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A b s t r a c t  

A special class of 4-opt moves plays a key role in several leading heuristics for the traveling salesman problem 
(TSP). However, the number of such moves is quite large--O(n 4) for a graph of n nodes, on the order of the 
square of the number of 2-opt moves. Consequently, classical TSP heuristics have not attempted to seek best (and 
often not even improving) instances of these moves. We show that a best move from the collection that consists 
of these moves, together with an additional class of 4-opt moves and certain related 3-opt moves, can nevertheless 
be found in the same order of time required to find a best 2-opt move. Our method employs an acyclic shortest 
path model based on ideas introduced with ejection chain procedures and generates a sequence that can include 
improving moves at earlier stages. Joined with candidate list strategies that limit the tour edges available to be 
dropped, the method can also be structured to find best members from the set of implied surviving moves in 
O (n) time, making available TSP strategies for incorporating 4-opt moves that were previously beyond practical 
consideration. 

1. I n t r o d u c t i o n  

A variety o f  heuristics for the traveling salesman problem (TSP) incorporate  special  in- 

stances o f  4-opt  moves  as a fundamental  part o f  their design (see, for example,  Martin,  

Otto, and Felten,  1992; Fiechter,  1994; Johnson and McGeoch ,  1996). However ,  these 

moves  are significantly more  numerous  than many other popularly used moves,  present ing 

O(n  2) t imes as many possibil i t ies as 2-opt moves  for a graph of  n nodes. Consequent ly ,  

most  efforts to exploi t  these 4-opt  moves  do not undertake to find best or even improv ing  

instances of  them. To data, it appears that no methods  have sought to identify local op t ima 

relat ive to such moves.  

We show, however,  that best instances of  these 4-opt  moves  and a related class of  addi- 

t ional 4-opt  moves  (with twice  as many members)  can be found in the same order of  t ime as 

required to find best instances o f  2-opt moves.  Specifically, we provide a method  that finds 

a best m o v e  f rom a col lect ion that embraces  these two classes of  4-opt  moves  and also an 

associated class o f  3-opt moves,  together with the class of  all 2-opt moves.  The  approach 

is based on an acyclic  shortest path construction,  fo l lowing ideas introduced with eject ion 

chain methods  for TSPs  (Glover,  1992). The  construct ion also al lows the possibi l i ty o f  find- 

ing improv ing  moves  during the process of  finding a best move.  Special izat ions  for sparse 

graphs afford an opportuni ty to reduce the worst  case bound. In particular, implemented  

in conjunct ion  with candidate list strategies that select a bounded subset of  tour edges as 
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candidates to be deleted, the method can be structured to find a best move from the set of 
implied survivors in O(n) time. 

2. Definitions and notation 

We focus attention on the symmetric TSP, whose goal is to find a least-cost Hamiltonian 
cycle in an undirected graph G = (N, E), where IN] = n. For convenience of description 
we will suppose G is dense--that is, that the edge set E consists of all (unordered) pairs 
of nodes of N. Our approach can also be applied to asymmetric TSPs by appropriately 
redefining evaluations, without changing the computational bounds. We assume the reader 
has a rudimentary acquaintance with standard graph theory terminology and dispense with 
formal definitions where context makes our meaning apparent. 

Let T denote an arbitrary tour and assume the nodes of N are indexed so they are 
visited by the edges of T in the natural order from 1 to n. (Some TSP heuristics can be 
implemented more efficiently by special data structures that do not maintain the tour in 
such an oriented form. This does not affect order bounds on computation but can provide 
a practical enhancement.) We refer to ith edge, (i, i + 1) of T as e(i), for i = 1 to n, and 
adopt the convention that the index n + 1 corresponds to 1, hence e(n) is the edge (n, 1). 

2.1. Simple moves and alternating paths 

Neighborhoods for transforming one TSP tour into another are often cataloged in terms of 
k-opt moves, which are operations that delete k tour edges and add k non-tour edges to 
create a new tour. This is a nonstructural move classification, which says nothing about the 
relationship among the edges deleted and added. 

