition).

We considertwo specific problemsfrom this classof problemsto provide the contextfor our
numerical examples- the RCPSP and the JSP. In the classical version of the RCPSP (see
Demeulemeestest al., 1992), thereare no releaseand due date constraintsand the objectiveis to
minimize the project makespan (whieualsthe completiontime of the uniquedummyfinish activity).
In the JSP the objectiveagainis to minimize the completiontime of the lastoperationbut in this case
only the precedencandresourceconstraintapply (i.e., thereare no releaseand due dateconstraints).
A particular difference between the two problems lies in the pattemesadirceavailability anduse.In
the JSP eachresourcetype is called a machine,and only one machineof eachtype is available.
Moreover, each operation requires the use of only one machine, in contrast to an a®iZiBSRthat
may require multiple units of many resource typestioprocessing(ln RCPSPthe basicwork unit is
called an activity, and in the JSPit is called an operation.)It is easyto seethat the RCPSPis a
generalizatiorof the job-shopschedulingoroblem,andthat any methodfor the RCPSPcan be applied
to the JSP.

Figure 2. RCPSP Project Network for Example 1.

Examplel: Considerthe RCPSPprojectnetwork shownin Figure 2, which consistsof 12 activities,
with activities 1 and 12 representinghe uniquedummy startandfinish activities. The accompanying

dataareprovidedin Table 1. Therearefour resourceypesandthe resourcedemandf eachactivity



for each type of resource are shown in Coluuésof Tablel. The maximumresourceavailability for
eachresourceypeis givenby thevector[113, 15, 16,12 Owhich specifiesthe limits on the maximum
simultaneousiseof the resourcesThe classicaRCP SPobjectiveis to find a schedulghat minimizes
the completion time of activity2, subject to the precedence constraints (as shown by the &igsitia

2) and resource requirements.

Activity Duration Res Req (1) ResReq (2) ResReq (3) Res Req (4)

1 0 0 0 0 0
2 4 3 9 8 0
3 7 0 0 2 0
4 2 0 0 4 0
5 1 6 0 0 0
6 10 3 0 10 0
7 1 0 1 0 7
8 6 7 0 3 0
9 9 7 10 2 8
10 1 2 0 1 8
11 1 0 3 0 0
12 0 0 0 0 0

Tablel. Problem Data for Example 1.

: M akespan = 23:
| 7 11
4 |5| 10
3 8 9 L]
2 | 6 |
4 8 12 16 20 24

Figure 3. Gantt Chart Solution for Example 1

To find a feasiblestarting solution to initiate the search,we use a precedencdeasible starting
sequenceand a simple list-schedulingalgorithm. Becauseof the way the activities are indexed,a
precedencdeasible starting sequencecan be obtained by using a lexicographic ordering of the
activities.We usethesequencéll, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12[Jasthe startingsolution.To find a
unigue schedule that corresponds to sieiguenceye scheduleactivitiesasearly asthe precedencand
resourceconstraintawill allow. (Note, eachactivity is putin procesauntil it is completedwithout any

interruption.)Thusactivity 5 startsattimet = 2, sincethe constraintsdo not permitthis activity to be



putin processarlier(asa resultof the precedenceelation4 - 5). Activity 9 cannotstartbeforet =
13 (eventhoughthe precedenceonstraintsallow it to startasearly ast = 2) becausef the resource

constraints. A Gantt chart showing the full schedule is showigire 3

4. lllustrating Candidate List Construction Procedures

We first assumethat each solution to the RCPSPis representedas a precedencefeasible
permutation(also calleda sequencedf the activities,sothat we canoperatein the sequencepacefor
finding improved solutions.A scheduleis a list of startingtimes for eachactivity that respectsthe
precedenceand resourceconstraints.Since there are many possible schedulesfor any particular
sequenceye mustadditionally specifya list-schedulingalgorithmthat generates uniquescheduleor
a given sequenceln our treatmenthere,we usea list-schedulingalgorithm that schedulesan activity
from the sequencat the earliestprecedencandresourceeasibletime. Note thatthis algorithmalways
generates semi-activescheduld(i.e., no local left shift is possible).We alsomakeuseof only simple
ejectandinsert movesfor the purposeof illustration. Given a sequencethis type of move ejectsan
elementfrom the currentsequencandinsertsit after anotherelementto generatea new solution. We
usethe notation(ejecti, insertj) to denotethe ejectionof activity i from the currentsequencendits
insertionafter activity j. Note thatthe index of activity j could be eitherhigheror lower thanthe index

of activity i, leading to two different types of moves.

