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Abstract. Scatter search and genetic algorithms have orig- 
inated from somewhat different traditions and perspec- 
tives, yet exhibit features that are strongly complementary. 
Links between the approaches have increased in recent 
years as variants of genetic algorithms have been intro- 
duced that embody themes in closer harmony with those 
of scatter search. Some researchers are now beginning to 
take advantage of these connections by identifying addi- 
tional ways to incorporate elements of scatter search into 
genetic algorithm approaches. There remain aspects of the 
scatter approach that have not been exploited in conjunc- 
tion with genetic algorithms, yet that provide ways to 
achieve goals that are basic to the genetic algorithm de- 
sign. Part of the gap in implementing hybrids of these pro- 
cedures may derive from relying too literally on the ge- 
netic metaphor, which in its narrower interpretation does 
not readily accommodate the strategic elements underly- 
ing scatter search. The theme of this paper is to show there 
are benefits to be gained by going beyond a perspective 
constrained too tightly by the connotations of the term "ge- 
netic". We show that the scatter search framework directly 
leads to processes for combining solutions that exhibit spe- 
cial properties for exploiting combinatorial optimization 
problems. In the setting of zero-one integer programming, 
we identify a mapping that gives new ways to create com- 
bined solutions, producing constructions called star-paths 
for exploring the zero-one solution space. Star-path traj ec- 
tories have the special property of lying within regions as- 
sured to include optimal solutions. They also can be ex- 
ploited in association with both cutting plane and extreme 
point solution approaches. These outcomes motivate a 
deeper look into current conceptions of appropriate ways 
to combine solutions, and disclose there are more power- 
ful methods to derive information from these combinations 
than those traditionally applied. 
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Zusammenfassung. Scatter Search (gestreute Suche) und 
genetische Algorithmen weisen eine Anzahl einander 
komplement~irer Eigenschaften auf. Trotz verschiedenen 
Ursprungs haben sich in den letzten Jahren, insbesondere 
auch aufgrund zahlreicher Modifikationen genetischer 
Verfahren, zunehmend mehr Gemeinsamkeiten herausge- 
sch~ilt, die in erster Linie auch durch die Ubertragung yon 
Scatter Search Features in genetische Algorithmen ent- 
standen. Einige grundlegende Aspekte yon Scatter Search 
sind bisher jedoch in genetischen Algorithmen - im enge- 
ren Sinne - nicht berticksichtigt. Es zeigt sich, dab mittels 
Scatter Search Kombinationen von L/3sungen generiert 
werden k/Snnen, deren Eigenschaften entscheidend die 
kombinatorische Struktur der zugrundeliegenden Opti- 
mierungsprobleme widerspiegeln. Im Falle binfirer Opti- 
mierungsprobleme werden durch Projektionen Ltsungen 
zu sog. Sternpfaden (star-paths) kombiniert, von denen aus 
jeweils optimale Ltsungen erzeugt werden ktnnen. Mtg- 
liche Erg~inzungen durch Schnittebenen zur Exploration 
des Ltsungsraumes legen nahe, der Kombination yon Lt-  
sungen (vgl. etwa die Rekombination bei genetischen A1- 
gorithmen) zur Erzeugung problemspezifischen Wissens 
mehr Aufmerksamkeit zu schenken als bisher. 

Key words: Heuristics, integer programming, genetic al- 
gorithms, scatter search 

Schliisselwiirter: Scatter search (gestreute Suche), gene- 
tische Algorithmen, Sternpfade, Projektion 

1. Introduction 

The metaphor underlying genetic algorithm (GA) ap- 
proaches has proved a significant element in their success, 
and has inspired many useful insights into problem solv- 
ing. Nevertheless, there are also limitations to this meta- 
phor that inhibit comprehension of key possibilities that 
are rooted in another tradition for combining population 
elements, whose beginnings are roughly contemporaneous 



126 

with those of genetic algorithms. Scatter search, together 
with its more recent manifestations in path relinking and 
structured combination strategies, offers a versatile ma- 
chinery for manipulating vectors and influencing their ev- 
olution. Those familiar with the genetic tradition are find- 
ing these ideas harmonious with their own. 

Newer descendants of genetic algorithms, represented 
by "parallel genetic algorithms" and "genetic local 
search", are beginning to incorporate ideas proposed ear- 
lier by these alternative approaches, and are coming to em- 
body an evolution that goes somewhat beyond the conno- 
tations of the term "genetic". Researchers in the GA com- 
munity are increasingly recognizing the limitations of the 
genetic terminology, and are offering alternatives, in some 
cases making analogies to higher kinds of evolution, such 
as social or cultural. 

The purpose of this paper is to identify important con- 
cepts and strategies not yet exploited in the genetic tradi- 
tion, either in its original or modern form. Useful possibil- 
ities exist for developing more effective solution ap- 
proaches, marrying genetic notions with the complemen- 
tary framework that derives from scatter search. The power 
of this framework is indicated by recent computational 
studies, and we give new theoretical results for carrying 
this framework further. 

In the domain of discrete optimization, we introduce 
the concept of star-paths for linking solutions, based on a 
class of projections called directional rounding. In the 
scatter search orientation these star-paths may be con- 
ceived as creating higher forms of solution combinations 
(or, in the genetic tradition as establishing higher forms of 
parent-offspring relationships). We prove these paths are 
capable of accessing feasible and optimal solutions from 
any vertex of a polyhedron that circumscribes the feasible 
space, and hence they yield strategies capable of exploit- 
ing discrete optimization relaxation approaches based on 
linear and convex programming. We also establish con- 
nections with cutting plane methodsl and observe that par- 
allel computation can be applied advantageously to imple- 
ment the strategies that arise from our framework. 

2. Scatter search and genetic algorithms 

Scatter search and genetic algorithms derive from differ- 
ent foundations and perspectives which, viewed with the 
benefit of hindsight, exhibit several interesting elements 
in common. Parallels between the methods are more vis- 
ible today than when these approaches originated in the 
1970s, due to the fact that genetic algorithms have under- 
gone a number of critical changes that have given them a 
character more closely in harmony with scatter search. Re- 
searchers from different traditions have begun to notice 
connections between these approaches, and to establish 
useful strategies that exploit reinforcing elements of these 
approaches (Michaelwicz etal. (1991); Mtihlenbein 
(1992); Michalewicz (1993); and Reeves (1993 b)). Hy- 
brid procedures incorporating related ideas have also been 
developed by Battiti and Tecchiolli (1993); Costa (1992); 
Dorndorf and Pesch (1995) and Moscato (1993). One of 
the themes of this paper is that the potential exists to ex- 
ploid such connections more fully. 
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Diagram 1 

Because of the widespread coverage of genetic algo- 
rithms (e.g., see Goldberg (1989); Davis (1991); Reeves 
(1993 a) and Whitley (1993)), we will omit an introduc- 
tory review of this area, and will instead focus on the ele- 
ments of scatter search, and how they interrelate with GA 
proposals. The first part of our development draws on 
Glover, Kelly and Laguna (1992). 

Scatter search 

Scatter search is designed to operate on a set of points, 
called reference points, that constitute good solutions ob- 
tained from previous solution efforts. The approach 
systematically generates linear combinations of the refer- 
ence points to create new points, each of which is mapped 
into an associated point that yields integer values for var- 
iables required to receive such discrete values (Glover 
1977). As originally proposed, the mapping consists of 
rounding or an associated generalized adjacency process, 
e.g., rounding a selected discrete variable to an integer 
neighbor, then determining implied value changes for 
other variables, and repeating. 

