
Solving Zero-One Mixed Integer Programming

Problems Using Tabu Search

by

Arne Løkketangen *

Fred Glover #

20 April 1997

Abstract We describe a tabu search approach for solving general zero-

one mixed integer programming problems that exploits the extreme point property of

zero-one solutions. Specialized choice rules and aspiration criteria are identified for

the problems, expressed as functions of integer infeasibility measures and objective

function values. The first-level TS mechanisms are then extended with advanced level

strategies and learning. We also look at probabilistic measures in this framework, and

examine how the learning tool Target Analysis can be applied to identify better control

structures and decision rules. Computational results are reported on a portfolio of

multiconstraint knapsack problems.

Our approach is designed to solve thoroughly general 0/1 MIP problems and thus

contains no problem domain specific knowledge, yet it obtains solutions for the

multiconstraint knapsack problem whose quality rivals, and in some cases surpasses,

the best solutions obtained by special purpose methods that have been created to

exploit the special structure of these problems.

Keywords Tabu Search, Heuristics, Integer Programming

*

School of Business, CB419 Molde College

University of Colorado Britvn. 2

Boulder, CO 80309 6400 Molde

USA Norway

Email: Fred.Glover@colorado.edu Email: Arne.Lokketangen@himolde.no

2

Introduction
Tabu search (TS) has been applied to solving a variety of zero-one mixed integer

programming (MIP) problems with special structures, ranging from scheduling and

routing to group technology and probabilistic logic. (See, for example, the volume

Annals of Operations Research 41 (1993), and the application surveys in Glover and

Laguna (1993), and Glover (1996)). Tabu Search has also been applied to solving

general zero-one MIP problems by superimposing the TS framework on the “Pivot and

Complement” heuristic by Balas and Martin (1980). (See Aboudi and Jörnsten, 1992;

Løkketangen, Jörnsten and Storøy, 1993.)

In this paper we show how tabu search also gives a more direct approach for

solving general zero-one MIP problems, relying on a standard bounded variable

simplex method as a subroutine. Such a direct TS application permits the use of

decision criteria that are natural extensions of earlier proposals for exploiting surrogate

constraints, as well as others based on weighted evaluation functions. This paper first

explores the basic, first-level tabu search mechanisms.

Building on this approach, we then explore the use of probabilistic measures

instead of the usual deterministic ones for move selection and tabu tenure. We also

explore the notion of abandoning tabu tenure in its deterministic sense almost

completely (apart from a one-step move reversal), relying on probabilistic move

selection mechanisms to guide our search. We also extend the first-level tabu search

mechanisms to include strategic oscillation and diversification schemes, with the goal

of driving the search process into other fruitful regions when the initial first-level

search has been exhausted. Target analysis is incorporated as a learning approach to

identify effective search parameters and choice rules. (For more detail, see

Løkketangen and Glover (1995, 1996a). Also see Løkketangen and Woodruff (1996),

where the methods described in this paper are successfully used as a sub-problem

solver in a progressive hedging algorithm for multi-stage stochastic zero-one MIP

problems.)

The general outline of the paper is as follows. In Section 1 we give basic

formulations and background. Section 2 gives an overview of the method used to

apply tabu search in a general mixed integer setting. Section 3 gives more details about

3

the neighborhood and move evaluations. Memory structures used in our tabu search

implementation are provided in Section 4, while Section 5 outlines the aspiration

criteria employed. The probabilistic TS measures are described in Section 6, followed

by Strategic Oscillation (SO) in Section 7. Section 8 outlines our diversification

approach while Section 9 gives an overview of Target Analysis (TA) and how it is

applied in this study. The test cases are described in Section 10, followed by

computational results in Section 11. Finally, conclusions are presented in Section 12.

1. Formulation and Background
We represent the zero-one MIP problem in the form

Maximize ()z c x j Nj j= ∈∑ :

Subject to

()A x j N bj j : ∈ ≤∑
1 ≥ xj ≥ 0 and xj integer j ∈ I ⊆ N

Uj ≥ xj ≥ 0 j ∈ C = N − I

The maximizing form is chosen because it provides a natural representation for our

multiconstraint knapsack test cases. We refer to the objective function value z as the

profit value for the MIP problem. The vectors Aj, j ∈ N = {1,...,n} and b are column

vectors of constants. The subsets I and C of N respectively constitute the index sets

for the integer (zero-one) and continuous variables. We denote the vector consisting

of both integer and continuous variables by the symbol x. Solutions (x vectors) that

are feasible for the MIP problem will be called MIP feasible, and solutions that are

feasible for the corresponding linear programming relaxation (dropping the integer

requirement for the zero-one variables) will be LP feasible.

We allow upper bounds U
j
 for the continuous variables to be infinite (i.e.,

redundant) and stipulate that Uj = 1 for j ∈ I, which gives x ≤ U = (U1,...,Un). By this

convention, the preceding formulation suggests the use of the bounded variable

simplex method for solving the LP relaxation, and in general as a vehicle for moving

from one extreme point to another. Thus, feasible pivot moves leading to adjacent

extreme points include those that change the value of a non basic variable from one

4

bound (lower or upper) to the opposite bound, and it is unnecessary to refer to slack

variables for the upper bound inequalities.

It is well known that an optimal solution for the zero-one MIP problem may be

found at an extreme point of the LP feasible set, and special approaches integrating

both cutting plane and search processes have been proposed to exploit this fact (Cabot

and Hurter, 1968; Glover, 1968). We consider here a tabu search method for

exploiting this extreme point property that incorporates more powerful search

processes.

2. Overview of the Method
In broad outline, our MIP solution approach may be expressed in the following

form. Let x* denote the best MIP feasible solution found and let z* denote its

objective function value. (To begin, when x* is unknown, z* may be assigned a value

of negative infinity.)

TS - MIP in Overview

Step 0. Begin by solving the LP relaxation of the zero-one MIP problem to

 obtain an optimal LP basic (extreme point) solution.

Step 1. From a current LP feasible basic solution, consider the feasible pivot

 moves that lead to adjacent basic feasible solutions.

 (a) Isolate and examine a candidate subset of these feasible pivot

 moves.

 (b) If a candidate move creates an MIP feasible solution x whose

 associated z value yields z > z*, record x as the new x* and update

 z*.

Step 2. Select a pivot move that has the highest evaluation from those in the

 candidate set, applying tabu search rules to exclude or penalize moves

 based on their tabu status.

Step 3. Execute the selected pivot, updating the associated tabu search memory

 and guidance structures, and Return to Step 1.

Three elements are required to transform this overview procedure into a method

that is fully explicit: (1) the candidate list strategy for screening moves to examine; (2)

5

the function for evaluating the moves; (3) the determination of rules (and associated

memory structures) that define tabu status. We consider these elements in the

following sections.

3. Notation and Fundamentals

3.1 Neighborhood Structure

Let x(0) denote a current basic extreme point solution, let {xj : j ∈ NB} denote the

current set of non basic variables and let {xj : j ∈ B} denote the current set of basic

variables (B = N − NB). The extreme points adjacent to x(0) have the form

x(h) = x(0) - Dhθh for h ∈ NB

where Dh is a vector associated with the non basic variable xh, and θh is the change

in the value of xh that moves the current solution from x(0) to x(h) along their

connecting edge. The standard LP basis representation identifies the entries Dhj of Dh

associated with the current basic variables xj . The entries of Dh for current non basic

variables are zero, except for xh . We choose the sign convention for entries of Dh that

yields a coefficient Dhh for xh of −1 if xh is currently at its lower bound, and of 1 if xh is

currently at its upper bound. Hence xh respectively receives the value θh or Uh − θh at

the extreme point x(h). The value θh is always non negative, and is strictly positive

except under degeneracy.

One useful view of the solution space is shown in figure 1, where the axes denote

the total amount of integer infeasibility (see 3.3), and the associated Objective

Function Value. The figure also shows typical relative positions of various important

solution points, such as LP OPT, an optimal solution to the LP relaxation (and our

starting point), MIP OPT, an optimal feasible solution (and the point we want to find),

x*, the best feasible solution found at a given time in the search, and x(0), some

intermediate solution point (the “current solution” and basis for our neighborhood).

3.2 Candidate List Strategy

The simplest candidate list strategy is to examine the full neighborhood of available

moves, so that the candidate neighborhood, NB*, will be equal to NB. This is

appropriate for problems that do not involve a large number of variables (including

slack variables).

6

For problems of moderately large size, NB will be too large to permit all extreme

points adjacent to x(0) to be evaluated conveniently, and a more refined candidate list

strategy will typically be necessary to examine only a subset NB* of NB.

Characteristics of such strategies are described in Glover, Taillard and de Werra (1993)

and in Glover (1995a).

3.3 Evaluation Rules

Given the determination of a current candidate subset NB* of NB, we seek a best

(non-tabu) element of NB* to give the next extreme point. To guide us in choosing this

best move, we use a combination of the change in objective function value resulting

from applying a given move, and the corresponding change in integer infeasibility (see

below). We look at two very different ways of combining these values, in one case

incorporating a choice rule mechanism derived from surrogate constraint strategies and

in the other case creating a weighted sum of the two measures.

Integer Infeasibility. We first require a measure of integer infeasibility, i.e., the

degree to which an extreme point solution fails to satisfy the requirement that the

variables xj, j ∈ I receive integer values.

Figure 1. One view of the solution space

Objective
Function
Value

x(0)

LP OPT

MIP OPT

x*

Increasing Integer
Infeasibility

7

As h ranges over h ∈ NB* and also h = 0, let z(h) denote the profit of the

corresponding solution x(h), and let xj(h) denote the value assigned to xj in this

solution. Also let near(xj(h)) denote the integer nearest to the value xj(h).

Integer Infeasibility Measure. To begin, we create a measure u(h) of integer

infeasibility for the solution x(h) by the following simple rule. Define

uj(h) = |xj(h) − near(xj(h))|p , j ∈ I

In our experimentation we report the effects of letting the exponent p range from

.5 to 2. Then u(h) is defined by

u(h) = ∑ (uj(h) : j ∈ I)

Clearly u(h) = 0 if x(h) is integer feasible, and u(h) > 0 otherwise. Restricting

consideration to h ∈ NB, define

∆z(h) = z(h) − z(0)

∆u(h) = u(0) − u(h)

Then ∆z(h) > 0 indicates that the profit z(h) represents an improvement relative to

the profit z(0), and ∆u(h) > 0 indicates that the integer infeasibility u(h) represents an

improvement relative to u(0). (Hence ∆z(h) ≤ 0 for h ∈ NB when x(0) is an optimal

LP solution.) We note it is not necessary to execute a pivot to identify x(h) or the

values u(h) and z(h), since only the vector Dh and the solution x(0) is required to make

Figure 2. Classification of move types

Integer
Infeasibility

Change

III

I

II

IV

∆

∆

z

u

Objective Function
Change

8

this determination.

Classification of Move Types. There are four cases to consider in identifying a

preferred extreme point x(h), h ∈ NB*, adjacent to x(0). These four cases, or Move

Types, generally classify the moves according to whether the changes in objective

function value and integer infeasibility measure are preferable or not. We refer to the

tabu status of extreme points with the understanding that this status is determined as

indicated in Section 5.

We let H1, H2, H3, H4 denote the set of moves belonging to each move type, and

let h1, h2, h3, h4 be any move from within the corresponding group. Figure 2 shows

how this relates to the view of the solution space shown in figure 1, where the

horizontal and vertical axis in the present instance respectively identify changes in

integer infeasibility and in objective function (or “profit”) value. The dotted lines

indicate the exclusion of the axis from the corresponding move type, so that the four

regions are disjoint.