4. 1 Multilevel Candidate Lists

Building multilevel candidate lists is a recommentlest stepin creatinggoodTS implementations
for precedence-constrainedhedulingproblems.The gainsin efficiency by the useof this strategycan
be considerableAt everyiterationwe haveto maketwo decisionswhich consistof selectingthe eject
activity and the insert activity. The exhaustiveexaminationstrategythat considersall pairs (ejecti,
insertj) asa basisfor sucha move producesa very large neighborhoodA betterstrategyis to build
candidatdlists at multiple levels. Here we offer an exampleof a simple bi-level candidatelist. This
strategyproducessolutionsof very nearlythe samequality asthe exhaustiveexaminationstrategybut
at substantiallyless computationalcost. Our prescriptionconstitutesan operativeillustration of the
successivéiltration strategydiscussedn a generalcontextin Section2.1. For the typesof moveswe
consider,the outcomeof a move typically can be viewed as the combinedeffect of two separate
processes — one that decreases the start time of a certain activity (cauasityitiyeo be “advanced”)
and the other that increasesthe start time of certain other activities (causingthe activity to be

“delayed”). In the example discussed here, we use two separate filters to control the selections.

This strategyaidsin the constructionof candidatdists of different sizesandcharacteristicgt two

levels.At thetop level, thereis a smallerlist composednly of the activitiesthat needto be processed



earlierthantheir startingtimesin the currentscheduleAt the bottomlevel, thereis a setof candidate
lists eachof whosememberlists correspondgo a particularselectionfrom the higher level list. The
situationis shownschematicallyin Figure 4. For everyselectionfrom the higher level list, we havea
set of possible candidates to select from the lower IesgeT his designcanbe generalizedy declaring
the lower level candidatelist to contain pointersto possible candidateactivity sets (rather than
elements}hat correspondo eachselectionfrom the higherlevel list. The managementf thesesets
createdunder this generalizedstipulation requires careful attention,and we suggesta “pause and

project” strategy (see Section 4.2) to treat this general case.

Thedriving force behindthe constructiorof the higherlevel candidatdist usually derivesfrom the
objectivefunction. For example,if the objectiveis to minimize the makesparof the project,asin the
RCPSPwe would chooseonly thoseactivitieson the currentcritical pathsthat havebeendelayedasa
consequencef a resourcerequirementin general,during the improvementphaseof the search,we
wantto maintainthe size of this list assmall as possible Also we recommend simple sortingscheme
to reflect priorities concerningthe orderin which candidategrom the candidatdist are examined(In
Example2, describedbelow, oncethe higher level candidatdlist is generatedve sort the list so that

activities with higher indexes are examined earlier than those with lower indexes.)

Thelower level candidatdist is constructedwith referenceo a particularselectionfrom the higher
level candidatelist. A strategyof constructingthis list progressivelyis useful. The progressive
constructiorstrategymakesit possibleto incorporatemore searchinformationdynamicallyinto the list
constructionprocessEstablishedlominanceulesfrom the literaturecanalso be incorporatednto the
list constructionprocess.Dominancerules to constrainthe neighborhoodscan be advantageously
employedin the improvementphaseof a TS algorithm. On the other hand,to drive the searchaway
from powerful local optima the reverse strategy of allowing broad neighborhooddefinitions is

preferable.

Example2: Considerthe probleminstancein Examplel. The constructionof higherand lower level
candidatdists is illustratedfor a lexicographicinitial solution, whosescheduleis shownin Figure 3
(seeExamplel). Thereis only onecritical pathin this solution,definedby the activity sequencéd.-3-8-
9-10-12. Activities 1 and 12 have zero duration, and thereforedo not appearin the Gantt chart.
Comparingthe startingtimes of theseactivities with thosethat would resultif only the precedence
constraintswere considered(i.e., if the resourceconstraintswere relaxed),it can be seenthat only
activities9 and10 aredelayedn the currentschedulelnstead|f all activities(includingthosenotona
currentcritical path) are consideredfor a similar comparison,activities 6, 9, and 10 are all found

delayedin the current schedule.Therefore,the higher level candidatelist consistsof thesethree

9



activities. (However restructuringthe selectionof activities to only thoseon current critical paths

provides better search intensification.) This is shown schematica&liguime 4

Higher Leve
6 9 10 Candidate Listfor
current solution

- ‘ Lower Level
21 3| 5| 6] 7| 8 Cawo_li date Listfor
actvity 9

Figure 4. Bi-level Candidate List used in Example 2.