This idea of using a systematic process to enable solu- 
tion combinations to meet desired restrictions embodies 
the principle that such combinations should be influenced 
by context. (Genetic algorithm concepts proposed at this 
time, and advocated in some circles even today, instead 
embrace the notion that combinations should be generated 
without reference to context.) The adaptive rounding pro- 
cess of scatter search automatically satisfies simple con- 
straints such as mutual exclusivity and precedence rela- 
tionships, since each rounding step, when carried out by 
standard updating processes, yields only those remaining 
options consistent with choices made earlier. (More com- 
plex constraints sometimes also can be satisfied this way 
by updating a linear programming basis representation, as 
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characteristically done in integer programming implemen- 
tations.) 

The vectors that result from the rounded linear combi- 
nations of the chosen reference points in turn are allowed 
to serve as inputs to accompanying heuristic processes. 
The heuristic procedures then transform these inputs into 
improved outcomes, thereby bringing the appoach full cir- 
cle. These outcomes accordingly are screened to provide 
a new set of reference points, and the process starts again. 

By this approach, linear combinations produced at each 
stage are dispersed across region whose form is biased by 
the distribution of reference points. Diagram 1 (Glover 
1977) shown on the previous page illustrates a simple ver- 
sion of the process. Each of the points numbered 1 through 
16 in Diagram 1 is the central point of an apparent subre- 
gion of the enveloping region A, B, C. The points A, B 
and C may or may not constitute the original reference 
points. (For example, the original points may consist of 5, 
7 and 11, or of 4, 5, 12 and 13.) Thus, new points may be 
created that are not convex combinations of original 
points, and hence that may contain information that is not 
contained in these points, in the sense of bits implicit in a 
solution representation. (At the same time, the original 
points are also instances of such linear contributions, and 
hence they are likewise included among the candidate out- 
comes.) 

The mappings that progressively round the resulting 
linear combinations, modifying fractional components 
that are required to be discrete, can introduce additional 
information derived from relationships between problem 
variables, hence reflecting the influence of problem struc- 
ture. Problem structure exerts further influence by means 
of the heuristic processes that take these points as inputs 
and produce new solutions from them. 

Similarities are immediately evident between this ap- 
proach and the GA formulation of Holland (1975). Both 
are instances of what are sometimes called "population 
based" procedures, which start with some collection of ele- 
ments and progressively evolve those elements to yield 
new ones that are subjected to the same guiding process. 
Both also incorporate the idea that a key aspect of produc- 
ing the new elements is to generate some form of combi- 
nation of the existing elements. On the other hand, several 
contrasts between the methods also may be noted. The 
early GA approaches were predicated on the idea of choos- 
ing parents randomly to produce offspring, and further on 
introducing randomization to determine which compo- 
nents of the parents should be combined (by genetic cross- 
over operations). By contrast, no corresponding recourse 
to randomization is made in the scatter search approach, 
although nothing excludes its use as a bias factor (i.e., pro- 
babilistically favoring evaluation criteria that would oth- 
erwise be applied deterministically). Attention is focused 
in scatter search on choosing good solutions as a basis for 
generating combinations, in contrast to the more demo- 
cratic GA policy of allowing solutions of all types to be 
combined. This scatter search focus can enhance the gen- 
eration of relevant outcomes without losing the ability to 
produce diverse solutions, due to the way the generation 
process is implemented. Recent "elitist" GA variants also 
give preference to combining good elements, but without 
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a corresponding ability to produce combinations beyond 
the region in which these elements lie, except by resort- 
ing to auxiliary strategies to overcome this limitation. 
(Scatter search does not need "mutation" to avoid conver- 
gence to a population from which an optimal solution is 
not reachable.) The different mechanisms used by the two 
approaches to combine solutions, consisting of rounded 
linear combinations on one hand and genetic crossover on 
the other, particularly invite examination. 

Significance of rounded linear combinations 

Linear combinations provide a somewhat more varied set 
of possibilities for creating new solutions than crossover 
as initially introduced in GAs. They also avoid the artifi- 
ciality of resorting to the binary representations which were 
the foundation of the original genetic encoding and cross- 
over notions. To see the relevance of this, consider the goal 
of creating integer solutions that are combinations of the 
two solutions x=9 and x=26. Rounded linear combinations 
can generate every integer point from minus to plus infin- 
ity on the line joining x=9 and x=26, hence in this case 
yielding every value x may feasibly be assigned. On the 
other hand, when these solutions are given a binary repre- 
sentation, ( 0 1 0 0 1 )  for x=9, and (1 1010)  for x=26, then 
the possible outcomes are substantially more limited. In 
particular, the only ways to create rounded linear combi- 
nations of the binary vectors ( 0 1 0 0 1 )  and ( 1 1 0 1 0 )  yield 
the collection of binary vectors (* 10 * *) where the "* ele- 
ments" can be 0 or 1. Hence instead of producing all pos- 
sible integer points these combinations produce only the 
integer values of x satisfying 8 < x < 11 and 24 < x < 27. 

The possible outcomes are more limited still if genetic 
crossover is used in the form initially conceived, as some- 
times espoused by GA traditionalists. The only vectors that 
can be created by the proposals of Holland are the four 
vectors (01000) ,  ( 01010) ,  (1 1001) ,  ( 11011) ,  corre- 
sponding to x--8, 10, 25, 27. When attention is restricted 
to binary vectors, which clearly is inappropriate, rounded 
linear combinations in fact give the same set of possibil- 
ities as the "uniform" crossover operator proposed some 
years later by Ackley (1987) (although the randomized 
means of generating these possibilities in the GA setting 
will typically yield different outcomes from the strategic 
rounding approach of scatter search). By further employ- 
ing generalized adjacency rounding, where values of some 
variables may change as a result of modifying others, ad- 
ditional possibilities result. 

The significance of rounding to account for interactions 
between variables is illustrated by the following example 
(Glover (1964)). Consider the simple integer program- 
ming problem 

Minimize 9x i + 4x2 + 8x3 

subject to 

9xl - 8x2 - x3 > 7 
-6x  1 + 7x2-  2x 3 >6 
-x  1-x2+5x3_>9 
x 1, x 2, x3_>0 and integer. 
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The linear programming (LP) solution to this problem, 
which disregards the integer requirement for the variables, 
gives a solution vector x= (x  1, x 2, x3)=(24.43, 25.14, 
11.71). Successive rounding that respects interactions 
between the variables (implied by the inequality con- 
straints above, and also manifested in the structure of the 
LP basis inverse), yields a solution vector x = (29, 30, 14), 
which turns out to be optimal for this problem. Evidently, 
the integer values of this final vector could not be antici- 
pated without accounting for the interdependencies among 
the problem variables. Additional manifestations of such 
phenomena and processes for exploiting them are given in 
Nemhauser and Wolsey (1988) and Parker and Rardin 
(1988), and represent the types of processes that are ac- 
commodated naturally within the scatter search frame- 
work. 

Without contradicting the importance of randomization 
in GA processes, the fact that scatter search seeks to create 
new points strategically rather than randomly can repre- 
sent a useful feature in some settings. The points of Dia- 
gram 1, for example, may be generated and scanned in 
their indicated numerical order, under the condition where 
this order reflects a ranking determined by the objective 
function, or more generally by a feasible direction gradi- 
ent. Scatter search does not prespecify the number of points 
it will generate or retain, since this can be established adap- 
tively by considering the quality or structure of solutions 
produced in such a systematic generation. 

Scatter search and early GA approaches may also be 
distinguished by the fact that the reference points are sup- 
plied by and in turn supply another heuristic process. This 
is an orientation that has lately gained strong proponents 
among a core of researchers in the area of optimization 
who are seeking to modify GA proposals to make them 
more effective, particularly as advocated in the Parallel 
GA approach of Mtihlenbein et al. (1988) and the related 
genetic local search approach of Ulder et al. (1991). 

