
Abstract

25

CRITICAL EVENT TABU SEARCH FOR
MULTIDIMENSIONAL KNAPSACK PROBLEMS

Fred Glover
Graduate School of Business, Box 419

University of Colorado at Boulder
Boulder, Colorado, 80309-0419

E-Mail: fred.glover@colorado.edu

Gary A. Kochenberger
College of Business

University of Colorado at Denver
Denver, Colorado 80217-3364

E-Mail: gkochenberge@castle.cudenver.edu

We report a new approach to creating a tabu search method whose

underlying memory mechanisms are organized around "critical events."

A balance between intensification and diversification is accomplished

by a strategic oscillation process that navigates both sides of the

feasibility boundary, and serves to define the critical events. Surrogate

constraint analysis is applied to derive choice rules for the method.

Computational tests show the approach performs more effectively than

previous heuristics for multidimensional knapsack problems, obtaining

optimal solutions for all problems in a standard testbed.

I. H. Osman et al. (eds.), Meta-Heuristics
© Kluwer Academic Publishers 1996

408

Introduction.

Considerable progress has been made over the past decade in

developing and testing search techniques for combinatorial optimization

problems. Various forms of genetic algorithms, simulated annealing,

and tabu search have all been reported to perform well in diverse

problems settings. Tabu search (TS) has proved highly effective in

various implementations across a wide range of applications, and forms

the foundation of the approach of this paper. Background on

applications of TS and elements responsible for its successes can be

found in recent survey papers [8, 10, 11].

The distinguishing characteristic of tabu search is the use of adaptive

memory structures which are accompanied by associated strategies for

exploiting information during the search. The adaptive memory

component of TS typically incorporates recency-based and frequency

based memory defined over varying short term and long term spans of

the search history. This memory operates through control mechanisms

of tabu restrictions and aspiration criteria, and associated penalties and

inducements to modify move evaluations. By such adaptive designs,

which abstract certain processes conjectured to operate in human

problem solving, this memory is sometimes contrasted with the "rigid"

memory structures of branch and bound, and the "memoryless" designs

of a variety of other approaches.

The choice rules of tabu search are highly aggressive, seeking "best

moves" at each step (from those allowed by its restrictions and made

available from its history). To apply this aggressive orientation

judiciously, the approach characteristically relies on strategies to isolate

subsets of desirable moves (rather than to exhaustively examine all

alternatives at each iteration), and utilizes choice criteria that make use

of a notion of influence (which includes elements of criticality and

patterning), in addition to drawing on the outcomes of search history.

A principal theme is to create an effective interplay between

intensification and diversification, that is, between approaches designed

409

to identify and reinforce attributes of good solutions and approaches

designed to draw the search into promising new regions. A general

treatment of tabu search and its principal strategies may be found, for

example, in [8] and [9].

In this paper we focus on a special subset of these elements and

report on a new method for creating an effective search process based

on a flexible memory structure that is updated at critical events. The

tabu status of a potential move is determined through the integration

of recency-based and frequency-based memory information. A balance

between intensification and diversification is accomplished by a

strategic oscillation scheme that probes systematically to varied depths

on each side of the feasibility boundary. These oscillations, coupled

with dynamic tabu information, guide the search process toward

different critical events.

The approach illustrated here applies to many types of problems.

However, we specifically will be concerned with an implementation

designed to solve multidimensional knapsack (MK) problems, which

take the form:

MK: maximize cx

subject to

Ax S; b

x binary

The matrix A and the vectors band c consist of real-valued constants

that satisfy

A ;?: 0 and b,c ;?: o.

1. Basic Notions.
Our approach is representative of a class of strategic oscillation

methods that proceed by alternating between constructive and

destructive phases. In the present setting, a constructive phase

410

corresponds to one that progressively sets variables equal to 1, while

a destructive phase corresponds to one that progressively sets variables

to o.

Within this framework, we organize a strategic oscillation as

follows. We first sketch the ideas in overview, and then diagram the

steps of the approach. We introduce a parameter span that indicates

the amplitude (or depth) of the oscillation about the feasibility

boundary, measured in the number of variables added (set to 1) when

proceeding from the boundary into the infeasible region and in the

numbers of variables dropped (set to 0) when proceeding from the

boundary into the feasible region. Although the depth in these two

directions need not be the same (and in fact asymmetric or even "one

sided" oscillations can be best for certain problems) we focus here on

treating them as equal.

