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3.1 Introduction 

Tahu search (TS) has its antecedents in 111ethods designed to cross 
boundaries of feasibility or local optiinality normally treated as bar­
riers, and systematically to iinpose and release constraints to permit 
exploration of otherwise forbidden regions. Early exa1nples of such 
procedures include heuristics based on surrogate constraint methods 
and cutting plane approaches that syste111atically violate feasibility 
conditions. The 1nodern fonn of tabu search derives from Glover 
[1]. Sen1inal ideas of the n1ethod are also developed by Hansen [2] 
in a steepest ascent/rnildest descent fonnulation. Additional contri­
butions, such as those cited in the following pages, are shaping the 
evolution of the method and a.re responsible for its growing body of 
successful applications. 

Webster's dictionary defines tabu or taboo as 'set apart as charged 
with a dangerous supernatural power and forbidden to profane use or 
contact ... ' or 'banned on grounds of 1norality or taste or as constitut­
ing a risk ... '. Tahu search scarcely involves reference to supernatural 
or 1noral considerations, but instead is concerned with in1posing re­
strictions to guide a search process to negotiate otherwise difficult 
regions. These restrictions operate in several fonns, both by direct 
exclusion of certain search alternatives classed as 'forbidden', and also 
by translation into n1odified evaluations and probabilities of selection. 

The purpose of this chapter is to integrate son1e of the fundamen­
tal ways of viewing and characterizing tabu search, with extended 
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examples to clarify its operations. We also point to a variety of di­
rections for new applications and research. Our development includes 
comparisons and contrasts between the principles of tabu search and 
those of simulated annealing (SA) and genetic algorithms (GAs). 
Con1putational hnplications of these differences, and foundations for 
creating hybrid methods that unite features of these different ap­
proaches are also discussed. In addition, we examine special designs 
and computational outco1nes for incorporating tabu search as a driv­
ing mechanism within neural networks. 

The philosophy of tabu search is to derive and exploit a collec­
tion of principles of intelligent proble1n solving. A fundamental el­
e1nent underlying tabu search is the use of flexible 1nen1ory. Fro1n 
the standpoint of tabu search, flexible 111emory en1bodies the dual 
processes of creating and exploiting structures for taking advantage 
of history (hence combining the activities of acquiring and profiting 
from inforn1ation). 

The memory structures of tabu search operate by reference to 
four principal dh11ensions, consisting of recency, frequency, quality, 
and influence. These dimensions in turn are set against a background 
of logical structure and connectivity. The role of these elements in 
creating effective problem-solving processes provides the focus of our 
following developn1ent. 

3.2 The Tahu Search Framework 

To provide a background for understanding some of the fundarnental 
elements of tabu search, we illustrate its basic operation with an 
exan1ple. 

3.2.1 An illustrative exan1ple 

Pennutation problems forn1 an ilnportant class of proble1ns in opti­
mization, and offer a useful vehicle to demonstrate some of the consid­
erations that must be faced in the co1nbinatorial domain. Classical 
instances of permutation problems include the travelling sales1nan 
proble1n, the quadratic assigntnent problem, production sequencing 
problems, and a variety of design problems. As a basis for illustra­
tion, consider the problem of designing a n1aterial consisting of a 
number of insulating modules. The order in which these n1odules are 
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arranged determines the overall insulating property of the resulting 
material, as shown in Figure 3.1. 

Material 

•<ir.--- Modules 

Figure 3.1: Modules in an insulating material 

The problem is to find the ordering of modules that maximizes 
the overall insulating property of the composite material. Suppose 
that 7 modules are considered for a particular material, and that 
evaluating the overall insulating property of a particular ordering is 
a computationally expensive procedure. We desire a search method 
that is able to find an optin1al or near-optiinal solution by examining 
only a small subset of the total number of permutations possible (in 
this case 5040, though for many applications it can be astronomical). 

Closely related problems that can be represented in essentially the 
same way include serial filtering and job sequencing problems. Serial 
filtering problems arise in pattern recognition and signal processing 
applications, where a given input is to be subjected to a succession 
of filters ( or screening tests) to obtain the 'best' output. Filters are 
sequentially applied to the input signal, and the quality of the out­
put is determined by the order in which they are placed (see Figure 
3.2). In this case, the search method 1nust be designed to find the 
best filtering sequence. Such filtering processes are also relevant to 
applications in chemical engineedng, astrono1ny, and biochemistry. 

Job sequencing problen1s consist of detennining best sequences 
for processing a set of jobs on designated machines. Each machine is 
thus assigned some pern1utation of available jobs. (In some settings, 
multiple machine problems may be treated by extensions of processes 
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Input signal 

• 

Filters 

Output signal 

• 

Figure 3.2: Filtering sequence 
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for single machine problems.) There are many variants of the sin­
gle machine problem depending on the definition of 'best' sequence. 
For example, the best sequence may be the one that minimizes the 
makespan-the completion time of the last job in the sequence. Other 
possibilities are to minimize a weighted su111 of tardiness penalties or 
a sum of setup costs. 

For well-structured objective functions, evaluations of ways to 
move from one solution to another are generally fast. However, prob­
lems with even modest numbers of jobs overwhehn the capabilities 
of algorithms that 'guarantee' optitnality, rendering the1n unable to 
obtain solutions in reasonable amounts of time. That is one of the 
reasons why effective heuristic approaches have proved ilnportant in 
the area of production scheduling. 

Some useful variants of the foregoing problems can be represented 
'as if' they were permutation problems. These include, for example, 
problems where it is simultaneously desired to select a best subset of 
items (modules, filters, jobs) from an available pool, and to identify 
a best sequence for this chosen set. In this case, the problem can be 
represented by creating a dummy position to hold a residual pool, 
where all items that do not currently occupy one of the sequence 
positions are placed. (The path assignment proble1n discussed in 
Section 3.4 is a good example of this kind of representation.) 

We focus on the module insulation problem, using it to introduce 
and illustrate the basic components of ta.bu search. First we assume 
that an initial solution for this problem can be constructed in some 
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intelligent fashion, i.e. by taking advantage of some problem-specific 
structure. Suppose the initial solution to our proble1n is the one 
shown in Figure 3.3. 

.Modules 

/ ~ 
2 5 

I 7 
I 

3 I 
4 I 6 1 

Figure 3.3: Initial permutation 

The ordering in Figure 3.3 specifies that module 2 is placed in 
the first position, followed by n1odule 5, etc. The resulting material 
has an insulating property of 10 units (which we assume was found 
by an accompanying evaluation routine, e.g. a sin1ulator package 
for estimating the properties of a 1naterial without actually build­
ing a prototype). TS n1ethods operate under the assumption that a 
neighbourhood can be constructed to identify 'adjacent solutions' that 
can be reached from any current solution. (Neighbourhood search 
is described in Section 3.2.3.) Pairwise exchanges (or swaps) are 
frequently used to define neighbourhoods in permutation problems, 
identifying moves that lead fro1n one solution to the next. In our 
proble1n, a swap exchanges the position of two modules as illustrated 
in Figure 3.4. Therefore, the co1nplete neighbourhood of a given cur­
rent solution consists of the 21 adjacent solutions that can be obtained 
by such swaps. 

Associated with each swap is a move value, which represents the 
change in the objective function value as a result of the proposed 
exchange. Move values generally provide a funda1nental basis for 
evaluating the quality of a 1nove, although other criteria can also 
be important, as indicated later. A chief mechanism for exploiting 
memory in ta.bu search is to classify a subset of the moves in a neigh­
bourhood as forbidden ( or ta.bu). The classification depends on the 
history of the search, particularly as 111anifested in the recency or fre­
quency that certain n1ove or solution components, called attributes, 
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2 6 7 3 4 5 1 

Figure 3.4: Swap of modules 5 and 6 

have participated in generating past solutions. For example, one at­
tribute of a swap is the identity of the pair of elements that change 
positions (in this case, the two modules exchanged). As a basis for 
preventing the search from repeating swap combinations tried in the 
recent past, potentially reversing the effects of previous moves by in­
terchanges that might return to previous positions, we will classify 
as tabu all swaps composed of any of the most recent pairs of such 
modules; in this case, for illustrative purposes, the three most recent 
pairs. This means that a module pair will be kept ta.bu for a dura­
tion (tenure) of 3 iterations. Since exchanging modules 2 and 5 is 
the same as exchanging modules 5 and 2, both may be represented 
by the pair (2,5 ). Thus, a data structure such as the one shown in 
Figure 3.5 may be used. 

Each cell of the structure in Figure 3.5 contains the number of 
iterations remaining until the corresponding modules are allowed to 
exchange positions again. Therefore, if the cell (3,5) has a value of 
zero, then modules 3 and 5 are free to exchange positions. On the 
other hand, if cell (2,4) has a value of 2, then modules 2 and 4 may 
not exchange positions for the next two iterations (i.e. a swap that 
exchanges these n1od ules is classified ta.bu). 

The type of move attributes illustrated here for defining ta.bu re­
strictions is not the only one possible. For example, reference may 
be made to separate modules rather than module pairs, or to posi­
tions of modules, or to links between their immediate predecessors 
( or successors), and so forth. Son1e choices of attributes are bet­
ter than others, and relevant considerations are discussed in Section 
3.2.5. (Attributes involving created and broken links between in1me­
diate predecessors and successors are often among the more effective 
for many permutation problems.) 
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1 

Remaining tabu tenure 
for module pair (2,5) 
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Figure 3.5: Tahu data structure for attributes consisting of module pairs 
exchanged 

To implement tabu restrictions such a.s those based on module 
pairs, an important exception must be taken into account. Tahu 
restrictions are not inviolable under all circumstances. When a tabu 
move would result in a solution better than any visited so far, its 
tabu classification may be overridden. A condition that allows such 
an override to occur is called an aspiration criterion. (Several useful 
fonns of such criteria are presented in Section 3.2.7.) The following 
shows 4 iterations of the basic tabu procedure that employs the paired 
module tabu restriction and the best solution aspiration criterion. 

Iteration O ( Starting point) 

Current solution 

Insulation Value=lO 

All entries zero 

1 

Tahu structure Top 5 candidates 
2 3 4 5 6 7 Swap Value 

I 5,4 6 * 

2 7,4 4 

3 3,6 2 

4 2,3 0 

5 4,1 -1 

6 -
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The starting solution has an insulation value of 10, and the tabu data 
structure is initially empty, i.e. it is filled with zeros, indicating no 
moves are classified tabu at the beginning of the search. (For clar­
ity, we have not actually inserted these zeros in this or the following 
diagrams.) After evaluating the candidate swap 1noves, the top five 
moves (in terms of move values) are shown in the table for iteration 
0 above. This information is provided by an independent evaluation 
subroutine designed to identify move values for this particular prob­
lem. (Of course, it is not necessary for the subroutine to sort and 
identify each of the 5 best moves, since we a.re interested only in the 
best. The additional options are included here to clarify certain ideas 
subsequently presented.) To find a local 1naxin1un1 for the insulating 
property of the material, we swap the positions of 111odules 5 and 4 
(as indicated by the asterisk). The total gain of such a n1ove equals 
6 units. 

Iteration 1 

Current solution 

Insulation Value= 16 

1 

Tahu structure Top 5 candidates 
2 3 4 5 6 7 Swap Value 

I 3,1 2 * 

2 2,3 1 

3 3,6 -1 

4 3 7,1 -2 

5 6,1 -4 

6 -

The new current solution has an insulating value of 16 (i.e. the 
previous insulation value plus the value of the selected move). The 
tabu structure now shows that swapping the positions of modules 4 
and 5 is forbidden for 3 iterations. The 111ost in1proving 1nove at this 
step is to swap 3 and 1 for a gain of 2. 
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Iteration 2 

Current solution 

Insulation Value=18 

l 

Tabu structure 
2 3 4 5 6 7 

I ;3 

2 

3 

4 2 

,5 

6 -

Tahu Search 

Top 5 candidates 
Swap Value 

1,3 -2 T 
2,4 -4 * 
7,6 -6 

4,5 -7 T 
5,3 -9 

The new current solution becomes the best solution found so far with 
an insulating value of 18. At. this iteration, two exchanges are classi­
fied tabu, as indicated by the nonzero entries in the tabu structure. 

Note that entry ( 4,5) has been decreased from 3 to 2, indicating 
that its original ta.bu tenure of 3 now has 2 re1naining iterations to 
go. This time, none of the candidates ( including the top 5 shown) 
has a positive move value. Therefore, a non-improving n1ove has to 
be made. The most attractive non-improving 1nove is the reversal of 
the move perforn1ed in the previous iteration, but since it is classified 
tabu, this move is not selected. Instead, the swap of modules 2 and 
4 is chosen, as indicated by the asterisk. 

Iteration 3 

Current solution 

Insulation Value=l4 

1 

Tabu structure Top 5 candidates 
2 3 4 5 6 7 Swap Value 

I 2 4,5 6 T* 

2 3 5,3 2 

3 7,1 0 

4 1 1,3 -3 T 

5 2,6 -6 

6 
~ 

The new current solution has an insulation value inferior to the two 
values previously obtained, as a result of executing a move with a 
negative move value. The ta.bu data structure now indicates that 3 
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moves are classified tabu, with different re1naining tabu tenures. At 
the top of the candidate list, we find the swap of n1odules 4 and .5, 
which in effect represents the reversal of the first 111ove perfonned, and 
is classified tabu. However, perfonning this 1nove produces a solution 
with an objective function value that is supel'ior to any previous 
insulation value. Therefore, we make use of the aspiration criterion 
to override the ta.bu classification of this n1ove and select it as the 
best on this iteration. 

Iteration 4 

Current solution 

Insulation Value=20 

1 

Tabu structure 

2 3 4 5 6 7 

I 1 

2 2 

3 

4 3 

5 
6 -

Top 5 candidates 

Swap Value 

7,1 0 * 
4,3 -3 
6,:3 -5 
,5,4 -6 T 

26 
' -8 

The current solution becomes the incu1nbent new best solution and 
the process continues. Note that the chosen ta.bu restriction and ta.bu 
tenure of 3 results in forbidding only 3 out of 21 possible swaps, since 
the module pair with a residual tenure of 1 always drops to a residual 
tenure of O each tin1e a new pair with tenure 3 is introduced. (By 
recording the iteration when a n1odule pair becomes ta.bu, and com­
paring this against the current iteration to detennine the re1naining 
ta.bu tenure, it is unnecessary to change these entries at each step as 
we do here.) 

In some situations, it may be desirable to increase the percentage 
of available moves that receive a ta.bu classification. This 1nay be 
achieved either by increasing the ta.bu tenure or by changing the 
tabu restriction. For exa1nple, a ta.bu restriction that forbids swaps 
containing at least one 1nember of a n1odule pair will prevent a larger 
number of moves from being executed, even if the tenure ren1ains 
the sa111e. (In our case, this restriction would forbid 15 out of 21 
swaps if the ta.bu tenure ren1ains at 3.) Such a restriction is based 
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on single module attributes instead of paired module attributes, and 
can be implemented with much less rnemory, i.e. by an array that 
records a tabu tenure for each module separately. Generally speaking, 
regardless of the type of restriction selected, iinproved outcomes are 
often obtained by tabu tenures that vary dyna1nically, as described 
in Section 3.2.6. 

Move Values and Updates Because tabu search aggressively selects 
best admissible moves (where the nrnaning of best is affected by tabu 
classification and other elen1ents to be indicated), it must examine 
and compare a number of n1ove options. For 1nany problen1s, only a 
portion of the n1ove values will change from one iteration to the next, 
and often these changed values can be isolated and updated very 
quickly. For example, in the present illustration it n1ay be useful 
to store a table rnove_value(j, k ), which records the current move 
value for exchanging 1nodules j and k. When a move is executed, a 
relatively small part of this table ( consisting of values that change) 
can be quickly modified, and the updated table can then be consulted 
to identify moves that become the new top candidates. 

Such partial updating often can be further enhanced by a list 
move_name( move_value) which, for each move_value in a relevant 
range, identifies 1nove_nam,e to be a specific 1nove that yields this 
value. A linked list then can connect this move_name to the names 
of all other 1noves that yield the san1e m,ove_value. The combina­
tion of the move_name( rnove_value) array and the linked list can 
be updated very quickly to 1nake it easy to locate moves with best 
move values in cases where only a relatively sn1all nun1ber of elements 
change. A given move_value entry can also refer to a range of move 
values, with an option to regard all values within a specified range 
as 'essentially equivalent'. (However, we suggest the merit of differ­
entiating members of a given range 1nore carefully upon approaching 
local optimality.) 

On a broader scale, lists to facilitate access to best moves invite 
differentiation to include considerations introduced by move influence 
(Section 3.2.7) and by candidate list strategies (Section 3.3). They 
also are subject to periodic scanning with reference to concerns that 
extend beyond the short tenn horizon, as we illustrate next. 
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Complementary Tabu Memory Structures The accon1paniment of 
recency-based memory with frequency-based 1nemory adds a compo­
nent that typically operates over a longer horizon. To illustrate one 
of the useful longer term applications of frequency-based memory, 
suppose that 25 TS iterations have been performed, and that the 
number of times each module pair has been exchanged is saved in an 
expanded tabu data structure. The lower diagonal of this structure 
now contains the frequency counts. 

Iteration 26 
Current solution Tahu structure 

(Recency) 
1 2 3 4 5 6 7 

1 113161 2 17 15 14 11 3 

2 

31---+--
Insulation Value=12 

2 

4 1 1 

5 4 

6 1-----t--i-1--+---t-
7 2 3 

(Frequency) 

Top 5 candidates 
Penalized 

Swap Value Value 

1,4 3 3 T 
2,4 -1 -6 
3,7 -3 -3 * 
1 6 
' -5 -5 

6,5 -4 -6 

At the current iteration (iteration 26), the recency men1ory indicates 
that the last three 1nodule pairs exchanged were (1,4), (3,6), and 
( 4, 7). The frequency counts show the distribution of moves through­
out the first 25 iterations. We use these counts to diversify the search, 
driving it into new regions. This diversifying influence is restricted 
to operate only on particular occasions. In this case, we select those 
occasions where no admissible improving moves exist. Our use of the 
frequency information will penalize non-improving 1noves by assign­
ing a larger penalty to swaps of n1odule pairs with greater frequency 
counts. (Typically these counts would be normalized, as by dividing 
by the total nu1nber of iterations or their 1naximum values.) We illus­
trate this in the present example by shnply subtracting a frequency 
count from the associated move value. 

