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1. Introduction

Tabu Search (TS) is increasingly being used as an effective method to get good solutions to

difficult optimization problems (see e.g., the survey of applications in Glover and Laguna, 1997). The

approach relies on adaptive neighborhood modification using memory-based strategies, whose

components include multilevel candidate lists, short term and long term memory structures, and

blending of neighborhoods to guide the search. The notion of adaptive neighborhood modification by

means of memory-based designs has led to the development of many interesting approaches over the

past few years. However, there are some fundamental tabu search strategies that are often not applied

effectively. A plausible explanation for this is that the rationale underlying these strategies is not

completely understood, as described in the following (Glover, 1996; Glover and Laguna, 1997 and the

collection of papers in Glover, 1997). The current paper amplifies this theme with special focus on the

domain of candidate list strategies. Although candidate list strategies have been successfully

implemented in some applications (Woodruff and Spearman (1992), Lokketangen and Glover, (1997),

Minghe Sun et al. (1997), James and Buchanan (1997)), there is still a broad scope for better

implementations especially in the area of scheduling. We discuss some candidate list strategies in

general, and comment on their applicability to the scheduling domain. In order to provide a unified

context for numerical illustrations, all examples used in this paper come from the resource-constrained

scheduling area.

The remainder of the paper is organized as follows. In Section 2, we review candidate list strategies

that have notable potential for more efficient and effective implementations, but that have received

inadequate attention in the literature. In Section 3, we describe the problem context used for the

numerical illustrations. Section 4 provides concrete examples to describe the process of creating and

implementing various types of intelligent candidate lists, together with an elaboration of their

underlying rationale. Section 5 provides preliminary computational results that disclose the sometimes

surprising gains that can be obtained by using intelligent candidate lists. Finally, Section 6 offers useful

pointers for further work.

2. 0 Candidate List Strategies in Tabu Search

The first motivation for building candidate lists is the observation that both efficiency and efficacy

of the search can be greatly influenced by isolating good candidate moves − in contrast, for example, to

evaluating all possible moves in a current neighborhood. (The accent here is on generating the candidate

moves by some intelligent process rather than by a random or naïve process.) The second motivation

comes from the need to reduce the time required to evaluate moves, especially where each move may be
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expensive to generate or analyze, or where the current neighborhood may contain a large number of

moves. A third motivation comes from the goal of exploiting problem structure, where particular

problem domains give a basis for special constructions to create intelligent candidate lists (giving rise to

context related rules as described in Glover and Laguna, 1997).

This paper stresses the importance of accounting for multiple factors whose appropriate balance

can vary at different points in the search. We find it useful to differentiate among candidate list

strategies of five fundamental types   the successive filtration strategy, the elite candidate list strategy,

the aspiration plus strategy, the sequential fan strategy and the bounded change strategy. These

strategies are first reviewed here in a general sense, following the lines of Glover and Laguna, 1997.

2. 1 Successive Filtration Strategy

This candidate list strategy has a particularly strong influence on search quality in the context of

scheduling. In many combinatorial optimization problems, the outcome of a move can be thought of as

the combined effect of several fundamental processes. By separating these processes and restricting

attention to one process at a time, effective candidate lists can be constructed. For example, in many

graph problems, a commonly used move is to replace an edge in the current solution with another edge

not in the solution. Such moves can therefore naturally be broken down into two components   an

“add edge” component that introduces an edge and a “drop edge” component that deletes an edge. We

can isolate the top few outcomes for the “add edge” component to create a set of “best add edge”

selections and similarly, isolate the top “drop edge” component to create a set of “best drop edge”

selections. If there were 100 possible individual “add edge” and “drop edge” components, for example,

a complete examination strategy would require consideration of 10,000 moves. Instead, by considering

the 10 to 20 best individual components each from the “best add edge” and “best drop edge”

components, only 100 to 400 complete moves need to be evaluated − a reduction of nearly two orders

of magnitude in effort, even after considering the work of identifying the component move. The basic

premise here is that although the evaluation of the separate components is only an approximate

indicator of the evaluation of the move that results by their combination, this approximation is good

enough for most applications.

