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ABSTRACT 

Integrative Population Analysis unties the learning process called target analysis and a 
generalized form of sensitivity analysis to yield improved approaches for optimization, 
particularly where problems from a particular domain must be solved repeatedly. The 
resulting framework introduces an adaptive design for mapping problems to groups, as 
a basis for identifying processes that permit problems within a given group to be solved 
more effectively. We focus in this paper on processes embodied in parameter-based 
definitions of regionality, accompanied by decision rules that extract representative 
solutions from given regions in order to yield effective advanced starting points for 
our solution methods. Applied to several industrial areas, our approach generates 
region_s and representations that give an order of magnitude improvement in the time 
required to solve new problems that enter the population and therefore makes the 
application of large scale optimization models practical in reality. 
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1 INTRODUCTION 

Many industrial applications of optimization involve a series of interrelated 
problems that represent goals associated with different individuals, companies 
or scenarios. In addition, these interrelated problems are not just "one shot" 
occurrences but must be addressed over time. Integrative Population Anal­
ysis provides a framework that enables successively encountered problems in 
such applications to be solved more effectively and efficiently. Our approach 
integrates a refinement of the learning process of target analysis with a gener­
alization of the mathematical programming process of sensitivity analysis. 

Integrative Population Analysis characteristically deals with problems that be­
long to a common class or that arise from a common underlying model. The 
context for these problems has an importance that is sufficiently encompassing, 
or sufficiently enduring, to require a significant number of problem instances to 
be solved. The goal of providing improved methods to operate in such settings 
is far from new. However, we provide a new design for achieving this goal that 
proves remarkably effective, based on combining and extending principles from 
artificial intelligence and mathematical optimization. 

Our approach begins by creating special groupings according to a notion of para­
metric proximity. The properties that characterize membership in a particular 
group are subject to redefinition over time and the parameters that define these 
properties are a function of both problem data and problem structure. 

We may illustrate some of the relevant concerns by reference to several indus­
trial applications. The first application is on flexible manufacturing systems. 
Consider the situation where products are to be manufactured each day accord­
ing to specific requirements of customers. The associated machine scheduling 
problem has to be solved again and again whenever a new product is ordered. 
These machine scheduling problems differ in the values of their parameters, but 
otherwise exhibit similar structures. The solutions to some of these problems 
may resemble each other in various ways, while the solutions to other prob­
lems may be unrelated. Another application is on marketing strategy design 
where the preference patterns of customers need to be uncovered. In this case, 
we need to look at the population of problems that maximize individual cus­
tomers' utility functions. Again these problems share similar structures but 
differ in the specification of preference functions and the available financial re­
sources of individual customers. Finally, we can apply Integrative Population 
Analysis to product customization. This allows a firm to identify new products 
that can be created to service different customer segments. Common customer 
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characteristics can be determined so that the a firm's existing strengths can be 
used to develop products that will attract new customers. 

To take appropriate advantage of shared features of problems and solutions, 
we are prompted to ask the following questions. On what basis can we usefully 
characterize the individual problems as similar or dissimilar? How can we 
uncover properties of solutions or solution processes for similar problems that 
will allow us to solve their problems more effectively? How can we assure a 
design that will be robust and respond to changing conditions? These issues 
will be discussed in this paper both in a general context and in the context 
of the several industrial applications just described. The implications of our 
approach extend beyond the immediate boundaries of such applications, and 
are relevant to determining policies for supporting undertakings. 

To set the stage for presenting the tools and special features of Integrative Pop­
ulation Analysis, we first examine some of the areas that create an important 
need for its applications. We then present a description of the key properties 
of IPA in Section 2, and discuss how it can be applied to enhance the computa­
tional efficiency of practical optimization processes in Section 3. We conclude 
with an examination of future directions in the final section. 

1.1 Applications for IPA 

IPA can be applied to any problem that has many instances that have to be 
efficiently solved. These problems can occur in many industrial situations, 
especially in industrial marketing and design. One area that motivates the 
need for Integrative Population Analysis is product differentiation, especially 
in an industrial setting. By an industry we mean a group of firms which produce 
goods that are close substitutes in consumption. Consumers choose goods from 
different firms based on combinations of certain product features. If a particular 
combination of features is highly attractive to customers but unavailable, new 
enterprises that are capable of providing such features are encouraged to enter 
the market. For this reason, companies that have monopoly power customarily 
seek to offer a wide range of product features to block opportunities for new 
entrants that may otherwise compete with them. The major players in the 
soft drink industry, for example, provide numerous variations of their basic 
products to serve people with different tastes. At the same time, a small 
start-up company that successfully perceives and responds to an opportunity 
overlooked by the entrenched leaders can sometimes reap considerable rewards. 
Examples of this abound in markets ranging all the way from ice cream to 
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computer software. It is clearly important for companies, large or small, to 
analyze the market in order to survive and prosper. Integrative Population 
Analysis increases the scope and effectiveness of such studies. 