The list of top candidates for iteration 26 shows that the most 
improving move is the swap (1,4), but since this module pair has a 
residual tabu tenure of 3, it is classified tabu. The move ( 2,4) has a 
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value of -1, and it might otherwise be the one next preferred, except 
that its associated modules have been exchanged frequently during 
the history of the search (in fa.ct, more frequently than any other 
module pair). Therefore, the move is heavily penalized and it loses 
its attractiveness. The swap of modules 3 and 7 is thus selected as 
the best move on the current iteration. 

The strategy of instituting penalties only under particular con­
ditions is used to preserve the aggressiveness of the search. Penalty 
functions in general are designed to account not only for frequencies 
but also for n1ove values and certain influence measures, as discussed 
in Section 3.2.8. 

In addition, frequencies defined over different subsets of past solu­
tions, particularly subsets of elite solutions consisting of high quality 
local optima, give rise to complementary strategies of intensification. 
Intensification and diversification strategies interact to provide fun­
damental cornerstones of longer tenn me1nory in tabu search. The 
ways in which such elements are capable of creating enhanced search 
methods, extending the simplified approach of the preceding example, 
are elaborated in following sections. 

3.2.2 Notation and proble111 description 

A few basic definitions and conventions are useful as a foundation 
for communicating the principal ideas of TS. For this purpose we 
express the mathematical optimization problem in a slightly more 
general form than that used in chapter 1. 

M inim,ise c( :r) 

subject to x E X 

The objective function c(x) may be linear or nonlinear, and the condi­
tion x E X summarizes constraints on the vector x. These constraints 
may include linear or nonlinear inequalities (as in chapter 1), and may 
compel some or all components of x to receive discrete values. 

In many applications of combinatorial optimization, the problem 
of interest is not explicitly formulated as we have shown it. In such 
cases the present formulation may be conceived as a code for an­
other formulation. The requirement x E X, for example, may specify 
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logical conditions or interconnections that would be cun1bersome to 
formulate mathe1natically, but n1ay better be left as verbal stipula­
tions (for example, in the form of rules). Often in these instances 
the variables are simply codes for conditions or assignments that are 
parts of the more complex structure. For example, an ele1nent of x 

may be a binary variable that receives a value of 1 to code for assign­
ing an elen1ent u to a set or position v, and that receives a value O to 
indicate the assignment does not occur. 

3.2.3 Neighbourhood search 

TS may be conveniently characterized as a fonn of neighbourhood 
search, which has already been described in chapter 2. However, 
here we wish to define neighbourhood search in a less restricted fash­
ion than usual. Frequently, for example, constructive and destructive 
procedures are excluded, whereas such procedures and their co111bi­
nations are routinely subjected to the guidance of TS. 

In neighbourhood search, each solution x E X has an associated 
set of neighbours, N ( x) C X, called the neighbourhood of x. Each 
solution x' E N ( x) can be reached directly fro1n x by an operation 
called a move, and xis said to move (or transition) to x' when such an 
operation is perfonned. Normally in TS, neighbourhoods are assumed 
sym1netric, i.e. x' is a neighbour of x if and only if x is a neighbour 
of x'. 

Step 1 
(A) 
(B) 

Step 2 

Step 3 

Neighbourhood Search Method 

(Initialization) 
Select a starting solution x»ow E X. 
Record the current best known solution by setting xbeat = x»ow 
and define besLcost = c(xb""1). 
( Choice and termination) 
Choose a solution x»ext E N(x» 0 w). If the choice criteria em­
ployed cannot be satisfied by any member of N(xnow) (hence 
no solution qualifies to be xnext), or if other termination cri­
teria apply (such as a Iin1it on the total number of iterations), 
then the method stops. 
(Update) 
Re-set x»ow = x»ext, and if c( x»ow) < besLcost, perform Step 
l(B). Then return to Step 2. 
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The steps of neighbourhood search are as described above, where we 
assume choice criteria for selecting moves, and termination criteria 
for ending the search, are given by some external set of prescriptions. 

The foregoing procedure can represent a constructive method by 
stipulating that Xis expanded to include x vectors whose components 
take null (unassigned) values, and by stipulating that a neighbour 
x' of x can result by replacing a null co1nponent of x with a non­
null component. (A change of representation sometimes conveniently 
allows null components to be represented by values of O and non-null 
components by values of 1.) A standard constructive method does not 
yield symmetric neighbourhoods, since non-null components are not 
permitted to beco1ne null again (hence the n1ethod ends when no more 
components are null). However, ta.bu search reinstates the symmetric 
relation by allowing constructive and destructive moves to co-exist, 
as a special instance of an approach called strategic oscillation ( see 
Section 3.3). 

The neighbourhood search 111ethod can easily be altered by adding 
special provisions to yield a variety of classical procedures. Descent 
methods, which only pern1it moves to neighbour solutions that im­
prove the current c(xn°w) value, and which end when no improving 
solutions can be found, can be expressed by the following provision 
in Step 2. 

Step 2 

Descent Method 

(Choice and termination) 
Choose xnext E N ( x" 0w) to satisfy c( xnext) < c( xnow) and 
terminate if no such x"ext can be found. 

The evident shortcoming of a descent method is that the final xnow 
obtained is a local optimum, which in n1ost cases will not be a global 
optimum. 

Randomized procedures such as Monte Carlo methods, which in­
clude simulated annealing, can shnilarly be represented by adding a 
sin1ple provision to Step 2. 
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Step 2 
(A) 
(B) 
(C) 

(D) 

Monte Carlo Method 

(Choice and termination) 
Randomly select xnext from N(x" 0w). 
If c(xnext) < c(x" 0 w) accept xnext (and proceed to Step 3). 
If c(xnext) > c(x" 0 w) accept xnei:t with a probability that 
decreases with increases in the difference c( x"e,,t) - c( x" 0 w). If 
xnext is not accepted on the current trial by this criterion, return 
to (A). 
Terminate by a chosen cutoff rule. 

Monte Carlo methods continue to sample the search space until fi­
nally terminating by some form of iteration limit. Normally they use 
an exponential function to define probabilities, drawing from prac­
tice established in engineering and physical science. As described in 
chapter 2, the Monte Carlo version represented by simulated anneal­
ing starts with a high probability for accepting non-improving moves 
in Step 2( C) which is decreased over time as a function of a parame­
ter called the 'temperature' which monotonically diminishes toward 
zero as the number of iterations grows. 

Such approaches offer a chance to do better than finding a single 
local optimum s.ince they effectively terminate only when the prob­
ability of accepting a non-in1proving move in Step 2(C) becomes so 
small that no such move is ever accepted (in the finite time allowed). 
Hence, they may wander in and out of various intermediate local op­
tima prior to becoming lodged in a final local optimum, when the 
temperature bec-omes small. 

Another randomizing approach to overcome the limitation of the 
descent method is simply to restart the method with different ran­
domly selected i11itial solutions, and run the method multiple times. 
Such a random restart approach, sometimes called itemted descent, 
may be contrasted with a random perturbation approach, which sim­
ply chooses moves randomly for a period after reaching each local 
optimum, and then resumes a trajectory of descent. Alternating 
threshold methods indicated in Section 3.2. 7 provide a refinement 
of this idea. 

3.2.4 Tahu search characteristics 

Tahu search, in contrast to the preceding methods, employs a some­
what different philosophy for going beyond the criterion of termi-
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nating at a local optimu111. Randoniization is de-emphasized, and 
generally is employed only in a highly constrained way, on the as­
sumption that intelligent search should be based on more systematic 
forms of guidance. Thus randomization (pseudo-randomization) is 
chiefly assigned the role of facilitating operations that are otherwise 
cu111berso1ne to irnple1nent or whose strategic implications are un­
clear. (In the latter case, a supplementary learning approach such as 
target analysis-see Laguna and Glover [3]~-is custo1narily employed 
to detern1ine if such implications can be sharpened.) Accordingly, 
many ta.bu search iinple1nentations a.re largely or wholly determin­
istic. An exception occurs for the variant called probabilistic ta.bu 
search, which selects 1noves according to probabilities based on the 
status and evaluations assigned to these n1oves by the basic ta.bu 
search principles. ( A discussion of probabilistic convergence issues is 
provided by Faigle and Kern (4].) 

Special TS uses of memory: modifying neighbourhood struc­
tures 

The notion of exploiting certain forms of flexible memory to con­
trol the search process is the central theme underlying ta.bu search. 
The effect of such 111emory 1nay be envisioned by stipulating that TS 
n1aintains a selective history H of the states encountered during the 
search, and replaces N ( xnow) by a modified neighbourhood which 
111ay be denoted N(H, xn°w). History therefore determines which so­
lutions 111ay be reached by a n1ove from the current solution, selecting 
xnext fro1n N(H, xnow). 

In TS strategies based on short term considerations, N ( H, xnow) 
is typically a subset of N ( xnow), and the tabu classification serves 
to identify elements of N(xn°w) excluded fro111 N(H,xnow). In the 
intermediate and longer term strategies, N ( H, xn°w) 1nay contain so­
lutions not in N ( :i:n°w), generally consisting of selected elite solutions 
(high quality local optima) encountered at various points in the solu­
tion process. Such elite solutions are typically identified as elements 
of a regional cluster in intermediate term intensification strategies, 
and as elements of different clusters in longer term diversification 
strategies. In addition, elite solution components, in contrast to the 
solutions the111selves, are included among the ele1nents that can be 
retained and integrated to provide inputs to the search process. 
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TS also uses history to create a n1odified evaluation of currently 
accessible solutions. This 1nay be expressed formally by saying that 
TS replaces the objective function c(a:) by a function c(H,x), which 
has the purpose of evaluating the relative quality of currently acces­
sible solutions. ( An illustration is provided by the use of frequency­
based memory in the example of Section :3.2.1.) The relevance of 
this modified function occurs because TS uses aggressive choice cri­
teria. that seek a best xnext, i.e. one that yields a best value of 
c(H, xnext), over a candidate set drawn from N(H, x"0 w). Moreover, 
modified evaluations are often accompanied by systematic alteration 
of N(H, x"0 w), to include neighbouring solutions that do not satisfy 
customary feasibility conditions ( i.e. that strictly speaking do not 
yield x EX). Reference to c(x) is retained for determining whether 
a 1nove is improving or leads to a new best solution. 

For large problen1s, where N(H,x" 0 w) may have many elements, 
or for problems where these elements may be costly to exarnine, the 
aggressive choice orientation of TS makes it highly important to iso­
late a candidate subset of the neighbourhood, and to exa1nine this 
subset instead of the entire neighbourhood. This can be done in 
stages, allowing the candidate subset to be expanded if alternatives 
satisfying aspiration levels are not found. Because of the significance 
of the candidate subset's role, we refer to this subset explicitly by the 
notation CandidateJv(xnow). Then the ta.bu search procedure may 
be expressed in the following manner. 

Tahu Search Method 

Step 1 (Initialization) 
Begin with the same initialization used by Neighbourhood Search, 
and with the history record H empty. 

Step 2 (Choice and termination) 
Determine Candidate_N(xnow) as a subset of N(H, xnow). Se­
lect xnext from C-0ndidate_N(xn°w) to minimize c(H, x) over 
this set. (xnext is called a highest evaluation element of 
Candidate_N( xnow ). ) Terminate by a chosen iteration cut-off rule. 

Step 3 (Update) 
Perform the update for the Neighbourhood Search Method, and 
additionally update the history record H. 

Formally the ta.bu search n1ethod is quite straightforward to state. 
The essence of the n1ethod depends on how the history record H is 
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defined and used, and on how the neighbourhood Candidate_N(xnow) 
and the evaluation function c( H, x) are detennined. 

In the simplest cases we may irnagine Candidate fl( xn°w) to con­
stitute all of N ( H, xrww ), and take c( H, x) = c( x), disregarding neigh­
bourhood screening approaches and the longer term considerations 
that introduce elite solutions into the detern1ination of moves. We 
begin fron1 this point of view, focusing on the short term co1nponent 
of ta.bu search for determining the fonn and use of H. The basic con­
siderations provide a foundation for the intennediate and long term 
TS components as well. 

3.2.5 Tahu search 1ne111ory 

Attribute based 1nemory 

An attribute of a 1nove from xnow to :i:next, or more generally of a 
trial move fro1n xnow to a tentative solution x 11·ial, can encompass 
any aspect that changes a.s a result of the move. Natural types of 
attributes are as follows. 

Illustrative Move Attributes for a Move xnow to xtrial 

( A 1) Change of a selected variable xi from O to l. 
(A2) Change of a selected variable Xk from 1 to 0. 
(A3) The combined change of (Al) and (A2) taken together. 
(A4) Change of c(x" 0 w) to c(xt,·ial ). 
(A5) Change of a function g(x" 0

"') to g(a:t1"ial) (where g may represent 
a function that occurs naturally in the problem formulation or 
that is created strategically). 

(A6) Change represented by the difference value g(xtrial) - g(xnow). 
(A 7) The combined changes of (A.5) or (A6) for more than one function 

g considered simultaneously. 

A single move can evidently give rise to multiple attributes. For ex­
ample, a 1nove that changes the values of two variables simultaneously 
1nay give rise to each of the three attributes (Al), (A2), and (A3), 
as well as to other attributes of the form indicated. Attributes that 
represent con1binations of other attributes do not necessarily provide 
1nore exploitable infonnation, as will be seen. Attributes (A5) to 
( A 7) are based on a function g that may be strategically chosen to be 
completely independent from c. For example, g 1nay be a measure of 
distance ( or dissi1nilarity) between any given solution and a reference 
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solution, such as the last local optimu1n visited or the best solution 
found so far. Then, attribute (A6) would indicate whether a trial 
solution leads the search further from or closer to the reference point. 

Move attributes, involving change, 1nay be subdivided into com­
ponent attributes called from-attributes and to-attributes. That is, 
each move attribute may be expressed as an ordered pair (from­
attribute, to-attribute) whose components are respectively attributes 
of the solutions xnow and xtrial. Letting A(xnow) and A(xtrial) de-
note attribute sets for these two solutions, the require1nent of change 
underlying the definition of a 1nove attribute implies 

from-attribute 
to-attribute 

E A(xnow) _ A(xtrial) 
E A(xtrial) _ A(xnow). 

This differentiation between move attributes and their component 
from-attributes and to-attributes is useful for establishing certain out­
comes related to their use. 

When we refer to assigning alternative values to a selected vari­
able x j of x, and particularly to assigning values O and 1 to a binary 
variable, we will understand by our previous conventions that this 
can refer to a variety of operations such as adding or deleting edges 
from a graph, assigning or re1noving a facility from a particular loca­
tion, changing the processing position of a job on a machine, and so 
forth. Such coding conventions can be extended to include the cre­
ation of supplementary variables that represent states of subservient 
processes. For exan1ple, x j = 0 or 1 n1ay indicate that an associated 
variable is nonbasic or basic in an extren1e point solution procedure, 
as in the simplex method and its variants for linear and nonlinear 
programming. 

Uses of move attributes 

Recorded move attributes are often used in tabu search to in1pose 
constraints, called tabu restrictions, that prevent n1oves fro1n being 
chosen that would reverse the changes represented by these attributes. 
More precisely, when a move from xnow to xnext is performed that con­
tains an attribute e, a record is maintained for the reverse attribute 
which we denote by e, in order to prevent a move from occurring that 
contains some subset of such reverse attributes. Exan1ples of kinds 
of tabu restrictions frequently employed are as follows. 
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Illustrative Tahu Restrictions 

A move is tabu if: 
(Rl) Xj changes from 1 to O (where :J.:j previously changed from Oto 1). 
(R2) x,., changes from O to 1 (where Xk previously changed from 1 to 0). 
(R3) at least one of (Rl) and (R2) occur. (This condition is more restric-

tive than either (Rl) or (R2) separately-i.e. it makes more moves 
tabu.) 

(R4) both (Rl) and (R2) occur. (This condition is less restrictive than 
either (Rl) or (R2) separately-i.e. it makes fewer moves tabu.) 

(R5) both (Rl) and (R2) occur, and in addition the reverse of these 
moves occurred simultaneously 011 the same iteration in the past. 
(This condition is less restrictive than (R4).) 

(R6) g(x) receives a value v' that it received on a previous iteration (i.e. 
v' = g(x') for some previously visited solution x'). 

(R7) g(x) changes from v" to v', where g(;r) changed from v' to v11 on a 
previous iteration (i.e. v' = g(x') and v" = g(x") for some pair of 
solutions x' and x" previously visited in sequence.) 

Among the restrictions of these exan1ples, only (R5) applies to a 
composite attribute, in which two cornponent attributes simultane­
ously identify a single attribute of a previous n1ove. (However, (R4) 
is meaningful only if the present move is composed of two such at­
tributes, but does not depend on the condition that both of these 
attributes have occurred together in the past.) Also, while (R7) is 
less restrictive than (R6) (since it renders fewer moves ta.bu), both 
of these restrictions can reduce either to (Rl) or (R2) by specifying 
g(x) = Xj or g(x) = Xk. (Restriction (R6) is equivalent to (R7) in 
the situation where g( x) can only take two different values.) 

Tahu restrictions are also son1etimes used to prevent repetitions 
rather than reversals, as illustrated by stipulating in (Rl) that x j 
previously changed from 1 to 0, rather than from 0 to 1. These have 
a role of preventing the repetition of a search path that leads away 
fron1 a given solution. By contrast, restrictions that prevent reversals 
have a role of preventing a return to a previous solution. Hence, tabu 
restrictions vary according to whether they are defined in terms of 
reversals or duplications of their associated attributes. 

The role of tabu status 

A tabu restriction is typically activated only in the case where its 
attributes occurred within a li1nited number of iterations prior to the 
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present iteration ( creating a recency-based restriction), or occurred 
with a certain frequency over a longer span of iterations ( creating 
a frequency-based restriction). More precisely, a tabu restriction is 
enforced only when the attributes underlying its definition satisfy 
certain thresholds of recency or frequency. To exploit this notion, 
we define an attribute to be tabu-active when its associated reverse 
( or duplicate) attribute has occurred within a stipulated interval of 
recency or frequency in past moves. An attribute that is not tabu­
active is called ta.bu-inactive. 