Move Type I (Decreasing integer infeasibility, decreasing profit). Let

H1 = {h ∈ NB* : ∆z(h) < 0, ∆u(h) > 0 and x(h) is not tabu}

Move Type II (Increasing profit, increasing integer infeasibility). Let

H2 = {h ∈ NB* : ∆z(h) > 0, ∆u(h) < 0 and x(h) is not tabu}

Move Type III (Nondecreasing profit and nonincreasing integer infeasibility). Let

H3 = {h ∈ NB* : ∆z(h) ≥ 0, ∆u(h) ≥ 0 and x(h) is not tabu}

Move Type IV (Decreasing profit and nondecreasing integer infeasibility). Let

H4 = {h ∈ NB* : ∆z(h) < 0, ∆u(h) < 0 or

 ∆z(h) = 0, ∆u(h) < 0 or

 ∆z(h) < 0, ∆u(h) = 0 and x(h) is not tabu}

Move Evaluation and Choice Rules. We employ four different ways to evaluate

the moves, using both ∆z h() and ∆u h(), and move type classifications:

1. Weighted sum

2. Ratio test

3. As 1, but sorted within each of the move type groups

4. Ratio test, but move type I before II

9

Note the importance in this context of checking candidate solutions to see if they

qualify as a new best integer feasible solution, rather than checking only the solution

chosen as the next extreme point, since the choice rule may not move to an integer

feasible solution simply because it is available. The move evaluations are evaluated

specifically as follows.

Weighted sum move evaluation. In this approach we form a weighted sum of

∆z h() and ∆u(h), and choose the first non-tabu move with the highest move evaluation

value E(h), defined by

E(h) = w1∆z(h) + w2∆u(h)

Good values for the weights are based on empirical determination.

Ratio test choice rules. To supplement the formal definition of this set of rules, an

illustration of a typical move of each type is provided in figure 3.

Move Type I. Identify the preferred choice over H1 to be given by

h1 = Argmax (∆z(h) / ∆u(h) : h ∈ H1)

If more than one h qualifies for h1, choose one that maximizes u(h). In other words,

choose the move that minimizes the angle α depicted in figure 3, and choose the

largest vector when vectors tie in producing this minimum angle.

Move Type II. The preferred choice over H2 is then given by

h2 = Argmax (∆u(h) / ∆z(h) : h ∈ H2)

If more than one h qualifies for h2, choose one that maximizes z(h). In other words,

choose the move that minimizes the angle β depicted in figure 3, and choose the largest

vector when ties occur.

Move Type III. Define the preferred choice over H3 to be given by

h3 = Argmax (∆z(h) ∆u(h) : h ∈ H3)

If more than one h qualifies for h3, choose one that maximizes Min (∆z(h), ∆u(h)). As

a special case, if ∆u(h) = 0, then take Max(Max(∆z(h))), and similarly for ∆z h() = 0.

This means that preference within the group is given to moves that give large

improvements, but in a balanced way. The special case takes care of points that fall on

the axis in figure 3.

Move Type IV. Define the preferred choice over H4 to be given by

h4 = Argmin (∆z(h) ∆u(h) : h ∈ H4)

10

If more than one h qualifies for h4,

choose one that minimizes Max

(∆z(h), ∆u(h)). This means that

preference is given to moves that

extend as little as possible in the

unfavorable direction, but in a

balanced way.

The cases with move types I and

II embody a ratio test choice rule

patterned after those used in

surrogate constraint heuristics

(Glover (1977), Løkketangen and

Glover (1996b)), and the cases with move types III and IV represent natural variations

of this rule.

It remains to decide which of the cases 1-4 gives the overall “best choice” for h

when more than one of these cases occurs simultaneously. We denote this best h value

by h*. Case 3 is the most desirable case, provided ∆z(h) and ∆u(h) are both positive,

and in this instance takes priority over all others, leading to the choice h* = h3. At the

opposite extreme, Case 4 is the least desirable and we choose h* = h4 only if no other

cases exist. An intelligent candidate list strategy will undertake to enlarge the subset

NB* of NB currently examined (up to a limit) when Case 4 is the only one available.

Choosing Between Cases 1 and 2. Deciding between Cases 1 and 2, and the

borderline instances of Case 3 where profit and/or integer infeasibility stay unchanged,

requires more subtle treatment. If Case 3 exists, we elect to set h* = h3 as long as at

least one of ∆z(h) and ∆u(h) is positive. However, we handle the outcome ∆z(h) =

∆u(h) = 0 (which may occur under degeneracy, for example) by introducing a

probability acceptance test, which chooses h* = h3 with a specified probability (such as

1/3 or 1/10). If the acceptance test fails, and if Case 1 or 2 exists, we choose h* = h1

or h2. Relying on these provisions (which are subject to special exceptions noted

later), we need only determine how to assign priority between Cases 1 and 2 when

both exist.

Figure 3. Ranking of move types

III

I

II

IV

∆

∆

z

u

α

β

11

When both H1 and H2 are non empty, we seek a way to make the measures of

Case 1 and Case 2 comparable in order to determine which of h1 and h2 is preferable

to be selected as h*. We do this by normalization as follows. Let H denote the union

of H1 and H2.

Normalization 1. Define an (aggregate) integer infeasibility change F(w,q), as a

function of a multiplier w and an exponent q by F(w,q) = w ∑(|∆u(h)|q : h ∈ H). Then,

treating an objective function change as a simple sum of component changes, we define

the ratios R, R1(h) and R2(h) by

R = ∑(|∆z(h)| : h ∈ H) / F(w,q)

R1(h) = (∆z(h) / ∆u(h)) / R

R2(h) = (∆u(h) / ∆z(h)) ∗ R

Then h* = Argmax {R1(h1), R2(h2)}.

Figure 4. Normalization 2

Objective
Function
Value

x(0)

III

I IV

II

γ

R'=tan γ

Preferable
Region

Preferable
Region

Increasing Integer
Infeasibility

MIP OPT

x*

LP OPT

12

With reference to figure 3, this means that we are comparing the angles α and β,

again choosing the smallest. Values of the multiplier w other than 1 cause the angles α

and β to shift, while values of the exponent q other than 1 causes these angles to curve,

i.e. to vary at different distances from the origin. We will see that the determination of

the integer infeasibility change F(w,q) as a function of w and q has an interesting and

significant effect on the behavior of our choice rules. Note that the exponent p is part

of the evaluation of ∆u(h), and values for this parameter other than 1 also makes the

angles α and β curve. (A similar parametrization of the objective function change is

possible, but was not found necessary to obtain high quality choices.)

Normalization 2. Let z* denote the value of z for the best MIP feasible solution

found, as earlier, or let z* denote an aspired target for this value. If z* ≥ z(0) + ε, for

some small value of ε, choose h* = h3. (This rule may also be used to override the

choice of h* by Normalization 1.) But if z* < z(0) + ε , let

R´ = (z* - z(0)) / u(0)

Then determine h* as in Normalization 1, by replacing R with R´. A graphical

interpretation of R´ is shown in figure 4.

Since Normalizations 1 and 2 may given different choices for h* (from the two

alternatives h1 and h2), experimentation must be relied upon to determine the

conditions under which one normalization is preferable to the other. However, we also

examine other implications of these normalizations in the following.

Special Interpretation for Normalization 2. The second normalization, which

replaces R by R´, yields a suggestive criterion to measure the merit of the choice given

by R1(h1) and R2(h2) (where h* = h1 or h2 according to which of these ratios is

larger). In particular, when a succession of choices occurs with h* = h1 and

R1(h1) > −1 at each step, a new MIP feasible solution must ultimately result that is

better than the current best known. When a choice occurs with h* = h2 and

R2(h2) > −1, the value of ∆z(h) / ∆u(h) required to yield R1(h1) > −1 on the next step

becomes smaller, hence conceivably easier to obtain.

From these observations, when Max(R1(h1), R2(h2)) is somewhat less than −1,

this can be a signal that the current choice is not very good, and hence a candidate list

strategy should enlarge the set NB* of elements examined in the hope of doing better.

13

Also, when R1(h1) > −1, there may be merit in selecting h* = h1 even if R2(h2) is

slightly larger than R1(h1).

Weighted sum move evaluation, sorted by move type. This is a combination of

the two approaches above. The moves are evaluated as a weighted sum, but first

sorted according to move type, and then according to the move evaluation within each

move type group. The ranking between the different move type groups is as for the

ratio test: III, I & II, IV. (This means that moves belonging to move types I and II are

sorted together.)

Ratio test, move type I before II. This test is intended to drive the search more

strongly to achieve integer feasibility than the basic ratio test. In this, we always

choose from H1 before H2. The rationale is that our two measures, ∆z h() and ∆u h(),

are not necessarily equivalent, or symmetric, and for some types of problems it is more

important to focus on finding a feasible solution, than on finding high objective

function values (at least until a feasible solution is found).

4. Tabu Status and Memory Structures
To establish tabu status, we use a straightforward approach that creates two tabu

records, tabu_start(j) and tabu_frequency(j) for each variable xj, j ∈ N. Tabu_start(j) is

used to record recency information, and tabu_frequency(j) to record frequency related

information (see Section 8). The record tabu_start(j) begins as a large negative

number and then, whenever xj becomes non basic, is assigned the value

tabu_start(j) = current_iteration.

By convention, we define an iteration to occur each time a new extreme point

solution is visited (causing current_iteration to be incremented by 1), hence the first

iteration occurs after obtaining an initial x(0) (as by solving the original LP problem).

The assignment tabu_start(j) = current_iteration is also made on any iteration where a

non basic variable is changed from one of its bounds to the opposite bound since such

a step likewise causes the variable to “become non basic”). Once this assignment is

made, xj is tabu and is prevented from changing its current non basic value, and hence

prevented from being used to generate a new extreme point, for a chosen number of

iterations we will denote by t. Thus xj remains tabu as long as current_iteration does

14

not grow larger than tabu_start(j) + t, and the tabu status of xj can be checked by

testing whether

tabu_start(j) ≥ current_iteration − t

In a simple dynamic approach we choose t to vary, either systematically or

randomly, within a small range about a preferred value.

5. Aspiration Criteria
As the tabu status given to moves in the current neighborhood can sometimes be

too restrictive, in that otherwise good moves are forbidden, we employ aspiration

criteria to override the tabu status for these moves. The simplest, and most frequently

used, aspiration criterion is to accept a tabu move if it leads to a new incumbent, i.e.,

to a new solution better than the current best.

We have tried three different aspiration criteria for our moves, detailed below.

Their relative merits are reported in Section 11.

5.1 Aspiration by Integer Infeasibility Levels

Our first proposed aspiration criterion allows tabu status to be overridden by

making reference to measures of integer infeasibility, using the initial definition of

integer infeasibility of Section 3.3. Let x´ denote the x vector for the initial LP solution

and let u´ denote its integer infeasibility measure (hence u´ = u(0) when x´ = x (0)). We

assume u´ > 0, or else the LP solution solves the zero-one MIP problem.

We create an aspiration vector ASPIRE(L) for integer levels L = 0 to LMAX (e.g.,

choosing LMAX = 1000), where each level L corresponds to a degree of integer

infeasibility. (The level L = 0 corresponds to no infeasibility.) The idea of such a vector

is to let ASPIRE(L) equal the z value for the best solution found that has an

infeasibility level of L. Then if a currently considered solution x also has an infeasibility

level of L, and if its profit z is greater than ASPIRE(L), we deem this solution

admissible to visit even if it is tabu.

In order to translate the normal infeasibility measure u into different levels of

integer infeasibility measured by L, we let the infeasibility u´ of the initial LP solution

correspond to a relatively high chosen level L´, e.g., L´ = .8 LMAX, thus creating a

conversion factor F = L´/u´. Then for any solution x subsequently generated, with an

infeasibility measure of u, we identify the corresponding integer infeasibility level for

15

this solution to be given by L = uF , where the notation ν indicates the smallest

integer ≥ v. For the special case where uF > LMAX, set L = LMAX.

The aspiration value ASPIRE(L) is maintained as the z value for the best solution

found, with an infeasibility level of L, as follows.

1. Initially, set ASPIRE(L) = −BIG for L = 0 to LMAX.

2. Upon obtaining the optimum LP solution, set ASPIRE(L´) = z´, and identify

the conversion factor F = L´/u´.

3. If a candidate solution x(h) is tabu, identify its infeasibility level

L = Min (F(u(h) , LMAX). Then the aspiration criterion for x(h) is satisfied,

and x is treated as admissible (not tabu) if z(h) > ASPIRE(L).

4. Let x(0) denote the current solution visited, and identify

L = Min (F(u(0) , LMAX). If z(0) > ASPIRE(L) set ASPIRE(L) = z(0).

