
Chapter 3

Tahu Search

Fred Glover and lv/anuel Laguna

3.1 Introduction

Tahu search (TS) has its antecedents in 111ethods designed to cross
boundaries of feasibility or local optiinality normally treated as bar­
riers, and systematically to iinpose and release constraints to permit
exploration of otherwise forbidden regions. Early exa1nples of such
procedures include heuristics based on surrogate constraint methods
and cutting plane approaches that syste111atically violate feasibility
conditions. The 1nodern fonn of tabu search derives from Glover
[1]. Sen1inal ideas of the n1ethod are also developed by Hansen [2]
in a steepest ascent/rnildest descent fonnulation. Additional contri­
butions, such as those cited in the following pages, are shaping the
evolution of the method and a.re responsible for its growing body of
successful applications.

Webster's dictionary defines tabu or taboo as 'set apart as charged
with a dangerous supernatural power and forbidden to profane use or
contact ... ' or 'banned on grounds of 1norality or taste or as constitut­
ing a risk ... '. Tahu search scarcely involves reference to supernatural
or 1noral considerations, but instead is concerned with in1posing re­
strictions to guide a search process to negotiate otherwise difficult
regions. These restrictions operate in several fonns, both by direct
exclusion of certain search alternatives classed as 'forbidden', and also
by translation into n1odified evaluations and probabilities of selection.

The purpose of this chapter is to integrate son1e of the fundamen­
tal ways of viewing and characterizing tabu search, with extended

70

Tile Framework 71

examples to clarify its operations. We also point to a variety of di­
rections for new applications and research. Our development includes
comparisons and contrasts between the principles of tabu search and
those of simulated annealing (SA) and genetic algorithms (GAs).
Con1putational hnplications of these differences, and foundations for
creating hybrid methods that unite features of these different ap­
proaches are also discussed. In addition, we examine special designs
and computational outco1nes for incorporating tabu search as a driv­
ing mechanism within neural networks.

The philosophy of tabu search is to derive and exploit a collec­
tion of principles of intelligent proble1n solving. A fundamental el­
e1nent underlying tabu search is the use of flexible 1nen1ory. Fro1n
the standpoint of tabu search, flexible 111emory en1bodies the dual
processes of creating and exploiting structures for taking advantage
of history (hence combining the activities of acquiring and profiting
from inforn1ation).

The memory structures of tabu search operate by reference to
four principal dh11ensions, consisting of recency, frequency, quality,
and influence. These dimensions in turn are set against a background
of logical structure and connectivity. The role of these elements in
creating effective problem-solving processes provides the focus of our
following developn1ent.

3.2 The Tahu Search Framework

To provide a background for understanding some of the fundarnental
elements of tabu search, we illustrate its basic operation with an
exan1ple.

3.2.1 An illustrative exan1ple

Pennutation problems forn1 an ilnportant class of proble1ns in opti­
mization, and offer a useful vehicle to demonstrate some of the consid­
erations that must be faced in the co1nbinatorial domain. Classical
instances of permutation problems include the travelling sales1nan
proble1n, the quadratic assigntnent problem, production sequencing
problems, and a variety of design problems. As a basis for illustra­
tion, consider the problem of designing a n1aterial consisting of a
number of insulating modules. The order in which these n1odules are

72 Tabu Search

arranged determines the overall insulating property of the resulting
material, as shown in Figure 3.1.

Material

•<ir.--- Modules

Figure 3.1: Modules in an insulating material

The problem is to find the ordering of modules that maximizes
the overall insulating property of the composite material. Suppose
that 7 modules are considered for a particular material, and that
evaluating the overall insulating property of a particular ordering is
a computationally expensive procedure. We desire a search method
that is able to find an optin1al or near-optiinal solution by examining
only a small subset of the total number of permutations possible (in
this case 5040, though for many applications it can be astronomical).

Closely related problems that can be represented in essentially the
same way include serial filtering and job sequencing problems. Serial
filtering problems arise in pattern recognition and signal processing
applications, where a given input is to be subjected to a succession
of filters (or screening tests) to obtain the 'best' output. Filters are
sequentially applied to the input signal, and the quality of the out­
put is determined by the order in which they are placed (see Figure
3.2). In this case, the search method 1nust be designed to find the
best filtering sequence. Such filtering processes are also relevant to
applications in chemical engineedng, astrono1ny, and biochemistry.

Job sequencing problen1s consist of detennining best sequences
for processing a set of jobs on designated machines. Each machine is
thus assigned some pern1utation of available jobs. (In some settings,
multiple machine problems may be treated by extensions of processes

The Framework

Input signal

•

Filters

Output signal

•

Figure 3.2: Filtering sequence

73

for single machine problems.) There are many variants of the sin­
gle machine problem depending on the definition of 'best' sequence.
For example, the best sequence may be the one that minimizes the
makespan-the completion time of the last job in the sequence. Other
possibilities are to minimize a weighted su111 of tardiness penalties or
a sum of setup costs.

For well-structured objective functions, evaluations of ways to
move from one solution to another are generally fast. However, prob­
lems with even modest numbers of jobs overwhehn the capabilities
of algorithms that 'guarantee' optitnality, rendering the1n unable to
obtain solutions in reasonable amounts of time. That is one of the
reasons why effective heuristic approaches have proved ilnportant in
the area of production scheduling.

Some useful variants of the foregoing problems can be represented
'as if' they were permutation problems. These include, for example,
problems where it is simultaneously desired to select a best subset of
items (modules, filters, jobs) from an available pool, and to identify
a best sequence for this chosen set. In this case, the problem can be
represented by creating a dummy position to hold a residual pool,
where all items that do not currently occupy one of the sequence
positions are placed. (The path assignment proble1n discussed in
Section 3.4 is a good example of this kind of representation.)

We focus on the module insulation problem, using it to introduce
and illustrate the basic components of ta.bu search. First we assume
that an initial solution for this problem can be constructed in some

74 Tabu Search

intelligent fashion, i.e. by taking advantage of some problem-specific
structure. Suppose the initial solution to our proble1n is the one
shown in Figure 3.3.