The condition of being tabu-active or ta.bu-inactive is called the 
tabu status of an attribute. Son1eti1nes an attribute is called ta.bu 
or not ta.bu to indicate that it is ta.bu-active or ta.bu-inactive. It is 
iinportant to keep in mind in such cases that a 'tabu attribute' does 
not correspond to a tabu move. As the preceding exa1nples show, a 
move may contain ta.bu-active attributes, but still may not be ta.bu 
if these attributes are not of the 1·ight number or kind to activate a 
tabu restriction. 

The most common ta.bu restrictions, whose attributes are the re­
verse of those defining these restrictions, characteristically have a goal 
of preventing cycling and of inducing vigour into the search. How­
ever, some types of restrictions 1nust be accompanied by others, at 
least periodically, to achieve the cycle avoidance effect. For example, 
the restriction (R5) is not able to 1)l'event cycling by itself, regardless 
of the interval of time it is allowed to be in effect. This can be demon­
strated by letting the ordered pair (j, k) denote an attribute in which 
Xj changes from O to 1 and Xk cha.nges from 1 to 0. Then a sequence 
of 3 moves that creates the three attributes (1,2), (2,3), and (3,1) 
both starts and ends at the same solution, but this sequence is not 
prevented by restriction (R5). (R,7) also may not prevent cycling, if 
g( x) can change fron1 a later value to an earlier value without visiting 
values that were successively generated at intennediate points ( e.g. 
going from 5 to 10 to 15 and then back to .5, jumping over the reverse 
n1ove from 15 to 10). 

Cycle avoidance can easily be achieved over the duration of tabu 
tenure, however, by focusing specifically on frotn-attributes and to­
attributes rather than on their ordered pair combinations. l\1ore pre­
cisely, as long as at least one to-attribute of a current move is not 
a from-attribute of a previous move, cycling cannot occur. Exa1ni-
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nation of the preceding restrictions shows that all except (R5) and 
(R7) implicitly are based on the requirement that specified from­
attributes of previous moves 1nust not be to-attributes of the current 
move, or else the 1nove is tabu. ( The only co1nponent attributes of 
the present move that are relevant to its tabu classification are its 
to-attributes, which to prevent reversals must be from-attributes of 
previous moves.) 

It should be pointed out, however, that cycle avoidance is not 
an ultimate goal of the search process. In son1e instances, a good 
search path will result in revisiting a solution encountered before. 
The broader objective is to continue to stiinulate the discovery of 
new high quality solutions. Hence in the longer term the issue of 
cycle avoidance is 1nore subtle than siinply preventing a solution from 
being revisited. The way that tabu restrictions depend on different 
choices of move attributes, and the consequences of this dependency, 
are examined in the following example. 

An Example Consider a past move that involves a change from 
x j = p to x j = q. To avoid a reversal, we stipulate that the from­
attribute of this move, x j = JJ, is ta.bu-active, thus allowing the pos­
sibility of preventing a move with a change in which x j = p is the 
to-attribute. But x j = ]J is not the only component of the past move 
that can qualify as a from-attribute, and hence that can be the basis 
for defining a tabu-active status. 

By conceiving an attribute change implicitly to involve replacing 
an attribute e by a complementary attribute e, the change from x j = 
p to x j = q in fact n1ay be viewed as con1posed of two such attribute 
changes: from x1 = p to Xj -=/= p, and from x1 -=/= q to x1 = q. Thus, 
x j -=/= q can also be regarded as a from-attribute of this change. By 
avoiding either of the ta.bu-active reverse attributes, to Xj = p or to 
Xj -=/= q, the present move will not be able to re-visit the solution that 
initiated the past n1ove. (Note that avoiding Xj =/:- q is the same as 
co1npelling Xj = q, which is 1nore restrictive than avoiding Xj = p.) 

The problem illustrated at the start of this chapter gives an in­
structive example of options created by identifying ta.bu attributes 
in this way. The swap moves of the illustration consist of selecting 
two iten1s, j and k, where ite1ns j and k occupy positions p and q 
respectively, and then exchanging their positions. Let Xu = v denote 
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the statement 'item u is assigned to position v'. Hence the the swap 
move for interchanging the positions of iten1s j and k can be repre­
sented as consisting of the two operations 'fro1n x 1 = JJ to x j = q' and 
'from Xk = q to Xk = p'. Subdividing these operations into their com­
ponents, we can express the outcome as consisting of the following 
changes: 

from x j = p to x j -/- p 
from x j -/- q to x j = q 
from X k = q to X k i- q 
from X k i- JJ to X k = JJ. 

Thus, any combination of the preceding from-attributes can be se­
lected to represent corresponding to-attributes of a n1ove currently 
under consideration, for the purpose of defining a tabu restriction 
applicable to this move. We 1nay elect, for instance, to rely on just 
the first and third of the preceding from-attributes, using the tabu 
restriction that classifies a move tabu only if it contains both Xj = p 

and Xk = q as to-attributes. (Hence this prevents the current n1ove if 
it transfers item j to position JJ and ite1n k to position q, where items 
j and k were respectively moved out of these two positions in the 
past, though not necessarily on the san1e move.) This is a weaker re­
striction than one based on either the second or fourth from-attribute 
above, which renders a move ta.bu if it contains Xj-/- q or Xk-/- pas a 
to-attribute, hence essentially compelling the current move to result 
in x j = q or x k = p ( or possibly both, depending on the restric­
tion chosen). One implication of choosing stronger or weaker tabu 
restrictions is to render sn1aller or larger tabu tenures appropriate. 

Effect of Variable Codings Different codings of variables also lead 
to different consequences for creating tabu restrictions. For example, 
if Xu = v instead is given the interpretation 'item u iinmediately 
precedes item v', then the swap of ite111s j and k yields an altered set 
of attributes with different associated possibilities. Denoting the two 
items that immediately precede and irnmediately follow j by p and q, 
and the corresponding items for k by r and s, we see that the swap 
creates the following changes: 

fron1 x j = q to x j = s 
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from x k = s to .i: k = q 
from x P = j to a: P = k 
from Xr = k to ;i;r = j. 

Tahu Search 

Moreover, each of these subdivides into two additional components 
( for example, the first becomes · from x j = q to x j -/:- q' and 'from x j i­
s to Xj = s'), yielding a set of options for defining tabu restrictions 
that is considerably expanded over those of the preceding coding of 
the variables. 

Representationally, there may be multiple options for character­
izing the same set of attributes, and it is appropriate to use one that 
is natural for the problem setting. In this case, for example, it is con­
venient to represent the condition 'item u immediately precedes item 
v' as an arc ( u, v) from node u to node v in a directed graph, and by 
this convention the statement 'from x j = q to x j = s' corresponds to 
saying 'arc (j, q) replaces arc (j, s )'. A component change of the form 
'from Xj = q to Xj-/:- q' (or 'from ;i;j-/:- q to Xj = q') then corresponds 
to saying that arc (j, q) is dropped from ( or added to) the graph. We 
note it is always possible to encode the pair of conditions x j = q and 
x j -/:- q as the assignment of values to a binary variable, e.g. letting 
x jq = l denote x j = q and letting :z: jq = 0 denote x j -/:- q, and in 
the present exa.n1ple this yields the standard algebraic notation for 
expressing that arc (j, q) is absent or present in a graph. 

Broadly speaking, regardless of the representation en1ployed, a 
move can be determined to be ta.bu by a restriction defined over any 
set of conditions on its attributes, provided these attributes are cur­
rently tabu-a.ctive. As the preceding discussion illustrates, a common 
type of restriction operates by selecting some subset of attributes and 
declaring the move to he tabu if a certain minimum nu1nber ( e.g. one 
or all) are ta.bu-active. 

3.2.6 Recency-based tabu 111e111ory functions 

To keep track of the status of move attributes that compose ta.bu 
restrictions, and to determine when these restrictions a.re applica­
ble, several basic kinds of memory functions have been found useful. 
Two common examples of recency-based memory functions a.re speci­
fied by the arrays tabu_start( e) and tabu_encl( e ), where e ranges over 
attributes relevant to a particular application. These arrays respec-
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tively identify the starting and ending iterations of the ta.bu tenure for 
attribute e, thus bracketing the period during which e is tabu-active. 

The rule for identifying appropriate values for tabu_start( e) and 
tabu_end(e) results fron1 keeping track of the attributes at each it­
eration that are components of the current 1nove. l11 particular, on 
iteration i, if e is an attribute of the current move, and ta.bu sta­
tus is defined to avoid reversals, then we set tabu_start(e) = i + 1, 
indicating that the reverse attribute begins its taln1-active status at 
the start of the next iteration. ( For exa1nple, if e represents 'from 
Xj = p' then e can represent 'to Xj = p'.) Attribute e will retain this 
status throughout its ta.bu tenure, which we denote by t. This then 
yields tabu_end(e) = i + t, so that the tenure for e ranges over the t 

iterations from i + 1 to i + t. 
As a result, it is easy to test whether an arbitrary attribute e is 

ta.bu-active, by checking to see if tabu_end( e) > current_iteration. 

By initializing tabu_end( e) = 0 for all attributes, we insure that 
tabu_end( e) < current_iteration, and hence that attribute e is tabu­
inactive, until the update previously specified is performed. This 
suggests we need to keep only the single array tabu_end( e) to provide 
information about ta.bu status. However, we will see that situations 
arise where it is valuable to keep tabu_start(e), and either to infer 
tabu_end( e) by adding an appropriate value oft ( currently co1nputed, 
or preferably extracted from a pre-stored sequence), or to n1aintain 
tabu_end( e) as a separate array. 

Memory can often be further simplified when attributes represent 
binary alternatives, such as changing fro1n x j = 0 to x j = 1. Then, 
instead of recording a separate value tabu_start( e) for ea.ch of these 
attributes, it suffices siinply to record a. singl<> value tabu_start(j). 
We automatically know whether tabu_start(j) refers to changing fro1n 
x j = 0 to x j = 1 or the reverse, by ta.king account of the value of 
Xj in the current solution. If currently Xj = 1, for exa1nple, the 
most recent change was from x j = 0 to x j = 1. Then the reverse 
attribute, derived from changing Xj from 1 to 0, is the one whose 
tenure is represented by the value of tabu_start(j). (We assume that 
the latest ta.bu tenure assigned to an attribute takes precedence over 
all others.) 

Regardless of the data structure employed, the key issue for creat­
ing ta.bu status using recency-based me1nory is to determine a 'good 
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value' oft. Rules for determining t are classified as static or dynamic. 
Static rules choose a value for t that remains fixed throughout the 
search. Dynamic rules allow the value oft to vary. Examples of these 
two kinds of rules are as follows. 

Static rules 

Dynamic 
rules 

Illustrative Rules to Create Tahu Tenure 
( Recency Based) 

Choose t to be a constant such as t = 7 or t = .Jn, where 
n is a measure of problem dimension. 

Simple dynamic: Choose t to vary (randomly or by sys­
tematic pattern) between bounds tmin and tmax, such as 
lmin = 5 and lmaJ, = 11 01" lmin = .9-Jn and tmax = 1.1.jn. 

Attribute-dependent dynamic: Choose t as in the Simple 
dynamic rule, but determine t,,,; 11 and tmax to be larger for 
attributes that are more attractive, e.g. based on quality 
or influence considerations. 

The indicated values such as 7 and y'n are only suggestive, and rep­
resent parameters whose preferred values should be set by experi­
mentation for a particular class of problems. Values between 7 and 
20 in fact appear to work well for a variety of problem classes, while 
values between .5y0i, and 2y0i, appear to work well for other classes. 
( A weighted multiple of y'n is replaced by a weighted multiple of n 
for some problems.) As previously intimated, if tabu_end( e) is not 
maintained separately, but is inferred as the value tabu_start( e) + t, 
then for the dynamic case it may be preferable to pre-compute a 
sequence of appropriate values for t and simply step through them 
each time a new t is needed. (Random sequences can be reasonably 
approximated this way with considerable saving of computational ef­
fort. Alternatively, t can be computed only once or a small number 
of times on a given iteration, instead of being recomputed separately 
for each trial move.) 

It is often appropriate to allow different types of attributes defin­
ing a ta.bu restriction to be given different values for the tenure t. 
For example, some attributes can contribute more strongly to a tabu 
restriction than others, and should be given a briefer tabu tenure 
to avoid making the restriction too severe. To illustrate, consider a 
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problem of identifying an optimal subset of m ite1ns from a much 
larger set of n items. (For instance, such a proble1n n1ay involve 
identifying a subset of m edges fron1 an n-edge graph to create a 
travelling sales1nan tour, or a subset of 1n locations from n available 
sites to establish distribution centres, or a subset of rn nodes from 
an n-node complex to serve as telecommunication switching centres, 
etc.) Suppose each move consists of exchanging one or a small num­
ber of items in the subset with an equal nu111ber outside the subset, 
to create a new subset of m ite1ns. Accon1panying this, also suppose 
a tabu restriction is used that forbids a move if it contains either 
an item recently added or an item recently dropped, where the tabu 
tenure provides the meaning of 'recently'. 

If the tenure for added and dropped items is the same, the preced­
ing restriction can become very lopsided. In particular, when other 
factors are equal, preventing items in the subset frmn being dropped 
is much more restrictive than preventing iten1s not in the subset from 
being added, since there are far fewer contained in the subset than 
contained outside. In addition, preventing elenwnts added to the 
subset from being dropped for a relatively long time can significantly 
inhibit available choices; hence the tenure for these elements should 
be made small by comparison to the tenure for preventing elements 
dropped from the subset from being added, whether by using static 
or dynamic rules. 

Practical experience indicates that dynamic rules are typically 
more robust than static rules ( see, e.g. Glover et al. [5]). Good 
parameter values for dynamic rules normally range over a wider in­
terval, and produce results comparable or superior to the outcomes 
produced by static rules. Dynamic rules that depend on both at­
tribute type and quality, where greater tenures are allotted to prevent 
reversals of attributes that participate in high quality moves, have 
proved quite effective for difficult proble1ns related to scheduling and 
routing (Dell'Amico and Trubian [6]; Gendreau et al. [7]; Laguna et 
al. [25]). In addition, a class of dyna1nic rules based on introducing 
moving gaps in tenure, and another class based on exploiting logical 
relationships underlying attribute sequences, have recently proved ef­
fective (Chakrapani and Skorin-Kapov [9]; Dammeyer and Voss [10]). 
Dynamic rules for detennining tabu tenure are ainong the aspects of 
tabu search that deserve n1ore study. 
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3.2. 7 Aspiration criteria 

Aspiration criteria are introduced in tabu search to determine when 
tabu restrictions can be overriddett, thus removing a tabu classifica­
tion otherwise applied to a move. The appropriate use of such criteria 
can be very important for enabling a TS method to achieve its best 
performance levels. 

Early applications e1nployed only a si1nple type of aspiration cri­
terion, consisting of re1noving a tabu classification from a trial move 
when the move yields a solution better than the best obtained so 
far. (Such a rule is illustrated in the example of Section 3.2.1.) This 
criterion remains widely used. However, other aspiration criteria can 
also prove effective for improving the search. 

A basis for one of these criteria arises by introducing the concept 
of influence, which 1neasures the degree of change induced in solution 
structure or feasibility. ( Influence is often associated with the idea 
of move distance, i.e. a move of greater distance is conceived of as 
having greater influence-see [5].) This notion can be illustrated for 
a proble1n of distributing unequally weighted objects among boxes, 
where the goal is to give each box as nearly as possible the same 
weight. A high influence move, which significantly changes the struc­
ture of the current solution, is exemplifi(,d by a move that transfers 
a heavy weight object frmn one box to another, or that swaps ob­
jects of very dissi1nilar weights between two boxes. Such a move may 
or may not improve the current solution, though it is less likely to 
yield an in1prove1nent when the current solution is relatively good. 
But high influence 111oves are important, especially during intervals 
of breaking away fro111 local optimality, because a series of moves 
that is confined to n1aking only srnall structural changes is unlikely 
to uncover a chance for significant improve1nent. (Such an effect is 
illustrated in job sequencing problen1s by exchanging positions of jobs 
that are close together.) 

Moves of lower influence may norn1a.lly be tolerated until the op­
portunities for gain from them appear to be negligible. At such a 
point, and in the absence of improving moves, aspiration criteria 
should shift to give influential moves a higher rank. Also, once an 
influential 1nove is made, ta.bu restrictions previously established for 
less influential 1noves should be dropped or 'weakened', in a manner 
to be explained. (Bias that may be employed to favour the choice of 
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other influential 1noves should likewise be temporarily diminished.) 
These considerations of 1nove influence interact with considerations 
of regionality and search direction, as indicated below. 

Aspirations are of two kinds: move aspirations and att-ribute as­
pirations. A move aspiration, when satisfied, revokes the 1nove's tabu 
classification. An attribute aspiration, when satisfied, revokes the at­
tribute's ta.bu-active status. In the latter case the move may or n1ay 
not change its ta.bu classification, depending on whether the tabu 
restriction can be activated by 1nore than one attribute. 

The table below lists criteria for determining the admissibility of 
a trial solution, xtrial, as a candidate for consideration ( potentially 
to become xnext), where xtrial is generated by a move that ordinarily 
would be classified ta.bu. The first of these criteria is rarely applica­
ble, but is understood auton1atically to be part of any tabu search 
procedure. These aspiration criteria include several useful strategies 
for ta.bu search that have not yet been widely exa1nined and that 
warrant fuller investigation. 

For example, a special case of the Regional Aspiration by Objec­
tive occurs by defining R = { x : g( x) = r}, where g( :r) is a hashing 
function created to distinguish an1ong different :r vectors according to 
the value assigned to g(x ). (E.g. g(x) can be an integer-valued func­
tion defined n1odulo p, taking the values r = 0, 1, ... ,JJ - 1.) Then 
besLcost( R) is conveniently recorded as besLcosl( r ), identifying the 
minimum c(x) found when g(x) = r. The 'regionality' defined by R 
in this case provides a basis for integrating the elements of aspiration 
and differentiation. ( A g( x) hashing function can a.lso be treated as 
an attribute function, and incorporated into tabu restrictions as de­
scribed earlier. Or in reverse, a hashing function can be defined over 
attributes, with particular emphasis on those that qualify as influ­
ential.) Such an approach can be employed to complement uses of 
hashing functions in ta.bu search suggested by Hansen and Jaumard 
(11] and by Woodruff and Zemel [12]. 