Finally, we observe that the allowance for real-valued 
weights and vector components (for variables or parame- 
ters that are not discrete) anticipates the developing trend 
in some parts of the GA community to embrace "real- 
coded" (or floating-point) genes, as represented by the 
work of Davis (1991), B~ick, Hoffmeister and Schwefel 
(1991) and Eschelman and Schaffer (1992). Additional 
connections with current GA developments are provided 
in the study of Michalewicz et al. (1991), which introduces 
a nonstandard GA approach using linear combinations in 
place of genetic crossover. 

In this way, the philosophical themes of scatter search 
and genetic algorithms are being brought closer together 
by modern efforts to create GA variants with an improved 
ability to solve optimization problems. These develop- 
ments have set the stage for the integrative research now 
underway, notably in the work cited at the beginning of 
Section 2, that is disclosing the advantage of going beyond 
piecemeal transformations of GA approaches and creating 
direct hybrids with scatter search. Relatively simple forms 
of scatter search have already produced improved solu- 
tions in such approaches. 

The rest of this paper is devoted to showing how these 
concepts give a basis for strategies with appealing prop- 

F. Glover: Scatter search and star-paths 

erties for zero-one optimization, and hence for the broad 
class of problems that can be represented in this domain. 
In particular, we will show how a special type of round- 
ing process, called directional rounding, creates an easily 
implemented form of scatter search whose candidate so- 
lutions do not suffer the risk of evolving to a state where 
an optimal solution is inaccessible (i.e., outside the range 
of solution combinations made available). Moreover, we 
will show that this approach gives a way to combine so- 
lutions that avoids many combinations that are inherently 
unproductive. Finally, we show that the embodiment of the 
approach in the generation of constructions called star- 
paths yields a highly efficient and adaptive basis for its ap- 
plication. 

3. Application to zero-one integer programming 

The zero-one integer programming problem encompasses 
an extensive array of combinatorial applications, ranging 
from logical design to scheduling and routing, and from 
graph theory models to resource allocation and financial 
planning. (Examples of such applications are contained in 
Hu (1969); Zionts (1974); Murty (1976); Parker and Rar- 
din (1988); Nemhauser and Wolsey (1988).) 

We begin by giving a formulation for this problem that 
is convenient for our subsequent development, and then 
introduce the theoretical results relevant to exploiting this 
problem within the scatter search framework. Specifically, 
we represent the zero-one integer programming problem 
in the form 

(IP) Minimize z=•(cj xj:j E N) 

subject to 

•(Ajxj:j �9 N) = b 
1> xj > 0 and xj integer j �9 I c N 
Uj>_xj_>0 j � 9  C = N - I  

The vectors Aj, j �9 N = { 1 ..... n } and b are column vectors 
of constants. The subsets I and C of N respectively con- 
stitute the index sets for the integer (zero-one) and contin- 
uous variables. We denote the vector consisting of both in- 
teger and continuous variables by the symbol x. Solutions 
(x vectors) that are feasible for problem (IP) will be called 
IP feasible, and solutions that are feasible for the corre- 
sponding linear programming relaxations (dropping the in- 
teger requirement for the zero-one variables) will be called 
LP feasible. 

To differentiate this problem from the mixed IP prob- 
lem, we assume the values of the continuous variables are 
uniquely determined by the values of the integer variables. 
This occurs most commonly when the variables xj, j �9 C, 
represent slack variables for associated inequality con- 
straints; that is, the vectors Aj, j ~ C compose an identity 
matrix. Then for any assignment of values to the integer 
variables xj, j �9 I, each continuous variable Xk, k � 9  C re- 
ceives the value 

Xk=bk-E(Akj xj:j �9 I) k~ C. (1) 
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If all the problem data are integers, then the continuous 
variables implicitly receive integer values. 

We allow upper bounds Uj for some or all of the con- 
tinuous variables to be infinite (i.e., redundant) and stip- 
ulate that Uj = 1 for j ~ I, which gives xj < Uj, j e N. By this 
convention, the preceding formulation suggests the use of 
the bounded variable simplex method for solving the LP 
relaxation (see, e.g., Dantzig (1963)), and in general as a 
vehicle for moving from one extreme point to another. 
(Thus, feasible pivot moves leading to adjacent extreme 
points include those that change the value of a nonbasic 
variable from one bound to the opposite bound, and it is 
unnecessary to refer to slack variables for the upper bound 
inequalities.) 

We have formulated the problem in this manner to make 
it convenient to exploit this extreme point connection. In 
particular, it is well known that an optimal solution for the 
zero-one IP problem may be found at an extreme point of 
the LP feasible set. Special approaches have been proposed 
to exploit this fact (Cabot and Hurter (1968); Glover 
(1968); Balas and Martin (1980); Aboudi and J6rnsten 
(1992); Lokketangen et al. (1993); Glover and Lokketan- 
gen (1994)). Part of our development has implications for 
modifying and extending such approaches incorporating 
cutting planes. Beyond this, however, we will give ways 
to take advantage of extreme point representations as a 
foundation for constructing new heuristic search pro- 
cesses, creating solution combinations that are targeted to 
lie in a subspace where an optimal zero-one extreme point 
can be proved to be found�9 

4. Linear programming extreme point 
representations 

Let x(0) denote a current basic extreme point solution as 
obtained by the bounded variable simplex method, let 
{xj:j ~ NB } denote the current set of nonbasic variables 
and let {x3: j e B } denote the current set of basic variables 
(B = N - N B ) .  The extreme points adjacent to x(0) have the 
form 

x(h) = x ( 0 ) -  0hD h for h ~ NB (2) 

where D h is a vector associated with the nonbasic variable 
x h, and O h is the change in the value of x h that moves the 
current solution from x(0) to x(h) along their connecting 
edge. The standard LP basis representation identifies the 
subset of entries Dhj of D h associated with the current ba- 
sic variables xj. The entries of D h for nonbasic variables 
xj are automatically zero, except for x h. We choose the sign 
convention for entries of D h that yields a coefficient for x h 
of Dhh=l if X h is currently at its lower bound, and of 
Dhh=--I  if Xh is currently at its upper bound. Hence x h re- 
spectively receives the value O h or U h - Oh at the extreme 
point x(h). By this convention, the value Oh is always non- 
negative, and is strictly positive except under degeneracy. 

Our following development wilt identify points x(h), 
expressed in the form of (2), based on positive values of 
O h that may differ from those that yield extreme points ad- 
jacent to x(0). Such points x(h), h c NB, provide a foun- 
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dation for generating reference points for our scatter search 
approach. We also will create sets of reference points that 
do not depend on identifying a basic LP feasible solution 
x(0). Both of these ways of generating reference points de- 
pend on the notion of directional rounding, examined next. 

5. Directional rounding in scatter search 

We allow the symbols 0 and 1 to refer both to scalars and 
to vectors (of all O's and all l 's) according to context. Be- 
cause of the dependency of the continuous variables on the 
integer variables by (1), a restriction on x expressed in the 
form x ~ X will be treated as a restriction directly placed 
on the subvector (xj:j ~ I). In accordance with this conven- 
tion, we let X(0,1) denote the unit hypercube defined rel- 
ative to (xj :j e I), where x ~ X(0,1) indicates 0 < xj < 1, j a I, 
and let V(0,1) denote the vertices of the hypercube, where 
x~ V(0,1) indicates xj=0 or 1, j ~ I. 

Directional rounding, identified by the symbol 6, is a 
mapping from the continuous space X(0,1) to the discrete 
space V(0,1) by the following rules. We first define ~with 
respect to components of the vector x. 