A more informative characterization of TSP neighborhoods can be achieved by reference 
to alternating paths and cycles, as introduced originally by Berge (1962). Specifically, 
as shown in the ejection chain development of Glover (1992), the symmetric difference 
between any two TSP tours can be expressed as an edge disjoint collection of alternating 
cycles, and a special "parsimonious neighborhood" can be identified that precisely generates 
such cycles while maintaining an associated transformation to yield legitimate TSP tours 
as trial solutions at each step. (The result holds for both symmetric and asymmetric TSPs, 
by interpreting a cycle to be undirected or directed, as appropriate.) 

We call an alternating cycle (AC) that drops k tour edges and adds k nontour edges a 
k-AC. (For convenience, we speak interchangeably of an AC and the transformation of T 
that it includes.) Such a cycle will be called connecting if it transforms T into a connected 
subgraph and disconnecting otherwise. We will state several observations that are easily 
established, and whose specific underlying transformations can be generated directly by the 
ejection chain framework. 

• Remark I. A k-AC transforms T into a new tour and hence constitutes a k-opt move, if 
and only if it is connecting. 

• Remark 2. A k-opt move in general is composed of a collection of edge-disjoint h-ACs 
for various positive values of h that sum to k. These component h-ACs can include 
disconnecting members. 
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• Remark 3. A necessary and sufficient condition for a collection of edge-disjoint ACs to 
yield a tour and hence to define a k-opt move, is that they transform T into a connected 
subgraph. 

The simplest alternating cycles are 2-ACs, and the connecting 2-AC is the one that goes 
by the popular "2-opt" designation. Relative to the specified indexing of the nodes of T, 
connecting and disconnecting 2-ACs can be completely determined by identifying the two 
dropped edges, e(i) = (i, i + 1) and e ( j )  = (j,  j + 1) for i = I to n - 2 and j = i + 2 
to n, as follows: 

• Connecting 2-AC (2-opt): drop e(i) and e( j ) ,  add (i, j )  and (i + 1, j + 1) 
• Disconnecting 2-AC: drop e(i) and e( j ) ,  add (i, j + 1) and (i + l, j )  

The foregoing specification introduces a nonstandard alternative. For the case of a 
disconnecting 2-AC, the possible assignment j = i + 2 causes the added edge (i + l, j )  
to be (i + 1, i + 2), which is an edge of T. This violates the customary definition of an 
alternating cycle (where added edges must not belong to the tour subgraph). As will be 
seen however, it is a useful exception for the purpose of our development. In general, 
"exceptional" alternating paths embodied in ejection chains, which include constructions 
whose components are subpaths, provide a basis for useful heuristics and also for associated 
theorems about connectivity (Glover, 1992). (See Rego, 1996, for a highly efficient design 
and implementation of an ejection chain procedure for the TSP; related developments are 
also given in Zachariasen and Dam, 1996; Pesch and Glover, 1995; Rego and Roucairol, 
1996; and Punnen and Glover, 1996.) 

2.2. Classes of  4-opt moves 

The class of 4-opt moves that has received special attention in the TSP literature is a 
conjunction of two disconnecting 2-ACs, arranged so that each reattaches the components 
of T that are disconnected by the other. Such moves are called "super moves" in Fiechter 
(1994) and "double-bridge" moves in Johnson and McGeoch (1996). We are interested in 
these and also in 4-opt moves from a second class whose members result by an appropriate 
combination of a disconnecting 2-AC and a connecting 2-AC. To identify those two types 
of 4-opt moves more precisely, we refer to the dropped edges of their two component ACs 
as e (i 1), e ( j  1 ) and e (i 2), e ( j  2), respectively, where we stipulate without loss of generality 
that i 1 < i2. (No dropped edge of one AC can meaningfully duplicate a dropped edge of the 
other.) We then define the two component ACs to be crossing if j I < j 2  and noncrossing 
if j l  > j2.  Six types of moves result from these definitions, which we list below for 
completeness. 

• Type 1: Two disconnecting 2-ACs, which are crossing; 
• Type 2: A disconnecting 2-AC and a connecting 2-AC, which are crossing; 
• Type 3: Two disconnecting 2-ACs, which are noncrossing; 
• Type 4: A disconnecting 2-AC and a connecting 2-AC, which are noncrossing; 
• Type 5: Two connecting 2-ACs, which are crossing; 
• Type 6: Two connecting 2-ACs, which are noncrossing. 
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Figure 1 .  Type 1 move. 

