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Introduction. 

Considerable progress has been made over the past decade in 

developing and testing search techniques for combinatorial optimization 

problems. Various forms of genetic algorithms, simulated annealing, 

and tabu search have all been reported to perform well in diverse 

problems settings. Tabu search (TS) has proved highly effective in 

various implementations across a wide range of applications, and forms 

the foundation of the approach of this paper. Background on 

applications of TS and elements responsible for its successes can be 

found in recent survey papers [8, 10, 11]. 

The distinguishing characteristic of tabu search is the use of adaptive 

memory structures which are accompanied by associated strategies for 

exploiting information during the search. The adaptive memory 

component of TS typically incorporates recency-based and frequency

based memory defined over varying short term and long term spans of 

the search history. This memory operates through control mechanisms 

of tabu restrictions and aspiration criteria, and associated penalties and 

inducements to modify move evaluations. By such adaptive designs, 

which abstract certain processes conjectured to operate in human 

problem solving, this memory is sometimes contrasted with the "rigid" 

memory structures of branch and bound, and the "memoryless" designs 

of a variety of other approaches. 

The choice rules of tabu search are highly aggressive, seeking "best 

moves" at each step (from those allowed by its restrictions and made 

available from its history). To apply this aggressive orientation 

judiciously, the approach characteristically relies on strategies to isolate 

subsets of desirable moves (rather than to exhaustively examine all 

alternatives at each iteration), and utilizes choice criteria that make use 

of a notion of influence (which includes elements of criticality and 

patterning), in addition to drawing on the outcomes of search history. 

A principal theme is to create an effective interplay between 

intensification and diversification, that is, between approaches designed 
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to identify and reinforce attributes of good solutions and approaches 

designed to draw the search into promising new regions. A general 

treatment of tabu search and its principal strategies may be found, for 

example, in [8] and [9]. 

In this paper we focus on a special subset of these elements and 

report on a new method for creating an effective search process based 

on a flexible memory structure that is updated at critical events. The 

tabu status of a potential move is determined through the integration 

of recency-based and frequency-based memory information. A balance 

between intensification and diversification is accomplished by a 

strategic oscillation scheme that probes systematically to varied depths 

on each side of the feasibility boundary. These oscillations, coupled 

with dynamic tabu information, guide the search process toward 

different critical events. 

The approach illustrated here applies to many types of problems. 

However, we specifically will be concerned with an implementation 

designed to solve multidimensional knapsack (MK) problems, which 

take the form: 

MK: maximize cx 

subject to 

Ax S; b 

x binary 

The matrix A and the vectors band c consist of real-valued constants 

that satisfy 

A ;?: 0 and b,c ;?: o. 

1. Basic Notions. 
Our approach is representative of a class of strategic oscillation 

methods that proceed by alternating between constructive and 

destructive phases. In the present setting, a constructive phase 
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corresponds to one that progressively sets variables equal to 1, while 

a destructive phase corresponds to one that progressively sets variables 

to o. 

Within this framework, we organize a strategic oscillation as 

follows. We first sketch the ideas in overview, and then diagram the 

steps of the approach. We introduce a parameter span that indicates 

the amplitude (or depth) of the oscillation about the feasibility 

boundary, measured in the number of variables added (set to 1) when 

proceeding from the boundary into the infeasible region and in the 

numbers of variables dropped (set to 0) when proceeding from the 

boundary into the feasible region. Although the depth in these two 

directions need not be the same (and in fact asymmetric or even "one

sided" oscillations can be best for certain problems) we focus here on 

treating them as equal. 

We begin with span equal to 1, and gradually increase it to a 

limiting value. For each value of span, a series of alternating 

constructive and destructive phases is executed before progressing to 

the next value. At the limiting point, we begin to gradually decrease 

span, allowing again a series of constructive and destructive phases for 

each span value before progressing to the next. When span reaches a 

value of 1, we begin once more a gradual increase in span. The 

manipulation of the span parameter may be viewed as an outer 

oscillation that contains the oscillation of constructive and destructive 

moves (for a given value of span) within it. 

1.1 Method in Detail. 

Let x* denote the best solution found so far; that is, the feasible 

solution that gives a maximum value for cx. Until x* has been 

determined, cx* is taken to be a large negative number. We assume 

that setting all Xj = 1 is infeasible, else the problem is trivially solved. 