We begin with span equal to 1, and gradually increase it to a

limiting value. For each value of span, a series of alternating

constructive and destructive phases is executed before progressing to

the next value. At the limiting point, we begin to gradually decrease

span, allowing again a series of constructive and destructive phases for

each span value before progressing to the next. When span reaches a

value of 1, we begin once more a gradual increase in span. The

manipulation of the span parameter may be viewed as an outer

oscillation that contains the oscillation of constructive and destructive

moves (for a given value of span) within it.

1.1 Method in Detail.

Let x* denote the best solution found so far; that is, the feasible

solution that gives a maximum value for cx. Until x* has been

determined, cx* is taken to be a large negative number. We assume

that setting all Xj = 1 is infeasible, else the problem is trivially solved.

The terms tabu and non_tabu will be given operational definitions

subsequently. Our strategic oscillation method, then, consists of the

411

following:

Initialization

Step 0: Begin with x = 0 or x = e and set counCspan = o. If x =

0, set feasible = .true. and go to the Constructive Phase. If x = e, set

feasible = .false. and go to the Destructive Phase.

Constructive Phase: (move from feasible to infeasible)

Step Cl: (feasible = .true.)

(1) If no component Xj of x can be increased from 0 to 1

except by violating feasibility, then:

(a) if cx > cX*, let x* = x

(b) set feasible = .false. and go to step C2.

(2) If condition (1) does not hold, then choose an Xj to

increase from 0 to 1, such that the move maintains

feasibility, and return to the start of step C 1.

Step C2: (feasible = false.)

Set counCspan = counCspan + 1

(1) If counCspan > span, or if there are no Xj

available to change from 0 to 1, go to the

Transfer Phase.

(2) If condition (1) does not hold, choose an Xj to

increase from 0 to 1 and return to the start of

Step C2.

Transfer Phase:

Step Tl:

Step 12:

Set counCspan = O. Change the value of span

if appropriate (by a rule to be identified later).

Go to the Destructive Phase if the last phase

was a Constructive Phase. Else, go to the

Constructive Phase.

412

Destructive Phase: (move from infeasible to feasible)

Step Dl: (feasible = false.)

(1) Select an Xj to change from 1 to O.

(2) If the solution produced by (1) is infeasible,

return to the start of Step D 1. Otherwise, set

feasible = .true. and:

(a) if cx > cx*, let x* = x.

(b) go to Step D2.

Step D2: (feasible =.true.)

Set counCspan = counCspan+ 1

(1) if counCspan > span, or if there are no Xj

available to change from I to 0, go to the

Transfer Phase.

(2) If condition (1) does not hold, choose an Xj to

decrease from 1 to 0 and return to the start of

Step D2.

The preceding method terminates whenever a selected number of

iterations have been performed without finding an improved x*, or

simply after a total iteration limit (number of Transfer Phase

executions) has been reached.

1.2 Surrogate Constraint Choice Rules.

As in a variety of strategic oscillation approaches, we make use of

surrogate constraint information to guide the decisions of the method.

In particular, the choice of a variable to add (steps CI(2) and C2(2))

and of a variable to drop (steps DI(I) and D2(2)) is determined by a

standard surrogate constraint evaluation. (For background on surrogate

constraints and their uses in choice rules, see Glover [6, 7].) We

dynamically form surrogate constraints, based upon the current

solution, as normalized (nonnegative) linear combinations of the

problem constraints. At each iteration, we compute ratios of the

objective function coefficients to their associated surrogate constraint

413

coefficients. During a Constructive Phase, we add variables with

maximum ratios and during a Destructive Phase we drop variables with

minimum ratios. When tabu restrictions are enforced, this ratio

information is augmented by recency and frequency information.

The surrogate constraints used to determine the choice rules are

formed by first normalizing (or otherwise weighting) and then

summing various constraints. We currently employ three different

surrogates depending on the feasibility status of the current solution

vector and the phase of the search. In all cases we compute

bi = bi - L(~,j : for j with Xj = 1).