Aspiration by Search Direction and Aspiration by Influence pro­
vide attribute aspirations rather than move aspirations. In most cases 
attribute and move aspirations are equivalent. ( Among the tabu re­
strictions (Rl) to (R7) of Section 3.2 .. 5, only (R3) can provide con­
ditions where these two types of aspirations differ, i.e. where an 
attribute may be tabu-inactive without necessarily revoking the tabu 
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classification of the associated 1nove.) Nevertheless, different means 
are employed for testing these two kinds of aspirations. 

Illustrative Aspiration Criteria 

Aspiration by Default: If all available moves are classified tabu, and are 
not rendered admissible by some other aspiration criteria, then a 
'least tabu' move is selected. (For exan1ple, select a move that 
loses its tabu classification by the least increase in the value of 
currenLiteration, or by an approximation to this condition.) 

Aspiration by Objective: Global form ( customarily used): A move aspi­
ration is satisfied, permitting xtrial to be a candidate for selection, 
if c(xtrial) < besLcost. 
Regional form: Subdivide the search space into regions R E R, 
identified by bounds on values of functions g(x) ( or by time inter­
vals of search). Let besLcost(R) denote the minimum c(x) for x 
found in R. Then, for xtrial E R, a move aspiration is satisfied 
(for moving to xtrial) if c(xtrial) < besLcost(R). 

Aspiration by Searcli Direction: Let direction( e) = improving if the 
most recent move containing e was an improving move, and 
direction(e) = nonimp1'oving, otherwise. (direction(e) and 
tabu_end(e) are set to their current values on the same iteration.) 
An attribute aspiration fore is satisfied (making e tabu-inactive) 
if direction(e) = improving and the current trial move is an im­
proving move, i.e. ifc(xtrial) < c(xnow). 

Aspiration by Influence: Let influence{e)= 0 or 1 according to whether 
the move that establishes the value of tabu_start(e) is a low in­
fluence move or a high influence move ( inffoence{e) is set at the 
same time as set.ting tabu_stm·t(e)). Also, let latest(L), for L = 0 
or 1, equal the most recent iteration that a move of influence level 
L was made. Then an attribute aspiration for e is satisfied if 
infiuence(e)= 0 and tabu_start(e) < latest(l). (e is associated 
with a low influence move, and a high influence move has been 
performed since establishing the tabu status for e.) For n1ultiple 
influence levels, L = 0, I, 2, ... , the aspiration for e is satisfied if 
there is an L > influence( e) such that tabu_start( e) < latest( L ). 
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Aspiration criteria refinements 

Refinements of the criteria illustrated above provide an opportunity 
to enhance the power of tabu search for applications that are more 
complex, or that offer a large reward for solutions of very high quality. 
We identify some of the possibilities for achieving this in the following. 

Creating a tabu status that varies by degrees, rather than simply 
designating an attribute to be tabu-active or ta.bu-inactive, leads to 
an additional refinement of Aspiration by Search Direction and Aspi­
ration by Influence. Graduated tabu status is implicit in the penalty 
function and probabilistic variants of ta.bu search, where status is 
customarily expressed as a function of how recently or frequently an 
attribute has become tabu-active. However, to employ this idea to 
enhance the preceding aspiration criteria, we create a single addi­
tional intermediate tabu state that falls between the two states of 
tabu-active and ta.bu-inactive. In particular, when an aspiration is 
satisfied for an attribute that otherwise is tabu-active, we call it a 
pending tabu attribute. 

A move that would be classified tabu if its pending tabu attributes 
are treated as tabu-active, but that would not be classified tabu oth­
erwise, is correspondingly called a pending tabu move. A pending 
tabu move can be treated in one of two ways. Iu the least restrictive 
approach, such a move is not prevented fron1 being selected, but is 
shifted in status so that it will only be a candidate for selection if 
no improving moves exist except those that are tabu. In the more 
moderate approach, a pending ta.bu 1nove additionally n1ust be an 
improving move to qualify for selection. (This will occur automat­
ically for Aspiration by Search Direction, since in this case a move 
can only become a pending tabu rnove when it is improving.) 

An Aspiration consequence for Strong Admissibility The preceding 
notions lead to an additional type of aspiration. Define a 1nove to be 
strongly admissible if: 

( 1) it is admissible to be selected and does not rely on aspiration 
criteria to qualify for admissibility; or 

(2) it qualifies for admissibility based on the Global Aspiration by 
Objective, by satisfying c(:rtrial) < besl_cost. 
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Aspiration by Strong Admissibility: Let. lasLnonimprovement equal 
the most recent iteration that a nonimproving move was made, 
and let lasLstrong/y_admissible equal the most recent itera­
tion that a strongly admissible move was made. Then, if 
lasLnonimp1·ovem.ent < lasLsi1'ong/y_admissible, reclassify ev­
ery improving tabu move as a pending taint move (thus allowing it 
to be a candidate for selection if no other improving moves exist). 

The inequality lasLnonirnprovenient < last....strong[y_admissible of 
the preceding aspiration condition implies two things: first that a 
strongly admissible improving move has been n1ade since the last non­
improving move, and second that the search is currently generating an 
improving sequence. (The latter results since only improving moves 
can occur on iterations n1ore recent than lasLnonimprovernent, and 
the set of such iterations is none1npty.) 

This type of aspiration ensures that the 1nethod will always pro­
ceed to a local opthnu1n whenever an improving sequence is created 
that contains at least one strongly admissible move. In fact, condition 
(2) defining a strongly admissible move can be removed without al­
tering this effect, since once the criterion c( xtrial) < besLcost is used 
to justify a move selection, then it will continue to be satisfied by all 
improving 1noves on subsequent iterations until a local optimum is 
reached. 

Because of its extended ability to override ta.bu status, the Aspi­
ration by Strong Admissibility may be predicated on the requirement 
that a 1nove with a high influence level has been Ina.de since the end 
of the most recent (previous) hnproving sequence. Specifically, such a 
high influence move should have occurred on a.n iteration greater than 
the n1ost recent iteration prior to lasLnonimprovenient on which an 
in1proving move was executed. This added requiren1ent is applicable 
whether or not Aspiration by Influence is used. 

These ideas can be used to generate an alternating TS method 
related to the tabu thresholding approach of Glover (13]. Such a 
1nethod results by adding a further condition to the Aspiration by 
Strong Ad1nissibility, stipulating that once a nonin1proving n1ove is 
executed, then no hnproving move is allowed unless it is strongly ad-
1nissible, thereby generating what may be called an alternating ta.bu 
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path. The consequence is that each improving sequence in such an 
alternating tabu path terminates with a local optimum. ( An Aspira­
tion by Default 1nust also be considered a strongly adn1issible move 
to assure this in exceptional cases.) 

The effect of tabu status in this alternating approach can be 
amplified during a nonin1proving phase by interpreting the value 
tabu_end(e) to be shifted to a larger value for a.11 attributes e, until 
a strongly adn1issible move is executed and the phase ends. Recent 
results by Ryan [14] on the depth and width of paths linking local 
optima are relevant to determining ranges for shifting tabu_end( e) in 
such alternating constructions. 

Special considerations for Aspiration by Influence 

The Aspiration by Influence criterion can be modified to create a 
considerable iinpact on its effectiveness for certain types of applica­
tions. The state111ent of this aspiration derives frmn the observation 
that a move characteristically is influential by virtue of containing 
one or more influential attributes (jobs with large set-up or process­
ing times, warehouses with large capacities, circuits with n1ultiple 
switches, etc.). Under such conditions, it is appropriate to con­
sider levels of influence defined over attributes, as expressed by in­
ftuence(e). In other cases, however, a rnove 1nay derive its influence 
from the unique combination of attributes involved, and Aspiration 
by Influence then preferably translates into a n1ove aspiration rather 
than an attribute aspiration. ( In so1ne instances the attribute orien­
tation can be n1aintained by defining inftuence(e) to be the influence 
of the trial move that contains e.) 

More significantly, in many applications influence depends on a 
form of connectivity, causing its effects to be expressed priinarily over 
a particular range. We call this range the sphere of influence of the 
associated move or attribute. For example, in the problen1 of dis­
tributing weighted objects among boxes, a move that swaps objects 
between two boxes has a relatively narrow sphere of influence, affect­
ing only those future moves that transfer an object into, or out of, 
one of these two boxes. Accordingly, under such circu1nstances Aspi­
ration by Influence should be confined to 1nodifying the ta.bu status 
of attributes, or the tabu classification of moves, that fall within an 
associated sphere of influence. In the example of swapping objects 
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between boxes, the attributes rendered tabu-inactive would be re­
stricted to from-attributes associated with moving an object out of 
one of the two boxes and to-attributes associated with moving an 
object into one of these boxes. The change of ta.bu status continues 
to depend on the conditions noted previously. The influence of the 
attribute ( or move containing it) must be less than that of the earlier 
move, and the iteration tabu_start( e) for the attribute must precede 
the iteration on which the earlier infiuentia.l move occurred. These 
conditions can be registered by setting a flag for tabu_start( e) when 
the influential move is executed, without having to check again later 
to see if e is affected by such a move. When tabu_start( e) becomes 
reassigned a. new value, the flag is dropped. 

As the preceding observations suggest, effective measures of move 
influence and associated characterizations of spheres of influence are 
extremely important. In addition, it should be noted that influence 
can be expressed as a function of tabu search memory components, 
as where a move containing attributes that have neither recently nor 
frequently been tabu-active may be classified as more highly influen­
tial (because executing the move will change the ta.bu status of these 
attributes more radically). This encourages a dynamic definition of 
influence, which varies according to the current search state. These 
multiple aspects of move infiuence are likely to constitute a more 
significant area for future investigation in ta.bu search. 

3.2.8 Frequency-based 111e111ory 

Frequency-based memory provides a type of information that com­
plements the information provided by recency-based memory, broad­
ening the foundation for selecting preferred moves. Like recency, 
frequency is often weighted or decomposed into subclasses by taking 
account of the dimensions of solution quality and move influence. 

For our present purposes, we conceive frequency measures to con­
sist of ratios, whose numerators represent counts of the number of 
occurrences of a particular event ( e.g. the number of times a particu­
lar attribute belongs to a solution or move) and whose denominators 
generally represent one of four types of quantities, as shown below. 
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Denominators for Frequency Measures 

(D1) The total number of occurrences of all events represented by the 
numerators (such as the total number of associated iterations). 

(D2) The sun1 of the numerators. 
(D3) The maximum numerator value. 
(D4) The average numerator value. 

Denominators (D3) and (D4) give rise to what 1nay be called relative 
frequencies. The meaning of these different types of frequencies will 
be clarified by examples below. In cases where the nun1erators repre­
sent weighted counts, some of which n1ay be negative, (D3) and (D4) 
are expressed as absolute values and (D2) is expressed as a sum of 
absolute values (possibly shifted by a s1nall constant to avoid a zero 
denominator). 

Let x( 1 ), x(2), ... , x( currenLiterat-ion) denote the sequence of 
solutions generated to the present point of the search process, and 
let S denote a subsequence of this solution sequence. We take the 
liberty of treating S as a set as well as an ordered sequence. Ele1nents 
of S are not necessarily consecutive elements of the full solution se­
quence. (For example, we sometimes will be interested in cases where 
S consists of different subsets of high quality local optin1a.) 

Notationally, we let S(xj = p) denote the set of solutions in S 

for which Xj = p, and let #S(xj = p) denote the cardinality of this 
set (hence the number of times x j receives the value JJ over x E S). 
Similarly, let S( x j = p to x j == q) denote the set of solutions in S 
that result by a move that changes Xj = p to Xj = q. Finally, let 
S(from Xj = p) and S(to Xj = q) denote the sets of solutions in S 

that respectively contain x j = p as a from-attribute or x j = q as a 
to-attribute (for a move to the next solution, or fro1n the preceding 
solution, in the sequence x( 1 ), ... , x( current_iteration) ). In general, 
if solution_attribute represents any attribute of a solution that can 
take the role of a from-attribute or a to-attribute for a n1ove, and 
if move_attribute represents an arbitrary move attribute denoted by 
(from-attribute, to-attribute), then 
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S( solution_attribute) = 
S( move_attribute) 

S(from-attribute) 

S (to-attribute) 

Tahu Search 

{ x E S : x contains solution_attribute } 
{ x E S : x results from a move containing 
1nove_attribute } 
{ :r E S : :r initiates a move containing 
from-attribute } 
{ x E S : .r results from a move containing 
to-attribute } . 

The quantity #S(xj = p) constitutes a residence measure, since it 
identifies the number of times the attribute x j = p resides in the 
solutions of S. Correspondingly, we call a frequency that results by 
dividing such a 1neasure by one of the <len01ninators ( 1) to ( 4) a 
residence frequency. For the numerator #S(xj = p), the denomi­
nators (1) and (2) both correspond to #S, while denominators (3) 
and ( 4) respectively are given by lVIax ( #S(xk = q) : Vk, q) and by 
Mean ( #S(xk = q): Vk, q). 

The quantities #S(xj = p to ;1:j = q), #S(fro1n Xj = p) and 
#S(to Xj = q) constitute transition measures, since they identify the 
number of times x j changes fro1n and/ or to specified values. Likewise, 
frequencies based on such 1neasures are called transition frequencies. 
Denominators for creating such frequencies fron1 the foregoing mea­
sures include #S, the total number of times the indicated changes 
occur over S for different j,p and/or q values, and associated Max 
and Mean quantities. 

Distinctions between frequency types 

Residence frequencies and transition frequencies so1neti1nes convey 
related infonnation, but in general carry different iinplications. They 
are sometimes confused ( or treated identically) in the literature. A 
noteworthy distinction is that residence 1neasures, by contrast to 
transition measures, are not concerned with whether a particular 
solution attribute of an element x( i) in the sequence S is a from­
attribute or a to-attribute, or even whether it is an attribute that 
changes in moving from a:( i) to :r(i + 1) or fro1n x( i - 1) to x( i). 
It is only relevant that the attribute can be a from-attribute or a 
to-attribute in some future move. Such 1neasures can yield different 
types of implications depending on the choice of the subsequence S. 

A high residence frequency, for example, may indicate that an 
attribute is highly attractive if S is a subsequence of high quality 
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solutions, or may indicate the opposite if S is a subsequence of low 
quality solutions. On the other hand, a residence frequency that is 
high ( or low) when S contains both high and low quality solutions 
may point to an entrenched (or excluded) attribute that causes the 
search space to be restricted, and that needs to be jettisoned ( or 
incorporated) to allow increased diversity. 

From a computational standpoint, when S consists of all solu­
tions generated after a specified iteration, then a residence measure 
can be currently 1naintained and updated by reference to values of the 
tabu_start array, without the need to increment a set of counters at 
each iteration. For a set S whose solutions do not come from sequen­
tial iterations, however, residence measures are calculated simply by 
running a tally over elements of S. 

Transition measures are generally quite easy to maintain by per­
forming updates during the process of generating solutions ( assu1ning 
the conditions defining S, and the attributes whose transition mea­
sures are sought, are specified in advance). This results from the fact 
that typically only a few types of attribute changes are considered rel­
evant to track when one solution is replaced by the next, and these 
can readily be isolated and recorded. The frequencies in the example 
of Section 3.2.1 constitute an instance of transition frequencies that 
were maintained in this sin1ple manner. Their use in this example, 
however, encouraged diversity by approximating the type of role that 
residence frequencies are usually better suited to take. 

As a final distinction, a high transition frequency, in contrast 
to a high residence frequency, may indicate an associated attribute 
is a 'crack filler', that shifts in and out of solution to perform a fine 
tuning function. Such an attribute may be interpreted as the opposite 
of an influential attribute, as considered earlier in the discussion of 
Aspiration by Influence. In this context, a transition frequency may 
be interpreted as a measure of volatility. 

Examples and uses of frequency measures 

Illustrations of both residence and transition frequencies are as fol­
lows. (Only numerators are indicated, understanding denominators 
to be provided by conditions ( 1) to ( 4) above.) 
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(Fl) 
(F2) 
(F3) 
(F4) 
(F5) 
(F6) 
(F7) 

Tabu Search 

Exa1nple Frequency Measures (Nu1nerators) 

#S(xi = p) 
#S(xj = p for some Xj) 

#S(to Xj = p) 
#S(xj changes), i.e. #S(from-or-to 2:i = p for some p) 
'ExeS(xi=P) c(x)/#S(xj = p) 
Replace S(xj = p) in (F5) with S(xj =p p to Xj = p) 
Replace c(x) in (F6) with a measure of the influence of the solution 
attribute Xj = p 

The measures (F5) - (F7) implicitly are weighted rneasures, created 
by reference to solution quality in ( F.5) and ( F6), and by reference to 
move influence in ( F7) ( or more precisely, influence of an attribute 
composing a move). Measure ( F5) may be interpreted as the average 
c(x) value over S when Xj = p. This quantity can be directly com­
pared to other such averages or can be translated into a frequency 
measure using den01ninators such as the sum or maximum of these 
averages. 

Attributes that have greater frequency measures, just as those 
that have greater recency measures (i.e. that occur in solutions or 
moves closer to the present), can initiate a tabu-active status if S 
consists of consecutive solutions that end with the current solution. 
However, frequency-based memory typically finds its most productive 
use as part of a longer tenn strategy, which employs incentives as 
well as restrictions to determine which moves are selected. In such 
a strategy, restrictions are translated into evaluation penalties, and 
incentives become evaluation enhancements, to alter the basis for 
qualifying moves as attractive or unattractive. 

To illustrate, an attribute such as x j = p with a high residence 
frequency may be assigned a strong incentive ('profit') to serve as 
a from-attribute, thus resulting in the choice of a move that yields 
x j ,j:. p. Such an incentive is particularly relevant in the case where 
tabu_start( xi i- p) is small, since this value identifies the latest iter­
ation tl1at Xj /: p served as a from-attribute (for avoiding reversals), 

and lzence discloses tlzat :ci = p lzas been an attribute of every solu-

tion since. 
Frequency-based memory tlierefore is usually applied by intro­

ducing graduated tabu states, as a. foundation for defiiiing penalty 
and incentive values to n1odif.y tlze evaluation of moves. A natural 
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connection exists between this approach and the recency-based mem­
ory approach that creates ta.bu status as an all-or-none condition. If 
the tenure of an attribute in recency-based n1emory is conceived of 
as a conditional threshold for applying a very large penalty, then the 
ta.bu classifications produced by such me1nory can be interpreted as 
the result of an evaluation that becomes strongly inferior when the 
penalties are activated. It is reasonable to anticipate that conditional 
thresholds should also be relevant to determining the values of penal­
ties and incentives in longer term strategies. Most applications at 
present, however, use a simple linear 1nultiple of a frequency measure 
to create a penalty or incentive tenn. Funda1nental ways for tak­
ing advantage of frequency based n1einory are indicated in the next 
section. 