Sometimes the evaluation of the component processes cannot be treated independently i.e., the

evaluation of one component is strongly conditional upon the prior choice of another. For example,

feasibility requirements may require the coupling of two different variables selected by successive

filters. (Such situations occur frequently in scheduling applications where two tasks linked by a

precedence relation cannot be executed during the same time window.) A simple way of implementing
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this is to perform sequential evaluations, ensuring feasibility at each step. Section 4.0 illustrates how

this is done in the context of project scheduling.

2. 2 Elite Candidate List Strategy

The elite candidate list strategy records the best (elite) solutions or their attributes and uses the

recorded information in the subsequent iterations. Fundamental to the use of this strategy is a Master

List that is built by recording the best k moves encountered in the examination of alternative moves on a

given iteration. The Master List is periodically constructed, and is based on examining a relatively large

number of moves. Then at each subsequent iteration until a new list is created, the best move currently

available from the Master List is chosen and executed. The process continues to select moves from the

master list until either a prescribed number of moves have been made, or the quality of the best

available move falls below a threshold. At that point the Master List is reconstituted and the process

repeats.

The assumption here is that a collection of best moves is likely to contain a subcollection that will

continue to be good for a number of iterations, although we cannot predict in advance precisely what

this subcollection will be. Proper monitoring of the evaluation and identity of the moves in the Master

List is essential since the execution of each current move can change not only the evaluation but in

some cases the character of remaining moves.

2. 3 Aspiration Plus Strategy

In the Aspiration Plus strategy, thresholds for the quality of a move can be established dynamically,

based on the search history. The examination of current moves continues until encountering the first

move that meets the threshold quality. After that, the examination is continued for a further Plus

iterations (where Plus is a parameter of the process) and the best move found overall is selected. If Plus

is defined to be zero, the procedure reduces to an approach that always selects the first move that meets

the threshold quality. To maintain the flexibility of the process to adapt dynamically to search

requirements, the total number of moves examined is allowed to change between two limiting values,

Min and Max. (This ensures that at least Min moves and at most Max moves are considered.) If Max

moves are examined without finding a move that attains at least the threshold quality, then the best

move found so far is selected. The strategy is explained for a minimization problem in Figure 1 and is

adapted from Glover and Laguna (1997). In the figure, Plus is defined to be 5, Min is 7 and Max 15.

The first move that meets the Aspiration level is move number 6, and this is called First. As Plus is 5,

the value of First + Plus is 11, and this value falls within the limits imposed by Min and Max. So a

maximum of 11 moves will be examined in this case, and the best move overall is selected. If First +
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Plus is less than Min, then at least Min moves are examined; else if First + Plus is greater than Max, a

maximum of Max moves is examined.
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Figure 1. Illustrating Aspiration Plus Strategy

2. 4 Sequential Fan Candidate List Strategy

This strategy accommodates itself very well to parallel processing, and has an interesting

connection with the beam search approach used in tree search methods (see Morton and Pentico,

1993). At an initial step of this approach, multiple parallel solution streams are generated from the p

best alternative moves (thereby identifying p associated solutions). The q best available moves for each

solution stream are then examined, where q is generally somewhat smaller than p, and the p best

solutions from these pq alternatives form the seeds for the next step in generating the streams.

As the depth of the streams increases, q typically diminishes. In some variants, q quickly drops to

1, so that each solution stream simply selects its best move to perpetuate a single continuation. The

streams continue to some cutoff depth (which can be adaptively determined, and need not be the same

for each stream), while keeping track of the best solution found on each stream, subject to lying at least

a minimum depth from the initiating solution. (It is possible, and often likely, that fewer than p distinct

solutions will be recorded, because two or more streams may share a common “ancestor solution” that

is best for each of them.)

The r best of these solutions (for r < p) are then selected, whereupon the r partial streams that

terminate at these r solutions become the starting points for repeating the process. Then, for a new

value of q (restored to be larger than at the points where these r solutions were found), rq options are

now examined, from which p are selected. This re-establishes the standard examination of pq
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alternatives at each subsequent step. (Fewer than pq alternatives of course result where some streams

are terminated at smaller depths than others. A more conservative strategy is also possible that does not

resume from the r best solutions identified, but from somewhat earlier solutions on the streams that led

to these r solutions.) Since some of the alternatives examined upon restarting the streams coincide with

alternatives examined on the previous pass, appropriate bookkeeping can be useful to accelerate the

process.