Therearedifferentwaysof constructingthe lower level candidatdist. For illustrative purposesin
this example,we put on the lower level candidatelist all thoseactivities that can be delayedwith
respect to a current selection from the higher level list. Thus, corresponding to the selection oBactivity
from the higherlevel candidatdist, we haveactivities2, 3, 5, 6, 7, and8 in the lower level candidate
list. Activity 4 is nota candidateor this list sincethe precedenceonstraintgequirethat activity 4 be
processedbeforeactivity 9. A similar reasoningndicatesthat activity 10 on the higherlevel list gives
riseto only activities2 and9 ascandidate®n the lower level list. With the selectionsabove,a total of
11 moveswill be evaluatedor the currentsolution (threecandidatedor activity 6, six candidategor
activity 9, and two candidates for activity)), assuming that the lower level candidates are ejéced

their current positions and inserted immediately after the selection from the higher level list.

The neighborhooddefined by theseselectionscan be restricted further by one or more of the

following choice rules:

a) only activities on the critical pathsof the current solution are consideredfor higher level
selections;

b) only activities on a currentcritical path are consideredor higher level selections(In cases
where there are multiple critical pathsin the current solution, this choice rule providesa
smaller neighborhood than the choice rule in a).

c) selectiondor the lower level candidatdists are madeby consideringonly thoseactivities that
are contiguous to the selection from the higher level list in the current schélauEexample2,

for selectionlO from the higherlevel list, we selectactivity 9, asthe only lower level candidate

10



asit is the unigueactivity contiguouswith activity 10 in the correspondingcheduleshownin
Figure 3)

Further choice rules can be constructed along similar lines.

4. 2 Pause and Project Strategies

First, we motivate the neddr a pauseandprojectstrategybeforeintegratingthis strategywith the
sequentiafan candidatelist strategy Frequentlyin schedulingproblemsthat containprecedencand
resource constraints, problem influences that affeatrihee evaluationprocessare not fully accounted
for when making a “myopic” type ahovesuchasan (ejecti, insertj). However,uponexecutinga few
additional moves, such latent influences can sometimessurface quite clearly, permitting a better
evaluationof the quality of the move that leadsto suchconsequencesdenceat every stageof the
processwe proposea pauseand project strategywith the goal of uncoveringrelevantfactors for
evaluating outcomesthat are not visible by consideringonly the immediate effects of a current

prospective move. This approach is illustratefxample 3

Example3: Consideragain the resource-constraine@roject schedulingproblem instancewhose
problemdataare givenin Figure 2 and Table 1. Also, asin our earlierillustration, we beginwith a
current solution represented by the lexicographic sequetic2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12>, which
givesriseto the GanttChartin Figure 3. Obviously,activity 9 is a memberof the currenthigherlevel
candidatelist (seeExample2), and assumethat we choosethis activity to generatea move on the
currentstep.Specifically,we selectthe moverepresentetyy the sequenced, 2, 3, 4, 5, 6, 7, 9, 8, 10,
11, 12>, whose correspondingscheduleis shown in Figure 5. Now, since this move causesa
deteriorationby increasingthe makespar(from 23 to 24), in the absenceof other considerationsit
would not be choserasthe bestmovein the currentneighborhood. Howeverit is easyto seethat the
increasednakespamesultsfrom a resourceconflict betweeractivities 7 and9 that preventsactivity 9
from being advancedurther in the current schedule.Consequentlyywe may be able to improve the
currentscheduleif the currentmove (eject9, insert 7) is combinedwith the next move (called the
associatednove)given by (eject9, insert6) (seeFigure 6). Sinceit cannotbe knownin advancehat

suchimprovementwill occur, we “temporarily” acceptthe currentmove, and perform the associated

This moveis equivalentio the onethatresultsfrom the “first movedefinition” in the neighborhood
used by Baaet al (1997).