Product differentiation [15, 14] can be expressed along many dimensions. For 
example, Golden Delicious apples differ from Macintosh apples in their juici­
ness, tartness, sweetness, color, texture, and so forth. When apples on the 
market neglect to offer a feature that a significant number of people prefer, 
these individuals will switch to a new brand that more adequately meets their 
preferences, thus creating an opening for such a brand to emerge. Lancaster 
[19] was the first to analyze such a situation. 

To illustrate, and to establish connections with concerns that will shortly be 
elaborated in greater detail, we consider goods with only two characteristics, 
such as apples with characteristics Sw and So (Sweetness and Sourness). The 
first quadrant in Figure 1 depicts the space of characteristics that represent 
various types of apples. The quantity of each characteristic is measured along 
each axis. For example, type C Apple offers three units of sourness for every 
two units of sweetness. The other rays represent other types of apples which 
have different So/Sw ratios. Here we have five types. 

An efficiency frontier identifies the maximum amounts of characteristics the 
consumer can obtain with a given level of expenditure. To derive this frontier, 
we require some standard assumptions that are not entirely realistic in all 
situations. Nevertheless, they are sufficiently well approximated under many 
conditions to allow us to rely on them for our preliminary analysis. 

The first step is to find out how many units of each variety the consumer would 
obtain in separate transactions by devoting his total apple budget to buying 
a single variety at a time. This is found by dividing the apple budget by the 
price per apple in each case. The result gives a number of units which can be 
measured as a distance along each of the rays of Figure 1. These are shown as 
the points a, b, c, d and e in Figure 1. 

The efficient frontier then joins successive points that lie on the outer perimeter 
to produce the convex hull of these points. Therefore b cannot be connected 
with a and c because it lies strictly inside this outer perimeter. In fact, Type 
B apple's price is so high that it will not be bought since a combination of A 
and C will get more units of each characteristic at point w, which lies on the 
frontier. (The ability to create a "composite good" that corresponds to w is 
one of the basic assumptions of such analysis.) 
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1 2 3 

Figure 1 Utility maximization and market segmentation 

Individuals possess preference structures which give rise to indifference curves 
as in Figure 1. Two sets of indifference curves are present, one for each cus­
tomer group. The utility maximizing choice of consumption can be found by 
identifying the point at which the highest indifference curve is reached. 

Individuals will usually have different preferences for different characteristics. 
Preferences for certain ratios of characteristics may cluster in one or more parts 
of the space, leaving other parts of the space largely unoccupied. When this 
occurs, we say the market segments (i.e., becomes segmented). Products outside 
these segments will find few customers. If the market does not exhibit such 
segmentation, that is, if customers are allocated uniformly along the efficient 
frontier, the frontier still provides useful information. We will show how to 
exploit these classical conditions, and others that are more general, in our 
subsequent development. 

Continuing to lay the foundations that motivate the need for IPA, and that 
simultaneously introduce certain basic concepts to aid in understanding its 
characteristics, we turn next to the area of marketing strategy design. The 
first step is to understand the situation in which products will be accepted by 
customers, which requires an analysis of the nature of customer demands. This 
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leads us to a characterization that divides the population into neighborhoods 
or cohorts. 

For us, cohorts represent groups of customers who share certain common char­
acteristics (see section 2.4). A cohort is constructed in a manner that enables 
us to evaluate the desirability of various products for all customers that lie 
within it. We may find, for example, that members of a particular cohort will 
greatly benefit by a new type of home mortgage, but will benefit much less from 
a traditional mortgage. Such relationships have the advantage of allowing us 
to design a marketing strategy that matches existing products with the cohort. 
More particularly, it becomes possible to creat optimization models to exploit 
market differentiations based on these relationships. 

Another potential application area of IPA is in product customization, which 
is clearly related to product differentiation. For instance, different soft drinks 
are customized products that serve people with different tastes. An example 
that merits special consideration concerns investment. In the analysis of prod­
uct differentiation, if the two attributes underlying the analysis illustrated in 
Figures 1-3 include elements such as mean and variance of a portfolio, we can 
then investigate patterns of demand for financial products with different returns 
and risks. The classical building blocks for generating and exploring efficient 
frontiers, which we link to customer preferences, can be embedded simply and 
advantageously in our processes for characterizing cohorts. 

Once cohorts are defined via customer preferences, it becomes possible to "en­
gineer" new products based on our analysis of the usefulness of the engineered 
product. In the investment area, for instance, there is great interest in financial 
engineering - the creation and trading of novel securities. Integrative Popula­
tion Analysis provides a vehicle for assisting in the design of new products, by 
systematically evaluating the improvements for various segmented populations 
in ways not previously possible. 

1.2 Computational Speed of IPA 

Optimization problems in many practical settings are large or have attendant 
complexities such as nonlinearities, combinatorial structures and uncertainties. 
Size and complexity are often related, as where uncertainties can translate into 
special nonlinearities whose treatment includes the introduction of numerous 
variables and constraints. The solution of real world models in such settings 
typically involves a substantial investment of computation time. We begin by 
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focusing on the goal of reducing the real-time computing burden for solving 
such problems. 