2. 5 Bounded Change Candidate List

The use of this strategy is indicated in those situations where the domain of choices for each

solution component is restricted at each iteration. The degrees of permitted change are defined by a

distance measure that depends on the problem context. By varying the extent of change permitted

across different dimensions, controlled amounts of intensification can be obtained. In the context of

generalized resource-constrained project scheduling, such a strategy has been implemented using the

notion of shift vectors by Sampson and Weiss (1993). This idea can be exploited in other problem

contexts as well.

It is not essential, or even usually a good idea, to use all the foregoing candidate list strategies in

any one implementation of tabu search. Rather, the choice of the strategies to use should be dictated by

the problem characteristics and the purposes to be achieved during particular phases of search. We now

provide illustrations of how such strategies can be applied in the context of scheduling.

3.  Resource-Constrained Scheduling

Resource-Constrained Scheduling is a generic term applied to a range of problems that includes the

resource-constrained project scheduling problem (RCPSP), the job-shop scheduling problem (JSP), and

the Multi-Processor Task Scheduling Problem (MPTSP). The general framework for these problems is

as follows: A set of activities (also called operations or tasks) N = { 1,…,n} is accompanied by

precedence relations of the finish-start type with zero time lags. These precedence relations are defined

by a set H of ordered pairs, where (i, j) ∈  H indicates that activity i is an immediate predecessor of

activity j. (This implies that activity j cannot be processed until activity i is processed completely.)

Without loss of generality, we specify that activity 1 is a unique dummy start node and n is a unique

dummy finish node. (By definition, activities 1 and n have zero duration and consume no resources.

Further, we assume that activity 1 is available for processing at time t = 0.)

Associated with each activity j ∈  N is a release date r j and a due date dj. An activity is not available

for processing before its release date even though the precedence and resource constraints may permit

this. Each activity demands resources at a constant rate equal to Kr during each period it is in progress
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drawing from r ∈  R resource types. The cap on the maximum availability (again assumed constant

throughout the time horizon) of each resource type r ∈  R is Br. We further assume that each activity

can be done in only a single mode (i.e., the duration of the activity cannot be crashed by pumping in

more resources) and that each activity once started is put in progress continuously without interruption

until it is completed (called the “no-preemption” condition).

We consider two specific problems from this class of problems to provide the context for our

numerical examples - the RCPSP and the JSP. In the classical version of the RCPSP (see

Demeulemeester et al., 1992) , there are no release and due date constraints and the objective is to

minimize the project makespan (which equals the completion time of the unique dummy finish activity).

In the JSP, the objective again is to minimize the completion time of the last operation, but in this case

only the precedence and resource constraints apply (i.e., there are no release and due date constraints).

A particular difference between the two problems lies in the patterns of resource availability and use. In

the JSP each resource type is called a machine, and only one machine of each type is available.

Moreover, each operation requires the use of only one machine, in contrast to an activity in RCPSP that

may require multiple units of many resource types for its processing. (In RCPSP, the basic work unit is

called an activity, and in the JSP it is called an operation.) It is easy to see that the RCPSP is a

generalization of the job-shop scheduling problem, and that any method for the RCPSP can be applied

to the JSP.

Figure 2. RCPSP Project Network for Example 1.

Example 1: Consider the RCPSP project network shown in Figure 2, which consists of 12 activities,

with activities 1 and 12 representing the unique dummy start and finish activities. The accompanying

data are provided in Table 1. There are four resource types and the resource demands of each activity
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for each type of resource are shown in Columns 3-6 of Table 1. The maximum resource availability for

each resource type is given by the vector 〈  13, 15, 16, 12 〉  which specifies the limits on the maximum

simultaneous use of the resources. The classical RCPSP objective is to find a schedule that minimizes

the completion time of activity 12, subject to the precedence constraints (as shown by the arcs in Figure

2) and resource requirements.