3.2.9 Frequency-based men1ory in si1uple intensifica-
tion and diversification processes 

The roles of intensification and diversification in ta.bu search are al­
ready implicit in several of the preceding prescriptions, but they be­
come especially relevant in longer tenn search processes. Intensifica­
tion strategies undertake to create solutions by aggressively encour­
aging the incorporation of 'good attributes'. In the short term this 
consists of incorporating attributes receiving highest evaluations by 
the approaches and criteria previously described, while in the inter­
mediate to long tenn it consists of incorporating attributes of so­
lutions from selected elite subsets (iinplicitly focusing the search in 
subregions defined relative to these subsets). Diversification strate­
gies instead seek to generate solutions that embody compositions of 
attributes significantly different fron1 those encountered previously 
during the search. These two types of strategies counterbalance and 
reinforce each other in several ways. 

We first exan1ine simple fonns of intensification and diversifica­
tion approaches that n1ake use of frequency-based memory. These 
approaches will be illustrated by reference to residence frequency 
measures, but sin1ilar observations apply to the use of transition mea­
sures, taking account of contrasting features previously noted. 

For a diversification strategy we choose S to be a significant subset 
of the full solution sequence; for exa1nple, the entire sequence starting 
with the first local optiinu1n, or the subsequence consisting of all 
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local optiina.. (For certain strategics based on transition measures, 
S may usefully consist of the subsequence containing ea.ch maximum 
unbroken succession of non-hnproving moves that immediately follow 
a local optin1um, focusing on S( to_attribute) for these moves.) 

For an intensification strategy we choose S to be a small subset of 
elite solutions (high quality local optima) that share a large nu1nber of 
com1non attributes, and secondarily whose 1ne1nbers can reach each 
other by relatively small numbers of moves, independent of whether 
these solutions lie close to each other in the solution sequence. For 
exa1nple, collections of such subsets S n1ay be generated by clustering 
procedures, followed by e1nploying a. parallel processing approach to 
treat each selected S separately. 

Below we provide rules for generating a. penalty or incentive func­
tion, PI, which apply equally to intensification and diversification 
strategies. However, the function PI creates a penalty for one strat­
egy (intensification or diversification) if and only if it creates an in­
centive for the other. For illustrative purposes, suppose that a move 
currently under consideration includes two n1ove attributes, denoted 
e and J, which further may be expressed as e = ( e_J rom, e_to) and 
J = (f-frorn,J_to). To describe the function PI, we let F(e_Jrom) 
and F( e_to) etc. denote the frequency 1neasure for the indicated from­
attributes and to-attributes, and let 1't, T2, ... , T6 denote selected pos­
itive thresholds, whose values depend 011 the case considered. 

These conditions for defining PI are related to those previously 
illustrated to identify conditions in which attributes beco1ne tabu­
active. For example, specifying that (1) must be positive to make 
PI positive corresponds to introducing a ta.bu penalty ( or incentive) 
when both 1neasures exceed their common threshold. If a measure is 
expressed as the duration since an attribute was most recently made 
ta.bu-active, and if the threshold represents a common limit for ta.bu 
tenure, then ( 1) can express a recency-based restriction for determin­
ing a ta.bu classification. Assigning different thresholds to different 
attributes in ( 1) corresponds to establishing attribute-dependent ta.bu 
tenures. Similarly, the remaining values ( 2) through ( 6) may be in­
terpreted as analogues of values that define recency-based measures 
for establishing a ta.bu classification, ilnplen1ented in this case by a 
penalty. 
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Illustrative Penalty /Incentive Function PI for To-attributes 

Choose PI as a monotonic nondecreasing function of one of the following 
quantities, where PI is positive when the quantity is positive, and is 0 
otherwise. (PI yields a penalty in a diversification st.rategy and an 
incentive in an intensification strategy.) 

(1) Min{F(e_to), F(f-to)} -Ti 

(2) Max{F(e_to), F(f-to)} -T2 

(3) Mean{F(e_to), F(f Jo)} - T3 

Illustrative Penalty /Incentive Function PI for Fro1n-attributes 

Choose PI as a monotonic nondecreasing function of one of the following 
quantities, where PI is positive when the quantity is positive, and is 0 
otherwise. (PI yields an incentive in a diversification strategy and a 
penalty in an intensification strategy.) 

(4) Min{F(e-/1'om), F(f _f1·om)} -T4 

(5) Max{F(e-f1'om), F(f _f1'om)} -T5 

(6) Mean{F(e_from), F(f-f1·om)} -T6 

From these observations, it is clear that the frequency n1easure F may 
be extended to represent combined measures of both recency and fre­
quency. Although these measures are already implicitly co1nbined­
when penalties and incentives based on frequency measures are joined 
with tabu classifications based on recency measures, as a foundation 
for selecting current 1noves-it is possible that other forms of co1n­
bination are superior. For exa1nple, human problem-solving appears 
to rely on con1binations of these types of rnemory that incorporate a 
time-discounted measure of frequency. Such considerations 1nay lead 
to the design of n1ore intelligent functions for capturing preferred 
combinations of these me1nory types. 

3.3 Broader Aspects of Intensification and 
Diversification 

Intensification and diversification approaches that use penalties and 
incentives represent only one class of such strategies. A larger collec-
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tion emerges by direct consideration of intensification and diversifi­
cation goals. We examine several approaches that have been demon­
strated to be useful in previous applications, and also indicate ap­
proaches we judge to have promise iu applications of the future. To 
begin, we make an important distinction between diversification and 
rando1nization. 

3.3.1 Diversification versus rando111ization 

Seeking a diversified collection of solutions is very different from seek­
ing a randomized collection of solutions. In general, we are interested 
not just in diversified collections but also in diversified sequences, 
since often the order of examining ele1nents is important in tabu 
search. This can apply, for example, where we seek to identify a 
sequence of new solutions ( not seen before) so that each successive 
solution is maximally diverse relative to all solutions previously gen­
erated. This includes possible reference to a baseline set of solutions, 
such as x E S, which takes priority in establishing the diversification 
objective (i.e. where the first level goal is to establish diversification 
relative to S, and then in turn relative to other solutions generated). 
The diversification concept applies as well to generating a diverse se­
quence of nun1bers or a diverse set of points from the vertices of a 
unit hypercube. 

Let Z( k) = { z( 1 ), z(2), ... , z( k)} represent a sequence of points 
drawn from a set Z. For example, Z may be a line interval if the 
points are scalars. We take z( 1) to be a seed point of the sequence. 
(The seed point may be excepted from the requirement of belonging 
to Z.) Then we define Z( k) to be a diversified sequence ( or simply 
a diverse sequence), relative to a chosen distance metric d over Z by 
requiring each subsequence Z(h) of Z(k),h < k, and each associated 
point z = z( h + 1) to satisfy the following hierarchy of conditions: 

(A) z maximizes the n1iniinu1n distance d(z, z(i)) for i < h; 

(B) subject to (A), z 1naximizes the 1ninimum distance d(z, z( i)) for 
1 < i < h, then for 2 < i < h, ... , etc. ( in strict priority order); 

(C) subject to (A) and (B), z maximizes the distance d(z,z(i)) for 
i = h, then for i = h - 1, ... , and finally for i = 1. ( Additional 
ties may be broken arbitrarily.) 



Broader Aspects 113 

To handle diversification relative to a.n initial baseline set Z* ( such 
as a set of solutions x E S), the preceding hierarchy of conditions is 
preceded by a. condition stipulating that z first maximizes the min­
imum distance d( z, z*) for z* E Z*. A useful (weaker) variant of 
this condition simply treats points of z• a.s if they constitute the last 
elements of the sequence Z(h). 

Variations on (A), (B), and (C), including going deeper in the 
hierarchy before arbitrary tie breaking, a.re evidently possible. Such 
conditions make it clear that a diverse sequence is considerably dif­
ferent from a random sequence. Further, they a.re cornputa.tionally 
very demanding to satisfy. Even by ornitting condition (B), and re­
taining only (A) and ( C), if the elements z( i) refer to points on a unit 
hypercube, then by our present state of knowledge the only way to 
generate a diverse sequence of more than a. few points is to perfonn 
comparative enumeration. (However, a diverse sequence of points on 
a line interval, particularly if z( 1) is an endpoint or midpoint of the 
interval, can be generated with much less difficulty.) Because of this, 
it can sometiines be useful to generate sequences by approximating 
the foregoing conditions ( see Glover [15]). Ta.king a broader view, 
a.n extensive effort to generate diverse sequences can be performed 
in advance, independent of problem solving efforts, so that such se­
quences are pre-computed and available as needed. Further, a diverse 
sequence for elements of a high dirnensional unit hypercube may be 
derived by reverse projection techniques ('lifting' operations) from a 
sequence for a. lower dimensional hypercube, ultimately making ref­
erence to sequences from a line interval. 

Biased diversification, just as biased rando1n sampling, is possible 
by judicious choices of the set Z. Also, while the goals of diversifi­
cation and randomization are somewhat different, the cornputational 
considerations share a feature in cornmon. To generate a random 
sequence by the strict definition of randomness would require mas­
sive effort. Years of study have produced schemes for generating se­
quences that en1pirically approximate this goal, and perhaps a. similar 
outcome may be possible for generating diversified sequences. The 
hypothesis of ta.bu search, in any case, is that recourse to diversifica­
tion is more appropriate ( and more powerful) in the proble1n solving 
context than recourse to randomization. 

We note these observations can be applied in a. setting, as subse-
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quently discussed, where the device of producing a solution 'distant 
from' another is accomplished not by reference to a standard dis­
tance 1netric, but rather by a series of displace1nents which involve 
selecting a 1nove from a current neighbourhood at each step. (In 
this case the 1netric 1nay derive from differences in weighted mea­
sures defined over frorn-attributes and to-att1·ibutes.) An application 
of these ideas is given in Kelly et al. [16], and we also discuss a 
special variation under the heading of 'Path Relinking' below. This 
stepwise displacement approach is highly relevant to those situations 
where neighbourhood structures are essential for preserving desired 
properties (such as feasibility). 

3.3.2 Reinforcen1ent by restriction 

One of the early types of intensification strategy, characterized in 
terms of exploiting strongly determined an<l consistent variables in 
Glover [17], begins by selecting a set S as indicated for determining 
a penalty and incentive function, i.e. one consisting of elite solutions 
grouped by a clustering measure. Instead of (or in addition to) creat­
ing penalties and incentives, with the goal of incorporating attributes 
into the current solution that have high frequency measures over S, 
the method of reinforcement by restriction operates by narrowing the 
range of possibilities allowed for adding and dropping such attributes. 
For example, if :r j = p has a high frequency over S for only a small 
nu1nber of values of JJ, then moves are restricted to allow x j to take 
only one of these values in defining a to-attribute. Thus, if x j is a 0-1 
variable with a high frequency measure over S for one of its values, 
this value will become fixed once an admissible move exists that al­
lows such a value assignment to be made. Other assignn1ents may be 
pennitted, by a variant of Aspiration by Default, if the current set of 
restricted alternatives is unacceptable. 

Initial consideration suggests such a restriction approach offers 
nothing beyond the options available by penalties and incentives. 
However, the approach can accomplish more than this for two reasons. 
First, explicit restrictions can substantially accelerate the execution 
of choice steps by reducing the number of alternatives examined. 
Second, and more significantly, many proble1ns simplify and collapse 
once a number of explicit restrictions are introduced, allowing struc­
tural implications to surface that pennit these problems to be solved 
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far more readily. 
Reinforcement by restriction is not limited to creating an intensi­

fication effect. Given finite tiine and energy to explore alternatives, 
imposing restrictions on some attributes allows more variations to be 
examined for re1naining unrestricted attributes than otherwise would 
be possible. Thus, intensification with respect to selected elen1ents 
can enhance diversification over other elements, creating a form of 
selective diversification. Such diversification may be contrasted with 
the exhaustive diversification created by the n1ore rigid 1nemory struc­
tures of branch and bound. In an environment where the finiteness of 
available search effort is dwarfed by the number of alternatives that 
exist to be explored exhaustively, selective diversification can 1nake a 
significant contribution to effective search. 

Path relinking 

Path relinking is initiated by selecting two solutions :i:' and x" from a 
collection of elite solutions produced during previous search phases. 
A path is then generated fro1n x' to x", producing a solution sequence 
x' = x'(l),x'(2), ... ,x'(r) = x", where x'(i+ 1) is created from x'(i) 
at each step by choosing a move that leaves the fewest nu1nber of 
moves remaining to reach x". ( A choice criterion for approxin1ating 
this effect is indicated below.) Finally, once the path is co1npleted, 
one or 1nore of the solutions x'(i) is selected as a solution to initiate 
a new search phase. 

This approach provides a fundamental means for pursuing the 
goals of intensification and diversification when its steps are imple­
mented to exploit strategic choice rule variations. A number of alter­
native moves will typically qualify to produce a next solution from 
x'( i) by the 'fewest remaining moves' criterion, consequently allow­
ing a variety of possible paths fron1 x' to x". Selecting unattractive 
moves relative to c( x) at each step will tend to produce a final series 
of strongly iinproving 1noves, while selecting attractive 1noves will 
tend to produce lower quality moves at the end. (The last move, 
however, will be iinproving, or leave c(:1:) unchanged, since x" is a 
local optimu1n.) Thus, choosing best, worst or average n1oves, us­
ing an aspiration criterion to override choices in the last two cases 
if a sufficiently attractive solution is available, provide options that 
produce contrasting effects in generating the indicated sequence. (Ar-
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guments exist in favour of selecting best 1noves at each step, and then 
repeating the process by interchanging x' and x".) 

The issue of an appropriate aspiration is more broadly relevant to 
selecting a preferred x'('i) for launching a new search phase, and to 
terminating the sequence early. The choice of one or more solutions 
x'( i) to launch a new search phase preferably should depend not only 
on c( x'( i)) but also on the values c(x) of those solutions x that can be 
reached by a move from x'(i). In particular, when x'(i) is examined 
to move to x'(i + 1), a number of candidates for x = x'(i + 1) will be 
presented for consideration. The process additionally may be varied 
to allow solutions to be evaluated other than those that yield x'( i + 1) 
closer to x". 

Let x*( i) denote a neighbour of :i:'(i) that yields a minimum c( x) 
value during an evaluation step, excluding x*(i) = x'(i + 1). (If the 
choice rules do not auton1atically eli1ninate the possibility x*( i) = 
x'(h) for h < i, then a simple tabu restriction can be used to do this.) 
Then the method selects a solution x*( i) that yields a minimum value 
for c(x*(i)) as a new point to launch the search. If only a limited set 
of neighbours of x'( i) are exan1ined to identify x*( i), then a superior 
least cost x'( i), excluding x' and :i.:'', may be selected instead. Early 
termination may be elected upon encountering an x*( i) that yields 
c(x*(i)) < Min{c(:i:'),c(x"),c(x'(p))}, where x'(p) is the minimum 
cost x'(h) for all h < i. (The procedure continues without stopping 
if x'( i), in contrast to x*( i), yields a smaller c( x) value than x' and 
x", since x' ( i) effectively adopts the role of x'.) 

Variation and tunnelling 

A variant of the path relinking approach proposed in Glover [15] starts 
both endpoints x' and x" simultaneously, producing two sequences 
x' = x'(l), ... ,x'(r) and x" = x"(l), ... ,x"(s). The choices are de­
signed to yield x'( r) = x"( s ), for final values of r and s. To progress 
toward this outcome when x'(r) =/ x"(s), either x'(r) is selected to 
create x'( r + 1 ), by the criterion of minimizing the number of moves 
remaining to reach x"(s), or x'(s) is chosen to create x"(s+ 1), by the 
criterion of minimizing the nmnber of moves reinaining to reach x'( r ). 
From these options, the move is selected that produces the smallest 
c( x) value, thus also determi11ing which of r or s is incremented on 
the next step. 
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The path relinking approach can benefit by a tunnelling approach 
that allows a different neighbourhood structure to be used than in the 
standard search phase. In particular, it often is desirable periodically 
to allow n1oves for path relinking that would normally be excluded 
due to the creation of infeasibility. Such a practice is less susceptible 
to becoming 'lost' in an infeasible region than other ways of allowing 
periodic infeasibility, since feasibility evidently n1ust be recovered by 
the ti1ne x" is reached. The tunnelling effect thus created offers a 
chance to reach solutions that n1ight otherwise be bypassed. In the 
variant that starts fron1 both x' and x", at least one of x' ( 1') and 
x"(s) may be kept feasible. 

Path relinking can be organized to place greater emphasis on in­
tensification or diversification by choosing ;r' and :i.: 11 to share more 
or fewer attributes in cornmon. Siinilarly choosing x' and x" from 
a clustered set of elite solutions will stimulate intensification, while 
choosing them from two widely separated sets will stimulate diversi­
fication. 

3.3.3 Extrapolated relinking 

An extension of the path relinking approach, which we call extrap­
olated relinking, goes beyond the path endpoint x" (or alternatively 
x'), to obtain solutions that span a larger region. The ability to con­
tinue beyond this endpoint results fro1n a 1nethod for approxiinating 
the move selection criterion specified for the standard path relinking 
approach, which seeks a next solution that leaves the fewest moves 
remaining to reach x". 

Specifically, let A( x) denote the set of solution attributes in x, 
and let Adrop denote the set of solution attributes that are dropped 
by moves perforrned to reach the current solution :i.:' (i), i.e. the at­
tributes that have served as from-attributes in these 111oves. (Some 
of these may have been reintroduced into x'(i), but they also remain 
in Adrop.) Then we seek a 111ove at each step to 1naxiinize the num­
ber of to-attributes that belong to A(x") - A(x'(i)), and subject to 
this to minin1ize the number that belong to A drop - A( x"). Such a 
rule can generally be implemented very efficiently, by data structures 
limiting the exa1nination of moves to those containing to-attributes 
of A(x")-A(x'(i)) (or permitting these moves to be exan1ined before 
others). 
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Once x'( r) = x" is reached, the process continues by modifying 
the choice rule as follows. The criterion now selects a move to maxi­
mize the number of its to-attributes not in A drop minus the number of 
its to-attributes that are in Adrop, and subject to this, to minimize the 
nu1nber of its fr·om-attributes that belong to A( x"). (The combina­
tion of these criteria establishes an effect analogous to that achieved 
by the standard algebraic formula for extending a line segment be­
yond an endpoint. However, the secondary n1inimization criterion is 
probably less important.) The path then stops whenever no choice 
remains that permits the 1naxi1nization criterion to be positive. 