As long as the current solution is feasible, the weight Wi for

constraint i is chosen to be lIbi. When the search process enters the

infeasible region, we choose weights by one of two methods:

a. If bi > 0, set Wi = lIbi

Ifbi ~ 0, set Wi = 2 + !bi!

b. If bi ~ 0, set Wi = °
If bi < 0, set Wi = 1I(!bi! + L(~,j: for j with Xj = 0))

We have experimented with both methods and currently use method

(a) in the Constructive Phase and method (b) in the Destructive Phase.

The rationale for the above procedures is to exaggerate the influence

of the most violated constraints and thus encourage searches "near"

critical solutions. (Our testing to date has not conclusively

demonstrated whether one method is preferred to the other.)

Let L SjXj ~ So denote the resulting surrogate constraint, i.e., Sj =
LWi~j and So = LWibi. The choice rule for the constructive phase then

selects the variable Xj to change from ° to 1 in order to

414

while the choice rule for the destructive phase selects the variable Xj

to change from 1 to 0 in order to

These rules are modified by the TS restrictions and penalties

subsequently indicated. In the next sections, we describe how we

accomplish this in our implementation.

2. Tabu Memory.
The essence of the method rests upon the scheme for defining tabu

status, and hence that guides the oscillations productively. In our

implementation, the tabu status of a potential move (adding or

dropping a variable) is determined by recency and frequency

information gathered as the search process encounters critical events.

For MK problems, we define a critical event to be the construction of

a complete (feasible) solution by the search process at the feasibility

boundary. That is, critical events correspond to solutions obtained by

the Constructive Phase at the final moment before going infeasible, and

by solutions obtained by the Destructive Phase at the first moment of

regaining feasibility.

At critical events, we also include steps for generating additional

trial solutions which are further candidates for x*. In the Constructive

Phase, we proceed as follows. As variables are chosen to be changed

from 0 to 1, a move is finally made that drives the search infeasible.

When such a step is imminent, a trial solution can be identified if some

variable can be found to add (change from 0 to 1) that "fits" within the

constraints even though it contributes less to the objective function

than the one normally chosen (that produces infeasibility). Thus, at

such a juncture, the variables are examined, in order of decreasing

415

objective function coefficients, for the first such variable that can be

added while maintaining feasibility. The trial solution choice does not

replace the customary choice (in the standard variant we employ), but

simply provides a solution that is recorded if it improves the best one

currently known.

The second trial solution (at a critical solution in the Constructive

Phase) is generated by retaining the regularly selected move that

produced infeasibility (as noted) and searching for a variable to drop

(other than the one just selected to add) that will re-establish

feasibility. Candidate variables to drop for the purpose of generating

this second trial solution are examined in order of increasing objective

function coefficients.

Corresponding to the two trial solutions generated at the critical

level of the Constructive Phase, we similarly generate two such

solutions at the critical level of the Destructive Phase. The rules are

the mirror images of the above steps. Note that trial solutions

generated in this way represent the use of an aspiration criterion since

the solutions are found by temporarily ignoring tabu information.

2.1 Using Recency and Frequency Information.

In order to influence the search by recency information, we record (in

a circular list) the last t solutions obtained at critical events, where in

our implementation t is a simple function of problem size that takes

values in the range of 3 - 12. Using this record of the last t critical

solutions, which range from x(last) to x(last-(t-l), we maintain a short

term recency tabu vector (TABU_R) that is the sum of the last t

solutions. That is, each time a new x(last) is identified, we set

TABU_R = TABU_R + x(last) - x(last-t).

In a like manner, long term frequency information is captured for

use in the search process by maintaining another vector (TABU_F)

416

which is the sum of all critical solutions encountered to date (rather

than the last t critical solutions).

As previously noted, during a Constructive Phase, variables are

added until the span parameter indicates it is time to switch to the

Destructive Phase. The search process then "turns around" and

proceeds toward (and past) the feasibility boundary by dropping

variables. Eventually, we switch again to the Constructive Phase,

where we tum around and move toward infeasibility by adding

variables. It is at these tum around points that we use the foregoing

memory to impel the search process to head in new directions in

pursuit of new critical solutions. We sketch our rationale for

accomplishing this as follows.