Type 1 moves constitute the so-called double-bridge moves and Type 2 moves, which 
are twice as numerous, can be viewed as replacing either one of the two "bridges" by a 
"twisted-bridge7' whose edges cross each other. Figure 1 shows a Type 1 move, and Figure 2 
shows a Type 2 move (which is one of the two Type 2 moves that are related to the Type 
1 move of Figure 1). The tour edges that are dropped to create these moves are indicated 
as lines marked with bars, while the nontour edges that are added are indicated as dashed 
lines. The nodes i 1, j 1,  i2, and j2 ,  which determine the dropped edges e(i l), e ( j  1) and 
e(i2), e(j2),  are also identified. 

It is easy to determine that the moves of Types 3, 4, and 5 do not yield valid tours and 
hence are not of interest. The Type 6 move consists of two legitimate (2-opt) moves that 
can be performed independently. We therefore call Type 6 moves decomposable moves. 
(If the combination of the component moves is an improving move, at least one of these 
legitimate components is improving. If both components are improving we can choose 
them in succession.) 

Type 1 and Type 2 moves are different, however, since they produce a valid tour and also 
contain a disconnecting component. Thus, while neither component of these moves may be 
a valid improving move, the complete move itself may be improving. Consequently, we call 
Type 1 and 2 moves nondecomposable moves. These observations lead to the following 
conclusions. 

0 Remark 4. Type 1 and Type 2 moves include all nondecomposable 4-opt moves except 
for (a subset of) the moves that qualify as connecting 4-ACs. 
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Figure 2. Type 2 m o v e .  

• Remark 5. If exactly one of the disconnecting components of a Type 1 or 2 move is a 
nonstandard 2-AC (if j = i + 2 for the dropped edges e(i) and e(j)  of this component), 
then the resulting complete move is a 3-AC that is also a 3-opt move. (The "second 
copy" of the tour edge that is added by the nonstandard 2-AC is removed by the other 
2-AC.) If both disconnecting components of a Type 1 move are nonstandard 2-ACs, then 
the resulting complete move is a 2-opt move determined by the two dropped edges e(i 1) 
and e(j2) . )  

Remark 4 provides a motivation for seeking improving and best instances of Type 1 and 
Type 2 moves, beyond the motivation provided by the fact that Type 1 moves are often 
included in effective heuristics. Remark 5 shows that, if we have a way of generating 
good Type 1 and Type 2 moves efficiently, we also reap a bonus of including a variety 
of 3-opt moves simultaneously. The number of such 3-opt moves is roughly four times 
the number of 2-opt moves. (There is no advantage to generating the special case 2-opt 
move of Remark 5 because 2-opt moves that may potentially qualify as good--for  example, 
improving or best--are automatically generated in the course of identifying good Type 1 
and Type 2 moves.) 

3. An acyclic shortest path model 

Our acyclic shortest path model for generating best (or improving) moves of Type l and 
Type 2 introduces a digraph S whose nodes corr~espond to edge pairs of T. More precisely, 
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S contains a source nodes s and a terminal node t, and remaining nodes of S identify edge 
pairs e(i), e(j) of T as follows. 

3.1. Conventions underlylng the construction of S 

1. The designation x[i, j], where x is a variable term that takes the assignments x = c (for 
"connecting") and x = d (for "disconnecting"), corresponds to a 2-AC of type x that drops 
the two edges e(i) and e(j). The cost of such a 2-AC, which equals the sum of its added 
edges minus the sum of its dropped edges, is denoted cost_x[/, j ] .  (Hence, cost_c[/, j ]  and 
cost_all/, j ] ,  respectively, denote the cost of a connecting 2-AC and a disconnecting 2-AC 
that drop e(i) and e(j).) 