For neighbourhoods that allow relatively unrestricted choices of 
moves, this approach yields an extension beyond x" that introduces 
new attributes, without re-incorporating any old attributes, until no 
1nove re1nains that sa.tisfies this condition. The ability to go beyond 
the limiting points x' and a:" creates a form of diversification not 
available to the path that 'lies between' these points. At the same 
time the exterior points are influenced by the trajectory that links x' 
and x". 

3.3.4 Solutions evaluated but not visited 

Intensification and diversification strategies may profit by the fact 
that a search process generates infonnation not only about solutions 
actually visited, but also about additional solutions evaluated during 
the exan1ination of 1noves not taken. One n1anifestation of this is 
exploited by reference to the solutions a:*( i) in the path relinking 
approach. 

From a different point of view, let S* denote a subset of solu­
tions evaluated but not visited (for example, taken from the sequence 
x( 1 ), ... , x( current_iteration )) whose elements x yield c( x) values 
within a chosen band of attractiveness. It is relatively easy to main­
tain a count such as #S*(to Xj = p), which identifies the number of 
tiines x j = p is a to-attribute of a trial move leading to a solution of 
S*. Such a count may be differentiated further, by stipulating that 
the trial move 1nust be improving, and of high quality relative to 
other moves exarnined on the sa1ne iteration. (Differentiation of this 
type in1plicitly shrinks the corn position of S*.) Then an attribute 
that achieves a relatively high frequency over S*, but that has a low 
residence frequency over solutions actually visited, is given an incen-
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tive to be incorporated into future moves, simultaneously serving the 
goals of both intensification and diversification. Recency and fre­
quency interact in this approach, by disregarding the incentive if the 
attribute has been selected on a recent move. 

3.3.5 Interval-specific penalties and incentives 

A useful adjunct to the preceding ideas extends the philosophy of As­
piration by Search Direction and Aspiration by Strong Adn1issibility. 
By these aspiration criteria, in1proving 1noves are allowed to escape 
a ta.bu classification under certain conditions, but with the result of 
lowering their status so that they are treated as inferior improving 
moves. 

An extension of this preserves the improving/non-i1nproving dis­
tinction when penalties and incentives are introduced that are not 
intended to be pre-emptive. For this extension, evaluations are again 
divided into the intervals of in1proving and non-in1proving. Penalties 
and incentives are then given liinited scope, degrading or enhancing 
evaluations within a given interval, but without altering the relation­
ship between evaluations that lie in different intervals. 

Incentives granted on the basis of influence are similarly n1ade 
subject to this restricted shift of evaluation. Since an influential 
move is not usually improving in the vicinity of a local optimum, 
maintaining the relationship between evaluations in different intervals 
implies such n1oves will usually be selected only when no iinproving 
moves exist, other than those classified tabu. But influential moves 
also have a recency-based effect. Just as executing a high influence 
move can cancel the tabu classification of a lower influence move over 
a limited span of iterations, so it should reduce or cancel the incentive 
to select other influential 1noves for a corresponding duration. 

3.3.6 Candidate list procedures 

Section 3.2.4 stressed the importance of procedures to isolate a can­
didate subset of 1noves from a large neighbourhood, to avoid the 
computational expense of evaluating 1noves frmn the entire neigh­
bourhood. Procedures of this form have been used in optimization 
methods for ahnost as long as issues of reducing computational effort 
have been taken seriously ( since at least the 1950s and probably much 
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earlier). Some of the more strategic forms of these procedures came 
from the field of network optimization (Glover et al. [18], Mulvey [19], 
Frendewey [20]). In such approaches, the candidate subset of moves 
is referenced by a list that identifies their defining elements ( such as 
indexes of variables, nodes, or arcs), and hence these approaches have 
acquired the name of candidate list strategies. 

A simple form of candidate list strategy is to construct a single el­
en1ent list by san1pling from the neighbourhood space at randon1, and 
to repeat the process if the outcon1e is dee1ned unacceptable. This 
is the foundation of Monte Carlo 1nethods, as noted earlier. Studies 
from network optin1ization, however, suggest that approaches based 
on 111ore systen1atic designs produce superior results. Generally, these 
involve decomposing a neighbourhood into critical subsets, and us­
ing a rule that assures subsets not exa1nined on one iteration be­
co111e scheduled for examination on subsequent iterations. For subsets 
appropriately detern1ined, best outco1nes result by selecting highest 
quality moves from these subsets, either by explicit examination of all 
alternatives or by using an adaptive threshold to identify such moves 
(see Glover et al. [21]). 

Another kind of candidate list strategy periodically examines larger 
portions of the neighbourhood, creating a master list of some nun1ber 
of best alternatives found. The 111aster list is then consulted to iden­
tify moves ( derived from or related to those recorded) for additional 
iterations until a threshold of acceptability triggers the creation of a 
new master list. 

Candidate list strategies implicitly have a diversifying influence 
by causing different parts of the neighbourhood space to be exam­
ined on different iterations. This suggests there n1ay be benefit fron1 
co-ordinating such strategies with other diversification strategies, an 
area that re1nains open for investigation. 

Candidate list strategies also lend themselves very naturally to 
parallel processing, where forms of neighbourhood decomposition oth­
erwise exan1ined serially are exan1ined in parallel. Moves can be 
selected by choosing the best candidate from several processes, or 
instead each process can execute its own preferred move, generat­
ing parallel solution trajectories that are periodically co-ordinated at 
a higher level. These latter approaches hold considerable pron11se. 
Some of the options are described in Glover et al. [5]. 
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3.3. 7 Con1pound neighbourhoods 

Identifying an effective neighbourhood for defining moves from one 
solution to another can be extrernely important. For example, an at­
tempt to solve a linear program1ning problem by choosing moves that 
increment or decrement problem variables, versus choosing moves 
that use pivot processes or directional search, obviously can make 
a substantial difference to the quality of the final solution obtained. 
The innovations that have made linear program1ning a powerful op­
timization tool rely significantly on the discovery of effective neigh­
bourhoods for making moves. 

For combinatorial applications where the possibilities for creat­
ing neighbourhoods are largely confined to various constructive or 
destructive processes, or to exchanges, improve1nents often result by 
combining neighbourhoods to create 1noves. For exan1ple, in sequenc­
ing applications such as that illustrated in Section 3.2.1, it is generally 
preferable to combine neighbourhoods consisting of insert moves and 
swap moves, allowing both types of moves to be considered at each 
step. Another way of combining neighbourhoods is to generate com­
pound moves, where a sequence of siinpler moves is treated as a single 
more complex move. 

A special tyµe of approach for creating compound moves results 
from a succession of steps in which an element is assigned to a new 
state, with the outcome of ejecting son1e other ele1nent fron1 its cur­
rent state. The ejected ele1nent is then assigned to a new state, in 
turn ejecting another element, and so forth, creating a chain of such 
operations. For €Xample, such a process occurs in a job sequencing 
problem by moving a job to a new position occupied by another job, 
thereby ejecting this job from its position. The second job is then 
moved to a new position to eject another job, and so on, finally ending 
by inserting the last ejected job between two other jobs. This type of 
approach, called an ejection chain strategy, has useful applications for 
problems of many types, particularly in connection with scheduling, 
routing, and partitioning (Glover [22, 23], Dorndorf and Pesch [24]). 
A tabu search method incorporating this approach has proved highly 
successful for 111ultilevel generalized assignment proble1ns (Laguna et 
al. [25]), suggesting the relevance of ejection chain strategies for cre­
ating compound neighbourhoods in other tabu search applications. 
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3.3.8 Creating new attributes-vocabulary building and 
concept f orn1ation 

A frontier area of ta.bu search involves the creation of new attributes 
out of others. The learning approach called target analysis, which 
can in1plicitly combine or subdivide attributes to yield a basis for 
improved move evaluations has been effectively used in conjunction 
with ta.bu search in scheduling applications (see Section 3.4), and 
provides one of the 1neans for generating new attributes. We focus 
here, however, on creating new attributes by reference to a process 
that may be called vocabulary building, related to concept formation. 

Vocabulary building is based on viewing a chosen set S of solu­
tions as a text to be analyzed, by undertaking to discover attribute 
con1binations shared in common by various solutions x in X. At­
tribute combinations that emerge as significant enough to qualify as 
units of vocabulary, by a process to be described below, are treated 
as new attributes capable of being incorporated into tabu restrictions 
and aspiration conditions. In addition, they can be directly assem­
bled into larger units as a basis for constructing new solutions. 

We represent collections of attributes by encoding them as assign-
1nents of values to variables, which we denote by Yj = p, to differenti­
ate the vector y from the vector x which possibly may have a different 
dituension and encoding. Nonnally we suppose a y vector contains 
enough information to be transfonued into a unique x, to which it 
corresponds, but this assun1ption can be relaxed to allow more than 
one x to yield the sa1ne y. (It is to be noted that a specified range of 
different assign1nents for a given attribute can be expressed as a sin­
gle assignn1ent for another, which is relevant to creating vocabulary 
of additional utility.) 

Let Y(S) denote the collection of y vectors corresponding to the 
chosen set S of x vectors. In addition to assignments of the form 
Yj = p which define attributes, we allow each Yj to receive the value 
Yj = *, in order to generate subvectors that identify specific attribute 
combinations. In particular, an attribute con1bination will be implic­
itly determined by the non-* values of y. 

The approach to generate vocabulary units will be to compare 
vectors y' and y" by an intersection operator, Int( y', y") to yield a 
vector z = Int( y', y") by the rule: z;; = Yj if Yj = y;', and Zj = * 
if Yj f:. y;', By this definition we also obtain Zj = * if either Yj or 
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y'j = *· Int is associative, and the intersection I nt(y : y E Y ), for an 
arbitrary Y, yields a z in which zi = Yi if all Yi have the same value 
for y E Y, and zi = * otherwise. 

Accompanying the intersection operator, we also define a relation 
of containment, by the stipulation that y" contains y' if Yj = * for 
all j such that Yj -=J y;'- Associated with this relation, we identify the 
enclosure of y' (relative to S) to be the set Y(S: y') = {y E Y(S): y 
contains y'}, and define the enclosure value of y', enc_value(y'), to be 
the number of elements in this set, i.e. the value #Y(S: y'). Finally, 
we refer to the number of non-* components of y' as the size of the 
vector, denoted size(y'). (If y E Y(S), the size of y is the same as its 
dimension.) 

Clearly the greater size(y') becomes, the smaller enc_value(y') 
tends to become. Thus for a given size s, we seek to identify vectors 
y' with size( y') 2'. s that maximize enc_value(y'), and for a given 
enclosure value v to identify vectors y' with enc_value(y') > v that 
maximize size( y'). Such vectors are included among those regarded 
as qualifying as vocabulary units. 

Similarly we include reference to weighted enclosure values, where 
each y E Y(S) is weighted by a measure of attractiveness (such as 
the value c(x) of an associated solution x ES), to yield enc_value(y') 
as a surn of the weights over Y ( S : y'). Particular attribute values 
may likewise be weighted, as by a measure of influence, to yield a 
weighted value for size(y'), equal to the sum of weights over non-* 
con1ponents of y'. 

From a broader perspective, we seek vectors as vocabulary units 
that give rise to aggregate units called phrases and sentences with cer­
tain properties of consistency and meaning, characterized as follows. 
Each Yi is allowed to receive one additional value, Yi = blank, which 
may be interpreted as an empty space free to be filled by another 
value (in contrast to Yi = *, which may be interpreted as a space 
occupied by two conflicting values). We begin with the collection of 
vectors created by the intersection operator Int, and replace the * 
values with blank values in these vectors. We then define an extended 
intersection operator E_Jnt, where z = E_Jnt(y', y") is given by the 
rules defining Int if Yj and Yj' are not blank. Otherwise z1 = Yj if 
Yj' = blank, and Zj = y'j if Yj = blank. EJnt is likewise associative. 
The vector z = EJnt(y : y E Y) yields Zj = * if any two y E Y have 
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different non-blank values Yj, or if some y has Yj = *· Otherwise Zj 

is the common Yj value for ally with Yj non-blank (where Zj = blank 
if Yj = blank for all y). 

The y vectors created by E J nt are those we call phrases. A sen­
tence (implicitly, a complete sentence) is a phrase that has no blank 
values. We call a phrase or sentence grammatical (logically consis­
tent) if it has no * values. Thus gran1matical sentences are y vectors 
lacking both blank values and * values, constructed from attribute 
combinations (subvectors) derived from the original elements of Y(S). 
Finally we call a grammatical sentence y meaningful if it corresponds 
to, or 1naps into, a feasible solution x. (Sentences that are not gram-
1natical do not have a form that permits them to be translated into 
an x vector, and hence cannot be n1eaningful.) 

The ele1nents of Y ( S) are all meaningful sentences, assuming they 
are obtained frorn feasible x vectors, and the goal is to find other 
1neaningful sentences obtained fro111 gram1natical phrases and sen­
tences constructed as indicated. More precisely, we are interested in 
generating meaningful sentences (hence feasible solutions) that are 
not limited to those that can be obtained from Y(S), but that can 
also be obtained by one of the following strategies: 

Sentence Construction Strategies 

( S 1) Translate a grammatical phrase into a sentence by filling in the 
blanks (by the use of neighbourhoods that incorporate construc­
tive moves). 

(S2) Identify some set of existing meaningful sentences ( e.g. derived 
from current feasible x vectors not in S), and identify one or 
more phrases, generated by E _J nt over S, that lie in each of these 
sentences. Then, by a succession of moves from neighbourhoods 
that preserve feasibility, transform each of these sentences into 
new meaningful sentences that retain as much of the identified 
phrases as possible. 

(S3) Identify portions of existing meaningful sentences that are con­
tained in grammatical phrases, and transform these sentences into 
new meaningful sentences ( using feasibility preserving neighbour­
hoods) by seeking to incorporate additional components of the 
indicated phrases. 

The foregoing strategies can be irnplemented by incorporating the 
same tabu search incentive and penalty mechanisms for choosing 
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moves indicated in previous sections. We assume in these strategies 
that neighbourhood operations on x vectors are directly translated 
into associated changes in y vectors. In the case of ( S 1) there is no as­
surance that a rneaningful sentence can be achieved unless the initial 
phrase itself is n1eaningful (i.e. is contained in at least one mean­
ingful sentence) and the constructive process is capable of generating 
an appropriate completion. Also, in (S3) more than one grammatical 
phrase can contain a given part (subvector) of a meaningful sentence, 
and it may be appropriate to allow the targeted phrase to change ac­
cording to possibilities consistent with available moves. 

Although we have described vocabulary building processes in a 
somewhat general forn1 to make their range of application visible, 
specific instances can profit frorn special algorithn1s for linking vocab­
ulary units into sentences that are both meaningful and attractive, in 
the sense of creating good c( x) values. An example of this is provided 
by vocabulary building approaches for the travelling salesman prob­
lem described in [23], where vocabulary units can be transformed into 
tours by specialized shortest path procedures. A number of combi­
natorial optimization problems are implicit in generating good sen­
tences by these approaches, and the derivation of effective methods 
for handling these problems in various settings, as in the case of the 
travelling salesman problem, may provide a valuable contribution to 
search procedures generally. 

3.3. 9 Strategic oscillation 

The strategic oscillation approach is closely linked to the origins of 
tabu search, and provides an effective interplay between intensifica­
tion and diversification over the interrnediate to long term. Strategic 
oscillation operates by moving until hitting a boundary, represented 
by feasibility or a stage of construction, that nonnally would rep­
resent a point where the method would stop. Instead of stopping, 
however, the neighbourhood definition is extended, or the evaluation 
criteria for selecting moves is modified, to pennit the boundary to 
be crossed. The approach then proceeds for a specified depth be­
yond the boundary, and turns around. At this point the boundary 
is again approached and crossed, this time from the opposite direc­
tion, proceeding to a new turning point. The process of repeatedly 
approaching and crossing the boundary from different directions ere~ 
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ates a fonn of oscillation that gives the 1nethod its name. Control over 
this oscillation is established by generating 1nodified evaluations and 
rules of movement, depending on the region currently navigated and 
the direction of search. The possibility of retracing a prior trajectory 
is avoided by standard tabu 1nechanis1ns. 

A siinple example of this approach occurs for the multidimen­
sional knapsack problem, where values of 0-1 variables a.re changed 
fron1 0 to 1 until reaching the boundary of feasibility. It then contin­
ues into the infeasible region using the same type of changes, but with 
a modified evaluator. After a selected nun1ber of steps, direction is re­
versed by changing variables from 1 to 0. Evaluation criteria. to drive 
toward iinprovement ( or s1nallest disimprovement) vary according to 
whether the movement is fro111 n1ore-to-less or less-to-n1ore feasible 
( or infeasible), and are accmnpa.nied by associated restrictions on ad­
n1issible changes to values of variables. An implementation of such an 
approach by Freville and Plateau [26, 27] has generated particularly 
high quality solutions for 1nultidi1nensional knapsack problems. 

A so1newha.t different type of application occurs for the proble111 of 
finding an optiina.l spanning tree subject to inequality constraints on 
subsets of weighted edges. One type of strategic oscillation approach 
for this problem results from a constructive process of adding edges 
to a growing tree until it is spanning, and then continuing to add 
edges to cross the boundary defined by the tree construction. A 
different graph structure results when the current solution no longer 
constitutes a tree, and hence a different neighbourhood is required, 
yielding 1nodified rules for selecting moves. The rules again change 
in order to proceed in the opposite direction, removing edges until 
again recovering a tree. In such proble1ns, the effort required by 
different rules may make it preferable to cross a boundary to different 
depths on different sides. One option is to approach and retreat 
fro1n the boundary while remaining on a single side, without crossing 
(i.e. electing a crossing of 'zero depth'). In this example, additional 
types of boundaries may be considered, derived from the inequality 
constraints. 

The use of strategic oscillation in applications that alternate con­
structive and destructive processes can be accompanied by exchange 
moves that maintain the construction at a given level. A proximate 
optimality principle, which states roughly that good constructions at 
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one level are likely to be close to good constructions at another, mo­
tivates a strategy of applying exchanges at different levels, on either 
side of a target structure such as a spanning tree, to obtain refined 
constructions before proceeding to adjacent levels. 