To handle this situation with Integrative Population Analysis, we first face the 
challenge of mapping different problems into groups so that we can design a way 
to treat them more effectively based on this differentiation. In our present de­
velopment, for concreteness, we will devote our attention to a mapping strategy 
that derives from identifying multiple elite solutions to the problems considered, 
and grouping problems both in terms of their data parameters and in terms 
of certain characteristics of these elite solutions. These elite solutions allow us 
to more efficiently solve similar large-scale mathematical programming prob­
lems by providing us with better warm-start solutions. We stress that these 
characteristics are not defined in advance, and are not simply descriptive but 
functional. Specifically, the determination of membership within a common 
group will depend on the existence of a community of elite solutions, derived 
as a subset of the union of their separate elite solutions, such that problems 
in the group can be solved more efficiently by utilizing members of this elite 
community. Note the composition of an elite community rests on several no­
tions that must be clarified. We must specify, for example, what we mean by 
"utilizing'' members of the elite community. Subject to such clarifications, we 
see that problems of a common group may in fact vary substantially on many 
descriptive dimensions. Our concern is to unite them at the functional level 
of identifying ways to exploit them more effectively. At the same time, we 
anticipate that a connection exists between various problem parameters and 
such functional concerns, and we will show how to integrate the functional and 
parametric considerations in our following development. 

2 FUNDAMENTAL CHARACTERISTICS 
OF INTEGRATIVE POPULATION 
ANALYSIS 

2.1 Population Environment 

There are three environments for conducting our analysis. In the first situation, 
data for all the individuals of the population are known a priori. A thorough 
study can then be performed beforehand. In the second situation, data for 
the individuals arrive sequentially. We then must determine how to take ap­
propriate account of a growing body of information. In the third situation, 
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data for the individuals are unknown but sampling is possible. This leads to 
consideration of effective procedures for selecting such samples. 

2.2 Problem Formulation 

Let P be a population of agents (customers, investors, etc.). Each agent, pEP, 
has the following optimization problem to solve: 

(10.1) 

Let x; be an optimal solution to the problem and let 1; = /p(x;) be its opti­
mum objective value. For example, f(x;) represents a consumer's preference 
function at an optimal solution. We assume that these optimization problems 
are structurally related, as by representing instances of a particular problem 
class with different data sets. 

For a variety of applications, the feasible region Xp in (10.1) can be defined as 
a collection of linear inequalities summarized by: 

(10.2) 

where Ap is an m x n matrix, bp an m x 1 vector and Xp an n X 1 vector. (These 
inequalities typically include nonnegativity restrictions for the variables.) The 
prevalence of such applications leads us to focus on the linear inequality repre­
sentation to illustrate our development. 

The form of /p and the coefficients of Ap, bp may be determined by other pa­
rameters. For instance, a person's preference, habit, goals all depend on his or 
her wealth. They also depend on economic factors such as inflation, interest 
rates and stock prices. In a financial planning model, for example, a coefficient 
aii of A may be defined by: 

T 1.0 
aij = ~ (1 +p)' (10.3) 

indicating the present value of a dollar of income in each period t = 1, 2, ... , T. 
The parameter here is the interest rate p. 
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CHAPTER 10 

Formally, we define parameters as data that change independently while coef­
ficients of the optimization problems depend on them. In addition, coefficients 
that do not depend on any other parameters will themselves be considered pa­
rameters. Suppose there are L parameters, p1, p2, ... , PL· We stipulate that 
their special values p'{_, ~, ... , I{ determine the coefficients of Ap, bp and the 
form of /p as follows: 

hl(/t,~, ... ,pj.); 
hH/t, ~, ... , !{); 
h~(lt' ~' ... , J{). 

(10.4) 

(10.5) 
(10.6) 

A triple {A, b,!} can be considered as determined by a region in the parameter 
domain. That is, each instance {Ap, bp,/p} of the triple is determined by a 
particular p = {p'{_,~, ... ,pjJ in the parameter region, as shown in Figure 2. 
The subset Pn of P identifies an index set for problems whose parameters lie 
in a region R. That is, we may specify Pn = {A(p), b(p), f(p) : p E R}. For 
our present purposes, we will characterize a region R of parameters by: 
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11 :::; Pl :::; Ul 

12 :S P2 :S U2 

(10.7) 

where l;, u; : i = 1, ... , L are lower and upper bounds for the parameters. Param­
eters and relationships for linear (and nonlinear) optimization problems such 
as those specified here can be conveniently represented in modeling languages 
such as AMPL [3] and GAMS [2]. 