2. A class of nodes of S denoted reach_x[/, j ] ,  for i = 1 to n - 3 and for j = i + 2 to 
n - 1 (where i and j take admissible values for i 1 and j 1 in the definitions of  Type 1 and 
2 moves), refers to the collection of 2-ACs of the form x[p, j ] ,  p = 1 to i. The collection 
of  all paths from the sources s to the node reach_x[/, j ]  of S corresponds to the collection 
of all such 2-ACs, and the cost of a given path equals the cost of the corresponding move 
x[p, j]. (Thus, the shortest path from s to reach_x[/, j ]  identifies the least cost 2-AC from 
this collection, and a predecessor trace identifies the value p ( <  i) that yields this 2-AC.) 

3. A class of nodes of S denoted cross_x[/, j ] ,  for i = 2 to n - 2 and for j = i + 2 to n 
(where i and j take admissible values for i2 and j2  in the definitions of Type 1 and Type 2 
moves), refers to the collection of all 2-ACs of the form x[p, q] for p = 1 to i - 1 and for 
q = i + 1 to j - 1. (This is the collection of 2-ACs whose dropped edges can take the role 
of  e(i 1) and e(j 1), and which cross the 2-AC whose dropped edges are e(i2) and e(j2) ,  
for i = i2 and j = j2.) The collection of  all paths from s to cross_x[/, j ]  corresponds 
to this collection of crossing 2-ACs, and the cost of  a given path equals the cost of the 
corresponding x[p, q]. (Thus the shortest path to cross_x[/, j ]  identifies the least-cost path 
from this collection, and a predecessor trace identifies both the values p and q that yields 
this 2-AC.) 

4. Finally, S is organized so that arcs from nodes cross_x[/, j ]  to the terminal node t 
generate precisely the set of paths from s to t that correspond to the union of Type 1 and 
Type 2 moves, and these arcs carry appropriate costs so that a shortest path from s to t 
identifies a least-cost move to Type 1 or 2 (inclusively). 

The organization of  S that achieves the outcomes indicated by the foregoing conventions 
is as follows. 

3.2. Structure orS 

For x = c and x = d, and for i = 1 to n - 3 and j = i + 2 to n - 1, the digraph incorporates 
five types of  arcs: 

1. From s to reach_x[/, j ]  with a cost of cost_x[i, j ] ,  
2. From r each_x [ / -  1, j ]  to reach_x[/, j ]  with a cost of 0, 
3. From reach_x[/, j ]  to cross_x[/, j ]  with a cost of 0, 
4. From cross_x[/, j ]  to cross_x[/, j + 1], with a cost of 0, 
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5. From cross_x [i, j ]  to t with a cost of c o s t . d [ / +  1, j + 1], and an additional arc to t for 
x = c with acos t  ofcost_c[i + 1, j + 1]. 

Theorem. The digraph S is acyclic and contains 0 (n 2) arcs, and satisfies the properties 
asserted in conventions 1 through 4. 

Proof The result follows directly from the specified structure of S and induction on i 
and j .  [] 

The fact that S is acyclic permits a shortest path to be found by examining each arc 
exactly once and thus assures an O(n 2) computation bound. There are a variety of ways 
to apply an acyclic shortest-path method to S, and we identify one way in particular that 
is conveniently organized for computer implementation. We will show that this method 
also is adapted to exploit strategies for shrinking S by considering only a limited number 
of candidates for dropped edges, to yield an O(n) computation bound in place of O(n2). 

3.3. Shortest-path method for S 

Denote the cost of a shortest (currently known) path from s to the nodes reach_x[/, j ] ,  
cross_x[/, j ]  and t by best_reach.x[/, j ] ,  best_cross_x[/, j ]  and best_t. Also denote the 
shortest path predecessors associated with these nodes (as a basis for recovering the identity 
of  a shortest path) by pred_reach_x[i, j ] ,  pred_cross_x[i, j ]  and pred_t. The two latter 
predecessors will be maintained in an "aggregate" form, so that pred_t by itself yields all 
the information to identify a shortest path (and hence a best move). 