Finally, we remark that the boundary incorporated in strategic 
oscillation need not be defined in terms of feasibility or structure, 
but can be defined in terms of a region where the search appears to 
gravitate. The oscillation then consists of compelling the search to 
move out of this region and allowing it to return. 

3.4 Tahu Search Applications 

Tahu search is still in an early stage of development, with a substan­
tial majority of its applications occurring only since 1989. However, 
TS methods have enjoyed successes in a variety of problem settings, 
as represented by the partial list shown in the table below. Scheduling 
provides one of the most fruitful areas for modern heuristic techniques 
in general and for tabu search in particular. Although the schedul­
ing applications presented in Table 3.1 are limited to those found 
in the published literature ( or about to appear), there are a num­
ber of studies currently in progress that deal with scheduling models 
corresponding to modern manufacturing systems. 

One of the early applications of TS in scheduling is due to Widmer 
and Hertz [28], who develop a TS method for the solution of the 
permutation flow shop problem. This problem consists of n 1nultiple 
operation jobs arriving at time zero to be processed in the same order 
on m continuously available machines. The processing time of a job 
on a given machine is fixed (deterministic) and individual operations 
are not pre-e1nptable. The objective is to find the ordering of jobs 
that minimizes the makespan-the completion time of the last job. 

Widmer and Hertz use a simple insertion heuristic based on a 
travelling salesman analogy to the pennutation flow shop problem to 
generate the starting ordering of the jobs. The procedure considers 
neighbourhoods defined by swap moves, and at each iteration the best 
non-tabu move is executed evaluated relative to c( x ). The tabu tenure 
is exclusively set to a value of 7 moves and the tabu restriction is 
based on the paired attributes (job index, position). The termination 
criterion is specified as a maximum number of iterations. 



128 Tabu Search 

Table 3.1: Some applications of tabu search 

Brief Description 

Scheduling 
Employee scheduling 
Flow shop 

Job shop with tooling constraints 
Convoy scheduling 
Single machine scheduling 
Just-in-time scheduling 
Multiple-machine weighted flow time 
Flexible-resource job shop 
Job shop scheduling 
Single machine ( target analyois) 
Resource scheduling 
Deadlines and setup times 

Transportation 
Travelling salesman 
Vehicle routing 

Layout and circuit design 
Quadratic assignment 

Electronic circuit design 
Telecommunications 

Path assignment 

Bandwidth packing 
Graphs 

Clustering 
Graph colouring 

Stable sets in large graphs 
Maximum clique 

Probabilistic logic and expert systems 
Maximum satisfiability 
Probabilistic logic 
Probabilistic logic/ expert systems 

Neural networks 
Learning in an associative memory 
Nonconvex optimization problems 

Others 
Multiconstraint 0-1 knapsack 
Large-scale controlled rounding 
General fixed charge 

Reference 

Glover & McMillan [61] 
Widmer & Hertz [28) Taillard (30) 
Reeves [31) 
Widmer [32) 
Bovet et al. [62) 
Laguna et al. [8] 
Laguna & Gonzalez-Velarde [63) 
Barnes & Laguna [64) 
Daniels & Mazzola [33) 
Dell'Amico & Trubian [6] 
Laguna & Glover (3) 
Mooney & Rardin [36) 
Woodruff & Spearman [37] 

Malek et al. [38) Glover [22) 
Gendreau et al. [39] Osman [42) 
Semet & Taillard [43) 

Skorin-Kapov [65) Taillard [41] 
Chakrapani & Skorin-Kapov [9) 
Bland & Dawson [66] 

Oliveira & Stroud [67) 
Anderson et al. [58] 
Glover & Laguna [59) 

Glover et al. [68) Hansen et al. (45] 
Hertz & de Werra (69] 
Hertz et al. [70) 
Friden et al. [71] 
Gendreau et al. (7) 

Hansen & Jaumard [11) 
Jaumard et al. [44) 
Hansen et al. [60] 

de Werra & Hertz [56] 
Beyer & Ogier [57] 

Dammeyer & Voss (10) 
Kelly et al. [47) 
Sun & McKeown [72) 
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Computational experiments co1npare this TS implen1entation with 
six previously developed heuristic n1ethods. The study examines 50 
problems with n and m ranging from values of 5 to 20 where the max­
imum nun1ber of TS iterations is set to n + ni. In direct competition 
with the best previous heuristic developed by N awaz et al. (29], the 
TS method returns superior solutions for 58%, and matches the best 
solution found for 92% of the problen1s. 

This early TS procedure does not include many of the mechanisms 
described in this chapter which are now established as important 
components of the 1nore effective procedures. Nevertheless, the study 
was important for being one of the first of its type, and for disclosing 
the relevance of TS for scheduling, thus rnotivating other research to 
follow in this area. 

The study of Taillard (30] is noteworthy in this regard, applying 
tabu search to the flow shop sequencing problen1. This work demon­
strates that ta.bu search obtains solutions unifonnly better than the 
best of the classical heuristics, while investing con1parable solution 
time. In addition, although optimality of the solutions could not be 
proved, by allowing sufficient CPU time Taillard 's TS n1ethod found 
optimal solutions for every problem for which a such solution was 
known. Reeves [31] further improves the computational efficiency of 
this method by incorporating a candidate list strategy; using this ap­
proach, TS consistently outperformed a simulated annealing heuristic 
on a wide variety of problem instances. Another study in this area 
by Widmer [32] develops a TS method for the solution of an impor­
tant problem in scheduling models for flexible n1anufacturing-the 
job shop scheduling problem with tooling constraints. This imple­
mentation establishes the ability of the TS approach to be adapted to 
handle highly complex problems, with practical features disregarded 
by previous studies of related problems reported in the literature. 

Daniels and Mazzola [33] present a TS method for the flexible­
resource flow shop scheduling problem, which generalizes the classic 
flow shop scheduling problem by allowing job-operation processing 
times to depend on the amount of resource assigned to an operation. 
The objective is to determine the job sequence, resource-allocation 
policy, and operation start times that optimize system performance. 
The TS method e1nploys a nested-search strategy based on a de­
composition of the problem into these three main co1nponents (job 
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sequencing, resource allocation, and operation start times). The pro­
cedure was tested on over 1600 proble111s and is reported to be ex­
tre1nely effective. On 480 problem instances small enough to permit 
optimal solutions to be identified, the TS approach obtained optimal 
solutions for over 70% of the test problems, while incurring an average 
error of 0.3% and a maxi1num deviation from optimality of 2.5%. On 
larger problen1s, comparisons with other heuristic procedures showed 
the TS method was able to find significantly superior solutions. In 
addition, the authors note the nested TS approach holds considerable 
pro111ise for efficient imple111entation in a parallel processing setting. 

Dell'Amico and Trubian [6] apply tabu search to the notoriously 
difficult job-shop scheduling problem. They develop a bi-directional 
111ethod to find 'good' feasible starting solutions. Their procedure al­
ternates between assigning operations at the beginning and at the end 
of a partial schedule, which contrasts with previous uni-directional 
List Scheduler algoritluns. In addition to starting from a good solu­
tion, their TS procedure assigns tabu tenures that are dependent on 
the search state and are selected from a given range. The range is 
periodically revised using unifonn distributions to determine new up­
per and lower bounds. A siinple intensification strategy is used that 
recovers the best solution found so far and treats it as the current so­
lution, when a given number of iterations have been performed with­
out iinproving the best solution. C0111putational experiments with 53 
bencluna.rk problem instances show this TS method is highly robust, 
in contrast to previously published local search procedures for this 
proble1n. In particular, the TS method outperforms two simulated 
annealing methods due to van Laarhoven et al. [34] and Matsuo et 
al. [35] in tenns of both solution quality and speed. In addition, 
Dell'An1ico and Trubian establish new best solutions for five out of 
seven open problems in the literature. 

Laguna and Glover [3] develop a tailored TS method for the solu­
tion of a class of single n1achine scheduling problen1s with delay penal­
ties and setup costs. This research discloses the usefulness of target 
analysis as a n1eans of integrating effective diversification strategies 
within tabu search. The study also establishes the importance of 
accounting for regional dependencies of good decision criteria. The 
resulting procedure obtains solutions that are uniformly as good as, 
or better than, the best previously known solutions over a wide va-
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riety of problen1 instances. For large proble1ns ( with 100 jobs) the 
margin of superiority of the method is more dramatic. (The previ­
ously best available heuristic for this class of problems was also a TS 
procedure, as en1pirically shown by Laguna et al. [8].) 

Mooney and Rardin [36] develop a TS procedure for a special case 
of the problen1 of assigning tasks to a single pri1nary resource, subject 
to constraints resulting fron1 the pre-assign1nent of secondary or aux­
iliary resources. Potential applications of this proble1n include shift­
oriented production and manpower scheduling problen1s and course 
scheduling, where classrooms n1ay be primary and instructors and 
students may be secondary resources. This study includes 7 variants 
of a basic TS procedure. These variants co1nbine the use of determin­
istic and rando1n candidate list construction, several n1ove selection 
rules, and strategic oscillation. An index is created to measure the 
level of diversification that each variant of the method is capable 
of achieving. Extensive experiments with randomly-generated and 
real data show that the TS variants with strategic oscillation achieve 
high levels of diversification (as measured by the defined index) while 
outperforn1ing alternative approaches. The motivation for measuring 
diversification levels stems from the authors' conjecture that 'an al­
gorithm that diversifies the search must cover the search space more 
or less evenly'. As a result of this study, it was found that a simple 
iterated descent approach (see Section 3.2.3) obtained high diver­
sification levels but performed poorly in tenns of solution quality. 
Therefore, relatively high diversification appears to be a necessary 
but not a sufficient condition for finding good solutions. 

Woodruff and Spearman [37) present a highly innovative TS pro­
cedure for production scheduling, addressing a general sequencing 
problem that includes two classes of jobs with setup times, setup 
costs, holding costs and deadlines. A TS n1ethod is used with in­
sertion moves to transform one trial solution into another. Due to 
the presence of deadline constraints, not every sequence is feasible. 
However, the search path is allowed to visit infeasible solutions by a 
form of strategic oscillation. A candidate list is also used as a means 
of reducing the computational effort involved in evaluating a given 
neighbourhood. Diversification is achieved by introducing a param­
eter d into the cost function. Low values of d result in the selection 
of the best available 1nove ( with reference to the objective function 
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value) as customarily done in a deterministic tabu search, while high 
values result in a randon1ized move selection which resembles a vari­
ant of probabilistic tabu search. 

The tabu list designed for this approach is based on the concept of 
hashing functions. The list is co1nposed of two entries for each visited 
sequence, the cost and the value of a simple hashing function (i.e. a 
value that represents the ordering of jobs in the sequence). Computa­
tional experiments were conducted on si1nulated data that captured 
the characteristics of the demand and production environment in a 
large circuit board plant. For a set of twenty test problems, the av­
erage deviation from optimality was :3% and optimal solutions were 
achieved in seventeen cases. The best solutions were found during 
searches using d values other than zero, which supports the contention 
that long-term memory considerations become important in complex 
problem settings. This study also marks the first application of TS 
where hashing functions are used to control the tabu structures. A 
n1ore detailed study on these kinds off unctions and their use within 
the TS framework is given in \,Voodruff and Zemel [12]. 

The first parallel imple1nentation of tabu search to appear in the 
literature is due to Malek et al. (38]. In this in1plementation, each 
child process runs a copy of a serial TS 1nethod with different param­
eter settings (i.e. tabu list size and tabu restrictions). After specified 
intervals, the child processes are halted a.nd the main process com­
pares their results. The main process then selects the 'best' solution 
found and gives it as the initial solution to all the child processes. 
The 'best' solution is generally the one with the least tour cost, but 
an alternative solution is passed if the tour has been used before. The 
tabu data structures are blanked every tiine that the child processes 
are te1nporarily stopped. This sche111e requires little overhead due 
to interprocessor communication, and implements an intensification 
phase around 'good' solutions that is not easily reproduced in a serial 
environ1nent. This research shows the importance of parallel comput­
ing in solving large con1binatorial optimization problems, and it also 
illustrates one possibility for exploiting the flexibility of ta.bu search 
in this kind of environ1nent. Joining such an approach with the use of 
stronger move neighbourhoods, such as those of Gendreau et al. [39] 
or of Glover [40], may be expected to yield additional improvements. 

Chakrapani and Skorin-Kapov [9] present a parallel implemen-
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tation on the Connection Machine CM-2 of a TS method for the 
quadratic assign1nent problem. The imple1nentation uses n2 proces­
sors, where n is the size of the problem. A n1oving gap strategy is 
used to vary the tabu tenure dyna1nically. Addi tiona.l intensification 
and diversification are achieved via frequency-based 1ne1nory. The 
procedure proves to be very effective in tenns of solution quality. 
The largest problen1s that can currently be solved by exact methods 
are of size n = 20. The authors' method easily matches all known 
optimal solutions and also matches best known solutions for addi­
tional problems of size up to n = 80. (These solutions were obtained 
by a TS procedure due to Taillard [41].) In addition the study by 
Chakrapani and Skorin-Kapov reports new best solutions to a set of 
published proble1ns of size n = 100. A careful iinplementation on 
the Connection Machine, a n1assively parallel systen1, proves to be 
extremely suitable in this context. The increase in time per iteration 
appears to be a logaritlunic function of n. This study also offers di­
rections for alternative implementations that may be 1nore efficient 
when solving very large quadratic assignment problems. 

Vehicle routing constitutes another important area with many 
practical applications. Several TS variants and a hybrid simulated 
annealing/TS approach for the vehicle routing problem under capac­
ity and distance constraints are presented by Os1nan [42]. The neigh­
bourhoods are defined using a so-called A-interchange. The hybrid 
simulated annealing approach, which uses a n011111onotonic TS strat­
egy for adjusting teinperatures, in1proves significantly over a standard 
SA. The hybrid approach produces new best solutions for 7 instances 
in a set of 14 previously published problems. However, this approach 
exhibits a large variance with regard to solution quality and compu­
tational time. The pure TS methods also find 7 new best solutions 
to problems in the same set, and in addition they n1aintain a good 
average solution quality without excessive computational effort. The 
procedures developed by Osman are easily adapted to the vehicle 
routing problem with different vehicle sizes. 

Gendreau et al. [39] also develop a TS procedure for vehicle rout­
ing, using a son1ewhat different move neighbourhood than used in 
[42]. Their approach is tested against the previously reigning best 
solution approaches in the literature, and outperfonns all of them in 
most problems. Interestingly, in spite of the different choice of move 
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neighbourhoods, thefr results are quite closely c01nparable to those 
of Os1nan [42]. 

Se1net and Taillard [43] address a difficult version of the vehicle 
routing problem with 1nany co1nplicating side conditions, including 
different vehicle types and sizes, different regions, and restricted deliv­
ery windows. Their outcomes iinprove significantly over those previ­
ously obtained for those problems, and again de1nonstrate the ability 
of tabu search to be adapted to handle diverse real world features. 

One of the first TS methods to use more than one tabu list is due 
to Gendreau et al. [7], which is designed to solve the 1naxinnun clique 
problem in graphs. The n1ethod uses add-delete 1noves to define 
neighbourhoods for the current solutions and a tabu list to store the 
indexes of the vertices 1nost recently deleted. A second list is used to 
record the solutions visited during a specified nun1ber of 1nost recent 
iterations. The second list is always active while the first one is only 
consulted when 'aug1nenting' 1noves are considered (i.e. 1noves that 
increase the size of the current clique). Storing previously visited 
solutions as part of the tabu structure is unusual in TS 1nethods, but 
was achieved in this instance due to cleverly designed data structures 
to exploit the neighbourhood definition. Multiple tabu lists have now 
beco1ne co1n1non in many TS applications. 

Jatnnar<l et al. [44] investigate the problem of detennining the 
consistency of probabilities that specify whether given collections of 
clauses are true, with extensions to include probability intervals, con­
ditional probabilities, and perturbations to achieve satisfiability. By 
integrating a tabu search approach with an exact 0-1 nonlinear pro­
gramn1ing procedure for generating colun1ns of a 1naster linear pro­
gran1, they readily solved problems with up to 140 variables and 300 
clauses, approxhnately tripling both the nun1ber of variables and the 
nu1nber of clauses that could be handled by existing alternative ap­
proaches. 

This work is extended in the study of Hansen et al. [70] to address 
proble1ns arising in expert syste1ns, as in syste1ns for n1edical diagno­
sis. Tahu search is again embedded in a colu1nn generation schen1e to 
detennine opthnal changes to sets of rules that incorporate probabil­
ities. The con1binatorial con1plexity of this proble111 co1nes fron1 the 
fact that the nu1nber of colu1nns grows astronon1ically as a function 
of the nu1nber of logical sentences used to define rules. This extended 
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study is able to generate optin1al solutions for rule systems containing 
up to 200 sentences, significantly advancing the size of such problems 
that previously could be addressed. 

Da1nmeyer and Voss [10) studied the 1nulticonstrained 0-1 knap­
sack problem using a TS method that incorporates tabu restrictions 
based on the logical structure of the attribute sequence generated. 
The method is co1npared against an improved version of a sin1ulated 
annealing method from the literature specifically designed for these 
problems, using a testbed of 57 problems with known optimal solu­
tions. The TS and SA methods take comparable time on these prob­
lems, but the TS method finds optiinal solutions for nearly 50% more 
problems than simulated annealing ( 44 problems versus 31 ). On the 
remaining problems, deviations from optimality with the TS method 
were less than 2% in all cases, and less than 1 % for all proble1ns ex­
cept one. Dammeyer and Voss also note the SA method to be very 
sensitive to the choice of control parameters, which greatly influences 
the solution quality. By contrast, they found the TS paran1eters to 
be very robust. Shnilar differences in outcomes are established in 
the study of quadratic se1ni-assignment proble1ns by Domschke et al. 
[46). 