1
2

3
4

5
6

7
8

9
10

Weighted Sum
Ratio

Weighted, move type
Ratio, I before II

2175

2180

2185

2190

2195

2200

2205

2210

2215

2220

2225

Figure 5. Integer Infeasibility Aspiration Levels for the Fleischer Problem

16

In the special case L = 0, recall that we may identify a new best solution by the

choice rules of the procedure without actually moving to this solution. Hence

ASPIRE(0), which refers only to solutions actually visited, may be smaller than the

value z* for the best MIP feasible solution found. As an example, referring to one of

the problems in our test set (the Fleischer problem) the aspiration level values obtained

for the different move evaluation functions are shown in figure 5, with 10 aspiration

levels. Also note that the ratio test evaluation function for this case failed to find a

feasible solution, while the optimum value was found by the other three approaches.

5.2 Aspiration by Objective Function Value Levels

An alternate way to exploit the idea of aspiration by levels, as outlined in Section

5.1, is to interchange the notions of integer feasibility and objective function value, and

to introduce an aspiration by objective function value levels. The necessary

mechanisms to achieve this are analogous to the ones used for aspiration by integer

infeasibility levels. We use objective function value bounds of LP* and 0, for our

multidimensional knapsack test cases. A difference between this approach and the

Figure 6. Objective Function Value Aspiration Levels for the Fleischer Problem

100 99 98 97 96

Weighted Sum

Ratio

Weighted, move type

Ratio, I before II

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

17

preceding is that more levels are usually needed, in order to have enough levels near

the optimum value. In addition, there is no need to aspire for objective function values

smaller than that of the incumbent. Figure 6 shows the aspiration level values obtained

for the Fleischer problem for the different move evaluation functions, with 1000

aspiration levels. Only the top 5 are shown, since the rest are never reached.

5.3 Aspiration by new best detected

As mentioned in Section 2, a new best integer feasible solution may be encountered

during a move evaluation, without subsequently selecting the move leading to it. This

is due to the process for evaluating and ranking the moves. It can sometimes be

advantageous to visit such a new best solution, so we pick the move leading to a new

best solution as our choice for the current iteration, even though this move may have a

lower rank than other acceptable moves. To avoid accepting moves that lead to a poor

integer feasible solution, a threshold value that the objective function value has to

surpass can be introduced, as derived from a trial run.

6. Probabilistic Tabu Search
As sometimes noted in the TS literature, “controlled randomization” (which uses

the biases of probability) may be viewed as a substitute for memory—when we are

ignorant of how memory should advantageously be used. But just as there are multiple

kinds of memory that can supplement each other, probabilities may find their best uses

in various supplementary roles. The ideas that are tested here originate in part from

Glover (1989), and are adapted to our specific problem area.

For clarification, since more than one interpretation is possible, what is generally

regarded as Probabilistic TS is usually applied to the move acceptance function, and is

intended here to have the following design:

A. Create move evaluations (for a current candidate list of moves examined)

that include reference to tabu status and other relevant biases from TS

strategies—using penalties and inducements to modify an ordinary

objective function evaluation.

B. Map these evaluations into positive weights, to obtain probabilities by

dividing by the sum of weights. The highest evaluations receive weights

that disproportionately favor their selection.

18

Among conjectures for why these probabilistic measures may work better than the

deterministic analog, one may guess that move evaluations have a certain “noise level”

that causes them to be imperfect—so that a “best evaluation” may not correspond to a

“best move”. Yet the imperfection is not complete, or else there would be no need to

consider evaluations at all (except perhaps from a thoroughly local standpoint —

noting the use of memory takes the evaluations beyond such a local context). The

issue then is to find a way to assign probabilities that somehow compensates for the

noise level.

The application of Probabilistic TS as outlined above can be guaranteed to yield an

optimal solution under certain easily controlled conditions, if allowed to run for an

infinite number of iterations (see Glover 1989). This means that one may use

Probabilistic TS as an escape hatch to hedge against persistent wrong moves in the

absence of reliable knowledge to guide the search.

One may also view controlled randomization as a means for obtaining diversity

without reliance on memory. In this respect it represents a gain in efficiency by

avoiding the overhead otherwise incurred in the use of long term memory. However, it

also implies a loss of efficiency as potentially unproductive wanderings and

duplications may occur, that a more systematic approach would seek to eliminate.

It should be observed that there are significant differences between the ways

probabilities are used in Probabilistic TS compared to the ways they are used in

Simulated Annealing (SA). Notably, SA samples the neighborhood (either randomly or

systematically), and accepts any improving move encountered, and non-improving

moves are accepted with a decreasing probability as the search progresses. In contrast,

PTS collects the evaluated moves in a candidate list (sorted by some measure of the

goodness of the moves), and uses a biased probability to select from this list, with the

first move on the list (i.e. the move that is considered best according to some criterion)

having the greatest chance for being selected. This selection is done after the usual

tabu restrictions and aspiration criteria have been applied. PTS is thus more aggressive,

and gives more guidance to the search process. For a general description of SA, see

Dowsland (1993), while Connolly (1994) describes the use of SA as a general search

tool component for pure ILP problems.

19

Hart and Shogan (1987) describes the use of probabilistic measures for move

selection in greedy heuristics. Here the move is selected with uniform probability either

among the n best moves, or among the moves better than some threshold (compared to

the best move), but only considering improving moves. We tried the ideas of Hart and

Shogan in our PTS framework (thus accepting non-improving moves), both with

normal tabu tenure and without (only with the rejection of the immediate move

reversal), but with inferior results compared to the methods reported in Section 11.2,

which gives a probabilistic bias towards the presumably best moves.

Probabilistic measures may also be applied to the tabu tenure, as outlined in

Section 6.3, and in the following we will state explicitly which probabilistic measure

we mean, when necessary.

6.1 Probabilistic move acceptance
To be able to apply the general probabilistic move acceptance approach as outlined

in the previous section, we seek a move evaluation function that in some way reflects

the true merit of all the moves in the candidate list.

However, in the present setting we do not have a comparable measure for all the

different move types identified in Section 3. Also, the move evaluation within each

move type is quite noisy with respect to the overall goal of maximizing the objective

function value, as it also contains a component designed to reduce the amount of

integer infeasibility, and the two move evaluation components are combined rather

dramatically by multiplication or division. It is therefore difficult to assign a good

comparable numerical measure which reflects the true merit of all the moves. However,

as is evidenced by the computational results (see Section 11), there is good reason to

believe that the relative ranking of the moves in the candidate list is quite good, as is

the relative ranking of the move type groups, and that a move should be selected

among the first few in the candidate list, if possible.

We therefore propose to introduce controlled randomization in the move selection

process by exponentially decreasing the move acceptance probability when traversing

the candidate list, thus relying solely on the individual move rankings, and not using the

actual move evaluations.

20

6.2 Exponentially decreasing move acceptance

The basis for this approach is that we regard the relative ranking of the moves on

the candidate list to be a good approximation to their true merit.

The general outline of the method is as follows. Let p be the probability threshold

for acceptance of a move, and let r be a randomly generated number (both in the range

0 -1). Only the basic move selection core of the method is shown.

Step 1.Generate the candidate list in the usual way.

Step 2.Take the first (potentially best) move from the candidate list.

Step 3.Subject the move to the following sequence of tests:

- Accept if the aspiration criterion is satisfied.

- Reject if Tabu, and place the move at the end of the candidate

 list, removing its tabu status for the current iteration.

- Apply degenerate move rejection.

- Generate r. If r > p, reject.

If r ≤ p, accept move, exit.

Step 4. (In case of rejection.) Select the next move on the candidate list.

 Go to Step 3.

If the last move on the list is examined and rejected, accept the first move on the

list (or any move on the list at random).

The method is intriguing because of its simplicity, and can easily be implemented in

most deterministic TS frameworks.

The value of p should not be too small, as we would usually like to select one of

the top few moves. Testing will disclose good values for p, but as an example, consider

p = 1/3. The probability of selecting each of the first d moves is then (disregarding

aspiration criteria, tabu status, etc.):

1/3, 2/9, 4/27, 8/81, ..., 2d-1/3d .

The probability of not choosing one of the first d moves is 2d/3d, so p = 1/3 gives a

very high probability of picking one of the top moves: about .87 for picking one of the

top 5, and about .98 for picking one of the top 10.

21

The effective value of p can also be viewed as a function of the quality of the move

evaluation function. The better the move evaluation function, the higher the expected

value of p for which the best solutions are obtained.

6.3 Probabilistic move acceptance and strategic oscillation

The probabilistic move acceptance scheme outlined above is easily combined with

the strategic oscillation schemes outlined in Section 7. We illustrate this by outlining

the version called strategic oscillation by parametric evaluation. In this approach, the

relative attractiveness of type I and II moves are modified in a strategic way in order to

alternate between giving higher emphasis to integer feasibility and giving higher

emphasis to the objective function value. The ranking of the move type groups remains

the same, i.e. III, I & II, IV.

The conjecture is that combining strategic oscillation with probabilistic move

acceptance will have a symbiotic effect on the search efficiency, since the SO scheme

gives an additional (alternating) emphasis to the move ranking, while the controlled

randomization gives an extra degree of diversification.

6.4 Probabilistic tabu tenure
It is usually advised in the literature to use dynamic tabu lists, i.e. tabu lists that

vary over time, usually within fixed limits. The actual timing of the change of the tabu

list length, and the associated new length is often controlled randomly, although fixed

patterns have also been applied quite successfully. In addition, variations in size and

composition based on logical relationships have proved effective.

The purpose of having varying tabu list lengths, or equivalently, varying tabu

tenure, is not simply to avoid cycling of the search, but also to introduce a form of

vigor into the search that accommodates varying widths of local minima. (See Ryan,

1994).

A natural extension is to convert the tabu tenure for each variable into a

probabilistic measure, causing the probability of retaining tabu status for a given tabu

element to diminish over time from the initial tabu status assignment (Glover, 1989).

We assume that the expected probabilistic tabu tenure for a variable should have

approximately the same value that would be suitable in the corresponding deterministic

variant, so that the total amount of imposed “tabu influence” will be the same.

22

This probabilistic tabu tenure can be assigned in two ways, by assigning an

individual tabu tenure when the element receives its tabu status, or by doing the actual

checking for tabu status using a diminishing probabilistic measure. These two measures

should give the same results.

We elected to implement the probabilistic tabu tenure in the checking phase (when

traversing the candidate list to find a move), assigning tabu status to variable j with

probability p(j,t), where t is the time since the start of this variable’s tabu tenure. The

probability function p(j,t) was chosen to be linear in t, and decreasing from 1 to 0 over

the time T. The time T was chosen to give the same overall expected tabu tenure as in

the deterministic tabu tenure case. Let TLD be this first-level deterministic tabu list

length, and TLP (=T) be the associated probabilistic one. Also note that the

deterministic tabu list length was varied randomly between TLD and 2*TLD . As can be

seen from Figure 7, this gives a value for TLP = 3*TLD. (The amount of “tabu

influence” for the two approaches is indicated by the areas of the dotted rectangle and

the triangle.)

7. Strategic Oscillation
Strategic Oscillation (SO) is one of the basic diversification techniques for TS. The

idea is to drive the search toward, away from, or through selected boundaries in an

oscillating manner. This can be accomplished by altering the choice rules governing the

move selection, or by altering the move evaluation function, e.g. by applying

Fig 7. Probabilistic Tabu Tenure

T L T LD P

1

0

p (t)

t

23

appropriate incentives and penalties. The basic oscillating frequency of SO may be

medium or long range depending on the specific problem, and the nature of

oscillations.

The move evaluation function we use for our zero-one MIP problems is composed

of two rather different measures, the change in objective function value, ∆z(h), and the

change in the amount of integer infeasibility, ∆u(h). The relative emphasis between

these two measures is fixed in the basic move evaluation, apart from the axis skew

factor, w, which is used to alter the emphasis between ∆z(h) and ∆u(h) for type I and II

moves, but which is fixed for the duration of the search.

Two SO schemes are proposed. One is by parameterizing the emphasis between

∆z(h) and ∆u(h) directly in the move evaluation function, and the other is by altering

the choice rules for move selection. The value u(h) = 0 in both cases defines the

boundary that the SO drives the search toward or away from. This is represented by

the vertical axis in figure 1. The other turn-around point is generally defined either by

the lapse of a certain amount of time (iterations), the absence of improving moves in

that general direction, or both. Other criteria can also be applied. The SO in this setting

is depicted in figure 8. Note that type III moves are always considered good, and type

IV moves are always considered bad (in a relative sense).

