
Journal of Heuristics, 2:169-179 (1996)
(~) 1996 Kluwer Academic Publishers

Finding a Best Traveling Salesman 4-Opt Move
in the Same Time as a Best 2-Opt Move

FRED GLOVER
US West Chaired Prt?[essor of Systems Science School ~/ Business, CB 419, University o[Colorado
Boulder, CO 80309-0419 email: fred.glover@ colorado.edu

A b s t r a c t

A special class of 4-opt moves plays a key role in several leading heuristics for the traveling salesman problem
(TSP). However, the number of such moves is quite large--O(n 4) for a graph of n nodes, on the order of the
square of the number of 2-opt moves. Consequently, classical TSP heuristics have not attempted to seek best (and
often not even improving) instances of these moves. We show that a best move from the collection that consists
of these moves, together with an additional class of 4-opt moves and certain related 3-opt moves, can nevertheless
be found in the same order of time required to find a best 2-opt move. Our method employs an acyclic shortest
path model based on ideas introduced with ejection chain procedures and generates a sequence that can include
improving moves at earlier stages. Joined with candidate list strategies that limit the tour edges available to be
dropped, the method can also be structured to find best members from the set of implied surviving moves in
O (n) time, making available TSP strategies for incorporating 4-opt moves that were previously beyond practical
consideration.

1. I n t r o d u c t i o n

A variety o f heuristics for the traveling salesman problem (TSP) incorporate special in-

stances o f 4-opt moves as a fundamental part o f their design (see, for example, Martin,

Otto, and Felten, 1992; Fiechter, 1994; Johnson and McGeoch , 1996). However , these

moves are significantly more numerous than many other popularly used moves, present ing

O(n 2) t imes as many possibil i t ies as 2-opt moves for a graph of n nodes. Consequent ly ,

most efforts to exploi t these 4-opt moves do not undertake to find best or even improv ing

instances of them. To data, it appears that no methods have sought to identify local op t ima

relat ive to such moves.

We show, however, that best instances of these 4-opt moves and a related class of addi-

t ional 4-opt moves (with twice as many members) can be found in the same order of t ime as

required to find best instances o f 2-opt moves. Specifically, we provide a method that finds

a best m o v e f rom a col lect ion that embraces these two classes of 4-opt moves and also an

associated class o f 3-opt moves, together with the class of all 2-opt moves. The approach

is based on an acyclic shortest path construction, fo l lowing ideas introduced with eject ion

chain methods for TSPs (Glover, 1992). The construct ion also al lows the possibi l i ty o f find-

ing improv ing moves during the process of finding a best move. Special izat ions for sparse

graphs afford an opportuni ty to reduce the worst case bound. In particular, implemented

in conjunct ion with candidate list strategies that select a bounded subset of tour edges as

170 GLOVER

candidates to be deleted, the method can be structured to find a best move from the set of
implied survivors in O(n) time.

2. Definitions and notation

We focus attention on the symmetric TSP, whose goal is to find a least-cost Hamiltonian
cycle in an undirected graph G = (N, E), where IN] = n. For convenience of description
we will suppose G is dense--that is, that the edge set E consists of all (unordered) pairs
of nodes of N. Our approach can also be applied to asymmetric TSPs by appropriately
redefining evaluations, without changing the computational bounds. We assume the reader
has a rudimentary acquaintance with standard graph theory terminology and dispense with
formal definitions where context makes our meaning apparent.

Let T denote an arbitrary tour and assume the nodes of N are indexed so they are
visited by the edges of T in the natural order from 1 to n. (Some TSP heuristics can be
implemented more efficiently by special data structures that do not maintain the tour in
such an oriented form. This does not affect order bounds on computation but can provide
a practical enhancement.) We refer to ith edge, (i, i + 1) of T as e(i), for i = 1 to n, and
adopt the convention that the index n + 1 corresponds to 1, hence e(n) is the edge (n, 1).