An important task in our analysis is to characterize the population and its 
subsets in terms of certain features of their associated optimization problems. 
For example, we may be interested in the maximum, minimum or average of 
the objective values for all problems in a set S ~ P, e.g., in: 

max{/; :pES}, (10.8) 

We define a grand objective function for S ~ P as: 

Ggrand(S) = G(g(p): pES) (10.9) 

where the function g(p) evaluates characteristics of an individual agent p while 
Ggrand(S) evaluates the collective characteristics of all agents in set S. The 
function g may not necessarily correspond to the original objective function f. 
For example, it can identify the amount by which the time to solve problem p is 
reduced if a particular set of elite solutions is selected to provide starting points 
for an associated set of strategies. The grand objective function can then be a 
measure of the total time saved (or average time saved, etc.) by such a design 
applied to a specified collection of problems. When S is determined by a region 
R of the parameters, namely, s = PR, we write Ggrand(S) as a:rand· 

2.3 Generalized Sensitivity Analysis 

To provide an approach to exploit the foregoing grand objective function effec­
tively, we propose a generalization of the standard notion of sensitivity analysis 
to allow it to apply to a set of optimization problems rather than to a single 
optimization problem in isolation. Specifically, we seek to analyze how a grand 
objective function Ggrand(S) changes as a function of relaxing or tightening a 
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given constraint for all agents inS, or as a function of expanding or contracting 
a parameter region along one of its dimensions. 

For this purpose, given a parameter region R, we introduce a grand dual vari­
able, D!rand(PR), which measures the marginal change in a grand objective 
function a:.. and with respect to a change in a parameter Pi: 

(10.10) 

We can use a deterministic simulation procedure to determine the value of this 
grand dual variable. This yields an approximation, although one may be able 
to develop an analytic procedure to determine the true value. 

We first obtain the current value for a grand objective function in R and then 
change the range for Pi from 

(10.11) 

to 

/; $ Pi $ u; + A;, (10.12) 

or 

(10.13) 

with the ranges for other parameters of R fixed. 

If the change in the grand objective function is Aa, an approximation of the 
grand dual variable in (10.10) is 

(10.14) 

It is easy to see that our approach reduces to standard sensitivity analysis in 
the case where we restrict the domain considered. When a region R shrinks to 
include only one point, the set it generates will include only one agent, or one 
problem, say p. At this time, 

a:..and = g(p) (10.15) 
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which is a conventional objective function for problem p. If furthermore, we 
are considering a change in the right hand side of problem p, then 

D~rand = og(p)fob; 

which is a conventional dual variable in LP and NLP. 

(10.16) 

The concept of a grand dual variable is highly useful to characterize the effects of 
changes in a population. For example, in a setting where a population consists 
of consumers and the grand objective function measures their purchasing power, 
alternative grand dual variables can be used to analyze changes in purchasing 
power that result when consumers grow a little older, or their incomes become 
higher or their their savings habits change. 

Comparing values for a given grand dual variable in two different populations 
can reveal population differences. For instance, differing degrees of changed 
purchasing power that result from specific changes in income or savings habits 
can be pinpointed in this way. Grand sensitivity analysis, by reference to 
these notions, yields valuable information about factors that influence popula­
tions. Issues of investment, product differentiation and product development 
are clearly affected by such information. 

2.4 IPA Cohorts 

We say two agents are "associated" if their corresponding optimization prob­
lems are related. There are of course many ways to define the condition of being 
related. For our present purposes we will rely on a definition that implies the 
problem parameters lie within a certain bounded region, which we embody in 
the notion of an IPA cohort. In particular, we define an IPA cohort Na for an 
agent a to be a subset of P that contains agents associated with a (including a 
itself) by the following construction. Denote the parameter set that determines 
a by pa = (p~, p~, ... , pl). Then the IPA cohort Na is given by a parameter 
region Ra that arises by specifying lower and upper bounds for the parameters 
in a manner we subsequently describe. We will restrict attention to IPA cohorts 
thus generated from such parameter regions and denote them as N'R_. 

The manner in which we determine IPA cohorts will make use of the grand 
objective function. To motivate this determination, suppose we stipulate that 
the grand objective Ggrand(S) is designed to take on larger values when the 
parameters that define S C P lie within greater proximity to each other. Then 
we may conceive the problem of searching for a "good" IPA cohort for an agent 
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a to be formulated as seeking a set S that yields an optimal solution to the 
following problem 

max G9rand(S) s 

s.t. aES (10.17) 

Clearly, an optimal solution results when the set S includes only the agent a, 
which is not interesting to us. It is therefore necessary for the grand objective 
function to encompass other factors, which we consider in following sections. 
When the grand objective function is appropriately defined, the solution to the 
problem will be Na. 

Since a set of agents and the coefficients for their optimization problems are 
determined by a region of parameters, which is in turn calculated as in (10.7), 
the true variables of interest are actually lower and upper bounds of the pa­
rameters. Thus, the preceding formulation can be rewritten as: 

max Ggrand(l, u) 

s.t. (10.18) 

(10.19) 

The last equation requires that the region R be determined by I= (/1 , / 2 , .•• , /L) 
and u = (u1, u2, ... , U£). 

2.5 Representative Agents 

We link the goal of generating a proper form for the IPA cohorts to the goal of 
generating a collection of representative agents, where we require the union of 
the IPA cohorts of such special agents to include all agents in P. Clearly, by 
adjusting the bounds that define IPA cohorts, we can assure that any chosen 
collection of agents will represent the other agents in this fashion, but we base 
the determination of representative agents on additional criteria. 