Suppose we have just switched from the Destructive Phase to the

Constructive Phase. Our goal is to add variables that have not

appeared at a value of 1 in recent critical solutions. Thus, we seek to

impose the condition that the first variable added back, Xj' will have

TABU_RU) = O. That is, we may conceive the condition TABU_RU)

> 0 as implying that Xj is tabu. However, this is not broad enough for

our purpose. More generally, we seek to require that the first k

variables added back (after turning around) will have TABU_RU) = o.
Such a requirement may not be strictly possible. Consequently, we

attach a large penalty weight, PEN_R, to TABU_RU) and create a

penalty value PEN_R*TABU_R(j). This penalty value is subtracted

from the ratio evaluation, indicated earlier whose maximum value is

used to choose the preferred move.

Likewise, frequency information is included by subtracting another

penalty term, PEN_F*T ABU_F(j), from the ratio evaluation. The

positive weight, PEN_F, is scaled by the iteration count so that the

penalty influence derived from long term frequency information is

small compared to that of the short term recency information. In this

manner, long term tabu information plays a subtle but useful role of

417

breaking ties that may otherwise occur if one utilizes only short term

tabu information.

Similarly, when we switch from the Constructive to the Destructive

Phase, we seek to restrict our choice of variables to drop so that the

first k variables chosen are selected from those Xj with maximum

entries in the tabu lists TABU_R and TABU_F. Here, the tabu

restriction is implemented by creating an inducement to drop a variable

by subtracting an associated penalty term from the ratio evaluation and

seeking the minimum penalized ratio.

Since the local search is based on a ratio evaluation, we choose the

penalty coefficients by reference to this evaluation. This is done as

follows. Each original constraint is scaled by its RHS value and the

resulting weighted rows are summed to yield a surrogate constraint

from which the ratio rj , for each column j, is computed. Denote the

maximum rj ratio by r*. Then, our penalties are set as follows:

where s is a scale factor given by the product of the iteration count and

a large, positive constant(C). Note that since the iteration count is an

over estimate of the maximum TABU _F value at any iteration, the

above calculation for the long term tabu penalty corresponds to scaling

TABU_F by a simple function of the maximum TABU_F value. We

experimented with several values (over a wide range) for C. For the

results reported later in this paper, C was set to 100,000.

Other approaches to incorporating long term (e.g. TABU_F)

information into the search process are available as well. For example,

the penalties could be adaptively computed on the basis of the current

surrogate constraint instead of relative to an initial surrogate constraint.

418

Also, TABU_F U) could be normalized by the sum of the TABU_FU)

values. We comment briefly on this alternative, along with the notion

of postponing the use of long term information, later in the paper.

2.2 Penalty Calculations.
The calculations for handling the penalty terms in both the

Constructive and Destructive phases are as follows.

Denote the usual evaluation for variable Xj by ratio(j). Let counC var

denote the number of variables chosen since the last turn-around and

let j * be the index of the variable to be chosen next. Then in the

Constructive Phase, we choose j* (from the set of all j such that Xj =

0) as follows:

If counC var > k, let value(j) = ratio(j)

if count_var :::; = k, let value(j) = ratio(j) - PEN_R*TABU_R(j)

- PEN_F*TABU_F(j)

Then j* corresponds to the variable with the maximum value of

value(j). Similarly, in the Destructive Phase, we choose j* (from the set

of all j such that Xj = 1) in order to minimize value(j), using the same

two calculations of this value shown above.

The parameter k, the number of tabu-influenced adds or drops to be

made immediately after a "turn around" is managed in a fashion that

fosters additional diversity in the search process. We start with k = 1,

and after a number of iterations (e.g., 2t), we set k = k+1. We

continue in this fashion until k reaches a limit (KMAX) at which point

we set k back to 1 and the process repeats. In general, KMAX is a

function of problem size. However, over a rather wide range of

problems, KMAX = 4 has performed well in our testing.

419

2.3 Controlling the Outer Oscillation parameter (Span).

The oscillations about the feasibility boundary are shaped by the

parameter span. Span is fixed for a certain number of iterations and

then changed in a systematic fashion. In our implementation, we

manage span in the Transfer Phase by the following rules:

Initialization:
Set span=l, choose values of parameters pI and p2, and designate that

span is increasing.