The terms tabu and non_tabu will be given operational definitions 

subsequently. Our strategic oscillation method, then, consists of the 
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following: 

Initialization 

Step 0: Begin with x = 0 or x = e and set counCspan = o. If x = 

0, set feasible = .true. and go to the Constructive Phase. If x = e, set 

feasible = .false. and go to the Destructive Phase. 

Constructive Phase: (move from feasible to infeasible) 

Step Cl: (feasible = .true.) 

(1) If no component Xj of x can be increased from 0 to 1 

except by violating feasibility, then: 

(a) if cx > cX*, let x* = x 

(b) set feasible = .false. and go to step C2. 

(2) If condition (1) does not hold, then choose an Xj to 

increase from 0 to 1, such that the move maintains 

feasibility, and return to the start of step C 1. 

Step C2: (feasible = false.) 

Set counCspan = counCspan + 1 

(1) If counCspan > span, or if there are no Xj 

available to change from 0 to 1, go to the 

Transfer Phase. 

(2) If condition (1) does not hold, choose an Xj to 

increase from 0 to 1 and return to the start of 

Step C2. 

Transfer Phase: 

Step Tl: 

Step 12: 

Set counCspan = O. Change the value of span 

if appropriate (by a rule to be identified later). 

Go to the Destructive Phase if the last phase 

was a Constructive Phase. Else, go to the 

Constructive Phase. 
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Destructive Phase: (move from infeasible to feasible) 

Step Dl: (feasible = false.) 

(1) Select an Xj to change from 1 to O. 

(2) If the solution produced by (1) is infeasible, 

return to the start of Step D 1. Otherwise, set 

feasible = .true. and: 

(a) if cx > cx*, let x* = x. 

(b) go to Step D2. 

Step D2: (feasible =.true.) 

Set counCspan = counCspan+ 1 

(1) if counCspan > span, or if there are no Xj 

available to change from I to 0, go to the 

Transfer Phase. 

(2) If condition (1) does not hold, choose an Xj to 

decrease from 1 to 0 and return to the start of 

Step D2. 

The preceding method terminates whenever a selected number of 

iterations have been performed without finding an improved x*, or 

simply after a total iteration limit (number of Transfer Phase 

executions) has been reached. 

1.2 Surrogate Constraint Choice Rules. 

As in a variety of strategic oscillation approaches, we make use of 

surrogate constraint information to guide the decisions of the method. 

In particular, the choice of a variable to add (steps CI(2) and C2(2)) 

and of a variable to drop (steps DI(I) and D2(2)) is determined by a 

standard surrogate constraint evaluation. (For background on surrogate 

constraints and their uses in choice rules, see Glover [6, 7].) We 

dynamically form surrogate constraints, based upon the current 

solution, as normalized (nonnegative) linear combinations of the 

problem constraints. At each iteration, we compute ratios of the 

objective function coefficients to their associated surrogate constraint 
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coefficients. During a Constructive Phase, we add variables with 

maximum ratios and during a Destructive Phase we drop variables with 

minimum ratios. When tabu restrictions are enforced, this ratio 

information is augmented by recency and frequency information. 

The surrogate constraints used to determine the choice rules are 

formed by first normalizing (or otherwise weighting) and then 

summing various constraints. We currently employ three different 

surrogates depending on the feasibility status of the current solution 

vector and the phase of the search. In all cases we compute 

bi = bi - L(~,j : for j with Xj = 1). 

As long as the current solution is feasible, the weight Wi for 

constraint i is chosen to be lIbi. When the search process enters the 

infeasible region, we choose weights by one of two methods: 

a. If bi > 0, set Wi = lIbi 

Ifbi ~ 0, set Wi = 2 + !bi! 

b. If bi ~ 0, set Wi = ° 
If bi < 0, set Wi = 1I( !bi! + L(~,j: for j with Xj = 0)) 

We have experimented with both methods and currently use method 

(a) in the Constructive Phase and method (b) in the Destructive Phase. 

The rationale for the above procedures is to exaggerate the influence 

of the most violated constraints and thus encourage searches "near" 

critical solutions. (Our testing to date has not conclusively 

demonstrated whether one method is preferred to the other.) 

Let L SjXj ~ So denote the resulting surrogate constraint, i.e., Sj = 
LWi~j and So = LWibi. The choice rule for the constructive phase then 

selects the variable Xj to change from ° to 1 in order to 
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while the choice rule for the destructive phase selects the variable Xj 

to change from 1 to 0 in order to 

These rules are modified by the TS restrictions and penalties 

subsequently indicated. In the next sections, we describe how we 

accomplish this in our implementation. 