This movecanalsobe considerecequivalento a swapmovethatexchangeswo internaloperations
of a block in job-shopscheduling. While sucha swapwill not changethe makesparvaluein the
job-shopproblem,it typically causesan increasein the makesparin RCPSP. Such “immersed
internal block activities” show up only when the activities in questionbecome®localized” in the
scheduleto competefor resourcest the sametime. Whensuchactivitiesare too far apartin the
currentschedulefor the RCPSPit is usuallydifficult to predictif one activity would temporarily
block the advancement of another.

*k
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move (eject 9, inert 6) immediately.The “pause” phaseconsistsof tentatively acceptingthe current
move while the “project” phaseconsistsof performingthe associatednove and savingthe combined

move if it is better than the current best move considered.

Notethata progressiveconstructiorof the lower level candidatdist permitsusto adaptthe search
trajectory dynamically, based on the current search information. This strategy, built into
thelower level candidatdist, canbe consideredo be a specialandvery intenseform of the sequential
fan candidatelist strategydiscussedn Section2.4 i.e., it is equivalentto a controlledversionof a
sequentiafan candidatdist strategyimplementatiorin which the variousparallel solutionstreamsare
spunoff dynamically,with restricteddepths.In spite of the restricteddepthof eachof the solution
streams substantiakearchintensificationis obtained.This processrepresents simple versionof an

ejection chain approach (see, e.g. Glover 1992, Rego 1997, Glover and Laguna 1997).

_ : Makespan = 24
11
7
45 I 9 | 8
3 10
2] 6 |
4 8 12 16 20 24

Figure 5. After the Pause Phase of a “Pause and Project” Move

In describingthe generaltenetsof constructingthe lower level candidatelists, we haveleft the
details largely unspecified.This is to allow the constructionof the lower level candidatelist to
incorporateas much problem-specificstructureas possible.For example,in animproving phaseof a
standardob-shopschedulingalgorithm, we know that a swapof the first two operationsof the first
block in a currentsolution can neverimprove the currentmakespar(Nowicki and Smutnicki, 1996).
Such problem-specificinformation should be exploitedin the lower level list constructionprocess,

especially in the improvement phases of the algorithm.
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; M akespan = 20
7 11
415 | 9 8
3 | 10
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4 8 12 16 20 24

Figure 6. After the “Pause and Project” Move

4. 3 Aspiration Plus Strategy

To effectivelyusethis strategy we mustfirst definethe “quality threshold for moves.To this end,
we first motivate the notionf Aspirationby Quality. The aggressiverientationof TS contrastswith a
greedyorientationby allowing the notion of bestto embracemore than a simple objective function
evaluation— and specifically by seekinga balancebetweenthe quality of a move and the amountof
effort required to produce it. Thefluenceof a move, as determined by the sednistory andproblem

context, is one of the important determinants of the meaning of best.

In the presentcontext,the specificlist schedulingalgorithmwe useto translatea given precedence
feasiblesequencénto a schedulegenerallycausegesourceconstraintsat the beginningof the schedule
to betighter (i.e., to havelessslack)thanthoseat the end of the schedule(Del’Amico and Trubian
(1993) make a similar observation,and compensateor this disparity by using a bi-directional
algorithmto generatenitial solutionsfor the JSP.) Given this empirical observationa move may be
conceivedo be moreattractivein the senseof exertinga positiveinfluenceif it temporarilyincreases
the project makesparbut reduceshe maximumdelay in a partial schedule provided any associated
delayoccursonly in an activity thatis scheduledowardthe endof the project. (We assumeherethat
the sizeof the partial schedulés not morethanapproximatelyhalf the sizeof a full schedule.)n such
cases, the choice rules may benefit fladesignthat overridesothermoveevaluationcriteriato accept

such moves.

Example 4Consider the problenmstancedescribedn Examplel. Supposehatthe currentsolutionis

definedby the sequenced, 2, 3, 4,9, 5, 8, 7, 11, 6, 10, 12 >. The makesparior this sequenceés 20,
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andthe schedulds the sameas shownin Figure 6. (The scheduleproducedby <1, 2, 3, 4,5, 6, 9, 7,
8,10, 11, 12> and<1, 2, 3,4, 9,5, 8, 7, 11, 6, 10, 12 > arethe same).The delaysfor the delayed
activities in this solutiorare 2 eachfor activities9 and6, and6 eachfor activities7, 8,10, 11,and12.
(Thesevaluesare obtainedby relaxingthe resourceconstraintsand solving the resultantproblemas a
simple CPM problem.)Evaluatingthe move(eject2, insert7), we get thescheduleshownin Figure 7.
Althoughthis solutionhasincreasedhe makesparirom 20 to 26, this movehasa positiveinfluenceon
the searchsincethe delaysof the delayedactivitiesnow are: 4 eachfor activities7, 8,and11; 11 for
activity 2; 13 for activity 6; and12 eachfor activities10 and12. Note thatthe maximumdelayoccurs

for activity 6, and this activity is scheduled towards the end.