Transfer Phase (increasing span):

For span from 1 to p1: Allow p2*span executions of

the Constructive and Destructive Phase and then

increase span by 1.

For Span from p1+1 to p2: Allow p2 executions of the

Constructive and Destructive Phases and then

increase span by 1. When span is increased

beyond p2, set it back to p2 and designate that

span is decreasing.

Transfer Phase (decreasing span):

For span from p2 to p1+1: Allow p2 executions of the

Constructive and Destructive Phases, and then

decrease span by 1.

For span from p1 to 1: Allow p2*span executions of

the Constructive and Destructive Phases, and

then decrease span by 1. When span reaches 0,

set it back to 1 and designate that span in

increasing.

Large values of pI and p2 foster aggressive diversification while

smaller values facilitate a search in a closer neighborhood of the most

recent critical solution. The default values we employ are p 1 = 3 and

p2 = 7. These particular values are supported by the fact that span

values of 1 to 3, with a predominant emphasis on the value 3, have

420

been found effective in the context of labor scheduling problems. We

include values of span larger than pI = 3 in order to expand the range

of alternatives examined. Clearly other values for these parameters,

and other schemes for managing span may hold promise as well. We

undertook to implement easily determined small values, without

spending a lot of time to explore alternatives. As it turned out, our

simple parameter choices worked well for us, as shown in the

following section on computational results.

3. Computational Experience.
Multidimensional knapsack problems have been the object of many

research initiatives over the past forty years. Early work, exemplified

by that of Lorie and Savage [13], was motivated by applications in

capital budgeting. Since that time, many other applications have been

discussed and a variety of algorithms have been proposed. This class

of problems is known to be NP-hard, and despite the considerable

attention these problems have received over the years, optimal

solutions remain elusive.

Many researchers have attempted to locate high quality, if not

optimal, solutions to MK problems by designing and employing

various heuristics (e.g., Senju and Toyoda [15], Loulou and

Michaelides [14], and Freville and Plateau [5]). These approaches

showed considerable promise and laid the groundwork for continuing

work in designing heuristics for this class of problems.

Building on these foundations, recent papers by Drexl [4],

Dammeyer and Voss [3], Aboudi and Jornsten [1] , and Glover and

Lokketangen [12] have reported computational experience with new

heuristic approaches to 57 standard multidimensional knapsack

problems taken from a test set due to Drexel [4] which is currently

available from Beasley [2]. Since this particular problem set has

become the standard by which various approaches are compared, we

chose to test our Tabu Search approach on these problems as well.

421

Starting with initial values (PI =3, P2 =7, and t =7), each of the 57

standard test problems was run for a total of 50 outer SPAN

oscillations. For each run (restart), KMAX was set to four. On 42 of

the 57 problems, the optimal solution was found on the first run. On

the other fifteen problems, optimal solutions were found on runs later

than the first. For these runs, the initial parameter values were

successively modified as follows. Keeping P2 =7, t was decreased to

5 and then to 3. Parameter P2 was then lowered to 5 and t was again

allowed to take on the values 7, 5 and 3. In all additional runs, PI was

kept at the default value of 3. Optimal solutions were found for all of

the 57 test problems by this approach, which introduces a maximum

of six restarts, each beginning from the same zero solution vector.

None of the other published approaches to these standard test

problems report finding the optimal solution for all 57 problems.

Drexl [4] obtained his results using two different implementations of

a simulated annealing algorithm. Each problem was solved starting

from 10 different starting points. That is, each problem was solved 20

times. He reports finding an optimal solution in 25 of the 57 problems

tested.

The results reported by Dammeyer and Voss [3] were obtained from

three different versions of an add/drop exchange heuristic with reverse

elimination tabu lists. For each version, each problem was solved from

20 different starting points. The solutions reported are the best

solutions found in the 60 attempts for each problem. Across the 57

test problems, they report an optimal solution in 41 cases.

Aboundi and Jornsten [1] report results obtained from their

implementation of an LP-based "pivot and complement" heuristic,

which they also guide by a form of tabu search. Twenty different

versions (variations) of their heuristic were tried on each problem. The

results they report are the best solutions found for each problem. Out

of the 57 test problems they reported the optimal solution in 49 cases.