We are guided by two interrelated concerns. First, we desire the representative 
agents to be selected so that the agents in an IPA cohort are associated more 
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strongly than simply by sharing a certain proximity to the agent defining the 
IPA cohort. For this reason, we will in fact allow a slight distortion by permit­
ting "artificial agents" to be included among those we treat as representative, 
where these artificial agents are derived by perturbing or interpolating between 
parameter values of other agents. Such artificial agents are generated by start­
ing from original agents and creating adjustments based on feedback about 
problem solving efficacy from relying on the current representative agents. Al­
ternatively, we can simply shift the role of representative agent from one original 
agent to another by such an iterative analysis. In either case, the outcome can 
lead to more appropriate definitions of IPA cohorts for the goals we seek. 

Second, once a set of representative agents is (provisionally) specified, we desire 
to characterize their IPA cohorts so that the agents within a given IPA cohort 
will be susceptible to exploitation by information that is specific to this cohort. 
More precisely, we seek to use this cohort-specific information to solve the opti­
mization problems for the agents in the IPA cohort with significantly increased 
efficiency. Our design incorporates the principles of the learning approach called 
target analysis [6, 8, 5, 7]. In the present development, as intimated earlier, we 
choose to rely on information obtained from elite solutions to problems in the 
IPA cohort. Still more restrictively, we use these solutions to give advanced 
starting points for members of the IPA cohort. An interesting discussion of the 
philosophy and potential applications of focusing on starting solutions, viewed 
from the perspective of case based reasoning, is given in Kraay and Harker [9]. 
We emphasize that other decision rules and forms of exploitation are possible 
within the framework of target analysis, particularly in coordination with tabu 
search as employed in this study (see, e.g., [8]). We have also found that similar 
ideas can greatly improve the performance of other methods such as in [1, 17]. 
Nevertheless, we have found this form of exploitation to be highly effective. 

2.6 Computational and Practical Benefits 

It may appear from our foregoing abbreviated description that we are investing 
a great deal of effort to solve and re-solve problems, using different initial 
conditions. This naturally raises the question of how benefit can be gained from 
such an undertaking, since we are going well beyond the effort required to obtain 
solutions to the problems in P. The answer is that P is not a fixed set, but 
rather is one that grows over time, as new agents or agents with new problems 
enter the scene. (Alternately, in a static "large population" environment, we 
may consider P to begin as a subset of a substantially larger P that we desire 
to deal with.) Thus, we are applying the strategy of intensely focusing on 
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problems already solved in order to improve our ability to solve problems yet 
to be encountered. By expending a large effort to process a relatively small 
number of problems, we may save considerably greater amounts of effort in 
solving a much larger number of problems. 

2. 7 Choice of Agents and IPA Cohort Design 

Our construction of IPA cohorts and critical agents is therefore an anticipa­
tory process, where we seek to organize existing knowledge more effectively to 
meet future problem solving needs. The process is necessarily dynamic and 
self-modifying. The organization of our knowledge changes as the knowledge 
changes. 

Often initial conditions are simple, and call for simple measures. This is ev­
idently true in the case of choosing representative agents. To begin, we may 
simply rely on "conventional wisdom" about a problem, according to the con­
text, to select agents considered typical for different ranges of the underlying 
parameters. 

After making such a selection, we seek intervals about the parameters for these 
initial representatives so that the resulting IPA cohorts will include all agents. 
However, this goal must be balanced against the competing goal of creating 
cohorts sufficiently compact that we can identify a relatively small number 
of useful elite solutions for agents in one cohort - i.e., solutions that yield 
good advanced starting points for members of the cohort. Upon analyzing the 
outcomes of selecting various trial elite solutions (by designs we subsequently 
describe), we may either add, delete, shift or modify the current representative 
agents to create a better collection. 

We may therefore express the overall plan for our approach in the following 
outline form: 

• Choose a list of representative agents; 

• Define a proper cohort for each representative agent and characterize it 
according to a certain purpose. For example, to improve computation 
efficiency, we need to identify the associated elite solutions. For marketing 
strategy design and new product development, careful characterization of 
the cohorts is needed and sensitivity analysis is required. 
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• If the current IPA cohorts fail to cover all the important problems, select 
other representative agents and find other cohorts for the new agents. 

3 COMPUTATIONAL EFFICIENCY 

We focus on applying integrative population analysis to improve computational 
efficiency. As emphasized, we seek a proper IPA cohort and its corresponding 
elite solutions for a representative agent in a manner to permit problems in the 
cohort to be solved easily. On the other hand, cohort size is also a measure 
of efficiency: if the IPA cohorts are too small, we have to keep many of them 
to cover a population and must save a large number of elite solutions. In the 
extreme case, each cohort would contain only a single problem, requiring us 
to solve all problems in advance with no advantage derived from prior elite 
starting solutions. When we speak of elite solutions, we refer not simply to 
solutions that are actually generated for the problems considered, but also to 
specially constructed trial solutions that are obtained as "centers" of clusters of 
other solutions. The final determination of a cohort is a compromise between 
the following two considerations: 

1) The average reduction in computation time that results by starting from 
appropriately selected elite solutions (obtained from representative problems 
in the cohort) should be as large as possible. 