2.1. Simple moves and alternating paths

Neighborhoods for transforming one TSP tour into another are often cataloged in terms of
k-opt moves, which are operations that delete k tour edges and add k non-tour edges to
create a new tour. This is a nonstructural move classification, which says nothing about the
relationship among the edges deleted and added.

A more informative characterization of TSP neighborhoods can be achieved by reference
to alternating paths and cycles, as introduced originally by Berge (1962). Specifically,
as shown in the ejection chain development of Glover (1992), the symmetric difference
between any two TSP tours can be expressed as an edge disjoint collection of alternating
cycles, and a special "parsimonious neighborhood" can be identified that precisely generates
such cycles while maintaining an associated transformation to yield legitimate TSP tours
as trial solutions at each step. (The result holds for both symmetric and asymmetric TSPs,
by interpreting a cycle to be undirected or directed, as appropriate.)

We call an alternating cycle (AC) that drops k tour edges and adds k nontour edges a
k-AC. (For convenience, we speak interchangeably of an AC and the transformation of T
that it includes.) Such a cycle will be called connecting if it transforms T into a connected
subgraph and disconnecting otherwise. We will state several observations that are easily
established, and whose specific underlying transformations can be generated directly by the
ejection chain framework.

• Remark I. A k-AC transforms T into a new tour and hence constitutes a k-opt move, if
and only if it is connecting.

• Remark 2. A k-opt move in general is composed of a collection of edge-disjoint h-ACs
for various positive values of h that sum to k. These component h-ACs can include
disconnecting members.

FINDING A BEST TRAVELING SALESMAN 171

• Remark 3. A necessary and sufficient condition for a collection of edge-disjoint ACs to
yield a tour and hence to define a k-opt move, is that they transform T into a connected
subgraph.

The simplest alternating cycles are 2-ACs, and the connecting 2-AC is the one that goes
by the popular "2-opt" designation. Relative to the specified indexing of the nodes of T,
connecting and disconnecting 2-ACs can be completely determined by identifying the two
dropped edges, e(i) = (i, i + 1) and e (j) = (j, j + 1) for i = I to n - 2 and j = i + 2
to n, as follows:

• Connecting 2-AC (2-opt): drop e(i) and e(j) , add (i, j) and (i + 1, j + 1)
• Disconnecting 2-AC: drop e(i) and e(j) , add (i, j + 1) and (i + l, j)

The foregoing specification introduces a nonstandard alternative. For the case of a
disconnecting 2-AC, the possible assignment j = i + 2 causes the added edge (i + l, j)
to be (i + 1, i + 2), which is an edge of T. This violates the customary definition of an
alternating cycle (where added edges must not belong to the tour subgraph). As will be
seen however, it is a useful exception for the purpose of our development. In general,
"exceptional" alternating paths embodied in ejection chains, which include constructions
whose components are subpaths, provide a basis for useful heuristics and also for associated
theorems about connectivity (Glover, 1992). (See Rego, 1996, for a highly efficient design
and implementation of an ejection chain procedure for the TSP; related developments are
also given in Zachariasen and Dam, 1996; Pesch and Glover, 1995; Rego and Roucairol,
1996; and Punnen and Glover, 1996.)

2.2. Classes of 4-opt moves

The class of 4-opt moves that has received special attention in the TSP literature is a
conjunction of two disconnecting 2-ACs, arranged so that each reattaches the components
of T that are disconnected by the other. Such moves are called "super moves" in Fiechter
(1994) and "double-bridge" moves in Johnson and McGeoch (1996). We are interested in
these and also in 4-opt moves from a second class whose members result by an appropriate
combination of a disconnecting 2-AC and a connecting 2-AC. To identify those two types
of 4-opt moves more precisely, we refer to the dropped edges of their two component ACs
as e (i 1), e (j 1) and e (i 2), e (j 2), respectively, where we stipulate without loss of generality
that i 1 < i2. (No dropped edge of one AC can meaningfully duplicate a dropped edge of the
other.) We then define the two component ACs to be crossing if j I < j 2 and noncrossing
if j l > j2. Six types of moves result from these definitions, which we list below for
completeness.