When publishing tabular data, the United States Bureau of the 
Census 1nust so1netiines round fractional data to integer values or 
round integer data to n1ultiples of a pre-specified base. Data integrity 
can be maintained by rounding tabular data subject to additivity con­
straints while minhnizing the overall perturbation of the data. Kelly 
et al. [4 7) describe a tabu search procedure with strategic oscilla­
tion for solving this NP-hard proble1n. A lower bound is obtained by 
solving a network flow programming model and the corresponding 
solution is used as the starting point for the procedure. Strategic os­
cillation plays a major role in this TS implementation. The oscillation 
in this case is around the feasibility boundary. A penalty function is 
used first to lead the search from the lower bound solution towards 
the feasible region, by linearly incrementing the penalty for an aggre­
gated measure of constraint violation. Once the procedure reaches 
feasibility for the first thne, the penalty oscillates within a specified 
period. The theoretical lower bound value obtained by network op­
thnization ( which may not be attainable by any feasible solution) is 
used to gauge the quality of solutions found. Experiinents with 270 
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simulated problems yield an average deviation from this lower bound 
of 1.32%. In addition, for 248 three-dimensional tables provided by 
the United States Bureau of the Census, the deviation fron1 the lower 
bound was only 0.391 %. 

3.5 Connections and conclusions 

Relationships between tabu search and other procedures like sim­
ulated annealing and genetic algorithms provide a basis for under­
standing siinilarities and contrasts in their philosophies, and for cre­
ating potentially useful hybrid combinations of these approaches. We 
offer some speculation on preferable directions in this regard, and also 
suggest how elements of tabu search can add a useful diinension to 
neural network approaches. 

3.5.1 Simulated annealing 

The contrasts between siinulated annealing and tabu search are fairly 
conspicuous, though undoubtedly the 1nost pro1ninent is the focus on 
exploiting 1ne1nory in tabu search that is absent from sin1ulated an­
nealing. The introduction of this focus entails associated differences 
in search 1nechanisms, and in the elements on which they operate. 

Accompanying the differences directly attributable to the focus on 
memory, and also 1nagnifying then1, several additional elements are 
funda1nental for understanding the relationship between the 111ethods. 
We consider three such ele1nents in order of increasing in1portance. 

First, tabu search e1nphasizes scouting successive neighbourhoods 
to identify 1noves of high quality, as by candidate list approaches of 
the fonn described in Section 3.3. This contrasts with the simu­
lated annealing approach of randomly sa1npling a1nong these moves 
to apply an acceptance criterion that disregards the quality of other 
1noves available. (Such an acceptance criterion provides the sole ba­
sis for sorting the n1oves selected in the SA n1ethod.) The relevance 
of this difference in orientation is accentuated for tabu search, since 
its neighbourhoods include linkages based on history, and therefore 
yield access to infonnation for selecting n1oves that is not available 
in neighbourhoods of the type used in siinulated annealing. 

Next, tabu search evaluates the relative attractiveness of 111oves 
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not only in relation to objective function change, but also in rela­
tion to factors of influence. Both types of measure are significantly 
affected by the differentiation among 1nove attributes, as embodied 
in tabu restrictions and aspiration criteria, and in turn by relation­
ships manifested in recency, frequency, and sequential interdepen­
dence (hence, again, involving recourse to memory). Other aspects 
of the state of search also affect these measures, as reflected in the 
altered evaluations of strategic oscillation, which depend on the di­
rection of the current trajectory and the region visited. 

Finally TS emphasizes guiding the search by reference to multiple 
thresholds, reflected in the tenures for tabu-active attributes and in 
the conditional stipulations of aspiration criteria. This may be con­
trasted to the simulated annealing reliance on guiding the search by 
reference to the single threshold implicit in the temperature param­
eter. The treatment of thresholds by the two methods compounds 
this difference between them. Tahu search varies its threshold non­
monotonically, reflecting the conception that multidirectional param­
eter changes are essential to adapt to different conditions, and to pro­
vide a basis for locating alternatives that 1night otherwise be 1nissed. 
This contrasts with the simulated annealing philosophy of adhering 
to a temperature parameter that only changes monotonically. 

Hybrids are now emerging that are taking prelin1inary steps to 
bridge some of these differences, particularly in the realm of tran­
scending the simulated annealing reliance on a monotonic temper­
ature parameter. A hybrid method that allows temperature to be 
strategically 1nanipulated, rather than progressively diininished, has 
been shown to yield improved performance over standard SA ap­
proaches, as noted in the work by Os1nan [42). Another hybrid 
1nethod that expands the SA basis for move evaluations has also 
been found to perform better than standard siinulated annealing in 
the study by Kassou [48). 

Consideration of these findings invites the question of whether re­
moving the 1nemory scaffolding of tabu search and retaining its other 
features may yield a viable method in its own right. A foundation 
for doing this by a 'tabu thresholding n1ethod' is described by Glover 
[13], and is reported in a study of graph layout and design prob­
lems by Verdejo and Cunquero [49) to perform more effectively than 
previously best methods for these problems. 



138 Tabu Search 

3.5.2 Genetic algorithms 

Genetic algorithms offer a somewhat different set of comparisons and 
contrasts with tabu search. As will be described in chapter 4, GAs 
are based on selecting subsets ( usually pairs) of solutions fro1n a pop­
ulation, called parents, and combining them to produce new solutions 
called children. Rules of combination to yield children are based on 
the genetic notion of crossover, which consists of interchanging solu­
tion values of particular variables, together with occasional operations 
such as random value changes. Children that pass a survivability test, 
probabilistically biased to favor those of superior quality, are then 
available to be chosen as parents of the next generation. The choice 
of parents to be matched in each generation is based on random or 
biased random sampling from the population (in some parallel ver­
sions executed over separate subpopulations whose best members are 
periodically exchanged or shared). Genetic tenninology custo1narily 
refers to solutions as chromoso1nes, variables as genes, and values of 
variables as alleles. 

By n1eans of coding conventions, the genes of genetic algoritlnns 
may be c01npared to attributes in tabu search, or n1ore precisely to 
attributes in the fonn underlying the residence n1easures of frequency­
based me1nory. Introducing 1nemory in GAs to track the history of 
genes and their alleles over subpopulations would provide an inune­
diate and natural way to create a hybrid with TS. 

S01ne iinportant differences between genes and attributes should 
be noted, however. Differentiation of attributes into fr01n and to 
co1nponents, each having different 1nemory functions, do not have 
a counterpart in genetic algorithn1s. This results because GAs are 
organized to operate without reference to n1oves ( although, strictly 
speaking, combination by crossover can be viewed as a special type 
of 1nove). Another distinction derives fron1 differences in the use of 
coding conventions. Although an attribute change, fron1 a state to its 
con1ple1nent, can be encoded in a zero-one variable, such a variable 
does not necessarily provide a convenient or useful representation for 
the transfonnations provided by 1noves. Tahu restrictions and aspi­
ration criteria handle the binary aspects of co111ple1nentarity without 
requiring explicit reference to a zero-one x vector or two-valued func­
tions. Adopting a siinilar orientation ( relative to the special class 
of n1oves en1bodied in crossover) 1night yield benefits for genetic al-
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gorithms in dealing with issues of genetic representation, which cur­
rently pose difficult questions ( see e.g. Liepens and Vose (50]). 

A domain where a genetic interpretation of tabu search ideas 
seems possible concerns the use of vocabulary building approaches, 
as described in Section 3.3. Vocabulary units may suggestively be 
given the alternative name of 'genetic material'. By this means, such 
units may be viewed as substrings of genes, created by a process 
that selectively extracts them to establish a substring pool. As ele­
ments are accumulated from different sources within such a pool, and 
progressively re-integrated into phrases and sentences by vocabulary 
processes, a genetic parallel may be conceived of as incorporating 
substring templates to guide construction of new genes. 

Perhaps the use of such evolving substring pools, as opposed to 
the exclusive focus on parents and children, would prove useful in 
genetic algorithms. But there are limiting factors, since the TS pro­
cesses for creating vocabulary are based on conscious and strategic 
reconstruction, and hence do not 1nuch resen1ble genetic processes. 
To preserve the genetic n1etaphor, one n1ay hnagine relying on in­
telligent enzymes, operating as special subroutines to cut out appro­
priate co1nponents and then recon1bine the1n according to syste1natic 
principles. If this is not stretching analogy too far, the outco1ne 1nay 
qualify as an interesting hybrid of the GA and TS approaches. 

A contrast to be noted between genetic algorithn1s and tabu 
search arises in the treat1nent of context, i.e. in the consideration 
given to structure inherent in different proble1n classes. For tabu 
search, context is funda1nental, e1nbocliecl in the interplay of attribute 
definitions and the detennination of 1nove neighbourhoods, and in 
the choice of conditions to define tabu restrictions. Context is also 
iinplicit in the identification of an1endecl evaluations created in as­
sociation with longer-tenn 1nen1ory, and in the regionally-dependent 
neighbourhoods and evaluations of strategic oscillation. 

At the opposite encl of the spectru1n, GA literature character­
istically stresses the freedom of its rules fron1 the influence of con­
text. Crossover, in particular, is a context-neutral operation, which 
assumes no reliance on conditions that solutions 1nust obey in a par­
ticular proble1n setting, just as genes n1ake no reference to the envi­
ronment as they follow their encoded instructions for reco1nbination 
( except, perhaps, in the case of 111utation ). Practical application, 
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however, generally renders this an inconvenient assu1nption, 1naking 
solutions of interest difficult to find. Consequently, a good deal of ef­
fort in GA implementation is devoted to developing 'special crossover' 
operations that con1pensate for the difficulties created by context, ef­
fectively re-introducing it on a case by case basis. The related branch 
of evolutionary algorithms does not rely on the narrower genetic ori­
entation, and hence does not regard the provision for context as a 
deviation (or extra-genetic innovation). Still, within these related 
families of approaches, there is no rigorous dedication to exploiting 
context, as manifested in proble1n structure, and no prescription to 
indicate how solutions might be combined syste1natically to achieve 
such exploitation, with the exception of special problems such as the 
TSP (see, for instance, the discussion of the paper by Whitley et al. 
[.51] in chapter 4). 

The chief method by which modern genetic algorithms and their 
cousins handle structure is by relegating its treatinent to some other 
1nethod. That is, genetic algorithms combine solutions by their parent­
children processes at one level, and then a descent 1nethod takes over 
to operate on the resulting solutions to produce new solutions. These 
new solutions in turn are sub1nitted to be recombined by the GA pro­
cesses. In these versions, pioneered by Miihlenbein et al. [52], and 
also advanced by Davis [.53] and Ulder et al. [.54], genetic algorithms 
already take the form of hybrid methods. Hence, as will be further 
remarked in chapter 4, there is a natural basis for marrying GA and 
TS procedures in such approaches. But genetic algorithms and tabu 
search can also be joined in a more fundamental way. 

Specifically, tabu search strategies for intensification and diversi­
fication are based on the following question: how can information be 
extracted fr01n a set of good solutions to help uncover additional ( and 
better) solutions? Fron1 one point of view, GAs provide an approach 
for answering this question, consisting of putting solutions together 
and interchanging c01nponents (in so1ne loosely defined sense, if tra­
ditional crossover is not strictly enforced). Tahu search, by contrast, 
seeks an answer by using processes that specifically incorporate neigh­
bourhood structures into their design. 

Augmented by historical information, neighbourhood structures 
are used as a basis for applying penalties and incentives to induce at­
tributes of good solutions to become incorporated into current solu-
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tions. Consequently, although it may be meaningless to interchange 
or otherwise incorporate a set of attributes from one solution into 
another in a wholesale fashion, as atte1npted in recombination opera­
tions, a stepwise approach to this goal through the use of neighbour­
hood structures is entirely practicable. This observation, formulated 
from a slightly different perspective in Glover [15], provides a basis 
for creating structured co1nbinations of solutions that embody desired 
characteristics such as feasibility. The use of these structured com­
binations makes it possible to integrate selected subsets of solutions 
in any system that satisfies three basic properties. Instead of being 
compelled to create new types of crossover to ren1ove deficiencies of 
standard operators upon being confronted by changing contexts, this 
approach addresses context directly and makes it an essential part 
of the design for generating combinations. (A related manifestation 
of this theme is provided by the path relinking approach of Section 
3.3.) The current trend of genetic algorithms seems to be increas­
ingly con1patible to adopting such an approach, particularly in the 
work of Miihlenbein [55], and this could provide a basis for a signifi­
cant hybrid combination of genetic algorith1n and tabu search ideas. 
In particular, we note that M iihlen bein has likewise indicated the 
relevance of incorporating TS types of 1ne1nory into GAs. 

3.5.3 Neural networks 

Neural networks have a s01newhat different set of goals fro1n tabu 
search, although so1ne overlaps exist. We indicate how tabu search 
can be used to extend certain neural net conceptions, yielding a hy­
brid that 1nay have both hardware and software iinplications. 

The basic transferable insight fron1 tabu search is that me1nory 
con1ponents with diinensions such as recency and frequency can in­
crease the efficacy of a syste1n designed to evolve toward a desired 
state. We suggest there 1nay be 1nerit in fusing neural network 1nein­
ory with tabu search 1ne1nory. ( A rudi1ncntary acquaintance with 
neural network ideas is assu1ned.) 

Recency-based considerations can be introduced from tabu search 
into neural networks by a tiine delay feedback loop from a given neu­
ron back to itself ( or fro1n a given synapse back to itself, by the de­
vice of interposing additional neurons). This pennits firing rules and 
synapse weights to be changed only after a certain time threshold, 
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detennined by the length of the feedback loop. Aspiration thresholds 
of the fonn conceived in tabu search can be ernbodied in inputs trans­
rnitted on a secondary level, giving the ability to override the tirne 
delay for altering firing thresholds and synaptic weights. Frequency­
based effects ernployed in tabu search rnay sirnilarly be incorporated 
by introducing a fonn of cumulative averaged feedback. 

Tirne delay feedback n1echanis1ns for creating recency and fre­
quency effects can also have other functions. In a problem-solving 
context, for exarnple, it rnay be convenient to disregard one set of op­
tions to concentrate on another, while retaining the ability to recover 
the suppressed options after an interval. This farniliar type of hu1nan 
activity is not a custornary part of neural network design, but can 
be introduced by the tiine dependent functions previously indicated. 
In addition, a threshold can be created to allow a suppressed op­
tion to 'go unnoticed' if current activity levels fall in a certain range, 
effectively altering the interval before the option re-e1nerges for con­
sideration. Neural network designs to incorporate those features may 
directly n1ake use of the TS ideas that have 1nade these ele1nents 
effective in the proble1n-solving don1ain. 

Tahu search strategies that introduce longer tenn intensification 
and diversification concerns are also relevant to neural network pro­
cesses. As a foundation for blending these approaches, it is useful to 
adopt an orientation where a collection of neurons linked by synapses 
with various activation weights is treated as a set of attribute vari­
ables which can be assigned alternative values. Then the condition 
that synapse j (fro1n a specified origin neuron to a specified desti­
nation neuron) is assigned an activation weight in interval p can be 
coded by the assignment Yi = p, where Yi is a con1ponent of an at­
tribute vector y, as identified in the discussion of attribute creation 
processes in Section 3.2.5. A sirnilar coding identifies the condition 
under which a neuron fires ( or does not fire) to activate its asso­
ciated synapses. As a neural network process evolves, a sequence 
of these attribute vectors is produced over tin1e. The association be­
tween successive vectors 1nay be irnagined to operate by reference to a 
neighbourhood structure irnplicit in the neural architecture and asso­
ciated connection weights. There 1nay also be an irnplicit association 
with so1ne (unknown) optirnization problem, or a rnore explicit asso­
ciation with a known proble111 and set of constraints. In the latter 
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case, attribute assignments ( neuron firings and synapse activation) 
can be evaluated for efficacy by transfonnation into a vector x, to be 
checked for feasibility by x E X. (We maintain a distinction between 
y and x since there 1nay not be a one-one association between them.) 

Time records identifying the quality of outco1nes produced by 
recent firings, and identifying the frequency with which particular 
attribute assignments produce the highest quality firing outco1nes, 
yield a basis for delaying changes in certain weight assign1nents and 
for encouraging changes in others. The concept of influence, in the 
fonn introduced h1 tabu search, should be considered in parallel with 
quality of outcomes. 

Attribute creation and vocabulary building strategies as discussed 
in Section 3.3 have a significant potential for contributing to the issue 
of adaptive network design. An element notably lacking in neural net­
works at present is a syste1natic means to generate concepts, as where 
a chess player evolves an ability to detect and treat a particular con­
figuration ( class of positions) as a single unit. Vocabulary building 
yields a direct way to generate new units fron1 existing ones. Applied 
to neural networks, such a process 1nay operate to find e1nbedded 
configurations of states that correspond to good firing outcon1es, and 
asse1nble the1n in to larger units. More particularly, starting with a 
set of previous firing states and weightings, represented by assign-
1nents in which y ranges over a set Y(S), attribute creation processes 
can be used to identify and integrate significant co1nponents (subvec­
tors ). Copying and segregating these co1nponents pennits associated 
neural connections to be treated as hardwired, i.e. locked in. This 
corresponds to treating the unit as a single new attribute. Activating 
the unit ( as by setting Yj = p for appropriate j and p) thus autornat­
ically activates the full associated syste1n of firings. The duplication 
of co1nponents of y segregated fro1n the original structure pennits the 
'original con1ponents' to continue to evolve without the hardwiring 
limitation. This occurs in the sa1ne way that created attributes in vo­
cabulary building processes exist side by side with separate instances 

of the attributes that gave rise to thezn. 

As noted in Table 3.1 of Section 3.4, ele1nents of tabu search have 
already been incorporated into neural networks in the work of de 
Werra and Hertz [56] and Beyer and Ogier [57]. These applications, 
which respectively treat visual pattern identification and nonconvex 
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opti1nization, are reported significantly to reduce training ti1nes and 
increase the reliability of outcomes generated. In addition, TS princi­
ples also have been integrated into a special variant of neural networks 
making use of constructions called ghost images in [40]. 

The preceding observations suggest that TS concepts and strate­
gies offer a variety of fruitful possibilities for creating hybrid 1nethods 
in combination with other approaches. Beyond this, 1nany opportu­
nities exist to expand the frontiers of tabu search itself. We have 
undertaken to point out sonie of the areas likely to yield particular 
benefits. As shown in Section 3.4, TS appears to be opening the 
door to new advances in n1any settings, enco1npassing production 
scheduling, routing, design, network planning, expert systems, and 
a variety of other areas. Tahu search methods present opportunities 
for future research both in developing new applications and in cre­
ating improved 1nethodology. The exploration of these realms may 
afford a chance to 1nake a useful iinpact on the solution of practical 
con1binatorial problen1s. 
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