Activity Duration Res Req (1) Res Req (2) Res Req (3) Res Req (4)
1 0 0 0 0 0
2 4 3 9 8 0
3 7 0 0 2 0
4 2 0 0 4 0
5 1 6 0 0 0
6 10 3 0 10 0
7 1 0 1 0 7
8 6 7 0 3 0
9 9 7 10 2 8
10 1 2 0 1 8
11 1 0 3 0 0
12 0 0 0 0 0

Table 1. Problem Data for Example 1.

Figure 3. Gantt Chart Solution for Example 1

To find a feasible starting solution to initiate the search, we use a precedence feasible starting

sequence and a simple list-scheduling algorithm. Because of the way the activities are indexed, a

precedence feasible starting sequence can be obtained by using a lexicographic ordering of the

activities. We use the sequence 〈  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12〉  as the starting solution. To find a

unique schedule that corresponds to this sequence, we schedule activities as early as the precedence and

resource constraints will allow. (Note, each activity is put in process until it is completed without any

interruption.) Thus activity 5 starts at time t =  2, since the constraints do not permit this activity to be

24
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put in process earlier (as a result of the precedence relation 4 → 5). Activity 9 cannot start before t =

13 (even though the precedence constraints allow it to start as early as t = 2) because of the resource

constraints. A Gantt chart showing the full schedule is shown in Figure 3.

4.  Illustrating Candidate List Construction Procedures

We first assume that each solution to the RCPSP is represented as a precedence feasible

permutation (also called a sequence) of the activities, so that we can operate in the sequence space for

finding improved solutions. A schedule is a list of starting times for each activity that respects the

precedence and resource constraints. Since there are many possible schedules for any particular

sequence, we must additionally specify a list-scheduling algorithm that generates a unique schedule for

a given sequence. In our treatment here, we use a list-scheduling algorithm that schedules an activity

from the sequence at the earliest precedence and resource feasible time. Note that this algorithm always

generates a semi-active schedule (i.e., no local left shift is possible). We also make use of only simple

eject and insert moves for the purpose of illustration. Given a sequence, this type of move ejects an

element from the current sequence and inserts it after another element to generate a new solution. We

use the notation (eject i, insert j) to denote the ejection of activity i from the current sequence and its

insertion after activity j. Note that the index of activity j could be either higher or lower than the index

of activity i, leading to two different types of moves.

4. 1 Multilevel Candidate Lists

Building multilevel candidate lists is a recommended first step in creating good TS implementations

for precedence-constrained scheduling problems. The gains in efficiency by the use of this strategy can

be considerable. At every iteration we have to make two decisions which consist of selecting the eject

activity and the insert activity. The exhaustive examination strategy that considers all pairs (eject i,

insert j) as a basis for such a move produces a very large neighborhood. A better strategy is to build

candidate lists at multiple levels. Here we offer an example of a simple bi-level candidate list. This

strategy produces solutions of very nearly the same quality as the exhaustive examination strategy but

at substantially less computational cost. Our prescription constitutes an operative illustration of the

successive filtration strategy discussed in a general context in Section 2.1. For the types of moves we

consider, the outcome of a move typically can be viewed as the combined effect of two separate

processes – one that decreases the start time of a certain activity (causing the activity to be “advanced”)

and the other that increases the start time of certain other activities (causing the activity to be

“delayed”). In the example discussed here, we use two separate filters to control the selections.

This strategy aids in the construction of candidate lists of different sizes and characteristics at two

levels. At the top level, there is a smaller list composed only of the activities that need to be processed
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earlier than their starting times in the current schedule. At the bottom level, there is a set of candidate

lists each of whose member lists corresponds to a particular selection from the higher level list. The

situation is shown schematically in Figure 4. For every selection from the higher level list, we have a

set of possible candidates to select from the lower level list. This design can be generalized by declaring

the lower level candidate list to contain pointers to possible candidate activity sets (rather than

elements) that correspond to each selection from the higher level list. The management of these sets

created under this generalized stipulation requires careful attention, and we suggest a “pause and

project” strategy (see Section 4.2) to treat this general case.

The driving force behind the construction of the higher level candidate list usually derives from the

objective function. For example, if the objective is to minimize the makespan of the project, as in the

RCPSP, we would choose only those activities on the current critical paths that have been delayed as a

consequence of a resource requirement. In general, during the improvement phase of the search, we

want to maintain the size of this list as small as possible. Also we recommend a simple sorting scheme

to reflect priorities concerning the order in which candidates from the candidate list are examined. (In

Example 2, described below, once the higher level candidate list is generated we sort the list so that

activities with higher indexes are examined earlier than those with lower indexes.)