422

(However, no single variation they implemented performed nearly this

well.)

Lokketangen and Glover [12] report a tabu search heuristic that also

uses adjacent extreme point moves, which correspond to non-tabu

pivots to adjacent basic feasible solutions. Each problem was solved

twice (using a different move evaluation and choice rule). The results

they report are the best solutions found for each problem. For the 57

problems, they report the optimal solution in 54 cases.

Comparisons of the various methods should be made with

considerable care. Issues of tuning, coding, quality and number of

starting points, and parameter settings make comparisons difficult. In

addition, the approach of Glover and Lokketangen [12], is designed for

general 0/1 mixed integer problems rather than being a specialized

algorithm for multidimensional knapsack problems.

Further Remarks on our Computational testing:

1. The results we report were obtained without the use of any

reductions or variable pegging due to pre-processing. The

starting solution for each problem was x = o.

2. The importance of generating additional trial solutions by a

simple adjustment of variables (that overrides tabu conditions

at critical events) is substantial. For the 57 problems reported

on here, the optimal solution was obtained from such trial

solutions about 82% of the time. This highlights the

effectiveness of our search process in generating critical events

in the neighborhood of the optimal solution.

3. Several problems required multiple span cycles (complete outer

oscillation on both sides of the feasibility boundary) to reach an

optimal solution. This highlights the difficulty of these

423

problems and underscores the effectiveness of our flexible tabu

structure and strategic oscillation scheme in mounting a robust

search of the solution space. Over the 57 problems, optimal

solutions were found in an average of approximately 7 span

cycles. Thirty nine of the problems were solved optimally in

four or fewer cycles. Four of the problems took more than 25

cycles to locate the optimal solution and one problem took 40

cycles.

4. Many of the 57 problems were also solved optimally utilizing

only short term information, that is, by setting PEN_F =0.

Generally, long term frequency information appears most useful

(leading to optimal solutions in fewer span cycles) on the more

difficult problems.

In an effort to explore this further, along with some alternative

ways of utilizing long term information, we conducted a variety

of additional runs on the 10 most difficult problems. These

problems required the largest number of full span cycles to

locate optimal solution. Recall that the results reported above

were obtained utilizing long term frequency information

throughout the search process in the manner depicted in section

2.1. For the purpose of comparison, we solved these 10

problems again under the following conditions: (a) using short

term memory only; (b) using long term memory, but

suppressing (withholding) the influence of long term memory

in the search process for a certain number of iterations; (c)

incorporating long term information as a penalty by

normalizing TABU_FG) by the sum of the TABU_(k) values

rather than the scheme outlined in section 2.1; and (d) using

long term information as described in (c) but suppressing it's

impact for a certain number of iterations. For alternatives (b)

and (d), long term frequency information was withheld for 100

iterations. In all cases, exactly the same parameter values were

424

used as those that led to the reference results.

The results obtained from these runs underscore the important

role of long term information in the search process. On

average, it took 2.25 times as many span cycles to locate the

optimal solution when using short term information only.

When using long term information, but withholding its

influence for the first 100 iterations, (e.g. case (b», it took an

average of 1.875 times as many span cycles as the reference

case. Finally, for the conditions of (c) and (d), it took,

respectively, 3.125 and 3.375 times as many span cycles on

average to locate the optimal as the reference case.

Thus, on the problems considered here, the implementation

described in this paper outperformed alternatives (a), (b), (c),

and (d) in terms of average performance by a substantial

amount. In addition, it produced the individual best

performance on 6 out of the 10 problems and was generally

close to most preferred on the others. Alternatives (a), (b) and

(d) each produced the best individual problem result for one of

the ten problems and there was a tie for best performance on

the tenth problem.