7.1 Strategic Oscillation by Parametric Evaluation

Our original design has a fixed emphasis on the relative merit of the two

components of the move evaluation function, possibly modified by w. Tabu search

generally advocates placing a different emphasis on different variables, and varying this

emphasis over time. This is accomplished in our setting by linking the component

values through a parameter p in the following way. Define

∆(z(h):p) = p∆z(h)

∆(u(h):p) = (2-p)∆u(h)

By letting p vary between 0 and 2, one can obtain a range of possible emphases

between the two move evaluation function components. As can also be seen, setting

p = 1 reverts to the basic move evaluation scheme.

We can now define the following priority classes:

24

Integer Priority: Let 0 < p < 1

Cost Priority: Let 1 < p < 2

(Roughly) Balanced Priority: Let p = 1

Note that the parameter w in this setting can be viewed as a fixed bias for the SO.

The best values for p, as well as the time spent in each phase, must be based on

empirical tests.

Strategic oscillation based on parametric evaluation applies in this setting by

invoking several patterns of oscillation. The general approach for creating such a

pattern is as follows. For simplicity, we let ∆u(h) and ∆z(h) below represent the terms

∆(u(h):p) and ∆(z(h):p).

Parametric Strategic Oscillation

Step 0: Choose p according to one of the priority classes.

Step 1: Apply the normal choice rules as outlined in Section 1 for a selected

 number of iterations or until a specified condition is met.

Step 2: Identify a new priority class with associated choice of p, and return to

 step 1.

The actual value of p used within each priority class may also be allowed to vary,

Fig 8. Strategic Oscillation

Objective
Function
Value

Increasing Integer
Infeasibility

Integer
 Prio

C
o
s
t

P
r
i
o

25

thus giving more or less emphasis to a specific move evaluation component over time.

This can be done in a predetermined manner, or can be made to depend on the search

progress.

The following is a special variant of the foregoing approach that is conjectured to

be one of the better alternatives. The variant begins from the optimal LP solution. As

earlier, z* denotes a target for an optimal z value until an integer feasible solution is

found, and then denotes the best z value found for such a solution. The value ε

represents a small positive number.

Alternating Integer and Cost Priority

Step 1: Integer Priority Phase. Choose p by the Integer Priority criterion.

 Continue for a specified minimum number of iterations and then transfer

 to the Cost Priority Phase when one of the following occurs:

1a) z(0) < z* - ε

1b) ∆u(h) < 0 for all non tabu h ∈ NB

Step 2: Cost Priority Phase. Choose p by the Cost Priority criterion. Continue

 for a specified minimum number of iterations, and then transfer to the

 Integer Priority Phase when both of the following occur:

2a) x(0) is not integer feasible

2b) ∆z(h) < 0 for all non tabu h ∈ NB

Step 3: Alternate between the two preceding phases until reaching a desired

 cutoff point.

In other words, if the search is in the integer priority phase, the cost priority is not

changed as long as non-tabu moves exist of type I or III, and as long as the current

objective function value is good enough. Similarly, if the search is in the cost priority

phase, the integer priority is not changed as long as non-tabu moves exist of type I or

II, or the current solution is integer feasible. Computational results for the Alternating

Integer and Cost Priority scheme outlined above are reported in Section 11.

7.2 Strategic Oscillation by Altered Choice Rules

Instead of altering the move evaluation function to change the relative emphasis on

the component parts of the move evaluation function, as outlined in section 7.1, the

choice rules may be altered. One approach is as follows:

26

Choice Rule Modification

Step 1: Integer Priority Phase. Sort the candidate list in the order of move type

III, I, II, IV. Change to the Cost Priority Phase after a specified number of

iterations.

Step 2: Cost Priority Phase. Sort the candidate list in the order of move type III,

II, I, IV. Change to the Integer Priority Phase after a specified number of

iterations.

Step 3: Alternate between the two preceding phases until reaching a desired

cutoff point.

Note that this approach has the same integer and cost priority phases as the

parametric evaluation approach, but the grouping of moves is coarser, and the control

scheme simpler. The method outlined above can thus be viewed as a more intense

version of the Alternating Integer and Cost Priority scheme of Section 7.1, and

comparative computational results are reported in Section 11.

An alternative to the fixed length approach outlined above, is to stay in each phase

(only) as long as appropriate non-tabu moves for that phase are available. This means

that the search stays in the integer priority phase as long as moves of type I or III are

selected, and in the cost priority phase as long as moves of type II or III are selected.

8. Diversification Strategies
TS diversification strategies, as their name suggests, are designed to drive the

search into new regions when the search fails to improve the search in the initial search

area. Frequency based memory is normally used to guide the diversification process,

and consists of gathering pertinent information about the search process so far, where

the information gathered may, for example, be the number of times a specific element

has been part of the solution. A simple form for diversification then penalizes the

inclusion of frequently occurring elements in future solutions. More sophisticated

diversification strategies can be defined, based on a major altering of the choice rules

or by restarting the search process. The best strategies balance diversification against

intensification, as by differentiating between frequency of occurrence in solutions of

different quality. Elements that occur frequently in the highest quality solutions then

are encouraged for selection, and the factor of encouragement may significantly reduce

27

the diversification penalty or even turn it into a net inducement. (We explore a slightly

different mechanism for balancing diversification and intensification, as subsequently

noted.)

The first-level TS mechanisms described in Section 1 to 5 are clearly most

successful when applied to the smaller test cases (see Section 11), but do not manage

to diversify the search properly for the larger ones. This is a clear indication that some

sort of diversification strategy should be included, which makes use of information

from the current search history.

We tried out two different diversification schemes, one based on penalizing

variables according to their accumulated time spent in the basis, and one that

incorporated intensification concerns by identifying promising variables to include in

the solution. The latter scheme is based on results from applications of Target Analysis

(TA), and came about after preliminary testing showed that our first (pure)

diversification scheme was less successful than anticipated. (See Section 9). It must

also be stated that we have confined our diversification schemes to be based solely on

extreme point pivoting, and have not considered diversification by generating new

starting points (which could be obtained by modifying the objective function in an

appropriate way and then re-solving the LP-relaxation), or by directly assigning 0 or 1

values to the integer variables (which also requires the LP-relaxation to be re-solved,

possibly resulting in primal infeasible solutions).

8.1 Diversification by penalizing time spent in the basis

One simple diversification scheme is to penalize elements that have been active, or

selected, for a disproportionate part of the time. For our approach we focus on the

time spent in the basis by each variable.

To accomplish this we use the record tabu_frequency(j), introduced in Section 4,

to measure the number of iterations that xj has been basic. This record is used to create

a diversification strategy, where xj is penalized to induce it to become non basic, or to

discourage it from becoming basic. Greater penalties are attached to variables that have

been basic for a greater part of the time. To do this, we make additional use of the

value of tabu_start(j), used for keeping track of basic tabu tenure, by setting this value

equal to current_iteration not only when xj becomes non basic but also when xj

28

becomes basic. For those variables xj that start basic in the first solution, set

tabu_start(j) = 0 to indicate they start basic at iteration 0, and set tabu_start(j) equal

to a large negative number at iteration 0 for all other xj. We then update and maintain

tabu_frequency(j) as follows

Step 1. To begin, set tabu_frequency(j) = 0 for all j ∈ N

Step 2. When x j changes from being basic to non basic, set

 tabu_frequency(j)= tabu_frequency(j) + current_iteration - tabu_start(j)

By these rules the value of tabu_frequency(j) is correct for every variable xj that is

non basic, and is given by the right hand side of the Step 2 update for every xj that is

basic. This results from the fact that Step 2 increases tabu_frequency(j) by the number

of iterations xj has been basic. This shows that in the worst case (for xj basic) the

correct frequency value can be determined by one addition and one subtraction, using

the formula of Step 2 above (but without creating the update until xj changes from

being basic to non basic).

A pure diversification strategy using tabu_frequency(j) (without reference to

intensification concerns) is initiated after an extended period when the integer feasible

solution has not been improved. A non basic variable xj is then penalized (to discourage

it from being chosen to become basic) according to the value either of

tabu_frequency(j) or tabu_frequency(j)/current_iteration. The division by

current_iteration normalizes the frequencies to values less than 1, and hence requires a

larger penalty.

A Diversification Penalty. To determine a simple diversification penalty, we

compute a running value V, which starts equal to 0, and then at each iteration is set to

V = V + (current_iteration - tabu_start(j))

Here xj is the variable that becomes non basic at the current iteration. (If xj already

is non basic, and again becomes non basic by moving to its other bound in the same

step, we treat it as becoming both basic and non basic at the same iteration. Hence the

quantity current_iteration - tabu_start(j) is replaced by the value 0 in this case, both

for updating V and tabu_frequency(j).)

29

To make use of V, keep a value COUNT, which starts equal to 0. Then, on the

iteration that tabu_frequency(j) changes from 0 to a positive value (identifying xj as the

variable that becomes non basic) set

COUNT = COUNT + 1

Thus, COUNT gives the number of variables that have positive tabu_frequency(j)

values, and the value V* = V/COUNT gives the average tabu_frequency(j) value for

these variables. For a pure diversification strategy we therefore can simply assign a

large penalty to a given variable xh under the following conditions.

Mild Diversification: tabu_frequency(h) ≥ V*

Moderate Diversification: tabu_frequency(h) ≥ V*/2

Strong Diversification: tabu_frequency(h) ≥ V*/8.

Penalties assigned under the preceding conditions are used to discourage the

choice of h ∈ NB* by the rules of Section 1 (first-level tabu search mechanisms) when

xh is under consideration for generating an extreme point x(h) (i.e., h is being evaluated

as a candidate to become h*). These penalties should not be applied at each iteration,

but only on those iterations when there exist no moves that can improve integer

feasibility except those that are tabu. A variable that does not receive a large penalty

by the foregoing criteria receives a zero penalty.

Another kind of pure diversification approach may be applied a small number of

times during a solution run. At each iteration selected to initiate this approach, reset

tabu_start(j) equal to a large negative number for all current non basic variables xj

(thus freeing all non basic variables from being tabu). Then set the tabu tenure t to

twice its usual value, and apply the rules for Mild, Moderate or Strong diversification,

as previously specified, throughout each of the next t iterations. After these t iterations

are executed, again free all non basic variables from their tabu status and resume the

usual tabu search approach.

Testing of the basic mechanisms of this approach disclosed that the penalizing of

basic time did not result in the desired effect, even when the strong diversification was

applied. The reason for this is probably that time spent in the basis by a variable is less

important than the time it spends at the bounds, and the dynamics of how often and in

what manner it changes its value. This is illustrated by the fact that the proposed

30

mechanisms fail to capture the effect of variables that enter and leave the basis in the

same iteration, going to opposite bounds.

8.2 Diversification by inclusion of promising variables

As previously noted, our testing showed that the foregoing diversification strategy

failed to produce improved results. By applying target analysis (see Section 9), we

came up with the following basic diversification scheme. Memory is introduced to

record the number of times each variable has entered the basis from its upper or lower

bound, registering this information in the tables Fr1(j) and Fr0(j) respectively. We also

keep track of how many times each variable has been chosen for diversification in the

table DSEL(j), and the number of successful attempts in the table DSUCC(j).

Diversification by Variable Inclusion

Step 0: Ordinary TS phase. When this phase either fails to produce improved

 solutions, or has spent a selected number of iterations, enter Step 1.

Step 1: Variable identification. Identify the variable that has tried to enter the

 basis from its lower bound the most times and from its upper bound the

 fewest times, subject to a penalty for being chosen many times. Do not

 reselect variables that have failed to be included in an earlier

 diversification phase.

 Select j = max((Fr0(j) - Fr1(j))/DSEL(j)), and update DSEL(j).

Step 2: Variable inclusion phase. Select the first move from the sorted

 candidate list that increases the integer value of the chosen variable j,

 disregarding tabu status. If no such moves exist, select the move

 yielding the smallest decrease in the value of the chosen variable j. Stay

 in this phase either until the chosen variable leaves the basis at its upper

 bound (Go to Step 3), or until a preselected number of iterations have

 elapsed (Go to Step 4).

Step 3: Successful Inclusion. When the designated variable has been

 successfully included in the current solution, give it extra tabu tenure,

 remove the tabu status from all the other variables, update DSUCC(j),

 and return to Step 0.