The lower level candidate list is constructed with reference to a particular selection from the higher

level candidate list. A strategy of constructing this list progressively is useful. The progressive

construction strategy makes it possible to incorporate more search information dynamically into the list

construction process. Established dominance rules from the literature can also be incorporated into the

list construction process. Dominance rules to constrain the neighborhoods can be advantageously

employed in the improvement phase of a TS algorithm. On the other hand, to drive the search away

from powerful local optima the reverse strategy of allowing broad neighborhood definitions is

preferable.

Example 2: Consider the problem instance in Example 1. The construction of higher and lower level

candidate lists is illustrated for a lexicographic initial solution, whose schedule is shown in Figure 3

(see Example 1). There is only one critical path in this solution, defined by the activity sequence 1-3-8-

9-10-12. Activities 1 and 12 have zero duration, and therefore do not appear in the Gantt chart.

Comparing the starting times of these activities with those that would result if only the precedence

constraints were considered (i.e., if the resource constraints were relaxed), it can be seen that only

activities 9 and 10 are delayed in the current schedule. Instead, if all activities (including those not on a

current critical path) are considered for a similar comparison, activities 6, 9, and 10 are all found

delayed in the current schedule. Therefore, the higher level candidate list consists of these three
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activities. (However restructuring the selection of activities to only those on current critical paths

provides better search intensification.) This is shown schematically in Figure 4.

1096

2 3 5 6 7 8

Higher Level
Candidate Li st for
current solution

Lower Level
Candidate Li st for
activi ty 9

 Figure 4. Bi-level Candidate List used in Example 2.

There are different ways of constructing the lower level candidate list. For illustrative purposes, in

this example, we put on the lower level candidate list all those activities that can be delayed with

respect to a current selection from the higher level list. Thus, corresponding to the selection of activity 9

from the higher level candidate list, we have activities 2, 3, 5, 6, 7, and 8 in the lower level candidate

list. Activity 4 is not a candidate for this list since the precedence constraints require that activity 4 be

processed before activity 9. A similar reasoning indicates that activity 10 on the higher level list gives

rise to only activities 2 and 9 as candidates on the lower level list. With the selections above, a total of

11 moves will be evaluated for the current solution (three candidates for activity 6, six candidates for

activity 9, and two candidates for activity 10), assuming that the lower level candidates are ejected from

their current positions and inserted immediately after the selection from the higher level list.

The neighborhood defined by these selections can be restricted further by one or more of the

following choice rules:

a)  only activities on the critical paths of the current solution are considered for higher level

selections;

b)  only activities on a current critical path are considered for higher level selections. (In cases

where there are multiple critical paths in the current solution, this choice rule provides a

smaller neighborhood than the choice rule in a).

c)  selections for the lower level candidate lists are made by considering only those activities that

are contiguous to the selection from the higher level list in the current schedule.  (In Example 2,

for selection 10 from the higher level list, we select activity 9, as the only lower level candidate
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as it is the unique activity contiguous with activity 10 in the corresponding schedule shown in

Figure 3.)

Further choice rules can be constructed along similar lines.

4. 2 Pause and Project Strategies

First, we motivate the need for a pause and project strategy before integrating this strategy with the

sequential fan candidate list strategy. Frequently in scheduling problems that contain precedence and

resource constraints, problem influences that affect the move evaluation process are not fully accounted

for when making a “myopic” type of move such as an (eject i, insert j). However, upon executing a few

additional moves, such latent influences can sometimes surface quite clearly, permitting a better

evaluation of the quality of the move that leads to such consequences. Hence at every stage of the

process, we propose a pause and project strategy with the goal of uncovering relevant factors for

evaluating outcomes that are not visible by considering only the immediate effects of a current

prospective move. This approach is illustrated in Example 3.