• Type 1: Two disconnecting 2-ACs, which are crossing;
• Type 2: A disconnecting 2-AC and a connecting 2-AC, which are crossing;
• Type 3: Two disconnecting 2-ACs, which are noncrossing;
• Type 4: A disconnecting 2-AC and a connecting 2-AC, which are noncrossing;
• Type 5: Two connecting 2-ACs, which are crossing;
• Type 6: Two connecting 2-ACs, which are noncrossing.

GLOVER

Figure 1 . Type 1 move.

Type 1 moves constitute the so-called double-bridge moves and Type 2 moves, which
are twice as numerous, can be viewed as replacing either one of the two "bridges" by a
"twisted-bridge7' whose edges cross each other. Figure 1 shows a Type 1 move, and Figure 2
shows a Type 2 move (which is one of the two Type 2 moves that are related to the Type
1 move of Figure 1). The tour edges that are dropped to create these moves are indicated
as lines marked with bars, while the nontour edges that are added are indicated as dashed
lines. The nodes i 1, j 1, i2, and j2 , which determine the dropped edges e(i l), e (j 1) and
e(i2), e(j2), are also identified.

It is easy to determine that the moves of Types 3, 4, and 5 do not yield valid tours and
hence are not of interest. The Type 6 move consists of two legitimate (2-opt) moves that
can be performed independently. We therefore call Type 6 moves decomposable moves.
(If the combination of the component moves is an improving move, at least one of these
legitimate components is improving. If both components are improving we can choose
them in succession.)

Type 1 and Type 2 moves are different, however, since they produce a valid tour and also
contain a disconnecting component. Thus, while neither component of these moves may be
a valid improving move, the complete move itself may be improving. Consequently, we call
Type 1 and 2 moves nondecomposable moves. These observations lead to the following
conclusions.

0 Remark 4. Type 1 and Type 2 moves include all nondecomposable 4-opt moves except
for (a subset of) the moves that qualify as connecting 4-ACs.

FINDING A BEST TRAVELING SALESMAN 173

s •

s

i l

,j2

Figure 2. Type 2 m o v e .

• Remark 5. If exactly one of the disconnecting components of a Type 1 or 2 move is a
nonstandard 2-AC (if j = i + 2 for the dropped edges e(i) and e(j) of this component),
then the resulting complete move is a 3-AC that is also a 3-opt move. (The "second
copy" of the tour edge that is added by the nonstandard 2-AC is removed by the other
2-AC.) If both disconnecting components of a Type 1 move are nonstandard 2-ACs, then
the resulting complete move is a 2-opt move determined by the two dropped edges e(i 1)
and e(j2) .)

Remark 4 provides a motivation for seeking improving and best instances of Type 1 and
Type 2 moves, beyond the motivation provided by the fact that Type 1 moves are often
included in effective heuristics. Remark 5 shows that, if we have a way of generating
good Type 1 and Type 2 moves efficiently, we also reap a bonus of including a variety
of 3-opt moves simultaneously. The number of such 3-opt moves is roughly four times
the number of 2-opt moves. (There is no advantage to generating the special case 2-opt
move of Remark 5 because 2-opt moves that may potentially qualify as good--for example,
improving or best--are automatically generated in the course of identifying good Type 1
and Type 2 moves.)

3. An acyclic shortest path model

Our acyclic shortest path model for generating best (or improving) moves of Type l and
Type 2 introduces a digraph S whose nodes corr~espond to edge pairs of T. More precisely,

174 GLOVER

S contains a source nodes s and a terminal node t, and remaining nodes of S identify edge
pairs e(i), e(j) of T as follows.

3.1. Conventions underlylng the construction of S

1. The designation x[i, j], where x is a variable term that takes the assignments x = c (for
"connecting") and x = d (for "disconnecting"), corresponds to a 2-AC of type x that drops
the two edges e(i) and e(j). The cost of such a 2-AC, which equals the sum of its added
edges minus the sum of its dropped edges, is denoted cost_x[/, j] . (Hence, cost_c[/, j] and
cost_all/, j] , respectively, denote the cost of a connecting 2-AC and a disconnecting 2-AC
that drop e(i) and e(j).)