: M akespan = 26
-7
; ; - 11
| 9 g8 || 10
3 | 2 ] 6 | |
4 |5]
4 8 12 16 20 24

Figure 7. Gantt Chart Solution for Example 4.

We discusanextthe useof Aspirationby Quality to constructa specialtype of candidatdist. An
empiricalobservatiorin the contextof RCPSPindicatesthat on the averagemostof the movesin the
neighborhoodf a currentsolutionare non-improvingwhile only a very few are improving. Thus, in
line with the goal of achievinga balancebetweenthe effort expendedon evaluatingmovesand the
quality of the bestmove found, the Aspiration Plus Strategy(discussedn Section2.3) becomesa
usefulbasisfor creatinga candidatdist. Here we definethe aspirationlevel to be the first movethat
meets any one of the following three criteria:

a) producesa makesparbetterthan the current bestmakespan(or in generalthe currentbest

objective value);

b) creates a positive influence on the search trajectory (asample %

c) improvesa secondanpbjectivecriterion subjectto the limits imposedby the primary objective

criterion.
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Criterion c) is animportantchoicerule for defining aspirationlevelssincein schedulingapplications,
multiple critical pathsare encounteredrequentlyand a secondaryobjectivein addition to the usual
makesparis necessaryo indicate good move evaluations Dependingon the stageof the searchthe
values ofMin andMax for the Aspiration Plus Strategy may be adjustecbrdingly. A moreadvanced

variant also changes the Plus parameter values dynamically.

5. Computational Results

To provide a simple preliminary demonstrationof the computationalutility of a candidatelist
strategy we reportthe resultsof a studythatusesonly the successivdiltration strategy.The outline of
the implementation in thierm of a pseudo-codés shownin Figure 8. Again for simplicity, we electto
begin the search from a lexicographic initial solution. A bi-level candidate list, constructed
progressivelyjs usedto createcandidatemoves.All delayedactivitieson all the critical pathsof the
current solution are usedto build the higher level candidatelist. The lower level candidatelist is
composed ofhoseactivitieswhich (a) aresequenceeéarlierthanthe candidateselectedrom the higher
level list, and (b) are in progress just before the current start tithésafandidatdrom the higherlevel

list. The resultant neighborhood is relatively restricted in size.

Moves are definedby simple ejectand insert operationson the currentsequence(For eachpossible
move,sequencadjustmentso maintainprecedencéeasibility are made,if necessary.Jo illustrate,in
Examplel (Figure 3), uponchoosingactivity 9 asthe higherlevel candidatewe selectactivities6 and
8 to be the associatedower level candidatesThe movesin the neighborhoodcorrespondingo this
selection are: (eje®, insert9), and (ejecb, insert9). Note that another move defined by (ej@dnsert
4) is alsopossible. Thereforewe extendthe optionsaboveto includethe movesthat resultby inserting
eachelementof the higherlevel list asearlyin the currentsequencas possible Thuselemen® of the
higherlevel list alsogivesrise to the move (eject9, insert4) which causesactivity 9 to be sequenced
immediatelyafterits predecessomrctivity 4. The entire neighborhoodcomposedf (eject9, insert4),
(eject8, insert9), and(eject6, insert9) for the examplehere)is evaluatecandthe bestnon-tabumove
is chosenTo escapdrom local optimality, a simpletabu short-termmemorywith a fixed tabutenure
of 8 is used.This tabutenurehasbeenchoserto approximatelymatchthe averagenumberof activities
in the higherlevel candidatdist, acrossall the probleminstancesNo diversificationor intensification
strategiesare applied other than the onesimplicit in the use of the candidatelist approach A lower
boundingprocedurebasedon the work of Mingozzi et al. (1994)is usedto providethe lower bounds,
so that the searchcan be terminatedif a solution that matchesthe lower boundvalue is found. The
resultsof this implementatiorfoundwith statictabutenurevaluesheldfixed at threelevelsof 2, 5 and