.Modules

/ ~
2 5

I 7
I

3 I
4 I 6 1

Figure 3.3: Initial permutation

The ordering in Figure 3.3 specifies that module 2 is placed in
the first position, followed by n1odule 5, etc. The resulting material
has an insulating property of 10 units (which we assume was found
by an accompanying evaluation routine, e.g. a sin1ulator package
for estimating the properties of a 1naterial without actually build­
ing a prototype). TS n1ethods operate under the assumption that a
neighbourhood can be constructed to identify 'adjacent solutions' that
can be reached from any current solution. (Neighbourhood search
is described in Section 3.2.3.) Pairwise exchanges (or swaps) are
frequently used to define neighbourhoods in permutation problems,
identifying moves that lead fro1n one solution to the next. In our
proble1n, a swap exchanges the position of two modules as illustrated
in Figure 3.4. Therefore, the co1nplete neighbourhood of a given cur­
rent solution consists of the 21 adjacent solutions that can be obtained
by such swaps.

Associated with each swap is a move value, which represents the
change in the objective function value as a result of the proposed
exchange. Move values generally provide a funda1nental basis for
evaluating the quality of a 1nove, although other criteria can also
be important, as indicated later. A chief mechanism for exploiting
memory in ta.bu search is to classify a subset of the moves in a neigh­
bourhood as forbidden (or ta.bu). The classification depends on the
history of the search, particularly as 111anifested in the recency or fre­
quency that certain n1ove or solution components, called attributes,

The Framework 75

2 6 7 3 4 5 1

Figure 3.4: Swap of modules 5 and 6

have participated in generating past solutions. For example, one at­
tribute of a swap is the identity of the pair of elements that change
positions (in this case, the two modules exchanged). As a basis for
preventing the search from repeating swap combinations tried in the
recent past, potentially reversing the effects of previous moves by in­
terchanges that might return to previous positions, we will classify
as tabu all swaps composed of any of the most recent pairs of such
modules; in this case, for illustrative purposes, the three most recent
pairs. This means that a module pair will be kept ta.bu for a dura­
tion (tenure) of 3 iterations. Since exchanging modules 2 and 5 is
the same as exchanging modules 5 and 2, both may be represented
by the pair (2,5). Thus, a data structure such as the one shown in
Figure 3.5 may be used.

Each cell of the structure in Figure 3.5 contains the number of
iterations remaining until the corresponding modules are allowed to
exchange positions again. Therefore, if the cell (3,5) has a value of
zero, then modules 3 and 5 are free to exchange positions. On the
other hand, if cell (2,4) has a value of 2, then modules 2 and 4 may
not exchange positions for the next two iterations (i.e. a swap that
exchanges these n1od ules is classified ta.bu).

The type of move attributes illustrated here for defining ta.bu re­
strictions is not the only one possible. For example, reference may
be made to separate modules rather than module pairs, or to posi­
tions of modules, or to links between their immediate predecessors
(or successors), and so forth. Son1e choices of attributes are bet­
ter than others, and relevant considerations are discussed in Section
3.2.5. (Attributes involving created and broken links between in1me­
diate predecessors and successors are often among the more effective
for many permutation problems.)

76

1

Remaining tabu tenure
for module pair (2,5)

Tabu Seard1

2 3 4 5 6 7

2 /
/

/:
5

6

Figure 3.5: Tahu data structure for attributes consisting of module pairs
exchanged

To implement tabu restrictions such a.s those based on module
pairs, an important exception must be taken into account. Tahu
restrictions are not inviolable under all circumstances. When a tabu
move would result in a solution better than any visited so far, its
tabu classification may be overridden. A condition that allows such
an override to occur is called an aspiration criterion. (Several useful
fonns of such criteria are presented in Section 3.2.7.) The following
shows 4 iterations of the basic tabu procedure that employs the paired
module tabu restriction and the best solution aspiration criterion.

Iteration O (Starting point)

Current solution

Insulation Value=lO

All entries zero

1

Tahu structure Top 5 candidates
2 3 4 5 6 7 Swap Value

I 5,4 6 *

2 7,4 4

3 3,6 2

4 2,3 0

5 4,1 -1

6 -

The Framework 77

The starting solution has an insulation value of 10, and the tabu data
structure is initially empty, i.e. it is filled with zeros, indicating no
moves are classified tabu at the beginning of the search. (For clar­
ity, we have not actually inserted these zeros in this or the following
diagrams.) After evaluating the candidate swap 1noves, the top five
moves (in terms of move values) are shown in the table for iteration
0 above. This information is provided by an independent evaluation
subroutine designed to identify move values for this particular prob­
lem. (Of course, it is not necessary for the subroutine to sort and
identify each of the 5 best moves, since we a.re interested only in the
best. The additional options are included here to clarify certain ideas
subsequently presented.) To find a local 1naxin1un1 for the insulating
property of the material, we swap the positions of 111odules 5 and 4
(as indicated by the asterisk). The total gain of such a n1ove equals
6 units.

Iteration 1

Current solution

Insulation Value= 16

1

Tahu structure Top 5 candidates
2 3 4 5 6 7 Swap Value

I 3,1 2 *

2 2,3 1

3 3,6 -1

4 3 7,1 -2

5 6,1 -4

6 -

The new current solution has an insulating value of 16 (i.e. the
previous insulation value plus the value of the selected move). The
tabu structure now shows that swapping the positions of modules 4
and 5 is forbidden for 3 iterations. The 111ost in1proving 1nove at this
step is to swap 3 and 1 for a gain of 2.

78

Iteration 2

Current solution

Insulation Value=18

l

Tabu structure
2 3 4 5 6 7

I ;3

2

3

4 2

,5

6 -

Tahu Search

Top 5 candidates
Swap Value

1,3 -2 T
2,4 -4 *
7,6 -6

4,5 -7 T
5,3 -9

The new current solution becomes the best solution found so far with
an insulating value of 18. At. this iteration, two exchanges are classi­
fied tabu, as indicated by the nonzero entries in the tabu structure.

Note that entry (4,5) has been decreased from 3 to 2, indicating
that its original ta.bu tenure of 3 now has 2 re1naining iterations to
go. This time, none of the candidates (including the top 5 shown)
has a positive move value. Therefore, a non-improving n1ove has to
be made. The most attractive non-improving 1nove is the reversal of
the move perforn1ed in the previous iteration, but since it is classified
tabu, this move is not selected. Instead, the swap of modules 2 and
4 is chosen, as indicated by the asterisk.

Iteration 3

Current solution

Insulation Value=l4

1

Tabu structure Top 5 candidates
2 3 4 5 6 7 Swap Value

I 2 4,5 6 T*

2 3 5,3 2

3 7,1 0

4 1 1,3 -3 T

5 2,6 -6

6
~

The new current solution has an insulation value inferior to the two
values previously obtained, as a result of executing a move with a
negative move value. The ta.bu data structure now indicates that 3

The Framework 79

moves are classified tabu, with different re1naining tabu tenures. At
the top of the candidate list, we find the swap of n1odules 4 and .5,
which in effect represents the reversal of the first 111ove perfonned, and
is classified tabu. However, perfonning this 1nove produces a solution
with an objective function value that is supel'ior to any previous
insulation value. Therefore, we make use of the aspiration criterion
to override the ta.bu classification of this n1ove and select it as the
best on this iteration.