2. Tabu Memory. 
The essence of the method rests upon the scheme for defining tabu 

status, and hence that guides the oscillations productively. In our 

implementation, the tabu status of a potential move (adding or 

dropping a variable) is determined by recency and frequency 

information gathered as the search process encounters critical events. 

For MK problems, we define a critical event to be the construction of 

a complete (feasible) solution by the search process at the feasibility 

boundary. That is, critical events correspond to solutions obtained by 

the Constructive Phase at the final moment before going infeasible, and 

by solutions obtained by the Destructive Phase at the first moment of 

regaining feasibility. 

At critical events, we also include steps for generating additional 

trial solutions which are further candidates for x*. In the Constructive 

Phase, we proceed as follows. As variables are chosen to be changed 

from 0 to 1, a move is finally made that drives the search infeasible. 

When such a step is imminent, a trial solution can be identified if some 

variable can be found to add (change from 0 to 1) that "fits" within the 

constraints even though it contributes less to the objective function 

than the one normally chosen (that produces infeasibility). Thus, at 

such a juncture, the variables are examined, in order of decreasing 
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objective function coefficients, for the first such variable that can be 

added while maintaining feasibility. The trial solution choice does not 

replace the customary choice (in the standard variant we employ), but 

simply provides a solution that is recorded if it improves the best one 

currently known. 

The second trial solution (at a critical solution in the Constructive 

Phase) is generated by retaining the regularly selected move that 

produced infeasibility (as noted) and searching for a variable to drop 

(other than the one just selected to add) that will re-establish 

feasibility. Candidate variables to drop for the purpose of generating 

this second trial solution are examined in order of increasing objective 

function coefficients. 

Corresponding to the two trial solutions generated at the critical 

level of the Constructive Phase, we similarly generate two such 

solutions at the critical level of the Destructive Phase. The rules are 

the mirror images of the above steps. Note that trial solutions 

generated in this way represent the use of an aspiration criterion since 

the solutions are found by temporarily ignoring tabu information. 

2.1 Using Recency and Frequency Information. 

In order to influence the search by recency information, we record (in 

a circular list) the last t solutions obtained at critical events, where in 

our implementation t is a simple function of problem size that takes 

values in the range of 3 - 12. Using this record of the last t critical 

solutions, which range from x(last) to x(last-(t-l), we maintain a short 

term recency tabu vector (TABU_R) that is the sum of the last t 

solutions. That is, each time a new x(last) is identified, we set 

TABU_R = TABU_R + x(last) - x(last-t). 

In a like manner, long term frequency information is captured for 

use in the search process by maintaining another vector (TABU_F) 
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which is the sum of all critical solutions encountered to date (rather 

than the last t critical solutions). 

As previously noted, during a Constructive Phase, variables are 

added until the span parameter indicates it is time to switch to the 

Destructive Phase. The search process then "turns around" and 

proceeds toward (and past) the feasibility boundary by dropping 

variables. Eventually, we switch again to the Constructive Phase, 

where we tum around and move toward infeasibility by adding 

variables. It is at these tum around points that we use the foregoing 

memory to impel the search process to head in new directions in 

pursuit of new critical solutions. We sketch our rationale for 

accomplishing this as follows. 

Suppose we have just switched from the Destructive Phase to the 

Constructive Phase. Our goal is to add variables that have not 

appeared at a value of 1 in recent critical solutions. Thus, we seek to 

impose the condition that the first variable added back, Xj' will have 

TABU_RU) = O. That is, we may conceive the condition TABU_RU) 

> 0 as implying that Xj is tabu. However, this is not broad enough for 

our purpose. More generally, we seek to require that the first k 

variables added back (after turning around) will have TABU_RU) = o. 
Such a requirement may not be strictly possible. Consequently, we 

attach a large penalty weight, PEN_R, to TABU_RU) and create a 

penalty value PEN_R*TABU_R(j). This penalty value is subtracted 

from the ratio evaluation, indicated earlier whose maximum value is 

used to choose the preferred move. 

Likewise, frequency information is included by subtracting another 

penalty term, PEN_F*T ABU_F(j), from the ratio evaluation. The 

positive weight, PEN_F, is scaled by the iteration count so that the 

penalty influence derived from long term frequency information is 

small compared to that of the short term recency information. In this 

manner, long term tabu information plays a subtle but useful role of 



417 

breaking ties that may otherwise occur if one utilizes only short term 

tabu information. 