2) Each cohort should cover a large terrain so that only a few cohorts are 
needed. 

An important element in these considerations is that we will simultaneously be 
seeking to establish a small and effective set of elite solutions for each cohort 
generated. With this element implicit, we formulate the problem as follows: 

max 8 TRRgrand(N) + (1- B)IINII (10.20) 

where: 

TRR time reduction rate 

liN II size of cohort N 
() weight to balance the two criteria 
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The time reduction rate T RR is achieved through a five step simulation process 
discussed in section 3.1. Briefly, we generate random samples of problems in 
a cohort, solve them with or without elite solutions and get the average time 
reduction rate. For each sample p: 

TRR(p) = 1- I:_ 
Tne 

(10.21) 

where 

T. computing time with elite solutions for problem p 

Tne computing time without elite solutions for problem p 

The average time reduction rate in a IPA cohort is therefore: 

1 
TRRgrand(N) =- LTRR(p), 

nN pEN 
(10.22) 

where nN is the number of samples in cohort N. 

We can also consider time reduction rate in the constraints, in which case we 
have the following alternative to (10.20): 

max IINII (10.23) 

subject to 

(10.24) 

where r1 and r 2 are the lowest and the highest time reduction rates which we 
consider to be satisfactory. 

The variable in this formulation is the size of a IPA cohort, which is a function 
of the ranges of the parameters in (10.7). Therefore, we have: 

(10.25) 

or more specifically, 
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L 

IINII = L wp(up -lv)2 (10.26) 
p=l 

which is a weighted Euclidian measure. 

3.1 Solution Procedure 

The procedure for finding a proper IPA cohort to improve computing efficiency 
consists of the following five steps. 

• Determine a list of representative agents; 

• For each agent: 

- Define a trial IPA cohort based on conventional observation; 

- Generate a series of samples in the trial cohort; 

- Solve the sample iterates to get a set of optimal or near optimal 
solutions. 

• From the set of solutions, generate points that are (roughly) centered 
within clusters of these solutions to be treated as trial starting solutions; 

• Employ out-of-sample simulations to see if solution time is reduced when 
the trial solutions are used as advanced starting solutions for problems in 
the cohort. 

• Systematic modification of the IPA cohort: 

- If the time reduction rate is satisfactory, (e.g., between 80% to 90%), 
stop. The current trial cohort defines a proper cohort for the rep­
resentative agent whose parameters define the central locus of the 
cohort. The trial solutions are kept as elite solutions for the cohort. 

- If the time reduction rate exceeds the upper target (say falling above 
90% ), expand the trial cohort; else, if the time reduction falls below 
the lower target (say below 80%), shrink the trial cohort. Expanding 
or shrinking a cohort is guided by grand dual variable information as 
explained later. 

We now discuss each of these steps in detail. 
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3.2 Choosing Representative Agents 

Choosing representative agents is an iterative process. At the beginning, we 
base the selection on conventional observations as noted earlier. With integra­
tive population analysis, we define an appropriate IPA cohort to encompass 
each of these choices. We may then find that our initial selection is too coarse 
(i.e., insufficiently refined) as the population continues to be analyzed. Some 
important groups of investors may not be covered by any of the cohorts, and 
additional representatives may be needed. Conversely, we may also find our 
initial selection is too detailed, as when some of the representatives can be 
grouped together and share the same set of elite solutions. It should be noted 
that we do not strive to cover all the investors as it may not be efficient to do 
so. 

3.3 Samples in an IPA Cohort 

For each representative agent, we generate random samples according to a 
multi-dimensional uniform distribution. The similarity of these samples in their 
financial backgrounds and preferences depend on the size of the IPA cohort. 

3.4 Generating Elite Starting Solutions 
Cluster Analysis 

To generate elite starting solutions, we save each sample's globally optimal (or 
best known) solutions and those locally optimal solutions which have objective 
values that are close to the estimated global optimum. (The definition of "close 
to" is adaptively determined.) 

If many of the sample solutions fall within the vicinity of a particular location 
and have an appropriate objective value, that location is chosen to be a trial 
solution which may become one of the elite starting solutions. In a parameter 
input file, we set the maximum number of clusters we need, the minimum 
number of points to be considered as a cluster, and so on. A diagram of the 
process is shown in Figure 3. 
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3.5 Out-of-sample Simulation 

Out-of-sample simulation determines if trial solutions are effective for reducing 
computation effort. Specifically, new samples are tested with and without the 
use of elite starting solutions to get the difference in solution time. If the time 
reduction rate exceeds a certain level, these samples are too similar to each 
other. We may then need to expand the IPA cohort. On the other hand, if the 
time reduction rate falls below a desired level, we will decrease the cohort size. 
However, not all parameters are critical for time reduction in a given cohort. In 
the next section, we introduce a systematic approach to modify a cohort based 
on information provided by the grand dual variables. 