There are three associated simple shortest-path updates, which provide the heart of  the 
method. We present these updates in a special order for values of i and j that correspond to 
those specified by the algorithm to be described. An important consequence of executing 
the updates in this order is that all arrays indexed by [i, j ]  can be collapsed to be indexed 
only by [j],  thus significantly reducing the array space required. (Note that cost_x[/, j ]  
is not an array but a definition based on dropping edges e(i) and e(j).) We include the 
relevant values of i in the following updates, to make visible the way in which the method 
traverses the digraph S. Nevertheless, only the j component of  all arrays (excluding "cost 
arrays") needs to be considered during implementation. 

Each update is executed for i = 2 to n - 2 and for j = i + 2 to n except as noted. The 
predecessor pred_cross_x is stored as an ordered pair, and pred_t is stored as two ordered 
pairs, pred_t (1) and pred_t (2). Also, we store with best_t a pair designated as "type". Cost 
terms that are duplicated in these updates of course need to be computed only once. 

3.3.1. Best cross update ( for j  ~ n -- 1) 

If  best~reach_x[i - 1, j ]  < bes t_cross_x[ / -  1, j - l], then 
bes t_cross_x[ / -  I, j ]  = best_reachJ[ i  - l, j ]  
pred_cross..x[i - 1, j ]  = (pred_reach..x[4 - 1, j ] ,  j )  

else 
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b e s t _ c r o s s _ x [ / -  1, j ]  = best_cross_x[/ - 1, j - 1] 
pred_cross._x[i - 1, j ]  = pred_cross_x[i - 1, j - 1] 

3.3.2. Best reach update (for j <_ n - - l )  

If  cost_x[i ,  j ]  < b e s t _ r e a c h _ x [ / -  1, j ] ,  then 
best_reach_x I/, j ]  = cost_x[/,  j ]  
pred_reach_x[i ,  j ]  = i 

else 
best_reach_x[i,  j ]  = best_reach_x[i - 1, j ]  
pred_reach_x[i ,  j ]  = pred_reach_x[i - 1, j ]  

( redundant  when the array index i is suppressed)  

3.3.3. Best terminal node update 

For  y = c and y = d w h e n x  = d,  and for y = d w h e n x  = c: 
I f  cost_x[i ,  j ]  + b e s t _ c r o s s _ y [ / -  1, j - 1] < best_t, then 

best_t = cost_x[/,  j ]  + b e s t _ c r o s s _ y [ / -  1, j - 1] 
pred_t(1) = pred_cross_y[i  - 1, j - 1] 

pred_t(2)  = (i, j )  
type = (x,  y)  

Final ly,  to include the possibi l i ty  that a s imple  2-opt  move  may be best, we include the 
fol lowing.  

3.3.4. Simple terminal node update 

If  cost_c[/,  j ]  < best_t, then 

best_t = cost_c[/,  j ]  
pred_t(2)  = (i, j )  
type = (c, c) 

3.4. Shortest path method 

Except  for the solut ion recovery,  each step for the shortest-path method is executed for both 
x = c a n d x = d .  

• Step 1. (Init ial ization).  best_t = 

F o r j = 3 t o n - l :  
best_reach_x[1, j ]  = cos t_x[ l ,  j ]  
pred_reach_x[1,  j ]  = 1 
Execute  S imple  Terminal  Node  Update  for i = 1 

end 
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• Step 2. (Main Step). 
For i  = 2 t o n - 2  

best_cross, r [ / -  1, i + 1] = bes t_ reach .x [ / -  1, i + 1] 
pred_cross_r[i - 1, i + 1] = (pred_reach_x[i - 1, i + 1], i + 1) 

F o r j  = i + 2 t o n :  
Execute, in sequence 

Best Cross Update ( j  _< n - 1) 
Best Reach Update ( j  5 n - 1) 
Best Terminal Node Update 
Simple Terminal Node Update 

end 
end 

• Step 3. (Solution Recovery). 
best_t gives the cost of the best move. 

(1) If  type = (c, c), the best move is a simple c[i, j] (2-opt) move for (i, j )  = 
pred_t(2). 

(2) Otherwise, for type = (x, y) (excluding x = y = c), the best move is composed of 
the component move y [i 1, j 1 ] for (i 1, j 1 ) = pred_t (1) and the component move 
x[i2, j2]  for (i2, j2 )  = pred_t(2). 