Similarly, when we switch from the Constructive to the Destructive 

Phase, we seek to restrict our choice of variables to drop so that the 

first k variables chosen are selected from those Xj with maximum 

entries in the tabu lists TABU_R and TABU_F. Here, the tabu 

restriction is implemented by creating an inducement to drop a variable 

by subtracting an associated penalty term from the ratio evaluation and 

seeking the minimum penalized ratio. 

Since the local search is based on a ratio evaluation, we choose the 

penalty coefficients by reference to this evaluation. This is done as 

follows. Each original constraint is scaled by its RHS value and the 

resulting weighted rows are summed to yield a surrogate constraint 

from which the ratio rj , for each column j, is computed. Denote the 

maximum rj ratio by r*. Then, our penalties are set as follows: 

where s is a scale factor given by the product of the iteration count and 

a large, positive constant(C). Note that since the iteration count is an 

over estimate of the maximum TABU _F value at any iteration, the 

above calculation for the long term tabu penalty corresponds to scaling 

TABU_F by a simple function of the maximum TABU_F value. We 

experimented with several values (over a wide range) for C. For the 

results reported later in this paper, C was set to 100,000. 

Other approaches to incorporating long term (e.g. TABU_F) 

information into the search process are available as well. For example, 

the penalties could be adaptively computed on the basis of the current 

surrogate constraint instead of relative to an initial surrogate constraint. 
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Also, TABU_F U) could be normalized by the sum of the TABU_FU) 

values. We comment briefly on this alternative, along with the notion 

of postponing the use of long term information, later in the paper. 

2.2 Penalty Calculations. 
The calculations for handling the penalty terms in both the 

Constructive and Destructive phases are as follows. 

Denote the usual evaluation for variable Xj by ratio(j). Let counC var 

denote the number of variables chosen since the last turn-around and 

let j * be the index of the variable to be chosen next. Then in the 

Constructive Phase, we choose j* (from the set of all j such that Xj = 

0) as follows: 

If counC var > k, let value(j) = ratio(j) 

if count_var :::; = k, let value(j) = ratio(j) - PEN_R*TABU_R(j) 

- PEN_F*TABU_F(j) 

Then j* corresponds to the variable with the maximum value of 

value(j). Similarly, in the Destructive Phase, we choose j* (from the set 

of all j such that Xj = 1) in order to minimize value(j), using the same 

two calculations of this value shown above. 

The parameter k, the number of tabu-influenced adds or drops to be 

made immediately after a "turn around" is managed in a fashion that 

fosters additional diversity in the search process. We start with k = 1, 

and after a number of iterations (e.g., 2t), we set k = k+1. We 

continue in this fashion until k reaches a limit (KMAX) at which point 

we set k back to 1 and the process repeats. In general, KMAX is a 

function of problem size. However, over a rather wide range of 

problems, KMAX = 4 has performed well in our testing. 
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2.3 Controlling the Outer Oscillation parameter (Span). 

The oscillations about the feasibility boundary are shaped by the 

parameter span. Span is fixed for a certain number of iterations and 

then changed in a systematic fashion. In our implementation, we 

manage span in the Transfer Phase by the following rules: 

Initialization: 
Set span=l, choose values of parameters pI and p2, and designate that 

span is increasing. 

Transfer Phase (increasing span): 

For span from 1 to p1: Allow p2*span executions of 

the Constructive and Destructive Phase and then 

increase span by 1. 

For Span from p1+1 to p2: Allow p2 executions of the 

Constructive and Destructive Phases and then 

increase span by 1. When span is increased 

beyond p2, set it back to p2 and designate that 

span is decreasing. 

Transfer Phase (decreasing span): 

For span from p2 to p1+1: Allow p2 executions of the 

Constructive and Destructive Phases, and then 

decrease span by 1. 

For span from p1 to 1: Allow p2*span executions of 

the Constructive and Destructive Phases, and 

then decrease span by 1. When span reaches 0, 

set it back to 1 and designate that span in 

increasing. 

Large values of pI and p2 foster aggressive diversification while 

smaller values facilitate a search in a closer neighborhood of the most 

recent critical solution. The default values we employ are p 1 = 3 and 

p2 = 7. These particular values are supported by the fact that span 

values of 1 to 3, with a predominant emphasis on the value 3, have 
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been found effective in the context of labor scheduling problems. We 

include values of span larger than pI = 3 in order to expand the range 

of alternatives examined. Clearly other values for these parameters, 

and other schemes for managing span may hold promise as well. We 

undertook to implement easily determined small values, without 

spending a lot of time to explore alternatives. As it turned out, our 

simple parameter choices worked well for us, as shown in the 

following section on computational results. 