2. A class of nodes of S denoted reach_x[/, j] , for i = 1 to n - 3 and for j = i + 2 to
n - 1 (where i and j take admissible values for i 1 and j 1 in the definitions of Type 1 and
2 moves), refers to the collection of 2-ACs of the form x[p, j] , p = 1 to i. The collection
of all paths from the sources s to the node reach_x[/, j] of S corresponds to the collection
of all such 2-ACs, and the cost of a given path equals the cost of the corresponding move
x[p, j]. (Thus, the shortest path from s to reach_x[/, j] identifies the least cost 2-AC from
this collection, and a predecessor trace identifies the value p (< i) that yields this 2-AC.)

3. A class of nodes of S denoted cross_x[/, j] , for i = 2 to n - 2 and for j = i + 2 to n
(where i and j take admissible values for i2 and j2 in the definitions of Type 1 and Type 2
moves), refers to the collection of all 2-ACs of the form x[p, q] for p = 1 to i - 1 and for
q = i + 1 to j - 1. (This is the collection of 2-ACs whose dropped edges can take the role
of e(i 1) and e(j 1), and which cross the 2-AC whose dropped edges are e(i2) and e(j2) ,
for i = i2 and j = j2.) The collection of all paths from s to cross_x[/, j] corresponds
to this collection of crossing 2-ACs, and the cost of a given path equals the cost of the
corresponding x[p, q]. (Thus the shortest path to cross_x[/, j] identifies the least-cost path
from this collection, and a predecessor trace identifies both the values p and q that yields
this 2-AC.)

4. Finally, S is organized so that arcs from nodes cross_x[/, j] to the terminal node t
generate precisely the set of paths from s to t that correspond to the union of Type 1 and
Type 2 moves, and these arcs carry appropriate costs so that a shortest path from s to t
identifies a least-cost move to Type 1 or 2 (inclusively).

The organization of S that achieves the outcomes indicated by the foregoing conventions
is as follows.

3.2. Structure orS

For x = c and x = d, and for i = 1 to n - 3 and j = i + 2 to n - 1, the digraph incorporates
five types of arcs:

1. From s to reach_x[/, j] with a cost of cost_x[i, j] ,
2. From r each_x [/ - 1, j] to reach_x[/, j] with a cost of 0,
3. From reach_x[/, j] to cross_x[/, j] with a cost of 0,
4. From cross_x[/, j] to cross_x[/, j + 1], with a cost of 0,

FINDING A BEST TRAVELING SALESMAN 175

5. From cross_x [i, j] to t with a cost of c o s t . d [/ + 1, j + 1], and an additional arc to t for
x = c with acos t ofcost_c[i + 1, j + 1].

Theorem. The digraph S is acyclic and contains 0 (n 2) arcs, and satisfies the properties
asserted in conventions 1 through 4.

Proof The result follows directly from the specified structure of S and induction on i
and j . []

The fact that S is acyclic permits a shortest path to be found by examining each arc
exactly once and thus assures an O(n 2) computation bound. There are a variety of ways
to apply an acyclic shortest-path method to S, and we identify one way in particular that
is conveniently organized for computer implementation. We will show that this method
also is adapted to exploit strategies for shrinking S by considering only a limited number
of candidates for dropped edges, to yield an O(n) computation bound in place of O(n2).

3.3. Shortest-path method for S

Denote the cost of a shortest (currently known) path from s to the nodes reach_x[/, j] ,
cross_x[/, j] and t by best_reach.x[/, j] , best_cross_x[/, j] and best_t. Also denote the
shortest path predecessors associated with these nodes (as a basis for recovering the identity
of a shortest path) by pred_reach_x[i, j] , pred_cross_x[i, j] and pred_t. The two latter
predecessors will be maintained in an "aggregate" form, so that pred_t by itself yields all
the information to identify a shortest path (and hence a best move).