In accordance with our previous comments, the arrays can be reduced so that [l ,  j ]  in 
Step 1 can be replaced by [j] (except in reference to cos tx [1 ,  j]) .  Similarly [i - I, i + 1] 
in Step 2 can be replaced by [i + 1]. Unlike the other updates, the simple terminal node 
update does not have to be executed in the sequence indicated. 

To organization of the method makes it clear that the computation required to find a 
best move is a simple multiple of that required to find a best 2-opt move (which occurs by 
retaining only the simple terminal node update). 

4. An accelerated O(n) method 

The digraph S can be collapsed, allowing the foregoing method to be simplified, by res- 
tricting attention to a fixed (or bounded) number of edges of T as candidates to become 
the dropped edges e(i) and e(j).  The determination of such edges can be carried out by 
a variety of candidate list strategies (e.g., Glover, 1989; Glover and Laguna, 1996). (A 
straightforward strategy in the present setting, for example, is to periodically evaluate all 
or a significant number of  tour edges as candidates to be dropped, based on the quality of 
the moves to which they contribute, and then to restrict attention for some iterations to a 
subset of those that received highest evaluations.) 

To implement the method under this form of restriction, suppose that the candidate edges 
to be dropped are indexed as e(p(h)) for h = 1 to q, where p(h) increases with increasing 
values of h, and p(1) = 1. Then the shortest-path method successfully finds best Type 1 
and Type 2 moves over the indicated collection of dropped edges by the following changes: 

• Step 1: [1,n] becomes [1, p(q)]  
j = 3 t o n -  l b e c o m e s j = p ( h ) , h = 3 t o q - I  
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• S t e p 2 : i = 2 t o n - 2 b e c o m e s i = p ( h ) , h = 2 t o q - 2  
i + 1 becomes p(h + 1) 
j = i + 2 ton  becomes j = p(k)  for k = h + 2 t o q  
j - 1 in the updates becomes p(k - 1). 

The preceding organization for finding best Type 1 and Type 2 moves may skip some (i, j )  
combinations that give legitimate 2-opt moves. These 2-opt moves can also be checked by 
applying the simple terminal node update under the following additional conditions: 

oStep  1: j = p ( 2 )  if p(2) _> 3 
• Step 2: j = p ( h  + 1) if p(h + 1) > p(h) + 2 (accompanied by h = q - 1 in setting 

i = p(h),  if p(q) >_ p(q - 1) + 2). 

The foregoing changes then reduce the effort to O(q 2) for the chosen constant q. The 
overall effort is O (n) due to the overhead of maintaining the sequential indexing. Together 
with this, or separately, one can impose thresholds on costs of chosen partial add/drop 
components of moves to limit the moves considered for full evaluation. 

5. Asymmetric problems 

The foregoing procedures can readily by adapted to asymmetric TSPs. If attention is 
restricted to Type 1 moves, then the tour orientation remains unaffected and the adaptation 
is trivial. In the case of  Type 2 moves, the process of sequentially indexing the nodes of T can 
be accompanied by generating a cumulative forward cost F (i), for each arcs a (i) = (i, i + 1 ), 
which equals the sum of the costs of arcs a(h) for h = 1 to i, with F(0) = 0. Similarly, a 
cumulative reverse cost R(i)  is generated for each arc a'(i) = (i + 1, i), which equals the 
sum of the costs of arcs a'(h) for h = i to n, with R(n + 1) = 0. The cost of inverting a 
path consisting of arcs a(p)  to a(q) for p < q (replacing these arcs with a'(q) to a'(p)) ,  
is given by R(p)  - R(q + 1) - (F(q)  - F ( p  - 1)). Appropriate move evaluations can 
then easily be identified, incurring an overall increase in computational overhead of O (n), 
which yields the same order bound as for the symmetric problem. 