Step 4: Unsuccessful Inclusion. If variable inclusion fails, return to Step 0.

31

 The extra tabu tenure introduced in Step 3 is required so that the

 solution may stabilize itself in the new search area. At the same time,

 freeing the other variables from their tabu tenure makes the initial

 search in this new area more aggressive, hence providing some balance

 due to intensification.

9. Target Analysis
Target analysis (TA) is a learning approach, designed to identify good search

parameter values and effective search attributes. TA typically first launches an

extensive search effort that concentrates on obtaining high quality solutions to a

chosen sample of test cases. Each sample problem is then solved again, this time

focusing on which choices should be made to guide the search most effectively to, or

near, the previously discovered good solutions, using hindsight to select desired

moves. Finally, the choices actually applied during the re-solving phase are analyzed in

the context of available information and decision parameters, and integrated into new

master decision rules. In other words, these rules are designed to use information

ordinarily available during the search (including historical information of the type

embodied in tabu search memory), to make decisions that are as close as possible to

the decisions that hindsight would provide (where hindsight uses knowledge of elite

solutions that would not ordinarily be available). By the proximate optimality principle,

POP, these new rules are anticipated to give a good search strategy for the similar

target test cases. (In repetitive problem solving environments, these rules include

mappings that assign elite solutions from past efforts to become starting points for

related current problems.)

Target analysis is more fully described in Glover and Greenberg (1989), Laguna

(1990) and Glover (1995b). Some successful applications are in Glover and McMillan

(1986), Laguna and Glover (1993), and Mulvey (1995).

We have applied TA in two different settings in our study. The first use was to

identify the proper relationship between the various parameters in the ratio test move

evaluation (see Section 3), while the second was to identify a better decision rule for

diversification when our first approach failed to produce good results (see Section 8).

32

9.1 Target Analysis for the
Ratio Test

Preliminary testing disclosed some

problems for the ratio test (see Section

3) on some of the test problems (see

Section 10). We will illustrate this by

looking at the behavior of this

heuristics on the Fleischer’s problem

(FLEI), where it failed to find an integer

feasible solution. We have chosen this

problem for illustration because it is fairly small, and previous heuristic approaches

reported in the literature also have experienced difficulty in obtaining an optimal

solution to this problem. This focus on the behavioral aspects of the search is also in

the spirit of Hooker (1995). It is important to note that this particular application of

TA does not focus on obtaining good solutions, but rather on finding a feasible

solution, so a distance measure to the optimum is not required.

Recall that the ratio test depends on the integer infeasibility change measure,

F(w,q), as a function of multiplier w and exponent q, together with the exponent p in

the definition of u(h). The relevance of these parameters is usefully illustrated in

Figure 9. FLEI for Weighted Sum

Integer Infeas ibility

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

0 0.5 1 1.5 2

Integer Infeas ibility

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

0 0.5 1 1.5 2

Figure 10. FLEI for Ratio Test

2221.45

2221.5

2221.55

2221.6

2221.65

0.87 0.88 0.89 0.9 0.91 0.92 0.93

103

Figure 11. Detail of figure 10

33

application to the FLEI problem. Specifically, we first note that taking w = 1 and q = 1

(together with p = 1 in the definition of u(h)), results in poor performance for the ratio

test in this problem, in fact causing it to fail to locate a feasible solution. This is

illustrated in figures 5, 9, 10 and 11. Figure 5 shows the various best values achieved

for the different aspiration levels, for all four heuristics. As can be seen in figure 5, all

the heuristics dive to the 4th aspiration level, but the ratio test heuristic stops there,

while the other three continue toward the feasible region.

Figure 9 shows how the weighted sum heuristic focuses nicely on finding a feasible

solution (which is also the optimum) in 11 iterations, while figure 10 shows the same

type of plot for the ratio test heuristic. Iterations 3 to 10 are shown enlarged in figure

11. As can be seen, the search path consists of alternating steps consisting of type I and

type II moves, which pull in opposite directions.

To compensate for an occasional tendency of the ratio test to wander too far away

from the feasible region, we applied target analysis to try to find good combinations of

search parameter values. Our focus in this experimentation was to determine an

effective way to increase the push toward integer feasibility. We soon isolated a

Figure 12. Accepted Move Type Ratio vs. Axis Skew Factor

W

0

0.5

1

1.5

2

2.5

3

3.5

4

34

strategy of doing this based on increasing the emphasis on type I moves, by altering the

multiplier w (as defined for Normalization 1). Target analysis disclosed the existence of

a good region for the expected ratio between the number of moves of types I + III

versus those of types II + IV, in order to obtain good solutions fast. This is shown in

figure 12 for the Fleischer problem. Feasible solutions are found for values of w of .5

or less, as indicated by the arrow. Altering w can also be thought of as skewing the axis

in our search space, and is indicated schematically in figure 13. In order to force our

heuristic to approach the desired ratio of selected moves, we skewed the axis in favor

of integer feasibility, by shrinking the objective function value axis and expanding the

integer infeasibility axis during move evaluation.

Infeasibility measure exponents p and q. It is reasonable to anticipate that ideal

values for w will depend on p and q, and we conducted further tests to identify the

nature of this dependency.

Figure 14 provides the insight into the pattern that emerges, by showing the

maximum value of w for which feasibility was obtained for the Fleischer problem (with

each test run for 50 iterations). This plot is based on maintaining either p = 1 or q = 1

and varying the other parameter, to identify w = w(p) or w = w(q) as a function of the

parameter varied. As can be seen from the figure, the search is rather insensitive to the

value of q, while the value of p is clearly correlated to the values of w that are

necessary to obtain feasibility, where small values of p generally make feasibility easier

to obtain. This same pattern emerged for the other test problems studied.

Figure 13. Skewing of axis.

I

II

∆

∆

z

u

α

β

I

II

∆

∆

z

u

α

β

35

The reason for these results can be traced to the definition of Normalization 1. As

we have noted, changing the value of w can be regarded as a linear skewing of the axis,

with smaller values of w giving more emphasis on type I moves relative to type II

moves. Altering q does not seem to have any great overall effect. The rationale for

wanting to use a value of p greater than 1, the exponent in the definition of u(h), is to

put more emphasis on moves that have a large distance to cover to reach feasibility,

with the intention of getting faster to a feasible solution. What really happens is that

variables with a small degree of infeasibility are driven more strongly to achieve integer

values than variables with a larger degree of integer infeasibility, as a result of this

influence on F(w,q), used in the value of R in Normalization 1. In particular, F(w,q)

gets reduced exponentially when all the variables have small degrees of integer

infeasibility. Since R is again used in the denominator for type I moves, and in the

numerator for type II moves, undue emphasis is put on type II moves. This alteration

of p can also be viewed as a nonlinear skewing of the axis, with more skewing for

small changes in infeasibility, and with disproportionate emphasis on type II moves for

values of p greater than 1.

The key observation is that it is not the ranking within the different move types that

is important, but the relative ranking between type I and II moves. In addition, changes

P & Q

0

1

2

0 1 2

W(P)

W(Q)

Figure 14. Infeasibility measure exponents p & q vs. axis skew factor, w

36

in p can shift moves to different categories, where high values of p assign more moves

to categories II and IV, while low values of p assign more moves to category I and III.

Both lowering w and lowering p are effective in putting more emphasis on integer

feasibility. However, altering w works in a linear way, while altering p works non

linearly. We therefore give preference to altering w, if the search undergoes a period in

which feasibility proves difficult to achieve (e.g. starting with p, q and w equal to 1).

9.2 Target Analysis for Diversification

The first phase of TA was easily done in our case, because optimal solutions for

our test cases are known from the literature. To start off the TA second phase, we first

undertook to define a measure of distance between different solutions, in particular

between the identified optimal solution and any other solution, infeasible or not,

encountered during the search. We elected to use a simple definition that equated

distance with the number of variables that differed in value between the two solution

states. Note that this is not necessarily equal to the number of pivots required to move

between the two solutions. However, letting Dxy denote the distance between the two

solutions x and y, and Pxy denote the actual minimum number of pivots needed to move

between them, the following relation holds:

Pxy ≤ Dxy ≤ 2*Pxy

Information logged. In addition to the information described in Section 8, the

following information was logged for each iteration. It is important in this phase to

register many different aspects of the solution process, as one purpose of the TA

process is to identify the pieces of information that will be required by the new

guidance structures.

DxOPT - Difference between this solution and the optimum.

Feas - Integer feasibility status

MoveType - Selected move type

EnteringVar - Entering variable

EntVarStatus - Where EnteringVar enters from (upper or lower bound)

LeavingVar - Leaving variable

LeaVarStatus - Where LeavingVar goes to (upper or lower bound)

37

In addition, a running total of the following values for each integer variable was

kept:

At1 - Number of iterations at 1

At0 - Number of iterations at 0

Basic - Number of iterations spent basic

B(0)-B(9) - Number of iterations that the variable acquired a

 fractional value, divided into 10 equal interval buckets.

Fr1 - Number of times entering the base from 1

Fr0 - Number of times entering the base from 0

Problem M*N DLP* - Opt DF F - Opt

PET5 10*28 5 4
PET7 5*50 9 6
PB4 2*29 6 13
PB6 30*40 11 7
PB7 30*37 7 5
WEISH07 5*40 4 3
WEISH08 5*40 5 4
WEISH16 5*60 3 3
WEISH18 5*70 5 3
WEISH19 5*70 3 3
WEISH22 5*80 4 5
WEISH25 5*80 4 5
WEISH26 5*90 4 3
WEISH27 5*90 3 5
WEISH29 5*90 2 2
WEISH30 5*90 3 4
SENTO1 30*60 10 6
SENTO2 30*60 7 5

Table I. Initial distances to the optimum solution.

38

Insights gleaned. Our application of TA within the diversification attempts

outlined in Section 8, and also within the first-level tabu search approach of Section 1

to 5 led to the following insights.

Relative to our defined solution difference measure, our starting point, the LP

relaxation solution, was usually fairly close to the targeted optimal solution. The first

integer feasible solution found also turned out to be close to this optimal solution by

this measure, indicating that this first feasible solution may be a good candidate for one

of the points of a scatter search approach, and similarly for path relinking. (See Glover,

1995b, 1996.) The actual distances, as defined above, are shown in Table I, with the

distance measures being denoted DLP* - Opt and DF F - Opt, and where the test cases are

defined in Section 10. The distances for the test cases where the first-level TS found

j = 0

j = 1

F ig u re 1 5 . D iv e rsific a t io n a lo n g va riab le j

-10

-5

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Figure 16. Fr0(j) - Fr1(j) for PB4

39

the optimum were similar.

The target analysis showed that the first-level TS was locked in a specific part of

the search space that yielded similar distances, disclosing the existence of a small

number of variables that should have been part of the solution that our first-level TS

mechanisms failed to include. Moreover, each such variable was typically characterized

by entering the basis from its lower bound, staying at a low value in the basis for a few

iterations, and then leaving the basis, again at its lower bound. This prompted the

diversification scheme described in Section 8.2. One might imagine the search going

from the left part of figure 15 to the right, where variable j is induced to go from 0 to

1, and the shaded areas are where the search is active.

A typical example, taken from test case PB4 after 290 (=10*N) iterations, is shown

in figures 16 and 17. Figure 16 shows the value of Fr0(j) - Fr1(j) for all j, identifying

variable 20 (indicated by the arrow) as a good candidate for inclusion in the solution.

Figure 17 shows the actual basic values of this variable, disclosing that it does not

attain very large fractional values before being made non basic again. The few large

fractional values stem from the initial descent phase after starting at the LP optimum,

where variable 20 starts basic. The diversification scheme described in Section 8.2 does

not use the information of the type contained in figure 17, but relies on the information

from figure 16.

0
5

10
15
20
25
30
35
40
45
50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 17. Basic values for selected variable

40

10. Test Cases
To test our heuristics, we employed a portfolio of 57 multi-constraint knapsack

problems. These are the same as those used by Dammeyer and Voss (1993),

Løkketangen, Jörnsten and Storøy (1993), Aboudi and Jörnsten (1992) and Drexl

(1988), and were collected by Drexl from the literature. The problem sets that

compose this portfolio are indicated below, where numbers attached to the abbreviated

set names differentiate the elements of each set.