Example 3:  Consider again the resource-constrained project scheduling problem instance whose

problem data are given in Figure 2 and Table 1. Also, as in our earlier illustration, we begin with a

current solution represented by the lexicographic sequence < 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12>, which

gives rise to the Gantt Chart in Figure 3. Obviously, activity 9 is a member of the current higher level

candidate list (see Example 2), and assume that we choose this activity to generate a move on the

current step. Specifically, we select the move represented by the sequence <1, 2, 3, 4, 5, 6, 7, 9, 8, 10,

11, 12>, whose corresponding schedule is shown in Figure 5.* Now, since this move causes a

deterioration by increasing the makespan (from 23 to 24), in the absence of other considerations, it

would not be chosen as the best move in the current neighborhood.**  However it is easy to see that the

increased makespan results from a resource conflict between activities 7 and 9 that prevents activity 9

from being advanced further in the current schedule. Consequently, we may be able to improve the

current schedule if the current move (eject 9, insert 7) is combined with the next move (called the

associated move) given by (eject 9, insert 6) (see Figure 6). Since it cannot be known in advance that

such improvement will occur, we “temporarily” accept the current move, and perform the associated

                                                       
* This move is equivalent to the one that results from the “first move definition” in the neighborhood

used by Baar et al. (1997).
**  This move can also be considered equivalent to a swap move that exchanges two internal operations

of a block in job-shop scheduling.  While such a swap will not change the makespan value in the
job-shop problem, it typically causes an increase in the makespan in RCPSP.  Such “immersed
internal block activities” show up only when the activities in question become “localized” in the
schedule to compete for resources at the same time.  When such activities are too far apart in the
current schedule for the RCPSP, it is usually difficult to predict if one activity would temporarily
block the advancement of another.
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move (eject 9, inert 6) immediately. The “pause” phase consists of tentatively accepting the current

move while the “project” phase consists of performing the associated move and saving the combined

move if it is better than the current best move considered.

Note that a progressive construction of the lower level candidate list permits us to adapt the search

trajectory dynamically, based on the current search information. This strategy, built into

the lower level candidate list, can be considered to be a special and very intense form of the sequential

fan candidate list strategy discussed in Section 2.4 i.e., it is equivalent to a controlled version of a

sequential fan candidate list strategy implementation in which the various parallel solution streams are

spun off dynamically, with restricted depths. In spite of the restricted depth of each of the solution

streams, substantial search intensification is obtained. This process represents a simple version of an

ejection chain approach (see, e.g. Glover 1992, Rego 1997, Glover and Laguna 1997).

Figure 5. After the Pause Phase of a “Pause and Project” Move

In describing the general tenets of constructing the lower level candidate lists, we have left the

details largely unspecified. This is to allow the construction of the lower level candidate list to

incorporate as much problem-specific structure as possible. For example, in an improving phase of a

standard job-shop scheduling algorithm, we know that a swap of the first two operations of the first

block in a current solution can never improve the current makespan (Nowicki and Smutnicki, 1996).

Such problem-specific information should be exploited in the lower level list construction process,

especially in the improvement phases of the algorithm.
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Figure 6. After the “Pause and Project” Move

4. 3 Aspiration Plus Strategy

To effectively use this strategy, we must first define the “quality threshold” for moves. To this end,

we first motivate the notion of Aspiration by Quality. The aggressive orientation of TS contrasts with a

greedy orientation by allowing the notion of best to embrace more than a simple objective function

evaluation − and specifically by seeking a balance between the quality of a move and the amount of

effort required to produce it.  The influence of a move, as determined by the search history and problem

context, is one of the important determinants of the meaning of best.

In the present context, the specific list scheduling algorithm we use to translate a given precedence

feasible sequence into a schedule generally causes resource constraints at the beginning of the schedule

to be tighter (i.e., to have less slack) than those at the end of the schedule. (Dell’Amico and Trubian

(1993) make a similar observation, and compensate for this disparity by using a bi-directional

algorithm to generate initial solutions for the JSP.)  Given this empirical observation, a move may be

conceived to be more attractive in the sense of exerting a positive influence if it temporarily increases

the project makespan but reduces the maximum delay in a partial schedule, provided any associated

delay occurs only in an activity that is scheduled toward the end of the project. (We assume here that

the size of the partial schedule is not more than approximately half the size of a full schedule.) In such

cases, the choice rules may benefit from a design that overrides other move evaluation criteria to accept

such moves.