Iteration 4

Current solution

Insulation Value=20

1

Tabu structure

2 3 4 5 6 7

I 1

2 2

3

4 3

5
6 -

Top 5 candidates

Swap Value

7,1 0 *
4,3 -3
6,:3 -5
,5,4 -6 T

26
' -8

The current solution becomes the incu1nbent new best solution and
the process continues. Note that the chosen ta.bu restriction and ta.bu
tenure of 3 results in forbidding only 3 out of 21 possible swaps, since
the module pair with a residual tenure of 1 always drops to a residual
tenure of O each tin1e a new pair with tenure 3 is introduced. (By
recording the iteration when a n1odule pair becomes ta.bu, and com­
paring this against the current iteration to detennine the re1naining
ta.bu tenure, it is unnecessary to change these entries at each step as
we do here.)

In some situations, it may be desirable to increase the percentage
of available moves that receive a ta.bu classification. This 1nay be
achieved either by increasing the ta.bu tenure or by changing the
tabu restriction. For exa1nple, a ta.bu restriction that forbids swaps
containing at least one 1nember of a n1odule pair will prevent a larger
number of moves from being executed, even if the tenure ren1ains
the sa111e. (In our case, this restriction would forbid 15 out of 21
swaps if the ta.bu tenure ren1ains at 3.) Such a restriction is based

80 Tahu Search

on single module attributes instead of paired module attributes, and
can be implemented with much less rnemory, i.e. by an array that
records a tabu tenure for each module separately. Generally speaking,
regardless of the type of restriction selected, iinproved outcomes are
often obtained by tabu tenures that vary dyna1nically, as described
in Section 3.2.6.

Move Values and Updates Because tabu search aggressively selects
best admissible moves (where the nrnaning of best is affected by tabu
classification and other elen1ents to be indicated), it must examine
and compare a number of n1ove options. For 1nany problen1s, only a
portion of the n1ove values will change from one iteration to the next,
and often these changed values can be isolated and updated very
quickly. For example, in the present illustration it n1ay be useful
to store a table rnove_value(j, k), which records the current move
value for exchanging 1nodules j and k. When a move is executed, a
relatively small part of this table (consisting of values that change)
can be quickly modified, and the updated table can then be consulted
to identify moves that become the new top candidates.

Such partial updating often can be further enhanced by a list
move_name(move_value) which, for each move_value in a relevant
range, identifies 1nove_nam,e to be a specific 1nove that yields this
value. A linked list then can connect this move_name to the names
of all other 1noves that yield the san1e m,ove_value. The combina­
tion of the move_name(rnove_value) array and the linked list can
be updated very quickly to 1nake it easy to locate moves with best
move values in cases where only a relatively sn1all nun1ber of elements
change. A given move_value entry can also refer to a range of move
values, with an option to regard all values within a specified range
as 'essentially equivalent'. (However, we suggest the merit of differ­
entiating members of a given range 1nore carefully upon approaching
local optimality.)

On a broader scale, lists to facilitate access to best moves invite
differentiation to include considerations introduced by move influence
(Section 3.2.7) and by candidate list strategies (Section 3.3). They
also are subject to periodic scanning with reference to concerns that
extend beyond the short tenn horizon, as we illustrate next.

The Framework 81

Complementary Tabu Memory Structures The accon1paniment of
recency-based memory with frequency-based 1nemory adds a compo­
nent that typically operates over a longer horizon. To illustrate one
of the useful longer term applications of frequency-based memory,
suppose that 25 TS iterations have been performed, and that the
number of times each module pair has been exchanged is saved in an
expanded tabu data structure. The lower diagonal of this structure
now contains the frequency counts.

Iteration 26
Current solution Tahu structure

(Recency)
1 2 3 4 5 6 7

1 113161 2 17 15 14 11 3

2

31---+--
Insulation Value=12

2

4 1 1

5 4

6 1-----t--i-1--+---t-
7 2 3

(Frequency)

Top 5 candidates
Penalized

Swap Value Value

1,4 3 3 T
2,4 -1 -6
3,7 -3 -3 *
1 6
' -5 -5

6,5 -4 -6

At the current iteration (iteration 26), the recency men1ory indicates
that the last three 1nodule pairs exchanged were (1,4), (3,6), and
(4, 7). The frequency counts show the distribution of moves through­
out the first 25 iterations. We use these counts to diversify the search,
driving it into new regions. This diversifying influence is restricted
to operate only on particular occasions. In this case, we select those
occasions where no admissible improving moves exist. Our use of the
frequency information will penalize non-improving 1noves by assign­
ing a larger penalty to swaps of n1odule pairs with greater frequency
counts. (Typically these counts would be normalized, as by dividing
by the total nu1nber of iterations or their 1naximum values.) We illus­
trate this in the present example by shnply subtracting a frequency
count from the associated move value.

The list of top candidates for iteration 26 shows that the most
improving move is the swap (1,4), but since this module pair has a
residual tabu tenure of 3, it is classified tabu. The move (2,4) has a

82 Tabu Search

value of -1, and it might otherwise be the one next preferred, except
that its associated modules have been exchanged frequently during
the history of the search (in fa.ct, more frequently than any other
module pair). Therefore, the move is heavily penalized and it loses
its attractiveness. The swap of modules 3 and 7 is thus selected as
the best move on the current iteration.

The strategy of instituting penalties only under particular con­
ditions is used to preserve the aggressiveness of the search. Penalty
functions in general are designed to account not only for frequencies
but also for n1ove values and certain influence measures, as discussed
in Section 3.2.8.

In addition, frequencies defined over different subsets of past solu­
tions, particularly subsets of elite solutions consisting of high quality
local optima, give rise to complementary strategies of intensification.
Intensification and diversification strategies interact to provide fun­
damental cornerstones of longer tenn me1nory in tabu search. The
ways in which such elements are capable of creating enhanced search
methods, extending the simplified approach of the preceding example,
are elaborated in following sections.

3.2.2 Notation and proble111 description

A few basic definitions and conventions are useful as a foundation
for communicating the principal ideas of TS. For this purpose we
express the mathematical optimization problem in a slightly more
general form than that used in chapter 1.