For a specified j ~ I, assume xj is an arbitrary value of 
xj and x~ is a value that satisfies 0 < x~< 1. Then the direc- 
tional rounding ~(x~, x~) from x~ to (in the direction of) x~ 
is given by 

0 if Xj<Xj 
1 if x)>xj 

x~ if x)=x~ and x~=0 or 1 
0 or 1 if xj=x ~ and x ~ 0 ,  x~;~l. 

In the last case, the choice of 8(xj,  xj) = 0 or 1 can be based 
on whether x] ~ is closer to 0 or 1, breaking the tie arbitrar- 
ily for x~=0.5. Alternative rules for making the choice 
between 0 and 1 when x] = x~ are identified later. 

We now extend the definition of 6 to refer also to vec- 
tors by defining the directional rounding 6(x*, x'), from a 
vector x* ~ X (0,1) to an arbitrary vector x', to be the point 
in V(0,1) given by 

g(x*,x ')=(~x] ~, x~):j ~ I). 

Our notation specifies only the effect of 6 on the integer 
components of the vector x = g(x*,x'), since the continu- 
ous components are determined automatically. (That is, 
the vector is given by xj= 6(x~, x~) for j ~ I, yielding a 
unique resulting value for each x k, k e  C by (1).) 

Finally, we identify the directional rounding ~(x*,X) 
from the vector x* to the set X to be the set of points in 
V(0,1) given by 

g(x*,X)=(g(x*,x'):  x '~  X}. 

It may be noted that directional rounding includes nearest 
neighbor rounding as a special instance. In particular, 
6(x*,x') becomes the nearest integer neighbor of x* when- 
ever each x~, j c I, lies in the interval bounded by x~ and 
the integer closest to x~. 

The point x* will be called the base point and the point 
x' will be called the focal point of the directional round- 
ing ~(x*,x'). Our definitions apply as well as mixed inte- 
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ger programming problems by solving a residual linear 
program to determine values of continuous variables, 
given values for integer variables. The definitions also 
can readily be extended to the case where arbitrary 
vectors serve as base points, rather than requiring 
x * � 9  X(0,1). 

We apply these ideas in the scatter search context as 
follows. Recall that the standard scatter search design pre- 
scribes: (a) choosing a set of reference points, (b) gener- 
ating linear combinations of these points, and (c) round- 
ing the integer components of the linear combinations to 
obtain new points. We specify that the set X, used to create 
the directionally rounded set ~(x*,X), is the set of selected 
linear combinations of the reference points in this ap- 
proach. Hence the mapping ~ gives the transformation that 
rounds these linear combinations to yield new points. The 
following sections are devoted to specifying rules and as- 
sociated theory related to the choice of reference points, 
the set X, and the base point and focal point pairs. 

points x(h), h �9 NB. X(R) can be taken to be these adja- 
cent extreme points under conditions of nondegeneracy, 
but preferably will be chosen to be different from these ex- 
treme points. In general, we will state various properties 
governing x* and the points of X(R), and conclusions that 
hold when these properties are satisfied. The following as- 
sumptions provide a foundation for these properties. 

Assumptions. A1. All optimal IP solutions belong to 
Cone(x*,X(R)). 
A2. x* does not belong to Half_Space(X(R)), but belongs 
to the complementary half space (generated for Y~(2r: r �9 R) 
<1). 
A3. All optimal IP solutions, exclusing x*, belong to 
Half_Space(X(R)). 
A4. x* is a dual feasible point of Cone(x*,X(R)), relative 
to the objective of minimizing z = cx. 

A result that immediately establishes a link between 
these assumptions is the following. 

5.1. Fundamental analysis 

We let X(R) denote a chosen set of reference points, in- 
dexed by the set R; i.e., X(R) = {x(r): r e  R}. Notationally, 
for two arbitrary points x' and x', and a scalar ,,1,, we iden- 
tify the ray from x' though x" by 

Ray(x' ,x ')  = {x: x =,~x"+ (1-;~)x', X>O}. 

Also, for a set of reference points X(R), and scalars ~ ,  
r e  R, we identify the hyperplane consisting of all normal- 
ized linear combinations of these points by: 

Plane(X(R)) = {x: x =~](2rx(r): r � 9  R), ~](~: r e  R)= 1 }. 

Our terminology is motivated by the fact that the points of 
X(R) are linearly independent in the usual case to be con- 
sidered. We also identify the associated half space as 

Half_space(X(R)) 
={x: x=~( ,~x(r ) :  r � 9  R), ~(2r: r e  R)_> 1}. 

Relative to the base point x*, which we assume does not 
belong to Plane(X(R)), and hence which identifies a set of 
affinely independent points when taken together with 
X(R), we define the polyhedral (half) cone spanned by the 
rays from x* through the points of X(R): 

C0ne(x*,X(R)) 
={x: x=x*+~](2r  x(r): r � 9  R), 2r>0, r � 9  R}: 

Finally, the set of all convex combinations of the points of 
X(R) identifies a face of the truncated cone that results 
from the intersection of Cone(x*,X(R)) with Half_ 
space(X(R)), i.e., in particular, the face that excludes the 
point x*. We accordingly define 

Face(X(R)) 
= {x: x = Z(~rx(r): r e  R), Z(,~r: r � 9  R)= 1,2r>0, r � 9  R}. 

These definitions are relevant for exploiting the situation 
where x* corresponds to an extreme point x(0) of the LP 
feasible region, and X(R) is a set of points on the rays 
(edges) from x* through each of the adjacent extreme 

Lem m a  1. Let x* =x(0) and define x(h), h e NB by (2)for 
any given positive values 0 ~ for O h, i.e., 

x ( h ) = x ( 0 ) - 0 ~  Dh, h e  NB (3) 

Then, for the set X(R) = { x(r): r e R } determined by taking 
R = NB, we obtain: 

Cone(x*,X(R)) = {x: x = x(0)-~]()~rDr: r e  R), ,~r > 0, r e  R} 

As a basis for applying the preceding result, we note that 
assumptions A1 and A2 hold when x* is any LP feasible 
extreme point and X(R) is constructed from its adjacent 
extreme points by Lemma 1 (where the positive 0 ] values 
of Lemma 1 may not be the same as the 0 h values that de- 
fine these adjacent extreme points). Assumption A3 holds 
under these same conditions when Half_Space (X(R)) is a 
valid cutting plane that excludes x* as feasible. Assump- 
tion A4 holds if x* is an optimal linear programming so- 
lution that is a primal and dual feasible extreme point (e.g., 
as obtained by the simplex method). 

To build on these observations, we note that every point 
on the ray from x* through x' (excluding the point x* it- 
self) gives the same directional rounding as 8(x*,x'). Ex- 
pressed more formally, we obtain: 

Lem m a  2. For any base point x* �9 X(0,1) and focal point 
xt:Nx*: 

~(x*,x') = ~ x * , x ' ) f o r  all x" �9 Ray(x*,x') such that x" ~ x*. 

A closely associated result is the following: 

Lem m a  3. For any x* �9 X(0,1) and x ' � 9  V(0,1): 

~(x*,x') = x' for all x ' 6  Ray(x*,x') such that x ' r  

This latter result says that all focal points on a ray from x* 
within the unit hypercube through a vertex x' of this hy- 
percube will directionally round to x'. 