There are three associated simple shortest-path updates, which provide the heart of the
method. We present these updates in a special order for values of i and j that correspond to
those specified by the algorithm to be described. An important consequence of executing
the updates in this order is that all arrays indexed by [i, j] can be collapsed to be indexed
only by [j], thus significantly reducing the array space required. (Note that cost_x[/, j]
is not an array but a definition based on dropping edges e(i) and e(j).) We include the
relevant values of i in the following updates, to make visible the way in which the method
traverses the digraph S. Nevertheless, only the j component of all arrays (excluding "cost
arrays") needs to be considered during implementation.

Each update is executed for i = 2 to n - 2 and for j = i + 2 to n except as noted. The
predecessor pred_cross_x is stored as an ordered pair, and pred_t is stored as two ordered
pairs, pred_t (1) and pred_t (2). Also, we store with best_t a pair designated as "type". Cost
terms that are duplicated in these updates of course need to be computed only once.

3.3.1. Best cross update (for j ~ n -- 1)

If best~reach_x[i - 1, j] < bes t_cross_x[/ - 1, j - l], then
bes t_cross_x[/ - I, j] = best_reachJ[i - l, j]
pred_cross..x[i - 1, j] = (pred_reach..x[4 - 1, j] , j)

else

176 GLOVER

b e s t _ c r o s s _ x [/ - 1, j] = best_cross_x[/ - 1, j - 1]
pred_cross._x[i - 1, j] = pred_cross_x[i - 1, j - 1]

3.3.2. Best reach update (for j <_ n - - l)

If cost_x[i , j] < b e s t _ r e a c h _ x [/ - 1, j] , then
best_reach_x I/, j] = cost_x[/, j]
pred_reach_x[i , j] = i

else
best_reach_x[i, j] = best_reach_x[i - 1, j]
pred_reach_x[i , j] = pred_reach_x[i - 1, j]

(redundant when the array index i is suppressed)

3.3.3. Best terminal node update

For y = c and y = d w h e n x = d, and for y = d w h e n x = c:
I f cost_x[i , j] + b e s t _ c r o s s _ y [/ - 1, j - 1] < best_t, then

best_t = cost_x[/, j] + b e s t _ c r o s s _ y [/ - 1, j - 1]
pred_t(1) = pred_cross_y[i - 1, j - 1]

pred_t(2) = (i, j)
type = (x, y)

Final ly, to include the possibi l i ty that a s imple 2-opt move may be best, we include the
fol lowing.

3.3.4. Simple terminal node update

If cost_c[/, j] < best_t, then

best_t = cost_c[/, j]
pred_t(2) = (i, j)
type = (c, c)

3.4. Shortest path method

Except for the solut ion recovery, each step for the shortest-path method is executed for both
x = c a n d x = d .

• Step 1. (Init ial ization). best_t =

F o r j = 3 t o n - l :
best_reach_x[1, j] = cos t_x[l , j]
pred_reach_x[1, j] = 1
Execute S imple Terminal Node Update for i = 1

end

FINDING A BEST TRAVELING SALESMAN 177

• Step 2. (Main Step).
For i = 2 t o n - 2

best_cross, r [/ - 1, i + 1] = bes t_ reach .x [/ - 1, i + 1]
pred_cross_r[i - 1, i + 1] = (pred_reach_x[i - 1, i + 1], i + 1)

F o r j = i + 2 t o n :
Execute, in sequence

Best Cross Update (j _< n - 1)
Best Reach Update (j 5 n - 1)
Best Terminal Node Update
Simple Terminal Node Update

end
end

• Step 3. (Solution Recovery).
best_t gives the cost of the best move.

(1) If type = (c, c), the best move is a simple c[i, j] (2-opt) move for (i, j) =
pred_t(2).

(2) Otherwise, for type = (x, y) (excluding x = y = c), the best move is composed of
the component move y [i 1, j 1] for (i 1, j 1) = pred_t (1) and the component move
x[i2, j2] for (i2, j2) = pred_t(2).