M inim,ise c(:r)

subject to x E X

The objective function c(x) may be linear or nonlinear, and the condi­
tion x E X summarizes constraints on the vector x. These constraints
may include linear or nonlinear inequalities (as in chapter 1), and may
compel some or all components of x to receive discrete values.

In many applications of combinatorial optimization, the problem
of interest is not explicitly formulated as we have shown it. In such
cases the present formulation may be conceived as a code for an­
other formulation. The requirement x E X, for example, may specify

The Framework 83

logical conditions or interconnections that would be cun1bersome to
formulate mathe1natically, but n1ay better be left as verbal stipula­
tions (for example, in the form of rules). Often in these instances
the variables are simply codes for conditions or assignments that are
parts of the more complex structure. For example, an ele1nent of x

may be a binary variable that receives a value of 1 to code for assign­
ing an elen1ent u to a set or position v, and that receives a value O to
indicate the assignment does not occur.

3.2.3 Neighbourhood search

TS may be conveniently characterized as a fonn of neighbourhood
search, which has already been described in chapter 2. However,
here we wish to define neighbourhood search in a less restricted fash­
ion than usual. Frequently, for example, constructive and destructive
procedures are excluded, whereas such procedures and their co111bi­
nations are routinely subjected to the guidance of TS.

In neighbourhood search, each solution x E X has an associated
set of neighbours, N (x) C X, called the neighbourhood of x. Each
solution x' E N (x) can be reached directly fro1n x by an operation
called a move, and xis said to move (or transition) to x' when such an
operation is perfonned. Normally in TS, neighbourhoods are assumed
sym1netric, i.e. x' is a neighbour of x if and only if x is a neighbour
of x'.

Step 1
(A)
(B)

Step 2

Step 3

Neighbourhood Search Method

(Initialization)
Select a starting solution x»ow E X.
Record the current best known solution by setting xbeat = x»ow
and define besLcost = c(xb""1).
(Choice and termination)
Choose a solution x»ext E N(x» 0 w). If the choice criteria em­
ployed cannot be satisfied by any member of N(xnow) (hence
no solution qualifies to be xnext), or if other termination cri­
teria apply (such as a Iin1it on the total number of iterations),
then the method stops.
(Update)
Re-set x»ow = x»ext, and if c(x»ow) < besLcost, perform Step
l(B). Then return to Step 2.

84 Tabu Search

The steps of neighbourhood search are as described above, where we
assume choice criteria for selecting moves, and termination criteria
for ending the search, are given by some external set of prescriptions.

The foregoing procedure can represent a constructive method by
stipulating that Xis expanded to include x vectors whose components
take null (unassigned) values, and by stipulating that a neighbour
x' of x can result by replacing a null co1nponent of x with a non­
null component. (A change of representation sometimes conveniently
allows null components to be represented by values of O and non-null
components by values of 1.) A standard constructive method does not
yield symmetric neighbourhoods, since non-null components are not
permitted to beco1ne null again (hence the n1ethod ends when no more
components are null). However, ta.bu search reinstates the symmetric
relation by allowing constructive and destructive moves to co-exist,
as a special instance of an approach called strategic oscillation (see
Section 3.3).

The neighbourhood search 111ethod can easily be altered by adding
special provisions to yield a variety of classical procedures. Descent
methods, which only pern1it moves to neighbour solutions that im­
prove the current c(xn°w) value, and which end when no improving
solutions can be found, can be expressed by the following provision
in Step 2.

Step 2

Descent Method

(Choice and termination)
Choose xnext E N (x" 0w) to satisfy c(xnext) < c(xnow) and
terminate if no such x"ext can be found.

The evident shortcoming of a descent method is that the final xnow
obtained is a local optimum, which in n1ost cases will not be a global
optimum.

Randomized procedures such as Monte Carlo methods, which in­
clude simulated annealing, can shnilarly be represented by adding a
sin1ple provision to Step 2.

The Framework 85

Step 2
(A)
(B)
(C)

(D)

Monte Carlo Method

(Choice and termination)
Randomly select xnext from N(x" 0w).
If c(xnext) < c(x" 0 w) accept xnext (and proceed to Step 3).
If c(xnext) > c(x" 0 w) accept xnei:t with a probability that
decreases with increases in the difference c(x"e,,t) - c(x" 0 w). If
xnext is not accepted on the current trial by this criterion, return
to (A).
Terminate by a chosen cutoff rule.

Monte Carlo methods continue to sample the search space until fi­
nally terminating by some form of iteration limit. Normally they use
an exponential function to define probabilities, drawing from prac­
tice established in engineering and physical science. As described in
chapter 2, the Monte Carlo version represented by simulated anneal­
ing starts with a high probability for accepting non-improving moves
in Step 2(C) which is decreased over time as a function of a parame­
ter called the 'temperature' which monotonically diminishes toward
zero as the number of iterations grows.

Such approaches offer a chance to do better than finding a single
local optimum s.ince they effectively terminate only when the prob­
ability of accepting a non-in1proving move in Step 2(C) becomes so
small that no such move is ever accepted (in the finite time allowed).
Hence, they may wander in and out of various intermediate local op­
tima prior to becoming lodged in a final local optimum, when the
temperature bec-omes small.

Another randomizing approach to overcome the limitation of the
descent method is simply to restart the method with different ran­
domly selected i11itial solutions, and run the method multiple times.
Such a random restart approach, sometimes called itemted descent,
may be contrasted with a random perturbation approach, which sim­
ply chooses moves randomly for a period after reaching each local
optimum, and then resumes a trajectory of descent. Alternating
threshold methods indicated in Section 3.2. 7 provide a refinement
of this idea.

3.2.4 Tahu search characteristics

Tahu search, in contrast to the preceding methods, employs a some­
what different philosophy for going beyond the criterion of termi-

86 Tabu Search

nating at a local optimu111. Randoniization is de-emphasized, and
generally is employed only in a highly constrained way, on the as­
sumption that intelligent search should be based on more systematic
forms of guidance. Thus randomization (pseudo-randomization) is
chiefly assigned the role of facilitating operations that are otherwise
cu111berso1ne to irnple1nent or whose strategic implications are un­
clear. (In the latter case, a supplementary learning approach such as
target analysis-see Laguna and Glover [3]~-is custo1narily employed
to detern1ine if such implications can be sharpened.) Accordingly,
many ta.bu search iinple1nentations a.re largely or wholly determin­
istic. An exception occurs for the variant called probabilistic ta.bu
search, which selects 1noves according to probabilities based on the
status and evaluations assigned to these n1oves by the basic ta.bu
search principles. (A discussion of probabilistic convergence issues is
provided by Faigle and Kern (4].)