3.6 Systematic Modification of IPA Cohorts 

As in other optimization methods, we employ an iterative procedure to find 
a desired cohort. At each iteration, we seek a good direction that can sub­
stantially improve the objective value. The information on how to choose such 
a direction is usually provided by the gradient of an objective function. For 
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our problem, however, a well-defined gradient is not available because the time 
reduction rate is not an explicit function of the cohort parameters. We have 
therefore developed a simulation procedure that can achieve a direction similar 
to that based on a gradient. 

We define the marginal problems for a particular cohort to be those that would 
be added to (dropped from) the cohort if the range of a single parameter is 
enlarged (reduced) by a specified step size. This step size depends on both the 
identity of the parameter and the cohort. This is so because each parameter 
has a specific unit and an unique impact on the benefits derived from the elite 
starting solutions for the cohort. An adaptive way of chosing the step sizes will 
be discussed shortly. 

Corresponding to marginal problems, we define a marginal cohort to be the re­
gion added to (removed from) a given cohort to identify such a set of marginal 
problems. Moreover, we consider a marginal cohort to result by changing only 
the lower or upper end of a parameter range; i.e., we modify the two ends of 
a parameter range separately in order to determine the effects of the two re­
sulting cohort changes. To be more specific, we refer to interior and exterior 
marginal cohorts (and problems) as those that result, respectively, by decreas­
ing or increasing a parameter's range. Figure 4 illustrates these definitions. 
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Marginal problems for different parameters have different influences on the 
average time reduction rates. For example, if the time reduction rate for a pa­
rameter mortgage's interior marginal problems is much lower than the average 
of the cohort, the associated bound for mortgage loan may be too loose. Hence 
we tighten the bound and reduce the range accordingly. Similarly if the interior 
marginal problems have much higher time reduction rates than the average, it 
is possible to expand the range of corresponding parameters. As we have dis­
cussed in section 2.3, information about marginal problems yields a sensitivity 
analysis for comparing time reduction rates to changes in parameters. We can 
therefore develop a systematic way of modifying a cohort based on this infor­
mation. To be concrete, we stipulate that a targeted time reduction rate is 
selected to be 80% in the following discussion. When the time reduction rate 
is below 80%, we reduce the cohort to achieve a target rate. While the time 
reduction rate is maintained above 80%, we expand the cohort to cover as many 
problems as possible. In the following discussion, we consider marginal prob­
lems for the upper end of a parameter. The same procedure can be similarly 
applied to the marginal problems at the lower end of a parameter. 

First, we derive a set of trial elite solutions with cluster analysis as described 
in section 3.4. These solutions offer good starting points for solving problems 
in the cohort. We keep track of the identities of all samples so that we know 
which cohort they belong to. This makes it easy for us to drop or add samples 
when the cohort is modified. 

We start the iterative procedure by solving the interior and exterior marginal 
problems for all the parameters with and without elite starting solutions. Time 
reduction rates can be determined and summarized as follows. 

Table 1 Time reduction rates for the marginal problems 

Parameters 1 2 3 4 5 6 
TRR (Interior problems) 50% 82% 90% 32% 86% 96% 
TRR (Exterior problems) 45% 75% 91% 35% 83% 87% 

There are four situations for each parameter according to whether the time 
reduction rate is above or below the target rate: 

1) The time reduction rates for both interior and exterior marginal 
problems are above the target rate; 

2) The time reduction rates for both interior and exterior marginal 
problems are below the target rate; 
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3) The time reduction rate for interior marginal problems is above 
the target rate, while that for exterior marginal problems is below the 
target rate; 

4) The time reduction rate for interior marginal problems is below 
the target rate, while that for exterior marginal problems is above the 
target rate. 

For a specific parameter and its current range, the time reduction rate for the 
exterior marginal problems is usually lower than that for the interior marginal 
problems. This is because the exterior marginal cohort lies farther away from 
the original cohort for which the elite starting solutions are derived. For this 
reason, the fourth situation does not occur very often. In case it does occur, 
the two rates are all close to the target rate because of the similarity in the 
samples. It is thus reasonable to leave the parameter range unchanged. 

The first situation indicates that we can expand the range for the parameter 
without deteriorating the time reduction rate. Furthermore, the closer the two 
rates (for interior and exterior marginal cohorts), the more insensitive is the 
time reduction rate to changes in the parameter. We can therefore expand the 
range of the parameter accordingly. Let T Rl4n be the time reduction rate for 
interior marginal problems and T RRex for exterior marginal problems. The 
step size can then be updated from the current value 6.now to a new value 
6. new with the following formula: 

(10.27) 

The value 20% is chosen because it is the highest value that a time reduction 
rate can change in this situation. When the time reduction rate indeed changes 
from 100% to 80%, we know the time reduction rate is very sensitive to changes 
in the parameter and we may expand the parameter range only by the amount 
of the current step size. Hence the step size stays the same. 