Example 4: Consider the problem instance described in Example 1. Suppose that the current solution is

defined by the sequence <1, 2, 3, 4, 9, 5, 8, 7, 11, 6, 10, 12 >. The makespan for this sequence is 20,
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and the schedule is the same as shown in Figure 6. (The schedules produced by <1, 2, 3, 4, 5, 6, 9, 7,

8, 10, 11, 12 > and <1, 2, 3, 4, 9, 5, 8, 7, 11, 6, 10, 12 > are the same). The delays for the delayed

activities in this solution are 2 each for activities 9 and 6, and 6 each for activities 7, 8, 10, 11, and 12.

(These values are obtained by relaxing the resource constraints and solving the resultant problem as a

simple CPM problem.) Evaluating the move (eject 2, insert 7), we get the schedule shown in Figure 7.

Although this solution has increased the makespan from 20 to 26, this move has a positive influence on

the search since the delays of the delayed activities now are: 4 each for activities 7, 8, and 11; 11 for

activity 2; 13 for activity 6; and 12 each for activities 10 and 12. Note that the maximum delay occurs

for activity 6, and this activity is scheduled towards the end.

Figure 7. Gantt Chart Solution for Example 4.

We discuss next the use of Aspiration by Quality to construct a special type of candidate list.  An

empirical observation in the context of RCPSP indicates that on the average, most of the moves in the

neighborhood of a current solution are non-improving while only a very few are improving. Thus, in

line with the goal of achieving a balance between the effort expended on evaluating moves and the

quality of the best move found, the Aspiration Plus Strategy (discussed in Section 2.3) becomes a

useful basis for creating a candidate list. Here we define the aspiration level to be the first move that

meets any one of the following three criteria:

a)  produces a makespan better than the current best makespan (or in general the current best

objective value);

b)  creates a positive influence on the search trajectory (as in Example 4);

c)  improves a secondary objective criterion subject to the limits imposed by the primary objective

criterion.
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Criterion c) is an important choice rule for defining aspiration levels since in scheduling applications,

multiple critical paths are encountered frequently and a secondary objective in addition to the usual

makespan is necessary to indicate good move evaluations. Depending on the stage of the search, the

values of Min and Max for the Aspiration Plus Strategy may be adjusted accordingly. A more advanced

variant also changes the Plus parameter values dynamically.

5.  Computational Results

To provide a simple preliminary demonstration of the computational utility of a candidate list

strategy, we report the results of a study that uses only the successive filtration strategy. The outline of

the implementation in the form of a pseudo-code is shown in Figure 8. Again for simplicity, we elect to

begin the search from a lexicographic initial solution. A bi-level candidate list, constructed

progressively, is used to create candidate moves. All delayed activities on all the critical paths of the

current solution are used to build the higher level candidate list. The lower level candidate list is

composed of those activities which (a) are sequenced earlier than the candidate selected from the higher

level list, and (b) are in progress just before the current start time of this candidate from the higher level

list. The resultant neighborhood is relatively restricted in size.

Moves are defined by simple eject and insert operations on the current sequence. (For each possible

move, sequence adjustments to maintain precedence feasibility are made, if necessary.) To illustrate, in

Example 1 (Figure 3), upon choosing activity 9 as the higher level candidate, we select activities 6 and

8 to be the associated lower level candidates. The moves in the neighborhood corresponding to this

selection are: (eject 8, insert 9), and (eject 6, insert 9). Note that another move defined by (eject 9, insert

4) is also possible. Therefore we extend the options above to include the moves that result by inserting

each element of the higher level list as early in the current sequence as possible. Thus element 9 of the

higher level list also gives rise to the move (eject 9, insert 4) which causes activity 9 to be sequenced

immediately after its predecessor, activity 4. The entire neighborhood (composed of (eject 9, insert 4),

(eject 8, insert 9), and (eject 6, insert 9) for the example here) is evaluated and the best non-tabu move

is chosen. To escape from local optimality, a simple tabu short-term memory with a fixed tabu tenure

of 8 is used. This tabu tenure has been chosen to approximately match the average number of activities

in the higher level candidate list, across all the problem instances. No diversification or intensification

strategies are applied other than the ones implicit in the use of the candidate list approach. A lower

bounding procedure based on the work of Mingozzi et al. (1994) is used to provide the lower bounds,

so that the search can be terminated if a solution that matches the lower bound value is found. The

results of this implementation found with static tabu tenure values held fixed at three levels of 2, 5 and