In accordance with our previous comments, the arrays can be reduced so that [l , j] in
Step 1 can be replaced by [j] (except in reference to cos tx [1 , j]) . Similarly [i - I, i + 1]
in Step 2 can be replaced by [i + 1]. Unlike the other updates, the simple terminal node
update does not have to be executed in the sequence indicated.

To organization of the method makes it clear that the computation required to find a
best move is a simple multiple of that required to find a best 2-opt move (which occurs by
retaining only the simple terminal node update).

4. An accelerated O(n) method

The digraph S can be collapsed, allowing the foregoing method to be simplified, by res-
tricting attention to a fixed (or bounded) number of edges of T as candidates to become
the dropped edges e(i) and e(j). The determination of such edges can be carried out by
a variety of candidate list strategies (e.g., Glover, 1989; Glover and Laguna, 1996). (A
straightforward strategy in the present setting, for example, is to periodically evaluate all
or a significant number of tour edges as candidates to be dropped, based on the quality of
the moves to which they contribute, and then to restrict attention for some iterations to a
subset of those that received highest evaluations.)

To implement the method under this form of restriction, suppose that the candidate edges
to be dropped are indexed as e(p(h)) for h = 1 to q, where p(h) increases with increasing
values of h, and p(1) = 1. Then the shortest-path method successfully finds best Type 1
and Type 2 moves over the indicated collection of dropped edges by the following changes:

• Step 1: [1,n] becomes [1, p(q)]
j = 3 t o n - l b e c o m e s j = p (h) , h = 3 t o q - I

! 78 GLOVER

• S t e p 2 : i = 2 t o n - 2 b e c o m e s i = p (h) , h = 2 t o q - 2
i + 1 becomes p(h + 1)
j = i + 2 ton becomes j = p(k) for k = h + 2 t o q
j - 1 in the updates becomes p(k - 1).

The preceding organization for finding best Type 1 and Type 2 moves may skip some (i, j)
combinations that give legitimate 2-opt moves. These 2-opt moves can also be checked by
applying the simple terminal node update under the following additional conditions:

oStep 1: j = p (2) if p(2) _> 3
• Step 2: j = p (h + 1) if p(h + 1) > p(h) + 2 (accompanied by h = q - 1 in setting

i = p(h), if p(q) >_ p(q - 1) + 2).

The foregoing changes then reduce the effort to O(q 2) for the chosen constant q. The
overall effort is O (n) due to the overhead of maintaining the sequential indexing. Together
with this, or separately, one can impose thresholds on costs of chosen partial add/drop
components of moves to limit the moves considered for full evaluation.

5. Asymmetric problems

The foregoing procedures can readily by adapted to asymmetric TSPs. If attention is
restricted to Type 1 moves, then the tour orientation remains unaffected and the adaptation
is trivial. In the case of Type 2 moves, the process of sequentially indexing the nodes of T can
be accompanied by generating a cumulative forward cost F (i), for each arcs a (i) = (i, i + 1),
which equals the sum of the costs of arcs a(h) for h = 1 to i, with F(0) = 0. Similarly, a
cumulative reverse cost R(i) is generated for each arc a'(i) = (i + 1, i), which equals the
sum of the costs of arcs a'(h) for h = i to n, with R(n + 1) = 0. The cost of inverting a
path consisting of arcs a(p) to a(q) for p < q (replacing these arcs with a'(q) to a'(p)) ,
is given by R(p) - R(q + 1) - (F(q) - F (p - 1)). Appropriate move evaluations can
then easily be identified, incurring an overall increase in computational overhead of O (n),
which yields the same order bound as for the symmetric problem.