In the second situation, we need to reduce the parameter range to improve the 
time reduction rate. As before, the closer the rates for interior and exterior 
marginal problems, the more insensitive is the time reduction rate to changes 
in the parameter. The following formula is then employed to update the step 
size to reduce the parameter range. 



Integrative Population Analysis 235 

anew = .!::.. now + ( 1.0 - IT RRin8~o/~ RRex I ) * .!::.. now (10.28) 

Again, the value 80% is chosen as it is the highest value that a time reduction 
rate can change in this situation. 

Time reduction rates become sensitive to changes in the parameters in the third 
situation. Here, a change from the interior to the exterior marginal cohort leads 
to a decrease in the time reduction rate from a value above the target rate to a 
value below the target rate. At this time, the step size needs to be reduced so 
that a smaller exterior marginal cohort can have a better time reduction rate. 
The formula for updating the step size is: 

(10.29) 

With these considerations, we get the following new step sizes based on the 
data given in Table 1: 

Table 2 Updating the step sizes 

Parameters 1 2 3 4 5 6 
Step size (now) .dl .d2 .da .d4 .ds .ds 
Step size (new) -1.94.dt +0.91.d2 +1.95.da -1.96.d4 +1.85.ds +1.55.ds 

The positive or negative sign indicates whether we should expand or reduce 
the range of the corresponding parameters. The current IPA cohort is then 
modified according to the new step sizes. That is, the upper end of parameter 
1 is reduced by 1.94.!::..1 , the upper end of parameter 2 is increased by 0.91.!::..2 , 

and so on. After the cohort is modified, new elite solutions can be derived from 
solutions of the samples that are lying within the new cohort. This concludes 
the first iteration of the procedure. 

The new step sizes in Table 2 also provide a promising direction for further 
investigation of the cohort. For a parameter with a positive step size in the 
table, we consider its new exterior marginal cohort according to its new step 
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size. The exterior marginal cohort in the previous iteration can be approxi­
mately assumed to be its current interior marginal cohort so that the required 
time reduction rate is readily available. This is only an approximation as the 
cohort has changed. For a parameter with a negative step size in the table, we 
consider a new interior marginal cohort. The previous interior marginal cohort 
becomes approximately its exterior marginal cohort. This saves 50% of the 
computational effort. 

With the same procedure as in the first iteration, we can compare the time 
reduction rates and decide how to expand or reduce a parameter range. The 
new step sizes provide a new direction for the next iteration. 

When a relatively good IPA cohort is reached, the change in time reduction 
rates will be in the third situation for all the parameters. That is, when we 
expand a parameter range a little bit, the time reduction rate will change 
from above 80% to a value below 80%. Thus we reduce the step sizes for the 
parameters. The iterative process stops when the step sizes become small com­
pared with pre-determined tolerances or when the maximum iteration limit is 
reached. As shown in the study of (13], these targeted rates of time reduc­
tion are entirely realistic, and in fact, 90% improvements in computation time 
have been achieved for solving complex financial planning models incorporating 
nonlinearities and uncertainties. 

4 FUTURE DIRECTIONS 

We have shown that Integrative Population Analysis is applicable to many in­
dustrial engineering areas. The dynamic nature of the industrial world requires 
operations research models to be flexible and capable of solving new problems 
promptly and effectively. Many research investigations fail to address the dy­
namic nature of real world problems. IPA serves to bridge this gap between 
academic research and the practical needs. 

In another paper [13], we have shown that IPA can dramatically reduce execu­
tion time for solving multistage financial planning models. These gains make it 
possible for individuals to conduct systematic analysis of their financial affairs 
in an interactive fashion. In this context, the optimization capabilities of the 
financial planning system are critical so that the investor can concentrate on 
the preference identification and selection process, rather than being compelled 
to hunt for the best investment strategy. Techniques on carrying out compo-
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nent steps of the solution process are under steady improvement; the planning 
system can accommodate new algorithms for such steps in a straightforward 
fashion. 

Our future work on Integrative Population Analysis will be devoted to carrying 
out full scale testing of IPA with populations from a variety of real world set­
tings. A systematic study of issues such as the proper number and composition 
of IPA cohorts is planned over the next several years. Generalized sensitivity 
will establish recommendations regarding possible improvement areas - for ex­
ample, such analysis provides a basis to identify constraints that can be relaxed 
and thus have a large impact on the results - hopefully in a relatively painless 
manner. 

Another research issue involves enhancing the IPA cohort generation process. 
We plan to (1) reduce dependence on expensive out of sample tests; (2) develop 
internal algorithmic tactics for each cohort; and (3) compute generalized dual 
variables for solutions generated by the adaptive memory process. Finally, we 
plan to test Integrative Population Analysis in other domains. For example, 
Benders Decomposition has been the method of choice for financial planning 
systems without decision rules [1, 17]. We can apply IPA in this setting by 
substituting elite cuts for the elite solutions. There are also other possible 
consumer products and services (e.g. travel agents) that could benefit by Inte­
grative Popul~tion Analysis, and such applications likewise invite investigation. 
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