PET1 - PET7 Petersen (1967)

SENTO1 - SENTO2 Senyo-Toyoda (1968)

PB1 - PB7 Mod. of Senyo-Toyoda used by Freville Plateau (1987)

WEING1 - WEING8 Weingartner (1967)

WEISH1 - WEISH30 Shih (1979)

FLEI Fleisher problem

11. Computational Results
The heuristics in this paper were implemented in FORTRAN, incorporating

subroutines provided by ZOOM/XMP whenever possible. We note that this software is

not nearly as efficient for solving LP problems as modern commercial software such as

CPLEX and XPRESS-MP, but we used it to take advantage of the ability to obtain

intimate access to key subroutines. The ZOOM/XMP software package was also used

to solve the initial LP relaxation. (See Marsten 1989a, 1989b.)

11.1 Results for first-level TS mechanisms

We first tested the four first-level heuristics, based on the different move evaluation

and choice rule schemes detailed in Sections 1 to 5:

1. Weighted sum

2. Ratio test

3. As 1, but with Weighted Sum within the move groups

4. Ratio test, I before II

Weights for the weighted sum heuristic. Figure 18 shows the ratio between the

weights for which feasibility was obtained for heuristics 1 and 3 when applied to FLEI.

The diagram shows that integer feasibility is successfully achieved by the mechanism of

41

our choice rules, simply by placing sufficient emphasis on this goal within the

framework of these rules.

Ratio test. See Section 8.1 (Target Analysis) for a brief discussion on finding good

parameters for this test.

Aspiration. Contrary to our expectation, experimentation showed that aspiration

by integer infeasibility levels did not help in the quest to produce better solutions. In

fact, this type of aspiration had an adverse effect on solution quality and on the ability

to find feasible solutions. The effect became more pronounced as the number of

aspiration levels was increased. In retrospect, the reason for this behavior is probably

that moves accepted by this criterion are of type II and III. As we have noted, type II

moves pull the search away from the feasible region, and this tends to impair the

success of the method.

By contrast, the use of aspiration by objective function value levels worked quite

well. This type of aspiration tends to favor acceptance of type I and type III moves,

which guide the search toward the feasible region. We use the best feasible solution

value found so far as a threshold value, so that moves resulting in an objective function

value lower than this best value are not screened by this aspiration criterion. (For

moves that do not produce feasible solutions, this threshold is evidently weaker than

the related aspiration test often applied in settings where all steps are feasible.) As

indicated in section 5.3, this type of threshold proved to be quite advantageous.

Rejection of Degenerate Moves. By degenerate moves, we mean type III moves

where both ∆z(h) and ∆u(h) are zero. These moves often occur in bunches, and our

1 3/11/3
∆u∆z

∆u
∆z

Feasibility
Obtained

Figure 18. Weights and Feasibility

42

experience is that they should be accepted only rarely. The rejection of (most)

degenerate moves does not in general lead to better solutions, but the number of

iterations required is reduced, and the tabu list is not clogged with ineffectual moves.

Normalization 2 for the ratio test. Normalization 2 is not effective during the

initial descent phase, as it needs a value for the best feasible solution found so far.

Also, since we are exploring the full neighborhood for our candidate list, the

suggestion of expanding the candidate list when obtaining low values for

Normalization 2 is also not applicable. (For larger or computationally more expensive

problems, of course, a more selective form of candidate list would be appropriate.)

When Max(R1(h1), R2(h2)) is somewhat less than −1, however, this can be used

as an indicator that the method is confronted by an inferior search region, and a

diversification of the search may be fruitful.

First-Level TS parameter values. All tests were done with a dynamic tabu list

length size starting at 5 or SQRT(N) , whichever is larger, where N is the number of

integer variables. The list size is then varied randomly between this number and 2 ∗

SQRT(N) , every 10 iterations. Aspiration is by Objective Function Value Levels, and

new best detected, with a threshold at 0.9 LP*. Degenerate moves are accepted with a

probability of 0.1. The exponents p and q were both set to 1. The axis skew factor, w,

was set to 1 for the ratio test. The value of w was halved and the method was restarted

if a long run of at least 2*N integer infeasible iterations occurred. Weights for the

weighted sum were set at 3 to 1 in favor of the integer infeasibility measure. Up to

10*N iterations were allowed per problem. We did not seek to tailor the tabulist

lengths and the other search parameters for each of the component problem sets

separately. We note, however, that each of these sets has its own features and

customary practice in the literature has been to develop “fine tuned” parameters to

exploit these differences. Since our method is a general purpose procedure, we felt it

was more appropriate to use the same parameters for each test bed.

Results for First-Level TS. Table II shows the results obtained for the 57 test

cases for the weighted sum and ratio test evaluation functions. We found the ratio test

heuristic to be somewhat superior to the weighted sum heuristic. This is probably due

to the inherent problem of scaling, or establishing compatibility, of the two rather

43

diverse measures of integer infeasibility and the objective

function value, which the ratio test conveniently gets

around.

Both heuristics perform better on the smaller test

cases than on the large ones. This is as should be

expected, since none of the elements of diversification are

built into this first-level testing.

Results for the two additional heuristics derived

from the two main heuristics (see Section 3.3) gave

results comparable to those is reported in table II.

11.2 Results for Probabilistic TS

Probabilistic move acceptance. The first objective

was to find a good value, or range of values, for p, the probability threshold for

accepting a move, as outlined in Section 6. The results for varying p over the range

from 0 to 1 in 0.1 intervals are shown in Table III. The chosen test case is PB4, for

which the first-level TS fails to find the optimum. (The first-level test is represented in

the table by p = 1.) We show the best achieved values for 10*N iterations, and 20*N

iterations, since the probabilistic TS should need more time than the first-level TS,

being less focused. The values for p of 0.25 and 0.35 were added to give extra

resolution around the best area.

As can be seen from the table, good values for p for this problem lie in the range

0.3 to 0.4. Larger values for p lead to inferior solutions when compared to the

deterministic variant. This is probably because too many potentially good moves are

thrown away, while at the same time not obtaining enough diversification. At the other

end of the scale, with values of p from 0.2 and down, too few good moves are chosen

to focus the search properly. Figure 19 compares the search progress for the best (p =

0.3) probabilistic case for PB4 vs. the deterministic case. The plot shows the best

feasible solutions visited in each implementation.

p 10*N 20*N
1.0 90909 91935
0.9 90909 91935
0.8 90615 90909
0.7 91935 91935
0.6 90909 90909
0.5 89659 90909
0.4 90858 93118
0.35 92506 92506
0.3 90008 94965
0.25 90909 90909
0.2 87937 88724
0.1 90615 90615

Table III. Probabilistic TS for PB4

44

Problem M*N LP IP Weighted
Sum

Ratio
Test

PET1 10*6 4134.07 3800 3800 3800
PET2 10*10 92977.1 87061 87061 87061
PET3 10*15 4127.9 4015 4005 4015
PET4 10*20 6155.3 6120 6090 6120
PET5 10*28 12462.1 12400 12360 12380
PET6 5*39 10672.3 10618 10618 10618
PET7 5*50 16612 16537 16457 16470
PB1 4*27 3144.3 3090 3077 3090
PB2 4*34 3261.3 3186 3093 3186*
PB3 2*19 32612.1 28642 28642 28642
PB4 2*29 99622.7 95168 95168 90909**
PB5 10*20 2221.3 2139 2102 2139**
PB6 30*40 843.3 776 723 729**
PB7 30*37 1086.2 1035 1035 1033**
WEING1 2*28 142019 141278 140543 141278
WEING2 2*28 131637.5 130883 130883 130883
WEING3 2*29 99647.1 95677 95677 95677
WEING4 2*28 122485.3 119337 110667 119337
WEING5 2*28 100433.1 98796 98631 98796
WEING6 2*28 131335 130623 130233 130623
WEING7 2*105 1095741 1095445 1095445 1095445
WEING8 2*105 628773.7 624319 617715 624319*
HP1 4*28 3472.3 3418 3418 3418*
HP2 4*35 3261.8 3186 3159 3186
WEISH01 5*30 4632.3 4554 4525 4554
WEISH02 5*30 4592.7 4536 4536 4536
WEISH03 5*30 4177.8 4115 4115 4115
WEISH04 5*30 4611.01 4561 4561 4561
WEISH05 5*30 4530.8 4514 4514 4514
WEISH06 5*40 5585.2 5557 5494 5557
WEISH07 5*40 5601.9 5567 5567 5549**

Problem M*N LP IP Weighted
Sum

Ratio
Test

WEISH08 5*40 5631.6 5605 5519 5603
WEISH09 5*40 5254.9 5246 5246 5246
WEISH10 5*50 6347.2 6339 6338 6339
WEISH11 5*50 5688.2 5643 5643 5643
WEISH12 5*50 6395.7 6339 6339 6339
WEISH13 5*50 6241.1 6159 6159 6159
WEISH14 5*60 7018.3 6954 6954 6954
WEISH15 5*60 7518.3 7486 7486 7486
WEISH16 5*60 7314.02 7289 7287 7287
WEISH17 5*60 8656.6 8633 8619 8633
WEISH18 5*70 9603.7 9580 9580 9565
WEISH19 5*70 7756.9 7698 7663 7667
WEISH20 5*70 9477.9 9450 9450 9450
WEISH21 5*70 9110.5 9074 9024 9074
WEISH22 5*80 9004.2 8947 8876 8868
WEISH23 5*80 8392.1 8344 8216 8344
WEISH24 5*80 10232.8 10220 10088 10220
WEISH25 5*80 9964.7 9939 9913 9928
WEISH26 5*90 9641.6 9584 9496 9532
WEISH27 5*90 9849.7 9819 9772 9718
WEISH28 5*90 9514.2 9492 9492 9492
WEISH29 5*90 9429.03 9410 9369 9309
WEISH30 5*90 11194.5 11191 11146 11146
FLEI 10*20 2221.8 2139 2139 2139*
SENTO1 30*90 7839.3 7772 7719 7719*
SENTO2 30*60 8773.2 8722 8721 8702

Optimal solutions in bold

* w reduced to 0.5

** w reduced to 0.25

Table II. Computational Results.

45

Similar tests for other problems showed the same pattern,

with good values for p being between 0.3 and 0.5, so an overall

value of p = 0.4 was chosen for further testing.

One important finding from our preliminary testing was that

low values of p make it more difficult to obtain integer feasibility.

This is due to the fact that good moves are too often rejected

that contribute to the reduction of integer infeasibility. Searches

that experience this problem could either use a larger

value for p, or a lower value for w.

It is also more important in a probabilistic TS approach based on ranking to have

good aspiration criteria, since good solutions in the neighborhood are even less likely

to be visited than in the deterministic case, and should be actively culled out.

Probabilistic move acceptance with no tabu memory. We also investigated the

conjecture that the probabilistic move acceptance scheme should work without any

tabu memory, solely relying on biased randomization as guidance. Table IV shows the

results for PB4 for various values of p with a tabu list length of 1 (chosen to avoid

direct move reversals). As can be seen, for values of p in the range 0.4 to 0.6, this

scheme obtains the same results as the first-level tabu search approach, though inferior

to the probabilistic tabu search approaches with memory. It is also evident that the best

p 10*N 20*N
0.9 84730 84730
0.8 84730 84730
0.7 89659 89659
0.6 90909 90909
0.5 90909 90909
0.4 90909 90909
0.3 90615 90615
0.2 90909 90909
0.1 88030 90615

75000

80000

85000

90000

95000

0 100 200 300 400 500 600

Iteration

O
b

j.
F

u
n

c.
 V

al
u

e

p=1

p=0.3

Fig 19. Search progress for PB4 with p = 0.3 and p = 1

Table IV. No tabu tenure for PB4

46

relative results are obtained for few iterations, as the extra

search effort expended when going from 10*N to 20*N

iterations only yields marginally better outcomes.

This method is extremely simple and efficient to

implement, and can be used in settings where one just

wants to spend a small number of iterations, or where

the tabu attributes might be difficult to identify or

separate.

We note that the tabu tenure of 1 for the “almost

memoryless” case may be a stronger restriction in the

present setting than in many others, since preventing the reversal of a single pivot step

may cause the only paths for reaching the preceding solution to consist of multiple

pivots, depending on the polyhedral structure of the problem. Consequently, a larger

tenure may be appropriate to obtain similar results with probabilistic tabu search in

other applications.