3. Computational Experience. 
Multidimensional knapsack problems have been the object of many 

research initiatives over the past forty years. Early work, exemplified 

by that of Lorie and Savage [13], was motivated by applications in 

capital budgeting. Since that time, many other applications have been 

discussed and a variety of algorithms have been proposed. This class 

of problems is known to be NP-hard, and despite the considerable 

attention these problems have received over the years, optimal 

solutions remain elusive. 

Many researchers have attempted to locate high quality, if not 

optimal, solutions to MK problems by designing and employing 

various heuristics (e.g., Senju and Toyoda [15], Loulou and 

Michaelides [14], and Freville and Plateau [5]). These approaches 

showed considerable promise and laid the groundwork for continuing 

work in designing heuristics for this class of problems. 

Building on these foundations, recent papers by Drexl [4], 

Dammeyer and Voss [3], Aboudi and Jornsten [1] , and Glover and 

Lokketangen [12] have reported computational experience with new 

heuristic approaches to 57 standard multidimensional knapsack 

problems taken from a test set due to Drexel [4] which is currently 

available from Beasley [2]. Since this particular problem set has 

become the standard by which various approaches are compared, we 

chose to test our Tabu Search approach on these problems as well. 
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Starting with initial values (PI =3, P2 =7, and t =7), each of the 57 

standard test problems was run for a total of 50 outer SPAN 

oscillations. For each run (restart), KMAX was set to four. On 42 of 

the 57 problems, the optimal solution was found on the first run. On 

the other fifteen problems, optimal solutions were found on runs later 

than the first. For these runs, the initial parameter values were 

successively modified as follows. Keeping P2 =7, t was decreased to 

5 and then to 3. Parameter P2 was then lowered to 5 and t was again 

allowed to take on the values 7, 5 and 3. In all additional runs, PI was 

kept at the default value of 3. Optimal solutions were found for all of 

the 57 test problems by this approach, which introduces a maximum 

of six restarts, each beginning from the same zero solution vector. 

None of the other published approaches to these standard test 

problems report finding the optimal solution for all 57 problems. 

Drexl [4] obtained his results using two different implementations of 

a simulated annealing algorithm. Each problem was solved starting 

from 10 different starting points. That is, each problem was solved 20 

times. He reports finding an optimal solution in 25 of the 57 problems 

tested. 

The results reported by Dammeyer and Voss [3] were obtained from 

three different versions of an add/drop exchange heuristic with reverse 

elimination tabu lists. For each version, each problem was solved from 

20 different starting points. The solutions reported are the best 

solutions found in the 60 attempts for each problem. Across the 57 

test problems, they report an optimal solution in 41 cases. 

Aboundi and Jornsten [1] report results obtained from their 

implementation of an LP-based "pivot and complement" heuristic, 

which they also guide by a form of tabu search. Twenty different 

versions (variations) of their heuristic were tried on each problem. The 

results they report are the best solutions found for each problem. Out 

of the 57 test problems they reported the optimal solution in 49 cases. 
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(However, no single variation they implemented performed nearly this 

well.) 

Lokketangen and Glover [12] report a tabu search heuristic that also 

uses adjacent extreme point moves, which correspond to non-tabu 

pivots to adjacent basic feasible solutions. Each problem was solved 

twice (using a different move evaluation and choice rule). The results 

they report are the best solutions found for each problem. For the 57 

problems, they report the optimal solution in 54 cases. 

Comparisons of the various methods should be made with 

considerable care. Issues of tuning, coding, quality and number of 

starting points, and parameter settings make comparisons difficult. In 

addition, the approach of Glover and Lokketangen [12], is designed for 

general 0/1 mixed integer problems rather than being a specialized 

algorithm for multidimensional knapsack problems. 

Further Remarks on our Computational testing: 

1. The results we report were obtained without the use of any 

reductions or variable pegging due to pre-processing. The 

starting solution for each problem was x = o. 

2. The importance of generating additional trial solutions by a 

simple adjustment of variables (that overrides tabu conditions 

at critical events) is substantial. For the 57 problems reported 

on here, the optimal solution was obtained from such trial 

solutions about 82% of the time. This highlights the 

effectiveness of our search process in generating critical events 

in the neighborhood of the optimal solution. 