6. Conclusions

The emphasis on speed in current TSP implementations suggests the merit of giving special
attention to accelerated versions of the method. For this purpose, candidate list strategies for
identifying selected subsets of dropped edges may be enhanced by the use of memory-based
strategies of tabu search (see, e.g., Hertz, Taillard, and de Werra, 1996; Glover and Laguna,
1996). In particular, tabu search intensification strategies, which systematically bias the
search to incorporate attributes of previous high-quality solutions within current solutions,
can be applied to identify edges and subpaths to be assigned preferred status for being
included in tours. Consequently, such strategies implicitly identify remaining edges of T as
appropriate candidates to be dropped. (Probabilistic variations of these strategies result by
mapping evaluations of the relative attractiveness of being included and excluded directly

FINDING A BEST TRAVELING S A L E S M A N 179

into probabilities for choosing edges to be removed.) Similarly, nontour edges that are
among those preferred for inclusion implicitly identify tour edges (adjacent to the nontour
edges) that deserve to be among the preferred candidates to be dropped. Diversification
strategies of tabu search, which drive the search to generate configurations that are atypical
relative to the search history, similarly identify edges that are preferable to be added and
dropped and can be applied in a corresponding fashion.

Finally, we observe that the approaches of this article have a natural role in creating
a "coordinated neighborhood" design. Experience shows that TSP methods often benefit
from implementing more than a single type of move. Acyclic shortest-path models such as
the one for finding good 4-opt moves (and related ejection chain models for finding other
types of good moves) offer a chance to develop better "multimove" strategies.

Notably, these approaches embody an unconventional way to integrate optimization with
heuristics. Instead of incorporating heuristic rules and trial solution procedures within an
optimization method to improve its performance, the scheme is reversed to embed special
optimization models within a heuristic to render it more effective.

The special shortest-path structures we have introduced to achieve this strategic design
have additional uses. In a sequel we show how to link the constructions of this article
to complimentary ejection chain models to yield best moves over more complex sets of
alternatives.

References

Berge, C. (1962). Theory (~f'Graphs and Its Applications. London: Methuen.
Fiechter, C.-N. (1994). "A Parallel Tabu Search Algorithm for Large Traveling Salesman Problems." Discrete

Applied Math 51,243-267.
Glover, E (1989). "Candidate List Strategies and Tabu Search." CAAI Research Report, University of Colorado,

Boulder, July.
GIover, E (1992). "Ejection Chains, Reference Structures and Alternating Path Methods for Traveling Salesman

Problems." University of Colorado. Shortened version published in Discrete Applied Mathematics (1996), 65,
223-253.

Glover, E, and M. Laguna. (1996). Tabu Search. Boston: Kluwer.
Hertz, A., t~. Taillard, and D. de Werra (1996). "Tabu Search." In E.H.L. Aarts, and J.K. Lenstra (Eds.), Local

Search in Combinatorial Optimization. Chichester: Wiley.
Johnson, D.S., and L.A. McGeoch. (1996). "The Traveling Salesman Problem: A Case Study in Local Opti-

mization." In E.H.L. Aarts, and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization. New York:
Wiley.

Martin, O., S.W. Otto, and E.W. Felten. (1992). "Large-Step Markov Chains for TSP Incorporating Local Search
Heuristics." Operations Research Letters l 1:219-224.

Pesch, E., and F. Glover. (1995). "TSP Ejection Chains." Graduate School of Business, University of Colorado,
Boulder. To appear in Discrete Applied Mathematics.

Punnen, A., and E Glover, (1996). "Implementing Ejection Chains with Combinatorial Leverage for TSPs."
Graduate School of Business, University of Colorado, Boulder.

Rego, C. (1996). "Relaxed Tours and Path Ejections for the Traveling Salesman Problem." Technical report,
Laboratoire PRISM, Universit6 de Versailles.

Rego, C., and C. Roucairol. (1996)~"A Parallel Tabu Search Algorithm Using Ejection Chains for the Vehicle
Routing Problem." In I.H. Osman and J.E Kelly (Eds.), Meta-Heuristics: Theory & Applications (pp. 661-675).
Boston: Kluwer.

Zachariasen, M., and M. Dam. (1996). "Tabu Search on the Geometric Traveling Salesman Problem." In I.H.
Osman, and J.R Kelly (Eds.), Meta-Heurtsttcs: Theory & Applications (pp. 571-587). Boston: Kluwer.