1 Proofs of results stated in this and the following section are con- 
tained in Glover (1993). 
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In accordance with our previous remarks, we are inter- 
ested in generating points as linear combinations of the 
points of X(R), to create a basis for generating rounded 
candidate solutions as part of a scatter search strategy. We 
will show that the use of directional rounding, for x* and 
X(R) properly chosen, makes it possible to restrict these 
linear combinations advantageously to convex combina- 
tions. More precisely, we can limit attention to the region 
Face(X(R)) to find a point that can be directionally 
rounded to yield an optimal solution. Furthermore, there 
is a convex subregion of Face(X(R)) such that every point 
in this subregion directionally rounds to give this optimal 
solution. This is expressed in the following result. 

Theorem 1. Let X ~ denote an optimal IP solution, dis- 
tinct from x*, and assume that A1 and A2 hold. Then there 
is a convex region X c Face(X(R ) ) such that 5(x*,x') =x ~ 
for  all x' e X. 

As already noted, Lemma 1 and linear programming 
theory imply that A1 and A2 are satisfied by taking 
x* =x(0) and defining X(R) in relation to the current ba- 
sis representation of x(0). Thus we may state the follow- 
ing associated result which is chiefly a consequence of 
Theorem 1. 

Theorem 2. For x* = x(0) and X(R) as identified in Lem- 
ma 1, defining x(h), h e  NB, f rom (3) relative to positive 
values 0 ~, there is a convex region X cFace (X(R) )  such 
that all optimal IP solutions (except x*, if it is optimal) 
belong to the set of  directionally rounded solutions 
6(x*,X). Moreover, i fX  is not polyhedraI, there is a poly- 
hedral subset of  X for  which this conclusion is true. 

The preceding theorem is also valid if we replace the 
word "optimal" by "feasible". These results give both a 
justification and heuristic motivation for the following 
form of scatter search. 
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6. Determining X(R) and a connection 
with cutting planes 

Although Theorem 2 justified choosing any positive val- 
ues of 0 ~ in order to generate X(R) by (3), some choices 
are better than others, From a heuristic orientation, three 
different options for producing the reference points of 
X(R) are given in Appendix 1. There also is another way 
to view the issue of determining X(R), which leads to a 
connection with cutting planes and additional implications 
relative to assumptions A1-A4. To develop this connec- 
tion, consider a current basic LP solution x(0), with its as- 
sociated set of nonbasic variables identified by NB, and 
let 

NBO= {j e NB: xj(O) : 0}  
NBU= {j e NB: xj(0)=Wj}. 

Any valid cutting plane for problem IP, that exludes x(0) 
and otherwise is satisfied by all optimal IP solutions, can 
be expressed in the form 

~(djyj: j e NB)_>d o 

where d o > 0, and where the variables yj are defined so that 
yj = xj for j e NB0 and yj = Uj-xj  for j e NBU. (For exam- 
ple, the prototypical cuts of Gomory (1960, 1963) take 
their coefficients directly from the current basis represen- 
tation, and can be immediately written in this form.) The 
preceding inequality remains valid by dividing through by 
d o, and by replacing any nonpositive coefficient by a pos- 
itive coefficient. We express the resulting inequality in the 
form 

Y,(yj/0~. j ~ NB)_> 1 (4) 

where 0~=do/dj if dj>0, and 0* is an arbitrary positive 
value otherwise. (These "arbitrary" values preferably 
should be chosen relatively large in the present context, 
e.g., a positive multiple of the largest of the remaining 0~ 
values.) Then we may state the following result. 

Scatter search with directional rounding 

Step 1. Start with any LP feasible extreme point x* =x(0) 
for problem (IP). 
Step 2. Identify positive values 0 ~, h e NB, and identify 
the points x(h) = x(0) - 0 ~ D h relative to the current LP ba- 
sis representation. Let R = NB, thereby creating the set of 
reference points X(R)= {x(h):h e NB }. 
Step 3. Let X be a chosen subset of Face (X(R)), generat- 
ed by taking selected convex combinations of the points 
of X(R). Then apply directional rounding by reference to 
the base point x* = x(0), creating points of the set Nx*,X) 
as candidates for seeking an optimal solution to (IP). 

The preceding method rests on two critical elements: 
(i) determining the 0 ~ values and hence the precise set of 
points to compose the set X(R) in Step 2; and (ii) deter- 
mining which convex combinations of the points of X(R) 
to generate in Step 3 (as a foundation for the directional 
rounding). We examine these issues in the following sec- 
tios. 

Theorem 3. Let x* = x(0) be an LP feasible extreme point, 
and let O ~ be a positive value for  each he  NB determined 
by reference to the cutting plane inequality (4) (i.e., such 
that all optimal IP solutions, except possibly x(0) (if  it is 
IP optimal), satisfy (4)). Finally, let the points x(h) be de- 
f ined by (3), i.e., 

x(h) = x(0)-  0n Dh, h e NB. 

Then, upon determining X(R) by specifying R = NB as in 
Lemma 1, Cone(x*, X(R)) satisfies A1, and the inequal- 
ity (4) defines a half space that satisfies A2 and A3, when 
expressed in the form of  Half  Space (X(R)). 

Of course it is not necessary to translate (4) into the 
form of Half_Space (X(R)) to apply this result, since the 
desired 0 n values are given by (4) directly. Special moti- 
vation for using cutting planes to determine X(R) in this 
manner is given by a further result that incorporates as- 
sumption A4 and more particularly refers to the situation 
where x(0) is an optimal extreme point of the feasible LP 
region (which implies all of the assumptions A1-A4 when 
X(R) is chosen as in Theorem 3). 
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Theorem 4. Let x* = x(0) be an optimal, dual feasible LP 
extreme point, and let X(R) be determined relative to a 
cutting plane inequality (4) as in Theorem 3. Then, ifprob- 
lem (IP) has an optimal solution, and x* does not qualify 
to be this solution, there exists a convex region X c_ 
Face(X(R)) such that." (a) all optimal IP solutions belong 
to the set of directionally rounded solutions 6(x*,X). 
(b) at least one optimal IP solution is given by 

:~ tP 
X ~ ~(X ,X ), where X is restricted to be polyhedral and 
x" is an extreme point of X. Moreover, the foregoing con- 
clusions remain true when "optimal" is replaced by "fea- 
sible" in (a) but not in (b), thus permitting (b) also to hold 
for a larger convex region X. 

The significance of the theorem is that when x(0) is an 
optimal LP extreme point and X(R) is generated from a 
cutting plane, the search for an optimal solution by direc- 
tional rounding can be shifted to consideration of points 
that potentially qualify as extreme points of X. However, 
there can also be points of X other than extreme points that 
likewise directionally round to optimal solutions. 

As an implication of our earlier results, every vertex of 
the unit hypercube obtained by directional rounding over 
elements of Face(X(R)), whether feasible or not, can be 
generated over all elements in a convex subregion of 
Face(X(R)), and hence we seek a method that avoids un- 
necessary examination of different parts of the same sub- 
region. We also want to focus the generation of points so 
that the selected subregion X of Face(X(R)) is heuristi- 
cally determined. The next introduces a way to achieve 
these goals. 

7. The creation of star-paths 

To take advantage of the fact that optimal IP solutions are 
contained among the directionally rounded solutions de- 
rived from focal points on Face(X(R)), we consider the 
construction of paths within Face(X(R)) and directionally 
round from x* to points on these paths. Most precisely, in 
overview, we first construct specially designed paths 
between selected points of X(R) and other matched boun- 
dary points of Face(X(R)). Then these paths are mapped 
by directional rounding to create associated paths in V(0,1) 
called star-paths. The elements of the star-paths provide 
candidate solutions to check for IP feasibility, and to be 
used for the phase of scatter search that seeds other heur- 
istic processes. 