5. In addition to the standard 57 test problems, we tested our

approach on 24 randomly generated (correlated) problems

ranging in size up to 500 variables and 25 constraints. Where

possible, optimal solutions were obtained by a branch and

bound algorithm in order to assess the performance of our

heuristic. These problems are fairly difficult and in some cases

the branch and bound algorithm ran for more than 4

consecutive days on a 486 machine without terminating with a

proven optimal solution. For 23 of these 24 problems, our

approach generated solutions that were generally appreciably

superior to those given by the branch and bound algorithm. In

425

the one exception, we reported an objective function value of

4524 compared to the branch and bound generated value of

4525. In all cases, our procedure required a fraction of the time

taken by the branch and bound procedure, completing its run in

about 28 CPU minutes on average, and 355 CPU minutes in the

worst case. (This represents a speed difference of about 50 to

1.) To provide an additional (perhaps more informative) basis

of comparison, we note that the time required to first reach the

best solution found by each of these methods averaged 22 CPU

minutes for our TS method and 1250 CPU minutes for the

branch and bound (yielding a time advantage for the TS

approach of about 55 to 1). The fact that TS additionally found

better solutions in 23 of the 24 cases increases the significance

of these differences.

4. Conclusion.

In this paper we report an implementation of a new tabu search

approach to multidimensional knapsack problems. Our approach

employs a flexible memory structure that integrates recency and

frequency information keyed to critical events of the search process.

The method is enhanced by a strategic oscillation scheme that

alternates between constructive and destructive phases, and drives the

search to variable depths on each side of the feasibility boundary.

Our approach successfully obtained optimal solutions for each of 57

standard test problems from the literature, a level of performance not

matched by other attempts reported in the literature. Moreover, we

found best known solutions to 23 of 24 additional multidimensional

knapsack problems (correlated, randomly generated). Our reliance

upon exceedingly simple parameter values, without conducting

extensive exploration of alternatives, suggests that the use of such

critical event memory in tabu search may be valuable in other

applications.

426

5. REFERENCES

R.Aboudi and K. Jomsten (1994) "Tabu Search for General Zero
Integer Programs Using the Pivot and Complement Heuristic,"
ORSA Journal on Computing, Vol. 6, No. I, Winter 1994, pp. 82-
93.

J. Beasley (1995) "OR-Library," available by anonymous ftp to
msemga.ms.ic.ac.uk.

F. Dammeyer and S. Voss (1993) "Dynamic Tabu List Management
Using Reverse Elimination Method," Annals of Operations Research,
No. 41, pp. 31-46.

A. Drexl (1987) "A Simulated Annealing Approach to the
Multiconstraint Zero-One Knapsack Problem," Computing, No. 40,
pp. 1-8.

A. Freville and G. Plateau (1986) "Heuristics and Reduction Methods
for Multiple Constraints 0-1 Linear Programming Problems,"
European Journal of Operations Research, No. 24, pp. 206-215.

F. Glover (1965) "A Multiphase-Dual Algorithm for the Zero-One
Integer Programming Problem," Operations Research, 13, 879-919.

F. Glover (1977) "Heuristics in Integer Programming Using Surrogate
Constraints," Decision Sciences, Vol. 8, No. I, January, pp. 156-166.

F. Glover (1994) "Tabu Search Fundamentals and Uses," University of
Colorado Working Paper.

F. Glover (1993) "Tabu Thresholding: Improved Search by
Nonmonotonic Trajectories," to appear in ORSA Journal on
Computing.

F. Glover and M. Laguna (1993) "Tabu Search," Modern Heuristic
Techniques for Combinatorial Problems, C. Reeves, ed., Blackwell
Scientific Publishing, pp. 70-141.

427

F. Glover, M. Laguna, E. Taillard, and D. de Werra, eds (1993) "Tabu
Search," special issues of the Annals of Operations Research, Vol.
41, J.e. Baltzer.

F. Glover and A. Lokketangen (1994) "Solving Zero-One Mixed
Programming Problems Using Tabu Search," University of Colorado
Working Paper.

J. Lorie and L. Savage (1955) "Three Problems in Capital Rationing,"
Journal of Business, No. 28, pp. 229-239.

R. Loulou and E. Michaelides (1979) "New Greedy-Like Heuristics for
the Multidimensional 0-1 Knapsack Problem," Operations Research,
no. 27, pp. 1101-1114.

S. Senju, and Y. Toyoda (1968) "An Approach to Linear Programming
With 0-1 Variables," Management Science, No. 15., pp. 196-207.