3. Several problems required multiple span cycles (complete outer 

oscillation on both sides of the feasibility boundary) to reach an 

optimal solution. This highlights the difficulty of these 
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problems and underscores the effectiveness of our flexible tabu 

structure and strategic oscillation scheme in mounting a robust 

search of the solution space. Over the 57 problems, optimal 

solutions were found in an average of approximately 7 span 

cycles. Thirty nine of the problems were solved optimally in 

four or fewer cycles. Four of the problems took more than 25 

cycles to locate the optimal solution and one problem took 40 

cycles. 

4. Many of the 57 problems were also solved optimally utilizing 

only short term information, that is, by setting PEN_F =0. 

Generally, long term frequency information appears most useful 

(leading to optimal solutions in fewer span cycles) on the more 

difficult problems. 

In an effort to explore this further, along with some alternative 

ways of utilizing long term information, we conducted a variety 

of additional runs on the 10 most difficult problems. These 

problems required the largest number of full span cycles to 

locate optimal solution. Recall that the results reported above 

were obtained utilizing long term frequency information 

throughout the search process in the manner depicted in section 

2.1. For the purpose of comparison, we solved these 10 

problems again under the following conditions: (a) using short 

term memory only; (b) using long term memory, but 

suppressing (withholding) the influence of long term memory 

in the search process for a certain number of iterations; (c) 

incorporating long term information as a penalty by 

normalizing TABU_FG) by the sum of the TABU_(k) values 

rather than the scheme outlined in section 2.1; and (d) using 

long term information as described in (c) but suppressing it's 

impact for a certain number of iterations. For alternatives (b) 

and (d), long term frequency information was withheld for 100 

iterations. In all cases, exactly the same parameter values were 
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used as those that led to the reference results. 

The results obtained from these runs underscore the important 

role of long term information in the search process. On 

average, it took 2.25 times as many span cycles to locate the 

optimal solution when using short term information only. 

When using long term information, but withholding its 

influence for the first 100 iterations, (e.g. case (b», it took an 

average of 1.875 times as many span cycles as the reference 

case. Finally, for the conditions of (c) and (d), it took, 

respectively, 3.125 and 3.375 times as many span cycles on 

average to locate the optimal as the reference case. 

Thus, on the problems considered here, the implementation 

described in this paper outperformed alternatives (a), (b), (c), 

and (d) in terms of average performance by a substantial 

amount. In addition, it produced the individual best 

performance on 6 out of the 10 problems and was generally 

close to most preferred on the others. Alternatives (a), (b) and 

(d) each produced the best individual problem result for one of 

the ten problems and there was a tie for best performance on 

the tenth problem. 

5. In addition to the standard 57 test problems, we tested our 

approach on 24 randomly generated (correlated) problems 

ranging in size up to 500 variables and 25 constraints. Where 

possible, optimal solutions were obtained by a branch and 

bound algorithm in order to assess the performance of our 

heuristic. These problems are fairly difficult and in some cases 

the branch and bound algorithm ran for more than 4 

consecutive days on a 486 machine without terminating with a 

proven optimal solution. For 23 of these 24 problems, our 

approach generated solutions that were generally appreciably 

superior to those given by the branch and bound algorithm. In 
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the one exception, we reported an objective function value of 

4524 compared to the branch and bound generated value of 

4525. In all cases, our procedure required a fraction of the time 

taken by the branch and bound procedure, completing its run in 

about 28 CPU minutes on average, and 355 CPU minutes in the 

worst case. (This represents a speed difference of about 50 to 

1.) To provide an additional (perhaps more informative) basis 

of comparison, we note that the time required to first reach the 

best solution found by each of these methods averaged 22 CPU 

minutes for our TS method and 1250 CPU minutes for the 

branch and bound (yielding a time advantage for the TS 

approach of about 55 to 1). The fact that TS additionally found 

better solutions in 23 of the 24 cases increases the significance 

of these differences. 

4. Conclusion. 

In this paper we report an implementation of a new tabu search 

approach to multidimensional knapsack problems. Our approach 

employs a flexible memory structure that integrates recency and 

frequency information keyed to critical events of the search process. 

The method is enhanced by a strategic oscillation scheme that 

alternates between constructive and destructive phases, and drives the 

search to variable depths on each side of the feasibility boundary. 

Our approach successfully obtained optimal solutions for each of 57 

standard test problems from the literature, a level of performance not 

matched by other attempts reported in the literature. Moreover, we 

found best known solutions to 23 of 24 additional multidimensional 

knapsack problems (correlated, randomly generated). Our reliance 

upon exceedingly simple parameter values, without conducting 

extensive exploration of alternatives, suggests that the use of such 

critical event memory in tabu search may be valuable in other 

applications. 
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