We differentiate between a given path P c Face(X(R)) 
and the set of points obtained by directionally rounding 
from x* to R that is, the set fi(x*,P). While P represents a 
continuous trajectory linking two elements of Face(X(R)), 
the trajectory represented by fi(x*,P) is not continuous but 
broken, and consists of points that are displaced from the 
surface defined by Face(X(R)) to produce a projection of 
P onto the zero-one vertices of V(0,1). We call the collec- 
tion of points fi(x*,P), which depends on x* as well as P, 
a star-path. 

We focus attention on the case where the path P consists 
of a line segment joining two points x' and x", given by 

P(x',x") = {x: x = 2  x"+ (1-2)  x', 1 >2>0} (5) 
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Then the associated star-path fi(x*,P) may be identified as 
the set of points 

fi(x*,P) = {fi(x*,x): xe  P(x',x")}. 

We are particularly interested in the situation where x' and 
x" are boundary points of Face (X(R)). Our motivation for 
this stems from the following result, which is implied by 
the theorems of the preceding section. 

Corollary. Assume X ~ is an optimal IP solution distinct 
from x*, and x' is any boundary point of Face(X (R ) ). Then 
there is another boundary point x" of Face(X(R)), such 
that x ~ belongs to the star-path derived from x' and x"; 
i.e., x~ ~(x*,P), where P=P(x',x") is the line segment 
given by (5). 

We next consider the choice of points to generate star- 
paths in accordance with the observation of the preceding 
Corollary. 

7.1. Choosing boundary points for creating star-paths 

The points of X(R) are natural candidates to be included 
among the boundary points for generating star-paths, since 
X(R) provides the foundation for generating Face(X(R)). 
Further, we may initially pair each point x(r) e X(R) with 
the point y(r) that is the center of gravity of the remaining 
points of X(R), that is, where y(r) is the midpoint of the 
lower dimensional face spanned by the points of X(R-r). 
By such pairing, the path P(x(r),y(r)) traverses the inter- 
ior of Face(X(R)) to reach a boundary point "equidistant" 
from the points of X(R-r). Thus the star-path fi(x*,P), for 
P=P(x(r),y(r)), is biased (in a loose sense) toward con- 
taining solutions anticipated to satisfy the IP feasibility 
conditions. 

We may improve this bias, and simultaneously incor- 
porate objective function considerations as well as fea- 
sibility considerations, as follows. Let z(r) denote a mod- 
ified objective function value for the point x(r) that in- 
cludes a penalty for infeasibility; that is, z(r) is the value 
of z for the IP problem when x=x(r), increased by an 
amount that measures the relative infeasibility of x(r). To 
create the point y(r) as a weighted combination of the 
points of X(R-r), we account for the z(r) values by intro- 
ducing a positive valued function f that preserves their rel- 
ative ordering. We stipulate that 

f(z(k)) > 0 for all r e R, and 
f(z(k))_> f(z(h)) if z(h) _> z(k) for all h, k e R. 

Weights  wh(r), h e R-r, to generate the y(r) points require 
a normalizing constant C(r) = ~](f(z(h)): h e R-r). Then we 
define 

Wh(r ) = f(z(h))/C(r) h e R-r. 

As a result, this gives 

y(r)=Y~(wh(r)x(h): h e R-r) r e R. 

The properties stipulated for the function f include the case 
where f(z(r)) = 1 for all r e  R (which generates each y(r) as 
the center of gravity of the points of X(R-r)). 
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Computationally, it is burdensome to have to generate 
the set of IRI-1 weights Wh(r ) for each r �9 R, which in- 
volves on the order of IRI 2 weights overall. It is possible 
to do much better as a result of the following observation. 

Remark. Define F = ~(f(z(r)): r �9 R) and create associated 
weights wr= f(z(r))/F, r �9 R. Then identify the weighted 
center of gravity y for X(R) given by 

y=Z(wrx(r): r �9 R). 

The ray from x(r) through y, given by 

Ray(x(r),y)={x: x=A,y+(1-2,)x(r), ,~_>0} 

then contains the points of the path P(x(r)y(r)). Moreover, 
the truncated ray that results by restricting ~ to satisfy 
2,< 1/(1 - Wr) is identical to this path, with y(r) = (y - wrx(r))/ 
(1 --Wr). 

The preceding Remark shows that determining the 
weighted center y and generating points on the truncated 
ray from x(r) through y makes it possible to avoid identi- 
fying each of the different sets of weights Wh(r), resulting 
in computational effort of 0(IRI) instead of 0(IRI2). Alter- 
nately, y(r) can be computed as indicated in the Remark 
and the path P(x(r),y(r)) can be identified directly. 

7.2. An efficient procedure for generating the star-paths 

Given an appropriate means for determining the paths 
P=P(x(r),y(r)) for generating associated star-paths 
~x*,P), as indicated above, it remains to give an approach 
for identifying solutions generated by these star-paths. 

There are an infinite number of ~ values between 0 and 
1 to generate P by the definition 

P(x(r),y(r)) = {x: x = 2,y(r)+(1 -/~)x(r), 0 < ~ <  1 }. 

Each x on P gives a directionally rounded solution ~(x*,x) 
of the collection ~(x*,P). However, ~(x*,P) contains only 
a limited number of distinct points, consisting of elements 
of V(0,1), and hence (infinitely) many of the ~, values map 
into the same point of Nx*,P). 

We will show that it is possible to generate the star-path 
elements highly efficiently. At the same time these ele- 
ments can be checked for feasibility by simple updating 
calculations that further decrease computational effort. As 
a basis for this we demonstrate that the star-path can be 
represented as a mapping of P onto a collection of distinct, 
successively adjacent, vertices of the zero-one hybercube. 

Let ~ )  identify the points ~(x*,P) as a function of the 
parameter/~. That is, for a given value of 2~, which yields 
the points x of P(x',x") given by x=~x"+(l - )~)x ' ,  we de- 
fine N~)= ~(x*,x). Let ~(,~) denote the jth component of 
~2,); i.e., N2) = ~x~, xj), for xj = A,x]'+ (1 -~)x~. We observe 
that the vector x parameterized by ~ can be equivalently 
written as x = x '+ ~A, defining A = x" -x ' .  Define the sub- 
sets I(0 L I(+) and I(-) of I to consist respectively of those 
j �9 I such that Aj = 0, Aj > 0 and Aj < 0. Finally, for j �9 I(+) 
or j �9 I(-), identify the special )~ value given by 

/~(j)  * , = ( x  j -  x ) / A j .  
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These definitions allow a precise characterization of 3(.~) 
as follows. 

Lemma 4. The elements of ~0~) are given by 

(a) ~j(s 8(xj,x ), j �9 I(0) 

8j(,~) = f  ~ 0 if ~,<)~(j), j � 9  I(+) 
(b) 

1 if ~,>_)~(j), j � 9  I(+) 

8j(/~)= ~ [ 1 if &<,~(j), j e  I(-) 
(c) 

0 if 2~_>/~(j), j �9 I(-) 

Lemma 4 does not depend on the assumption that ,~ is re- 
stricted to satisfy 0 < )c_< 1, but applies to the case where 
P(x',x") is the infinite line joining x' and x", and not just 
the segment between these points. In addition, this lemma 
introduces a specific "tie breaking" rule to handle the case 

=,~(j), where the original definition of directional round- 
ing requires such a rule to choose between a value of 0 
or 1. 