8 respectively are summarizedliable 2
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read data;
find resource-relaxed solution;
setbest_solution = lexicographic solution;
find Mingozzi lower bound,;
iter = 0;
if (best_solution > lower bound)
do{
initialize tabu data structures;
flag = TRUE;
while flag is TRUE
do{
best move value = bignum;
build higher level candidate list;
while there is an unexamined higher level candidate
do {
selecthigher level candidate;
build lower level candidate lists;
while there is an unexamined lower level candidate
do{
selectlower level candidate;
evaluatemove;
if move value better than best move value

{

if move value + current solution better than best solution
{
override tabu status;
update best move;

}

else
{
checktabu status;
if not tabu,update best move;

}

}
}

make best move;
update current solution;
if(current solution better than best solution)

{

store best solution;
}

update tabu data structures;

iter = iter + 1;

if best solution equals lower bound or iter equals maxiter
flag = FALSE;

}

}

print best solution;

Figure 8. Pseudocode of algorithm

Threeproblemsets,generatedisingthe ProGensoftwareof Kolisch et al. (1995), eachconsisting

of 480instancesreconsideredo be the currentbenchmarksOptimal solutionsare known for all the
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j30 problemsetinstanceshowever,optimality hasnot beenestablishedor all the j60 andj90 problem
instances. The best solutions reported in the literatunesafor the comparisonseportedin Table2.
Overall, onenew bestsolutionfor the j60 problemsetandsix new bestsolutionsfor the j90 problem

set were found.

From Table?2, it is clearthatthe proceduredescribedn Figure 8 is ableto producesolutionsof
high quality in spite of the simplicity of the implementationFurther,the procedureproducesresults
that arerelatively insensitiveto tabu tenurevalues,in the rangetested,in comparativelyshorttimes.
The significant gainsin solution quality were made possibleby the inclusion of the candidatelist
constructionNote thatin a more completetabu searchimplementatiorfor this application,the search
would normally be initiated from the beststartingsolution producedby a setof heuristic dispatching
rules. Also, more advancedstrategiesbasedon long-term memory, blending of neighborhoodselite

solution recovery, vocabulary building and so forth would typically be used to obtain better results.

TT Set N N best N new bestD Start (%) D alg (%) Time
j30 480 302 0 9.45 1.8 04
2 j60 480 272 1 9.7 21 11
j90 480 278 6 7.9 1.3 2.1
j30 480 304 0 9.45 1.5 04
5 j60 480 272 1 9.7 1.7 11
j90 480 281 5 7.9 1.1 2.1
j30 480 314 0 9.45 14 04
8 60 480 271 0 9.7 1.7 1.1
j90 480 280 4 7.9 1.1 2.1
TT = Tabu tenure
Set = Problem Set
N = Number of instances
Nbpest = Number of solutions matching the best reported upper bound
Nnewbest = Number of new best solutions found
Dstart = Average deviation of the starting solutions from the best known solutions
Doayg = Average deviation of the final solutions from thest known solutions
Time = Average time per instance in seconds on a DEC ALPHA 2000 machine

Table2. Summary of results

6. Conclusions

In this paper,we havediscussedomeimportantbut often neglectedcandidatelist strategieghat
deserveiuller consideratiorin implementingtabu searchmethods.To clarify the applicationof such
strategiesye haveintroducednumericalexamplesn the resourceconstrainedschedulingdomain,and
haveillustratedhow the generalform of the indicatedstrategiescan be specializedo achievespecific
purposes (for goals such as intensification and diversification) wittgisetting.Empirical verification
of the potential value of employing such candidatelist strategiesin schedulingis demonstratedy
preliminaryexperimentationvith the successivéiltration strategy which constitutesoneof the simpler
candidatdist approachesCombiningthis procedurewith an elementarynaive)tabu searchprocedure

yields surprisinglygoodresults,matchingbestknown solutionson manyproblemsin theliterature,and
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obtaininga few solutionsbetterthan those previously recordedas best. In addition, theseoutcomes
wereobtainedwith a very smallinvestmenof computertime, generallyaboutonesecondper instance.
A more comprehensiveomputationaktudy that examinesadditional candidatelist strategieswill be

reported in a sequel.
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