Special TS uses of memory: modifying neighbourhood struc­
tures

The notion of exploiting certain forms of flexible memory to con­
trol the search process is the central theme underlying ta.bu search.
The effect of such 111emory 1nay be envisioned by stipulating that TS
n1aintains a selective history H of the states encountered during the
search, and replaces N (xnow) by a modified neighbourhood which
111ay be denoted N(H, xn°w). History therefore determines which so­
lutions 111ay be reached by a n1ove from the current solution, selecting
xnext fro1n N(H, xnow).

In TS strategies based on short term considerations, N (H, xnow)
is typically a subset of N (xnow), and the tabu classification serves
to identify elements of N(xn°w) excluded fro111 N(H,xnow). In the
intermediate and longer term strategies, N (H, xn°w) 1nay contain so­
lutions not in N (:i:n°w), generally consisting of selected elite solutions
(high quality local optima) encountered at various points in the solu­
tion process. Such elite solutions are typically identified as elements
of a regional cluster in intermediate term intensification strategies,
and as elements of different clusters in longer term diversification
strategies. In addition, elite solution components, in contrast to the
solutions the111selves, are included among the ele1nents that can be
retained and integrated to provide inputs to the search process.

The Framework 87

TS also uses history to create a n1odified evaluation of currently
accessible solutions. This 1nay be expressed formally by saying that
TS replaces the objective function c(a:) by a function c(H,x), which
has the purpose of evaluating the relative quality of currently acces­
sible solutions. (An illustration is provided by the use of frequency­
based memory in the example of Section :3.2.1.) The relevance of
this modified function occurs because TS uses aggressive choice cri­
teria. that seek a best xnext, i.e. one that yields a best value of
c(H, xnext), over a candidate set drawn from N(H, x"0 w). Moreover,
modified evaluations are often accompanied by systematic alteration
of N(H, x"0 w), to include neighbouring solutions that do not satisfy
customary feasibility conditions (i.e. that strictly speaking do not
yield x EX). Reference to c(x) is retained for determining whether
a 1nove is improving or leads to a new best solution.

For large problen1s, where N(H,x" 0 w) may have many elements,
or for problems where these elements may be costly to exarnine, the
aggressive choice orientation of TS makes it highly important to iso­
late a candidate subset of the neighbourhood, and to exa1nine this
subset instead of the entire neighbourhood. This can be done in
stages, allowing the candidate subset to be expanded if alternatives
satisfying aspiration levels are not found. Because of the significance
of the candidate subset's role, we refer to this subset explicitly by the
notation CandidateJv(xnow). Then the ta.bu search procedure may
be expressed in the following manner.

Tahu Search Method

Step 1 (Initialization)
Begin with the same initialization used by Neighbourhood Search,
and with the history record H empty.

Step 2 (Choice and termination)
Determine Candidate_N(xnow) as a subset of N(H, xnow). Se­
lect xnext from C-0ndidate_N(xn°w) to minimize c(H, x) over
this set. (xnext is called a highest evaluation element of
Candidate_N(xnow).) Terminate by a chosen iteration cut-off rule.

Step 3 (Update)
Perform the update for the Neighbourhood Search Method, and
additionally update the history record H.

Formally the ta.bu search n1ethod is quite straightforward to state.
The essence of the n1ethod depends on how the history record H is

88 Tabu Search

defined and used, and on how the neighbourhood Candidate_N(xnow)
and the evaluation function c(H, x) are detennined.

In the simplest cases we may irnagine Candidate fl(xn°w) to con­
stitute all of N (H, xrww), and take c(H, x) = c(x), disregarding neigh­
bourhood screening approaches and the longer term considerations
that introduce elite solutions into the detern1ination of moves. We
begin fron1 this point of view, focusing on the short term co1nponent
of ta.bu search for determining the fonn and use of H. The basic con­
siderations provide a foundation for the intennediate and long term
TS components as well.

3.2.5 Tahu search 1ne111ory

Attribute based 1nemory

An attribute of a 1nove from xnow to :i:next, or more generally of a
trial move fro1n xnow to a tentative solution x 11·ial, can encompass
any aspect that changes a.s a result of the move. Natural types of
attributes are as follows.

Illustrative Move Attributes for a Move xnow to xtrial

(A 1) Change of a selected variable xi from O to l.
(A2) Change of a selected variable Xk from 1 to 0.
(A3) The combined change of (Al) and (A2) taken together.
(A4) Change of c(x" 0 w) to c(xt,·ial).
(A5) Change of a function g(x" 0

"') to g(a:t1"ial) (where g may represent
a function that occurs naturally in the problem formulation or
that is created strategically).

(A6) Change represented by the difference value g(xtrial) - g(xnow).
(A 7) The combined changes of (A.5) or (A6) for more than one function

g considered simultaneously.

A single move can evidently give rise to multiple attributes. For ex­
ample, a 1nove that changes the values of two variables simultaneously
1nay give rise to each of the three attributes (Al), (A2), and (A3),
as well as to other attributes of the form indicated. Attributes that
represent con1binations of other attributes do not necessarily provide
1nore exploitable infonnation, as will be seen. Attributes (A5) to
(A 7) are based on a function g that may be strategically chosen to be
completely independent from c. For example, g 1nay be a measure of
distance (or dissi1nilarity) between any given solution and a reference

The Framework 89

solution, such as the last local optimu1n visited or the best solution
found so far. Then, attribute (A6) would indicate whether a trial
solution leads the search further from or closer to the reference point.

Move attributes, involving change, 1nay be subdivided into com­
ponent attributes called from-attributes and to-attributes. That is,
each move attribute may be expressed as an ordered pair (from­
attribute, to-attribute) whose components are respectively attributes
of the solutions xnow and xtrial. Letting A(xnow) and A(xtrial) de-
note attribute sets for these two solutions, the require1nent of change
underlying the definition of a 1nove attribute implies

from-attribute
to-attribute

E A(xnow) _ A(xtrial)
E A(xtrial) _ A(xnow).

This differentiation between move attributes and their component
from-attributes and to-attributes is useful for establishing certain out­
comes related to their use.