Probabilistic tabu tenure. As stated in Section 6, dynamic tabu lists have been

used extensively in the literature. Usually the dynamic element has been achieved by

varying the tabu list length between fixed or random bounds, in a fixed or random way.

Our proposed scheme achieves the same effect, but more smoothly, making the

dynamic tabu tenure span of each variable (or attribute) much larger. We conceive that

this may in turn contribute more effectively to diversification and loop avoidance than

the usual methods. The present method is also more convenient for assigning

individualized probabilistic tabu tenures, as can be useful if the individual attributes can

be identified according to the degree that they qualify as consistent or strongly

determined. (Consistent attributes are those that receive their preferred values a larger

fraction of the time, while strongly determined attributes are those that cause the

solution quality or structure to be more greatly hurt by changing to other values. These

notions depend on context, as in relation to solutions grouped by cluster analysis.)

Table V shows the results for various lengths of the first-level tabu list, suggesting

that the relation between the first-level tabu tenure and probabilistic tabu tenure indeed

is as anticipated: TLP = 3*TLD. The test case used is again PB4, which for the first-

level TS uses a tabu list length of 6, obtaining a best value of 90909. Slightly better

Table V. Probabilistic tabu

list lengths for PB4.

TL 10*N
4 89969
5 90909
6 90909
7 89784
8 91670
9 91000
10 90615

47

results are obtained for some of the longer lists, but tests with other test cases

supported the merit of using the first-level tabu length value.

Probabilistic TS and SO. We tried probabilistic move acceptance together with

strategic oscillation as outlined in Section 6.3. The function of the SO is here to bias

the ranking of the available moves of type I and II to favor either integer feasibility

(move type III and I) or to favor objective function value (move type III and II).

Results for Probabilistic TS. We ran two series of tests for each test case, one

running for 10*N iterations, to compare the results with those obtained for the first-

level TS, and the other for 20*N iterations to check the assumption that probabilistic

measures need more search time, as the search tends to be less focused. The results are

reported in Table VI and VII respectively.

The tests for probabilistic move acceptance use p = 0.4 , and are reported under

the column PMA. The column PMA0 reports the probabilistic move acceptance

without tabu memory, also with p = 0.4, while PTT reports probabilistic tabu tenure

results using the same first-level tabu list length as for the first-level TS. PSO reports

Table VI. General test results, 10*N iterations

Problem M*N LP IP First-
level TS

PMA PMA0 PTT PSO

PET5 10*28 12462.1 12400 12370 12380 12390 12360 12400
PET7 5*50 16612 16537 16507 16468 16494 16468 16468
PB4** 2*29 99622.7 95168 90909 93118 90909 90909 95168
PB6** 30*40 843.3 776 723 765 729 745 765
PB7** 30*37 1086.2 1035 1033 1035 1011 1021 1011
WEISH07* 5*40 5601.9 5567 5525 5542 5541 5541 5567
WEISH08 5*40 5631.6 5605 5603 5603 5605 5603 5592
WEISH16 5*60 7314.02 7289 7287 7287 7288 7287 7287
WEISH18 5*70 9603.7 9580 9565 9565 9565 9565 9580
WEISH19 5*70 7756.9 7698 7674 7698 7674 7623 7661
WEISH22 5*80 9004.2 8947 8851 8947 8908 8856 8947
WEISH25 5*80 9964.7 9939 9923 9923 9923 9923 9939
WEISH26 5*90 9641.6 9584 9532 9584 9584 9532 9532
WEISH27 5*90 9849.7 9819 9811 9819 9811 9780 9819
WEISH29 5*90 9429.03 9410 9410 9354 9378 9410 9410
WEISH30 5*90 11194.5 11191 11160 11191 11191 11146 11191
SENTO1* 30*60 7839.3 7772 7772 7719 7728 7761 7761
SENTO2 30*60 8773.2 8722 8711 8701 8722 8704 8698

48

probabilistic move acceptance together with strategic oscillation, with k = 1.9 and basic

oscillation frequency set to 2*N/3 (See Section 11.5). The symbol ‘*’ indicates that w

= 0.5, while the symbol ‘**’ indicates w = 0.25. Optimal values are indicated in bold.

(The slight discrepancy between the results obtained here and those reported for the

first-level TS are due to a change in the random number generator used.)

As can be seen from the tables, the use of probabilistic measures for the move

selection function improves the general solution quality. The use of a probabilistic tabu

tenure, by contrast, gave the same type of result as the first-level tabu search approach

of our earlier study. This is to be expected, since the first-level tabu search approach

also incorporates a measure of controlled randomization, which has been designed to

appropriately reflect the amount of tabu influence.

The tables also disclose the expected outcome that solution quality is clearly

correlated with the number of iterations. The tables do not reflect the observation,

however, that the probabilistic move acceptance methods find good solutions very

quickly compared to the first-level TS approach. This is especially true when no tabu

Table VII. General test results, 20*N iterations

Problem M*N LP IP First-
level TS

PMA PMA0 PTT PSO

PET5 10*28 12462.1 12400 12370 12400 12390 12390 12400
PET7 5*50 16612 16537 16524 16508 16524 16468 16468
PB4** 2*29 99622.7 95168 90909 93118 90909 90909 95168
PB6** 30*40 843.3 776 723 765 729 745 765
PB7** 30*37 1086.2 1035 1033 1035 1011 1021 1011
WEISH07* 5*40 5601.9 5567 5525 5567 5541 5541 5567
WEISH08 5*40 5631.6 5605 5603 5603 5605 5603 5603
WEISH16 5*60 7314.02 7289 7287 7287 7288 7287 7288
WEISH18 5*70 9603.7 9580 9565 9580 9565 9580 9580
WEISH19 5*70 7756.9 7698 7698 7698 7674 7674 7698
WEISH22 5*80 9004.2 8947 8886 8947 8908 8886 8947
WEISH25 5*80 9964.7 9939 9928 9928 9923 9923 9939
WEISH26 5*90 9641.6 9584 9532 9584 9584 9542 9578
WEISH27 5*90 9849.7 9819 9819 9819 9811 9780 9819
WEISH29 5*90 9429.03 9410 9410 9354 9410 9410 9410
WEISH30 5*90 11194.5 11191 11191 11191 11191 11181 11191
SENTO1* 30*60 7839.3 7772 7772 7719 7772 7761 7761
SENTO2 30*60 8773.2 8722 8711 8701 8722 8704 8722

49

memory is employed, but the method without memory has difficulty in improving on

those early good solutions.

Since the “no memory” method actually employs a tabu tenure of 1, these

outcomes suggest the relevance of using a progressively varying tenure for

probabilistic tabu search, which begins very small to find high quality solutions rapidly,

and then gradually enlarges. A periodic return to very small tenures, particularly at the

conclusion of diversification steps, likewise would appear useful, based on our

findings.

Combining probabilistic move acceptance with a simple strategic oscillation scheme

(to alter the move evaluation function) works very well, though occasionally its

outcomes are not quite as good as the best obtained by our other approaches.

We also checked our heuristics against some of the presumably easier cases solved

by the first-level TS approach, and found results similar to those reported above.

11.3 Including Intensification by Locking Variables

Whenever a new incumbent z* is found, we introduce an intensification component

that seeks to lock variables at their upper or lower bounds. This locking derives from

the TS notion of exploiting influential or strongly determined variables (Glover,

1977), which in its original form is designed to be carried out in phases, on an

intermediate term basis, allowing variables to be unlocked over the longer term and

replaced by alternative candidates for locking. In our application, we instead applied a

simple version that locks a variable permanently if it satisfies a particular threshold

rule. The rule compares the relative profit (or reduced cost) of each variable at LP

OPT with the gap between the objective function value at LP OPT, zOPT, and z*. The

reduced cost, dj, for variable xj, is calculated as follows:

d c u aj j i
i M

ij= − ∗
=
∑

1,

where the ui are the shadow prices. Then, if a variable xj is at its upper bound, it can be

locked at 1 if

dj ≥ zOPT - z*

On the other hand, if xj is at its lower bound, it can be locked at 0 if

-dj ≥ zOPT - z*

50

The concept of locking variables may at first be imagined to be simply a time-saver.

However, the effect is more profound. In essence, it serves to create a form of

combinatorial implosion, by reducing the number of combinatorial possibilities in a

manner exactly opposite to the increase of such possibilities created by the effect of

combinatorial explosion. This means the search can focus on a subspace where the

chances of finding an optimal solution (relative to that space) are greatly enhanced. In

our case, the rules we applied for locking variables, combined with TS, had a

significant effect on both the efficiency of the search, and on the quality of the

solutions obtained. The first-level TS search mechanisms outlined in Sections 1 to 5,

with the intensification mechanism of locking applied, actually found the optimum in

15 of the 18 remaining test cases, and ultimately locked up to 87% of the integer

variables (79 out of 90 for WEISH29), usually in a relatively small number of pivots.

For the remaining 3 test cases; PET7, PB4, and PB6, the gap was either too big to

allow any locking at all for the values of z* obtained, or too few variables got locked

to have any effect. Anticipated reasons for these results are that the TS did not have to

spend search effort trying variables that already had their proper values, and that the

TS in itself is able to give high-quality solutions that are able to reduce the gap

sufficiently to let locking have an effect.

The only alteration to the search parameters required to accompany the locking of

variables, was to dynamically reduce the length of the tabu list to reflect the smaller

number of variables, with the new value being

TLLnew= TLLorg * SQRT(Nnew /N)

where Nnew identifies the number of remaining integer variables.

It is also interesting to notice, with reference to Table I, that the problems for

which locking had little or no effect were among those that have the largest distance

between the LP OPT and the 0/1 MIP optimum solution.

Based on these findings, we chose to include the variable locking strategy in our

general procedure for the remaining test problems. We note that it is entirely possible

to extend the strategy to determine candidates for locking by making use of penalty

calculations for basic variables as well as nonbasic variables, and by incorporating

strategic thresholds other than determined by reference to zOPT (particularly where the

search suggests that a significant duality gap may occur). In the latter case, the

candidates can appropriately be identified relative to reduced costs at extreme points

51

other than an LP optimal extreme point, including for example the extreme points for a

few of the best MIP feasible solutions found. Then, by estimating the maximum

improvement in the current solution that might be contributed from the profitable

nonbasic variables, a threshold for reduced costs of other nonbasic variables can be

imposed. Since our goal at this stage was primarily to establish a "proof of concept"

for applying the variable locking strategy, we restricted our implementation to the

simple one that only makes reference to an LP optimal point.

11.4 Results for Strategic Oscillation

We tested SO both by parametric evaluation and by altered choice rules, as

outlined in Sections 7.1 and 7.2, respectively. The tests were based on the first-level

TS, and were run for 20*N iterations, with results shown in Table XI.

SO by parametric evaluation. For these tests we used the Alternating Integer

and Cost Priority scheme. This version of SO is controlled by two parameters, the

emphasis shift, p, and the Oscillation Frequency, fso. To find out good values for the

pair of parameters, we ran similar tests on PET7 and PB4. The results are shown in

Tables II and III for selected values of p in the range 1.2 to 1.95 and fso in the range

N/2 to 2*N. The average of the best values found for the various parameters are also

shown. These results indicate p = 1.9 and fso = 2*N/3 as good general values to use in

further testing.

SO by altered choice rules. This can be considered an intensified version of SO by

parametric evaluation, in that the value of the parameter p can be considered to be

given only the values of 0 and 2, driving the preferences to the extreme in both

directions alternately. The only parameter we need to consider in this case is thus the

SO frequency. Preliminary testing showed no clear pattern, but it seems advisable to

1.2 1.5 1.9 1.95 Average
N/2 16499 16508 16510 16537 16514

2*N/3 16524 16519 16524 16499 16517
N 16472 16504 16499 16537 16503

3*N/2 16518 16507 16510 16499 16509
Average 16503 16510 16511 16518

1.2 1.5 1.9 1.95 Average
N/2 91935 91935 91670 94308 92462

2*N/3 90909 90909 94965 91721 92126
N 90909 90417 94308 90909 91635

3*N/2 90909 91935 95168 94308 93080
Average 91166 91299 94028 92812

Table VIII. SO values for PET7 Table IX. SO values for PB4

52

avoid values for fso too close to N, and a value for fso = 2*N/3 again gives a good

result.