To take advantage of Lemma 4, let 0(1) ..... 0(u) be a 
permutuation of the indexes of I - I (0)  so that 
,~(0(1)) < ,~(0(2)) <. . .  < ~(0(u)), where u = II- I(0)[. Also let 
,~(0) be any value of )L such that .~(0) <)L(0(1)). (It is ac- 
ceptable to take ,?.(0) . . . .  ) By convention, we will sup- 
pose that the s values are all distinct so that 
A.(0(h)) < ~(0(h + 1) for all h < u. This convention allows a 
maximum number of elements of the star-path ~x*,P) to 
be created, and also leads to characterizing these elements 
as adjacent vertices of the unit hypercube defined relative 
to the integer components ofx. We will show that this con- 
vention is trivially easy to impose; that is, no explicit per- 
turbation needs to be introduced to allow the ~(0(h)) val- 
ues to be treated as distinct in case there are tied values. 

Theorem 5. The star-path ~x*,P), where P is the line seg- 
ment joining x" and x", contains precisely u + 1 distinct 
points, which can be generated by the rule of Lemma 4 
when ~ takes the values ~(0), ~0(1)) . . . . .  2~(0(u)). The in- 
dicated points ~(~.) constitute successively adjacent ver- 
tices of V(0,I), linked to each other by the following rela- 
tionship. 

For any arbitrary value of 2~ < ,~(0(u)), let ~_next = ,~(p), 
where p= 0(h)for  h=Min(k:~(0(k))>)~). Then g)OQ and 
6(~_next) are associated by the rule 

(~_next) = ~j(~) for j c p, j c I 
(,q_next) = 1 - ~p(,~) 

The preceding result does not require an explicit numeri- 
cal shift of tied values of ~(0(h)) in order to allow the spec- 
ified points of the star-path to he generated. The follow- 
ing simple method based on Theorem 5 produces exactly 
the desired points ~(A.), as A. ranges between in any inter- 
val ~_start<)~<s Consequently, this applies to the 
special case where P(x',x") is a line segment generated by 
0_<~< 1, and also applies to the representation of the path 
given in the Remark of Sect. 7.1, where ~ can exceed the 
value 1. 
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Star-path generation method 

Step O. Let /~=~_star t -e ,  for a small positive value of 6, 
and generate the solution vector x~ 6(,~) by Lemma 4. 

If ,~>2(0u)), x ~ is the only vector to be generated and 
the procedure stops. Otherwise, identify p = 0(h), where 
h=Min  (k: ~,(0(k)) >2). 

O O Step 1. Generate the next x ~ vector by setting Xp = 1 -Xp, 
without changing any other elements xj ~ j e I, j #p. 

Step 2. Set h = h + 1. If h > u or if %(0(h)) > ~_end, stop. Oth- 
erwise, set = 0(h) and return to Step 1. 

Setting 2= ~_s ta r t -e  in Step 0 generates the maximum 
number of points for the star-path, in case ~_start coin- 
cides with one of the A(0(h)) values. (Otherwise, the ref- 
erence to e is unnecessary.) Note that ~,~) is only com- 
puted once, in Step 0. Thereafter, each new vector x ~ re- 
sults by simply changing the value of the single element 
Xp in Step 1. This corresponds to applying the formula of 
Theorem 5 for x ~ = ~(~_next). 

Also, there is no requirement in Step 2 that the ,~(0(h)) 
values be strictly increasing. The procedure simply incre- 
ments h, and all tie breaking is entirely implicit. Finally, 
the vector x~ N~) can be checked very efficiently to de- 
termine if it is a feasible zero-one solution, due to the fact 
that exactly one element of x ~ changes at each execution 
of Step 1. Thus, the feasibility check can be based on a 
marginal calculation, rather than evaluating a complete 
new vector at each step. 

Our earlier results have demonstrated that selecting ,~ 
values within the range from 0 to 1 suffice if x' = x(r) and 
x"=y(r) ,  for x(r) and y(r) appropriately matched. How- 
ever, we note it may be useful to allow consideration of 
points generated over a wider range of % values, using the 
preceding method. Also, all of the x(r), y(r) pairs will gen- 
erate the point ~(x*,y), where y is the weighted center of 
gravity identified in Sect. 7.1. This duplication can easily 
be avoided, if desired, by accounting for the ~ value to be 
skipped. 

7.3. Adaptive re-determination of star-paths 

There exists a useful diversity of possibilities for generat- 
ing star-paths. These derive from the different alternatives 
for generating the set of points X(R) by the cutting plane 
connection of Sect. 5.2 (and the approaches to Appen- 
dix 1), and also derive from the different choices of a func- 
tion f for  generating weights to produce the x(r), y(r) pairs. 
We show that the outcomes of implementing such ap- 
proaches can be embedded in a higher level process that 
determines new star-paths adaptively. In this way the scat- 
ter search method effectively learns how to modify itself 
to take advantage of information generated from previous 
efforts. 

The basic notion is the following. Each star-path tra- 
jectory is based on focal points in Face(X(R)) that are di- 
rectionally rounded to produce the star-path points. As 
shown in the preceding section, these focal points do not 
have to be explicitly identified (except for the first). Nev- 
ertheless, the 2 value that produces each star-path point is 
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always known, and can be used to identify the associated 
focal point of Face(X(R)). (We have taken liberties by al- 
lowing some focal points to lie outside of Face(X(R)) in 
Plane(X(R)).) Moreover, in general, a range of ,~ values is 
known that produces each star-path point. A midpoint of 
this range can be selected to give a representative focal 
point. 

As a result, we may consider a collection E of elite ele- 
ments of V(0,1) that are generated from various star-paths. 
This gives rise to an associated collection F(E) of focal 
points that create the elements of E (where each x e F(E) 
yields a point fi(x*,x) of E). The criteria for identifying E 
can be based on objective function values penalized for in- 
feasibility or can more broadly include reference to diver- 
sification (see, e.g., Glover (1989, 1991), Woodruff and 
Spearman (1992), and Reeves (1993 b)). 

The elements of F(E) identify a set of preferred focal 
points, and their convex combinations may be viewed as 
defining a preferred focal region. Moreover, the points of 
F(E) can be treated exactly as the points X(R) in Sect. 7.1 
to generate a weighted center of gravity y. Then the point 
y can be used to generate paths P(x(r),y), which are ex- 
tended beyond y to create a match between x(r) and an im- 
plicit point y(r). 

By Theorem 5 and the star-path method accompanying 
it, there is no need to precisely identify a % value that will 
generate a point y(r), since it suffices to take x' = x(r) and 
x"= y, and to generate a sequence ,~(0(h)) that will encom- 
pass all relevant possibilities. The extreme ends of the se- 
quence are likely to be irrelevant, and there is no need to 
duplicate the use of x(r) as a focal point. Hence the star- 
path generation may be applied by starting at a ~(0(h)) 
value larger than 0 (since 2 = 0  treats x '=x(r)  as a focal 
point), and to continue until persistent deterioration in the 
star-path elements occurs. The points x(r) themselves can 
be replaced on subsequent rounds by shifting them toward 
the most recent y, in which case negative starting 2 values 
may be relevant. 

As the adaptive procedure is repeated, tabu search can 
be used to avoid duplicating the composition of the col- 
lection E, and hence of the focal set F(E) (e.g., following 
the design for controlling scatter search in Glover (1991)). 
Moreover, it is possible to apply the approach in a com- 
pound manner. We identify a way to do this in Appendix 2, 
effectively permitting a given collection E to generate al- 
ternative collections by a nested form of adaptation. 

8. Final considerations 

We have seen that solution combinations with special 
properties for zero-integer programming problems can be 
produced by focusing on two aspects of the scatter search 
framework, the characterization of reference points that 
generate solution combinations and the mechanism for 
transforming fractional elements into integer elements. A 
number of options exist for taking advantage of the out- 
comes of this focus. Parallel processing can take a useful 
role in generating and coordinating the set of points X(R), 
and in choosing a function f to generate weights for pro- 
ducing additional matched points y(r). Parallel processing 
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also can take a role in simultaneously determining param- 
eters associated with different elements of X(R), and in 
determining star-paths associated with the x(r), y(r) pairs. 