When we refer to assigning alternative values to a selected vari­
able x j of x, and particularly to assigning values O and 1 to a binary
variable, we will understand by our previous conventions that this
can refer to a variety of operations such as adding or deleting edges
from a graph, assigning or re1noving a facility from a particular loca­
tion, changing the processing position of a job on a machine, and so
forth. Such coding conventions can be extended to include the cre­
ation of supplementary variables that represent states of subservient
processes. For exan1ple, x j = 0 or 1 n1ay indicate that an associated
variable is nonbasic or basic in an extren1e point solution procedure,
as in the simplex method and its variants for linear and nonlinear
programming.

Uses of move attributes

Recorded move attributes are often used in tabu search to in1pose
constraints, called tabu restrictions, that prevent n1oves fro1n being
chosen that would reverse the changes represented by these attributes.
More precisely, when a move from xnow to xnext is performed that con­
tains an attribute e, a record is maintained for the reverse attribute
which we denote by e, in order to prevent a move from occurring that
contains some subset of such reverse attributes. Exan1ples of kinds
of tabu restrictions frequently employed are as follows.

90 Tabu Search

Illustrative Tahu Restrictions

A move is tabu if:
(Rl) Xj changes from 1 to O (where :J.:j previously changed from Oto 1).
(R2) x,., changes from O to 1 (where Xk previously changed from 1 to 0).
(R3) at least one of (Rl) and (R2) occur. (This condition is more restric-

tive than either (Rl) or (R2) separately-i.e. it makes more moves
tabu.)

(R4) both (Rl) and (R2) occur. (This condition is less restrictive than
either (Rl) or (R2) separately-i.e. it makes fewer moves tabu.)

(R5) both (Rl) and (R2) occur, and in addition the reverse of these
moves occurred simultaneously 011 the same iteration in the past.
(This condition is less restrictive than (R4).)

(R6) g(x) receives a value v' that it received on a previous iteration (i.e.
v' = g(x') for some previously visited solution x').

(R7) g(x) changes from v" to v', where g(;r) changed from v' to v11 on a
previous iteration (i.e. v' = g(x') and v" = g(x") for some pair of
solutions x' and x" previously visited in sequence.)

Among the restrictions of these exan1ples, only (R5) applies to a
composite attribute, in which two cornponent attributes simultane­
ously identify a single attribute of a previous n1ove. (However, (R4)
is meaningful only if the present move is composed of two such at­
tributes, but does not depend on the condition that both of these
attributes have occurred together in the past.) Also, while (R7) is
less restrictive than (R6) (since it renders fewer moves ta.bu), both
of these restrictions can reduce either to (Rl) or (R2) by specifying
g(x) = Xj or g(x) = Xk. (Restriction (R6) is equivalent to (R7) in
the situation where g(x) can only take two different values.)

Tahu restrictions are also son1etimes used to prevent repetitions
rather than reversals, as illustrated by stipulating in (Rl) that x j
previously changed from 1 to 0, rather than from 0 to 1. These have
a role of preventing the repetition of a search path that leads away
fron1 a given solution. By contrast, restrictions that prevent reversals
have a role of preventing a return to a previous solution. Hence, tabu
restrictions vary according to whether they are defined in terms of
reversals or duplications of their associated attributes.

The role of tabu status

A tabu restriction is typically activated only in the case where its
attributes occurred within a li1nited number of iterations prior to the

The Framework 91

present iteration (creating a recency-based restriction), or occurred
with a certain frequency over a longer span of iterations (creating
a frequency-based restriction). More precisely, a tabu restriction is
enforced only when the attributes underlying its definition satisfy
certain thresholds of recency or frequency. To exploit this notion,
we define an attribute to be tabu-active when its associated reverse
(or duplicate) attribute has occurred within a stipulated interval of
recency or frequency in past moves. An attribute that is not tabu­
active is called ta.bu-inactive.

The condition of being tabu-active or ta.bu-inactive is called the
tabu status of an attribute. Son1eti1nes an attribute is called ta.bu
or not ta.bu to indicate that it is ta.bu-active or ta.bu-inactive. It is
iinportant to keep in mind in such cases that a 'tabu attribute' does
not correspond to a tabu move. As the preceding exa1nples show, a
move may contain ta.bu-active attributes, but still may not be ta.bu
if these attributes are not of the 1·ight number or kind to activate a
tabu restriction.

The most common ta.bu restrictions, whose attributes are the re­
verse of those defining these restrictions, characteristically have a goal
of preventing cycling and of inducing vigour into the search. How­
ever, some types of restrictions 1nust be accompanied by others, at
least periodically, to achieve the cycle avoidance effect. For example,
the restriction (R5) is not able to 1)l'event cycling by itself, regardless
of the interval of time it is allowed to be in effect. This can be demon­
strated by letting the ordered pair (j, k) denote an attribute in which
Xj changes from O to 1 and Xk cha.nges from 1 to 0. Then a sequence
of 3 moves that creates the three attributes (1,2), (2,3), and (3,1)
both starts and ends at the same solution, but this sequence is not
prevented by restriction (R5). (R,7) also may not prevent cycling, if
g(x) can change fron1 a later value to an earlier value without visiting
values that were successively generated at intennediate points (e.g.
going from 5 to 10 to 15 and then back to .5, jumping over the reverse
n1ove from 15 to 10).

Cycle avoidance can easily be achieved over the duration of tabu
tenure, however, by focusing specifically on frotn-attributes and to­
attributes rather than on their ordered pair combinations. l\1ore pre­
cisely, as long as at least one to-attribute of a current move is not
a from-attribute of a previous move, cycling cannot occur. Exa1ni-

92 Tabu Search

nation of the preceding restrictions shows that all except (R5) and
(R7) implicitly are based on the requirement that specified from­
attributes of previous moves 1nust not be to-attributes of the current
move, or else the 1nove is tabu. (The only co1nponent attributes of
the present move that are relevant to its tabu classification are its
to-attributes, which to prevent reversals must be from-attributes of
previous moves.)

It should be pointed out, however, that cycle avoidance is not
an ultimate goal of the search process. In son1e instances, a good
search path will result in revisiting a solution encountered before.
The broader objective is to continue to stiinulate the discovery of
new high quality solutions. Hence in the longer term the issue of
cycle avoidance is 1nore subtle than siinply preventing a solution from
being revisited. The way that tabu restrictions depend on different
choices of move attributes, and the consequences of this dependency,
are examined in the following example.

An Example Consider a past move that involves a change from
x j = p to x j = q. To avoid a reversal, we stipulate that the from­
attribute of this move, x j = JJ, is ta.bu-active, thus allowing the pos­
sibility of preventing a move with a change in which x j = p is the
to-attribute. But x j =]J is not the only component of the past move
that can qualify as a from-attribute, and hence that can be the basis
for defining a tabu-active status.