8 respectively are summarized in Table 2.
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_____________________________________________________________________________

read data;
find  resource-relaxed solution;
set best_solution = lexicographic solution;
find  Mingozzi lower bound;
iter = 0;
if (best_solution > lower bound)

do {
initialize  tabu data structures;
flag = TRUE;
while flag is TRUE

do {
best move value = bignum;
build  higher level candidate list;
while there is an unexamined higher level candidate

do {
select higher level candidate;
build  lower level candidate lists;
while there is an unexamined lower level candidate

do {
select lower level candidate;
evaluate move;
if move value better than best move value

{
if move value + current solution better than best solution

{
override tabu status;
update best move;
}

else
{
check tabu status;
if not tabu, update best move;
}

}
}

}
make best move;
update current solution;
if(current solution better than best solution)

{
store best solution;
}

update tabu data structures;
iter = iter + 1;
if best solution equals lower bound or iter equals maxiter

flag = FALSE;
}

}
print  best solution;

Figure 8. Pseudocode of algorithm

Three problem sets, generated using the ProGen software of Kolisch et al. (1995), each consisting

of 480 instances are considered to be the current benchmarks. Optimal solutions are known for all the
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j30 problem set instances; however, optimality has not been established for all the j60 and j90 problem

instances. The best solutions reported in the literature are used for the comparisons reported in Table 2.

Overall, one new best solution for the j60 problem set and six new best solutions for the j90 problem

set were found.

From Table 2, it is clear that the procedure described in Figure 8 is able to produce solutions of

high quality in spite of the simplicity of the implementation. Further, the procedure produces results

that are relatively insensitive to tabu tenure values, in the range tested, in comparatively short times.

The significant gains in solution quality were made possible by the inclusion of the candidate list

construction. Note that in a more complete tabu search implementation for this application, the search

would normally be initiated from the best starting solution produced by a set of heuristic dispatching

rules. Also, more advanced strategies based on long-term memory, blending of neighborhoods, elite

solution recovery, vocabulary building and so forth would typically be used to obtain better results.

TT Set N N_best N_new_best D_Start (%) D_alg (%) Time
j30 480 302 0 9.45 1.8 0.4

2 j60 480 272 1 9.7 2.1 1.1
j90 480 278 6 7.9 1.3 2.1
j30 480 304 0 9.45 1.5 0.4

5 j60 480 272 1 9.7 1.7 1.1
j90 480 281 5 7.9 1.1 2.1
j30 480 314 0 9.45 1.4 0.4

8 j60 480 271 0 9.7 1.7 1.1
j90 480 280 4 7.9 1.1 2.1

TT = Tabu tenure
Set = Problem Set
N = Number of instances
Nbest = Number of solutions matching the best reported upper bound
Nnew best = Number of new best solutions found
Dstart = Average deviation of the starting solutions from the best known solutions
Dalg = Average deviation of the final solutions from the best known solutions
Time = Average time per instance in seconds on a DEC ALPHA 2000 machine

Table 2. Summary of results

6.  Conclusions

In this paper, we have discussed some important but often neglected candidate list strategies that

deserve fuller consideration in implementing tabu search methods. To clarify the application of such

strategies, we have introduced numerical examples in the resource constrained scheduling domain, and

have illustrated how the general form of the indicated strategies can be specialized to achieve specific

purposes (for goals such as intensification and diversification) within this setting. Empirical verification

of the potential value of employing such candidate list strategies in scheduling is demonstrated by

preliminary experimentation with the successive filtration strategy, which constitutes one of the simpler

candidate list approaches. Combining this procedure with an elementary (naïve) tabu search procedure

yields surprisingly good results, matching best known solutions on many problems in the literature, and
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obtaining a few solutions better than those previously recorded as best. In addition, these outcomes

were obtained with a very small investment of computer time, generally about one second per instance.

A more comprehensive computational study that examines additional candidate list strategies will be

reported in a sequel.
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