These processes can be usefully applied by selecting 
base points from different extreme points of the LP fea- 
sible region. Candidates also can be selected from the trial 
solutions generated from star-paths. Whether feasible or 
not, such trial solutions can be used to create a modified 
objective function, weighting costs to produce optimal LP 
extreme points that lie in the vicinity of these solutions. 
Likewise, the trial solutions may be subjected to heuristic 
modification, following the standard scatter search design. 
An issue that merits empirical examination is whether 
some types of problem domains are exploitable by creat- 

�9 ing trial solutions solely from directional rounding and 
star-paths, without accompanying heuristic modification. 
The associated intensification strategy of Appendix 2 may 
be relevant in such cases. 

Next steps 

Additional possibilities exist for creating combined solu- 
tions by extension of the scatter search approach. Instead 
of relying on spatial structures (based on mappings of ex- 
treme points and focal points) to determine paths that link 
solutions, and hence that generate new solutions, it is pos- 
sible to use neighborhood structures as a basis for such a 
linkage. Thus, solutions can be created by designing neigh- 
borhood trajectories to join reference points. This type of 
path relinking approach (Glover (1989, 1994)), can be ap- 
plied in the present context by allowing the star-path con- 
ception to be transported from the spatial setting to the 
neighborhood setting. The knowledge that there exists a 
spatial definition of 3 with useful properties motivates a 
quest for a neighborhood definition that also has such prop- 
erties. In general, the ideas of path relinking and path pro- 
jections offer many areas for investigation, including the 
potential to develop procedures that joint the spatial and 
the neighborhood structures for creating linkages between 
solutions. 
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Appendix 1 

Heuristic options for generating reference points 

For the following, we take R = NB, or in the case of a large 
problem, take R to be a preferred subset of NB. The first 
option below is a base point, against which the effective- 
ness of other options can be measured. 

Option 1. Let Oh be defined as in (2) to be the value that 
generates the extreme point x(h) adjacent to x(0). Let 
0K= Oh if Ohm0, h e  R. Otherwise, define 

0=0.5 Min(oh:oh;~0, h e  R) 

and set 

0 K = 0 i f  0h=0, h e  R. 

Option 2. Let z '  be the optimal LP value for z and let z* 
be the best known IP feasible value of z (or a target for 
this value). Also let d h denote the current LP reduced cost 
o fx  h at the extreme point x(0). In accordance with the sign 
convention for the entries of D h (which gives the nonba- 
sic variable x h an entry OfDhh= 1 o r -1  according to wheth- 
er x h is currently as its lower or upper bound), we may 
write 

z (h )=z (0 )+dhO h ,  h e  NB 

where d h > 0 for all h e NB at an LP optimum. We select 
two values z(+) and z(-) for z, by the approach subsequent- 
ly described, related to the target value z*. Then the val- 
ues 0~ are determined so that z(h) = z(+) for all h e R with 
d h > 0, and z(h)= z(-)  for all h e R with d h < 0. 

In particular, if z* > z(0) we set z(+) = z* + 0 .3(z*-z ' )  
and z ( - ) = z ( 0 ) - 0 . 3 ( z * - z ' ) ,  while if z*<z(0)  we set 
z ( - ) = z * - 0 . 3 ( z * - z ' )  and z (+ )= z (0 )+ 0 .3 ( z* -z ' ) .  (The 
constant 0.3 can of course be altered.) This outcome re- 
sults by the following 0~ values. Define a =  z*-z (0 ) ,  and 
/ ~ :  Z :~ _ Z t" 

Case A: a>_O 
Set 0 ~ = ( a + 0 . 3 ~ / d h  for dh>0, h e  R 
and 0~=-0.313/d h for dh<0, h e  R. 

Case B: a< 0 
Set O~=(a-O.313)/d h for dh<0, h e  R 
and 0~=0.3j6/d h for dh>0, h e  R. 

Option 3. This is a feasibility modification of Option 2. 
Normalize each inequality constraint of the original LP 
formulation, before adding a slack variable, by dividing 
through by the sum of absolute values of the constraint co- 
efficients. Then assign an infeasibility measure to each 
point x(h) created by Option 2: 

v(h) = Y~ Max(0, -xj(h), xj(h) - Uj:j e N). 

Replace each value 0 K of Option 2 by dividing it by the 
quantity 1 + v(h), thus defining new 0K values for deter- 
mining associated new points x(h). 

Evident variations on the preceding options are pos- 
sible. We have stated them in a highly concrete form to 
give a starting point for empirical study. 

Appendix 2 

Strategy for augmenting a collection 
of preferred solutions 

We identify a simple instance of scatter search as a basis 
for compounding the adaptive approach for generating 
star-paths. The goal is to efficiently produce new zero-one 
solutions as candidates to be included in a preferred col- 
lection E. The approach is based on the fact that the mem- 
bers of E can be treated as reference points, and thereby 
give rise to additional candidates for membership by a pro- 
cess of creating weighted combinations. 

Let S denote an index set for a chosen subset of the so- 
lutions in E, thus identifying the members of this subset 
by X(S)= {x(s), s e S}. For simplicity, consider the result 
of rounding in a nearest neighbor sense. If  all points are 
weighted equally, thereby producing a center of gravity of 
X(S), the result of nearest neighbor rounding yields a point 
x whose component xj, j e I receives the value taken by the 
majority of the components xj(s), s e S. Thus if S Contains 
an odd number of elements, the point x is uniquely deter- 
mined. 

This observation suggests the following strategy for 
generating trial solutions x as candidates to augment the 
collection E, or to replace its inferior elements. 
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Simple scatter search approach to augment E 

1. Let S(k) be the index set for the "k best" solutions from 
the collection E. 
2. Choose one or more even values of k (e.g., k = 4  and 
k= 6), and consider each of the k subsets of S(k) consist- 
ing of k-1 of its elements, (e.g., each of the 4subsets of 
3 solutions from S(4), and each of the 6 subsets of 5 solu- 
tions from S(6)). 
3. Represent each of the chosen subsets of solutions by 
{ x(s), s e S }, where S contains an odd number of elements. 
From each subset, generate a trial point x where, for each 
j ~ I: Xj = 1 if xj(s)= 1 for the majority of se  S, and Xj=0 
otherwise. (For example, 10 trial points are generated from 
S(4) and S(6), and 20 trial points are generated by letting 
S range over all 3 element subsets of the 6 best solutions.) 
4. For each trial point x, test whether it passes a threshold 
of attractiveness to be admitted to the collection E (e.g. 
whether it has an evaluation better than the average mem- 
ber of E). 

137 

While some of the trial points produced by this approach 
may duplicate others, such duplications are quickly elim- 
inated if the threshold test in step 4 requires each point se- 
lected to be better than its predecessor. 

Solutions can alternatively be weighted by their objec- 
tive function values to obtain trial solutions other than by 
majority vote. If all of the elements of X(S) are feasible, 
let z' denote the optimum value of z for the original LP so- 
lution. Then Az(s) = z ( s ) - z '  is positive for all s ~ S, or else 
an optimal solution is known. (If some elements of X(S) 
are infeasible, simply select z' to be smaller than the min- 
imum z(s) value.) Create a convex combination of the 
points of X(S) using the weights Az(s)/D, where 
D = Y~(Az(s): s ~ S). Then x can be generated by rounding 
this outcome. 

As in standard scatter search, variants can be applied 
to problems where simple rounding is inappropriate, us- 
ing generalized rounding processes that are executed se- 
quentially to allow for changes to meet constraint require- 
ments. 