By conceiving an attribute change implicitly to involve replacing
an attribute e by a complementary attribute e, the change from x j =
p to x j = q in fact n1ay be viewed as con1posed of two such attribute
changes: from x1 = p to Xj -=/= p, and from x1 -=/= q to x1 = q. Thus,
x j -=/= q can also be regarded as a from-attribute of this change. By
avoiding either of the ta.bu-active reverse attributes, to Xj = p or to
Xj -=/= q, the present move will not be able to re-visit the solution that
initiated the past n1ove. (Note that avoiding Xj =/:- q is the same as
co1npelling Xj = q, which is 1nore restrictive than avoiding Xj = p.)

The problem illustrated at the start of this chapter gives an in­
structive example of options created by identifying ta.bu attributes
in this way. The swap moves of the illustration consist of selecting
two iten1s, j and k, where ite1ns j and k occupy positions p and q
respectively, and then exchanging their positions. Let Xu = v denote

The Framework 93

the statement 'item u is assigned to position v'. Hence the the swap
move for interchanging the positions of iten1s j and k can be repre­
sented as consisting of the two operations 'fro1n x 1 = JJ to x j = q' and
'from Xk = q to Xk = p'. Subdividing these operations into their com­
ponents, we can express the outcome as consisting of the following
changes:

from x j = p to x j -/- p
from x j -/- q to x j = q
from X k = q to X k i- q
from X k i- JJ to X k = JJ.

Thus, any combination of the preceding from-attributes can be se­
lected to represent corresponding to-attributes of a n1ove currently
under consideration, for the purpose of defining a tabu restriction
applicable to this move. We 1nay elect, for instance, to rely on just
the first and third of the preceding from-attributes, using the tabu
restriction that classifies a move tabu only if it contains both Xj = p

and Xk = q as to-attributes. (Hence this prevents the current n1ove if
it transfers item j to position JJ and ite1n k to position q, where items
j and k were respectively moved out of these two positions in the
past, though not necessarily on the san1e move.) This is a weaker re­
striction than one based on either the second or fourth from-attribute
above, which renders a move ta.bu if it contains Xj-/- q or Xk-/- pas a
to-attribute, hence essentially compelling the current move to result
in x j = q or x k = p (or possibly both, depending on the restric­
tion chosen). One implication of choosing stronger or weaker tabu
restrictions is to render sn1aller or larger tabu tenures appropriate.

Effect of Variable Codings Different codings of variables also lead
to different consequences for creating tabu restrictions. For example,
if Xu = v instead is given the interpretation 'item u iinmediately
precedes item v', then the swap of ite111s j and k yields an altered set
of attributes with different associated possibilities. Denoting the two
items that immediately precede and irnmediately follow j by p and q,
and the corresponding items for k by r and s, we see that the swap
creates the following changes:

fron1 x j = q to x j = s

94

from x k = s to .i: k = q
from x P = j to a: P = k
from Xr = k to ;i;r = j.

Tahu Search

Moreover, each of these subdivides into two additional components
(for example, the first becomes · from x j = q to x j -/:- q' and 'from x j i­
s to Xj = s'), yielding a set of options for defining tabu restrictions
that is considerably expanded over those of the preceding coding of
the variables.

Representationally, there may be multiple options for character­
izing the same set of attributes, and it is appropriate to use one that
is natural for the problem setting. In this case, for example, it is con­
venient to represent the condition 'item u immediately precedes item
v' as an arc (u, v) from node u to node v in a directed graph, and by
this convention the statement 'from x j = q to x j = s' corresponds to
saying 'arc (j, q) replaces arc (j, s)'. A component change of the form
'from Xj = q to Xj-/:- q' (or 'from ;i;j-/:- q to Xj = q') then corresponds
to saying that arc (j, q) is dropped from (or added to) the graph. We
note it is always possible to encode the pair of conditions x j = q and
x j -/:- q as the assignment of values to a binary variable, e.g. letting
x jq = l denote x j = q and letting :z: jq = 0 denote x j -/:- q, and in
the present exa.n1ple this yields the standard algebraic notation for
expressing that arc (j, q) is absent or present in a graph.

Broadly speaking, regardless of the representation en1ployed, a
move can be determined to be ta.bu by a restriction defined over any
set of conditions on its attributes, provided these attributes are cur­
rently tabu-a.ctive. As the preceding discussion illustrates, a common
type of restriction operates by selecting some subset of attributes and
declaring the move to he tabu if a certain minimum nu1nber (e.g. one
or all) are ta.bu-active.

3.2.6 Recency-based tabu 111e111ory functions

To keep track of the status of move attributes that compose ta.bu
restrictions, and to determine when these restrictions a.re applica­
ble, several basic kinds of memory functions have been found useful.
Two common examples of recency-based memory functions a.re speci­
fied by the arrays tabu_start(e) and tabu_encl(e), where e ranges over
attributes relevant to a particular application. These arrays respec-

The Framework 95

tively identify the starting and ending iterations of the ta.bu tenure for
attribute e, thus bracketing the period during which e is tabu-active.

The rule for identifying appropriate values for tabu_start(e) and
tabu_end(e) results fron1 keeping track of the attributes at each it­
eration that are components of the current 1nove. l11 particular, on
iteration i, if e is an attribute of the current move, and ta.bu sta­
tus is defined to avoid reversals, then we set tabu_start(e) = i + 1,
indicating that the reverse attribute begins its taln1-active status at
the start of the next iteration. (For exa1nple, if e represents 'from
Xj = p' then e can represent 'to Xj = p'.) Attribute e will retain this
status throughout its ta.bu tenure, which we denote by t. This then
yields tabu_end(e) = i + t, so that the tenure for e ranges over the t

iterations from i + 1 to i + t.
As a result, it is easy to test whether an arbitrary attribute e is

ta.bu-active, by checking to see if tabu_end(e) > current_iteration.

By initializing tabu_end(e) = 0 for all attributes, we insure that
tabu_end(e) < current_iteration, and hence that attribute e is tabu­
inactive, until the update previously specified is performed. This
suggests we need to keep only the single array tabu_end(e) to provide
information about ta.bu status. However, we will see that situations
arise where it is valuable to keep tabu_start(e), and either to infer
tabu_end(e) by adding an appropriate value oft (currently co1nputed,
or preferably extracted from a pre-stored sequence), or to n1aintain
tabu_end(e) as a separate array.