11.5 Results for Diversification

As stated in Section 8.1, penalizing time spent in the basis did not give the desired

diversification effect. Diversification based on penalizing the move value is also

awkward, as there is no comparable measure for the different move types, and such a

scheme would have its primary effect only within each move type group.

The application of Target Analysis (see Section 9) to this facet of the problem

indicated another avenue of approach, namely diversification by intensification (based

on including promising variables), as outlined in Section 8.2. For this approach, good

values for the following three parameters need to be determined:

Div-Delay - Diversification Delay. Iterations between diversification

 attempts.

DPT - Diversification Pull Time. Max. no. of iterations to try to pull

 the selected variable through the basis and out at the desired

 bound.

DTT - Extra Diversification Tabu Tenure. Extra number of iterations

 to keep the selected variable tabu for entering the basis again.

Preliminary testing disclosed that it always took less than N iterations to pull the

selected variable through the basis and out at its upper bound. The value used for later

tests was DPT = N+M, with the purpose of aborting diversification attempts using

excessively long time. Similarly, we found that a value of DTT ≥ 2*N, yielded the best

results. Table X shows the results for varying Div-Delay over the range n to 6*N. As

can be seen, the best values are obtained for Div-Delay in the range 1.5*N to 3*N.

Div -
Delay

PET7 PB4 PB6

N 16519 94461 723
1.5*N 16519 95168 776
2*N 16519 95168 723
2.5*N 16470 92414 776
3*N 16519 94308 776
4*N 16490 94308 723
5*N 16513 94308 723
6*N 16517 94308 723

Table X. Diversification

53

Results for SO and Diversification. Table XI shows the overall computational

results for the remaining test cases where the optimum was not found by the first-level

TS of Section 1 or by the locking of variables as described in Section 11.3. We ran all

the tests for 20*N iterations, as the proposed scheme needs more search time than the

first-level TS. The test for SO by parametric evaluation is reported under the column

SO - param, with a value of p = 1.9 and fso = 2*N/3. The column SO - choice reports

the results for SO by altered choice rules, also with fso = 2*N/3, and DIV reports the

results from the diversification tests, with Div-Delay = 1.5*N, DTT = 2*N and DPT = N.

The symbol ‘**’ indicates w = 0.25. Optimal values are indicated in bold, and italics

indicates improvements over the first-level TS.

As is evident from Tables VIII and IX, better solution values can be obtained by

tailoring the search parameters to each test case. We also checked our heuristics

against some of the presumably easier cases solved by the first-level TS approach, and

found results similar to those reported above.

12. Conclusions
The preceding strategic elements for solving zero-one mixed IP problems can be

combined in a variety of ways. The fundamental theme of these observations is that

extreme point solution processes have features that are highly exploitable by tabu

search methods, and that this exploitation introduces novel considerations for

balancing tradeoffs between different aspects of feasibility and optimality. We

anticipate that these considerations, and the specific strategies derived from them, can

be usefully adapted to create associated tabu search methods for solving other

problems in which optimal solutions likewise occur at extreme points, as where the

goal is to minimize a concave function over a convex polyhedral set.

Problem M*N LP IP First-
level TS

SO -
param

SO -
choice

DIV

PET7 5*50 16612 16537 16524 16524 16537 16519
PB4** 2*29 99622.7 95168 90909 94965 94308 95168
PB6** 30*40 843.3 776 723 765 765 776

Table XI. Overall computational results

54

Our approaches gets results comparable to, and in some cases better than,

solutions for the multiconstraint knapsack problem obtained by special purpose

heuristics designed to take advantage of the special structure of these problems, even

though our heuristics are designed to solve general zero-one mixed IP problems, and

no problem specific knowledge is embedded in our system.

We have also shown how simple probabilistic measures can be used to improve a

first-level TS significantly, enhancing diversifying aspects of the search. The use of

probabilistic move acceptance is especially important if the move evaluation function is

contaminated by noise or contains elements not directly related to the objective

function value. We have also shown how a simple ranking scheme can give superior

results when the move evaluation function is difficult to compare numerically for

different parts of the search neighborhood. Our approach, which does not depend on

any “deep formula,” is appealing in its simplicity, and is easily incorporated into other

TS designs.

It is also noteworthy that we obtained relatively good – although not our best –

results from the “degenerate” version of the probabilistic move acceptance method,

where we abandoned tabu memory altogether (apart from the single iteration memory

that prohibits an immediate move reversal). This approach appears useful when it is

imperative to find good solutions quickly, or when tabu attributes might be difficult to

identify or separate. These outcomes further suggests the value of combining the

probabilistic design with a variable tabu tenure that periodically receives much smaller

values than customarily envisioned to be relevant. Our findings indicate that an

additional stipulation deserves to be added to the hypothesis that probability,

appropriately used, may partly substitute for the role of memory. Apparently, the right

use of probability can also enhance the effectiveness of memory.

Our results show how the relatively simple measures described for strategic

oscillation and diversification can be used to improve a first-level TS significantly. The

potent effect of the simple locking mechanism is also intriguing. This is a clear

indication of the importance of being able to identify consistent or strongly determined

variables. The outcome of locking can also be viewed as an indicator of the importance

of the combinatorial implosion effect, when based on an intelligent use of information.

The application of Target Analysis was instrumental in guiding us to identify such

information (though we may not have found all forms of information that would be

55

relevant), and also was useful for illuminating the appropriateness of strategic

oscillation. The mechanisms outlined here are easily combined, as is seen in Section 6.3

where SO by parametric evaluation is successfully combined with probabilistic move

acceptance.

Our proposed schemes are all restricted to work within the basic simplex extreme

point pivoting framework. Further improvements are anticipated to be available by

going beyond this restriction, e.g. by adaptive rules for directly assigning values to

integer variables, and also by using more sophisticated candidate list strategies. Our

ideas can be exploited in connection with interior point methods by making use of

rounding and by incorporating an evolving network of reference points as in scatter

search (Glover, 1977, 1996). Opportunities also exist to take advantage of cutting

planes, to create a "search and cut" basis for our TS approach. (The TS memory

structures suggest the use of strategies that impose potentially invalid cuts which may

be discarded and "forgotten" as the search progresses.) We are currently exploring

these avenues.

References
Aboudi R., and Jörnsten, K. (1994), “Tabu Search for general Zero-One Integer

Programs using the Pivot and Complement Heuristic”, ORSA Journal of
Computing, 6/1, 82–93.

Balas, E., and Martin, C. (1980), “Pivot and Complement - a Heuristic for 0-1
Programming”, Management Science 26/1, 86–96.

Cabot, A.V., and Hurter, A. P. (1968), “An Approach to Zero-One Integer
Programming”, Operations Research 16, 1206–1211.

Connolly, D. (1992), “General Purpose Simulated Annealing”, Journal of the
Operational Research Society, 43/5, 495-505.

Dammeyer F., and Voss, S. (1993), “Dynamic tabu list management using the reverse
elimination method”, Annals of Operations Research 41, 31–46.

Dowsland, K. A. (1993). “Simulated Annealing”, in: C. Reeves, (ed.), Modern
Heuristics for Combinatorial Problems, Blackwell Scientific Publishing

Drexl A. (1988), “A Simulated Annealing Approach to the Multiconstraint Zero-One
Knapsack Problem”, Computing 40, 1–8.

Gent, I., and Walsh, T. (1994), “How Not To Do It”, Presented at the AAAI
Workshop on Experimental Evaluation of Reasoning and Search Methods.

Glover, F. (1968), “A note on Linear Programming and Integer Infeasibility”,
Operations Research 16, 1212–1216.

56

Glover, F. (1977), “Heuristics for Integer Programming Using Surrogate Constraints”,
Decision Sciences, 8/1, 156–166.

Glover F. (1989). “Tabu Search - Part I”, ORSA Journal of Computing. 1/3, 190-206.

Glover, F. (1995a), “Tabu Thresholding: Improved Search by Nonmonotonic
Trajectories”, ORSA Journal on Computing, 7/4, 426-442.

Glover, F. (1995b), “Tabu Search Fundamentals and Uses”, Graduate School of
Business, University of Colorado (shortened version published in Mathematical
Programming: State of the Art, Birge and Murty, eds., University of Michigan
Press, 1994)

Glover, F. (1996), “Tabu search and Adaptive Memory Programming - Advances,
Applications and Challenges”, Interfaces in Computer Science and Operations
Research, Barr, Helgason and Kennington, eds., Kluwer Academic Publishers,
1–75.

Glover, F. and Greenberg, H. (1989). “New approaches for heuristic search: A
bilateral linkage with artificial intelligence”. European Journal of Operations
Research 39, 119–130.

Glover, F., and Laguna, M. (1993), “Tabu Search”, in: C. Reeves, (ed.), Modern
Heuristics for Combinatorial Problems, Blackwell Scientific Publishing.

Glover, F. and McMillan, C. (1986). The General Employee Scheduling Problem: An
integration of MS and AI. Computers and Operations Research, Vol 13. No. 5. pp
563-573.

Glover, F., Taillard, E., and de Werra, D. (1993), “A User’s Guide to Tabu Search”,
Annals of Operations Research, 41, 3–28.

Hart, J. P., and Shogan, A. W. (1987), “Semi-Greedy Heuristics: An Empirical Study”,
Operations Research Letters, 6/3, 107-114

Hooker, J. N. (1995), “Testing Heuristics: We Have It All Wrong”. Journal of
Heuristics, 1/1, 33-42.

Laguna, M., (1990). “The application of heuristic methods and artificial intelligence to
a class of production scheduling problems”, Ph. D. dissertation, University of
Texas at Austin.

Laguna M., and Glover, F. (1993), “Integrating Target Analysis and Tabu Search for
Improved Scheduling Systems”. Expert Systems With Applications, 6, 287–297.

Løkketangen, A., and Glover, F. (1995), “Tabu Search for Zero/One Mixed Integer
Programming with Advanced Level Strategies and Learning”. International
Journal of Operations and Quantitative Management, 1/2, 89–108

Løkketangen, A. and Glover, F. (1996a), “Probabilistic Move Selection in Tabu Search
for 0/1 Mixed Integer Programming Problems”, in: J. Kelly and I. Osman (eds.),
Meta-Heuristics: Theory and Applications. Kluwer Scientific Publishers, 467−488.

Løkketangen, A. and Glover, F. (1996b), “Surrogate Constraint Analysis − New
Heuristics and Learning Schemes for Satisfiability Problems”, Proceedings of the
DIMACS workshop on Satisfiability Problems: Theory and Applications, D-Z. Du,
J. Gu and P. Pardalos, eds.

57

Løkketangen, A., Jörnsten, K. and Storøy, S. (1994), “Tabu Search Within a Pivot and
Complement Framework”, International Transactions of Operations Research,
1/3, 305–316.

Løkketangen, A., and Woodruff, D. L. (1996), “Progressive Hedging and Tabu Search
Applied To Mixed Integer (0,1) Multi-Stage Stochastic Programming”, Journal of
Heuristics, Vol 2, No 2, 111–128.

Marsten, R. E. (1989a), “XMP Technical Reference Manual”, XMP Software.

Marsten, R. E. (1989b), “User’s Manual for ZOOM/XMP”, XMP Software.

Mulvey, J. (1995), “Generating Scenarios for the Towers Perrin Investment Systems”,
Technical Report SOR Report, Princeton University, Department of Civil
Engineering and Operations Research, Princeton University, Princeton, NJ, to
appear in Interfaces.

Petersen, C.C. (1967), “Computational Experience with Variants of the Balas
Algorithm Applied to the Selection of R&D Projects”, Management Science 13,
736–750.

Ryan, J. (1995). “The Depth and Width of Local Minima in Discrete Solution Spaces”,
Discrete Applied Mathematics. 56/1, 75–82.

Senyu, S., and Toyoda, Y. (1968), “An Approach to Linear Programming with 0-1
variables”, Management Science 15, 196–207.

Shih, W. (1979), “A Branch and Bound Method for the Multiconstraint Zero-One
Knapsack Problem”, Journal of the Operational Research Society 30, 369–378.

Weingartner H.M., and Ness, D. N. (1967), “Methods for the Solution of Multi-
dimensional 0/1 Knapsack Problems”, Operations Research 15, 83–103.