6. Conclusions 

The emphasis on speed in current TSP implementations suggests the merit of giving special 
attention to accelerated versions of the method. For this purpose, candidate list strategies for 
identifying selected subsets of  dropped edges may be enhanced by the use of memory-based 
strategies of tabu search (see, e.g., Hertz, Taillard, and de Werra, 1996; Glover and Laguna, 
1996). In particular, tabu search intensification strategies, which systematically bias the 
search to incorporate attributes of  previous high-quality solutions within current solutions, 
can be applied to identify edges and subpaths to be assigned preferred status for being 
included in tours. Consequently, such strategies implicitly identify remaining edges of T as 
appropriate candidates to be dropped. (Probabilistic variations of  these strategies result by 
mapping evaluations of the relative attractiveness of being included and excluded directly 
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into probabilities for choosing edges to be removed.) Similarly, nontour edges that are 
among those preferred for inclusion implicitly identify tour edges (adjacent to the nontour 
edges) that deserve to be among the preferred candidates to be dropped. Diversification 
strategies of tabu search, which drive the search to generate configurations that are atypical 
relative to the search history, similarly identify edges that are preferable to be added and 
dropped and can be applied in a corresponding fashion. 

Finally, we observe that the approaches of this article have a natural role in creating 
a "coordinated neighborhood" design. Experience shows that TSP methods often benefit 
from implementing more than a single type of move. Acyclic shortest-path models such as 
the one for finding good 4-opt moves (and related ejection chain models for finding other 
types of good moves) offer a chance to develop better "multimove" strategies. 

Notably, these approaches embody an unconventional way to integrate optimization with 
heuristics. Instead of incorporating heuristic rules and trial solution procedures within an 
optimization method to improve its performance, the scheme is reversed to embed special 
optimization models within a heuristic to render it more effective. 

The special shortest-path structures we have introduced to achieve this strategic design 
have additional uses. In a sequel we show how to link the constructions of this article 
to complimentary ejection chain models to yield best moves over more complex sets of 
alternatives. 

References 

Berge, C. (1962). Theory (~f'Graphs and Its Applications. London: Methuen. 
Fiechter, C.-N. (1994). "A Parallel Tabu Search Algorithm for Large Traveling Salesman Problems." Discrete 

Applied Math 51,243-267. 
Glover, E (1989). "Candidate List Strategies and Tabu Search." CAAI Research Report, University of Colorado, 

Boulder, July. 
GIover, E (1992). "Ejection Chains, Reference Structures and Alternating Path Methods for Traveling Salesman 

Problems." University of Colorado. Shortened version published in Discrete Applied Mathematics (1996), 65, 
223-253. 

Glover, E, and M. Laguna. (1996). Tabu Search. Boston: Kluwer. 
Hertz, A., t~. Taillard, and D. de Werra (1996). "Tabu Search." In E.H.L. Aarts, and J.K. Lenstra (Eds.), Local 

Search in Combinatorial Optimization. Chichester: Wiley. 
Johnson, D.S., and L.A. McGeoch. (1996). "The Traveling Salesman Problem: A Case Study in Local Opti- 

mization." In E.H.L. Aarts, and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization. New York: 
Wiley. 

Martin, O., S.W. Otto, and E.W. Felten. (1992). "Large-Step Markov Chains for TSP Incorporating Local Search 
Heuristics." Operations Research Letters l 1:219-224. 

Pesch, E., and F. Glover. (1995). "TSP Ejection Chains." Graduate School of Business, University of Colorado, 
Boulder. To appear in Discrete Applied Mathematics. 

Punnen, A., and E Glover, (1996). "Implementing Ejection Chains with Combinatorial Leverage for TSPs." 
Graduate School of Business, University of Colorado, Boulder. 

Rego, C. (1996). "Relaxed Tours and Path Ejections for the Traveling Salesman Problem." Technical report, 
Laboratoire PRISM, Universit6 de Versailles. 

Rego, C., and C. Roucairol. (1996)~"A Parallel Tabu Search Algorithm Using Ejection Chains for the Vehicle 
Routing Problem." In I.H. Osman and J.E Kelly (Eds.), Meta-Heuristics: Theory & Applications (pp. 661-675). 
Boston: Kluwer. 

Zachariasen, M., and M. Dam. (1996). "Tabu Search on the Geometric Traveling Salesman Problem." In I.H. 
Osman, and J.R Kelly (Eds.), Meta-Heurtsttcs: Theory & Applications (pp. 571-587). Boston: Kluwer. 