Memory can often be further simplified when attributes represent
binary alternatives, such as changing fro1n x j = 0 to x j = 1. Then,
instead of recording a separate value tabu_start(e) for ea.ch of these
attributes, it suffices siinply to record a. singl<> value tabu_start(j).
We automatically know whether tabu_start(j) refers to changing fro1n
x j = 0 to x j = 1 or the reverse, by ta.king account of the value of
Xj in the current solution. If currently Xj = 1, for exa1nple, the
most recent change was from x j = 0 to x j = 1. Then the reverse
attribute, derived from changing Xj from 1 to 0, is the one whose
tenure is represented by the value of tabu_start(j). (We assume that
the latest ta.bu tenure assigned to an attribute takes precedence over
all others.)

Regardless of the data structure employed, the key issue for creat­
ing ta.bu status using recency-based me1nory is to determine a 'good

96 Tabu Search

value' oft. Rules for determining t are classified as static or dynamic.
Static rules choose a value for t that remains fixed throughout the
search. Dynamic rules allow the value oft to vary. Examples of these
two kinds of rules are as follows.

Static rules

Dynamic
rules

Illustrative Rules to Create Tahu Tenure
(Recency Based)

Choose t to be a constant such as t = 7 or t = .Jn, where
n is a measure of problem dimension.

Simple dynamic: Choose t to vary (randomly or by sys­
tematic pattern) between bounds tmin and tmax, such as
lmin = 5 and lmaJ, = 11 01" lmin = .9-Jn and tmax = 1.1.jn.

Attribute-dependent dynamic: Choose t as in the Simple
dynamic rule, but determine t,,,; 11 and tmax to be larger for
attributes that are more attractive, e.g. based on quality
or influence considerations.

The indicated values such as 7 and y'n are only suggestive, and rep­
resent parameters whose preferred values should be set by experi­
mentation for a particular class of problems. Values between 7 and
20 in fact appear to work well for a variety of problem classes, while
values between .5y0i, and 2y0i, appear to work well for other classes.
(A weighted multiple of y'n is replaced by a weighted multiple of n
for some problems.) As previously intimated, if tabu_end(e) is not
maintained separately, but is inferred as the value tabu_start(e) + t,
then for the dynamic case it may be preferable to pre-compute a
sequence of appropriate values for t and simply step through them
each time a new t is needed. (Random sequences can be reasonably
approximated this way with considerable saving of computational ef­
fort. Alternatively, t can be computed only once or a small number
of times on a given iteration, instead of being recomputed separately
for each trial move.)

It is often appropriate to allow different types of attributes defin­
ing a ta.bu restriction to be given different values for the tenure t.
For example, some attributes can contribute more strongly to a tabu
restriction than others, and should be given a briefer tabu tenure
to avoid making the restriction too severe. To illustrate, consider a

The Framework 97

problem of identifying an optimal subset of m ite1ns from a much
larger set of n items. (For instance, such a proble1n n1ay involve
identifying a subset of m edges fron1 an n-edge graph to create a
travelling sales1nan tour, or a subset of 1n locations from n available
sites to establish distribution centres, or a subset of rn nodes from
an n-node complex to serve as telecommunication switching centres,
etc.) Suppose each move consists of exchanging one or a small num­
ber of items in the subset with an equal nu111ber outside the subset,
to create a new subset of m ite1ns. Accon1panying this, also suppose
a tabu restriction is used that forbids a move if it contains either
an item recently added or an item recently dropped, where the tabu
tenure provides the meaning of 'recently'.

If the tenure for added and dropped items is the same, the preced­
ing restriction can become very lopsided. In particular, when other
factors are equal, preventing items in the subset frmn being dropped
is much more restrictive than preventing iten1s not in the subset from
being added, since there are far fewer contained in the subset than
contained outside. In addition, preventing elenwnts added to the
subset from being dropped for a relatively long time can significantly
inhibit available choices; hence the tenure for these elements should
be made small by comparison to the tenure for preventing elements
dropped from the subset from being added, whether by using static
or dynamic rules.

Practical experience indicates that dynamic rules are typically
more robust than static rules (see, e.g. Glover et al. [5]). Good
parameter values for dynamic rules normally range over a wider in­
terval, and produce results comparable or superior to the outcomes
produced by static rules. Dynamic rules that depend on both at­
tribute type and quality, where greater tenures are allotted to prevent
reversals of attributes that participate in high quality moves, have
proved quite effective for difficult proble1ns related to scheduling and
routing (Dell'Amico and Trubian [6]; Gendreau et al. [7]; Laguna et
al. [25]). In addition, a class of dyna1nic rules based on introducing
moving gaps in tenure, and another class based on exploiting logical
relationships underlying attribute sequences, have recently proved ef­
fective (Chakrapani and Skorin-Kapov [9]; Dammeyer and Voss [10]).
Dynamic rules for detennining tabu tenure are ainong the aspects of
tabu search that deserve n1ore study.

98 Tabu Searcl1

3.2. 7 Aspiration criteria

Aspiration criteria are introduced in tabu search to determine when
tabu restrictions can be overriddett, thus removing a tabu classifica­
tion otherwise applied to a move. The appropriate use of such criteria
can be very important for enabling a TS method to achieve its best
performance levels.

Early applications e1nployed only a si1nple type of aspiration cri­
terion, consisting of re1noving a tabu classification from a trial move
when the move yields a solution better than the best obtained so
far. (Such a rule is illustrated in the example of Section 3.2.1.) This
criterion remains widely used. However, other aspiration criteria can
also prove effective for improving the search.

A basis for one of these criteria arises by introducing the concept
of influence, which 1neasures the degree of change induced in solution
structure or feasibility. (Influence is often associated with the idea
of move distance, i.e. a move of greater distance is conceived of as
having greater influence-see [5].) This notion can be illustrated for
a proble1n of distributing unequally weighted objects among boxes,
where the goal is to give each box as nearly as possible the same
weight. A high influence move, which significantly changes the struc­
ture of the current solution, is exemplifi(,d by a move that transfers
a heavy weight object frmn one box to another, or that swaps ob­
jects of very dissi1nilar weights between two boxes. Such a move may
or may not improve the current solution, though it is less likely to
yield an in1prove1nent when the current solution is relatively good.
But high influence 111oves are important, especially during intervals
of breaking away fro111 local optimality, because a series of moves
that is confined to n1aking only srnall structural changes is unlikely
to uncover a chance for significant improve1nent. (Such an effect is
illustrated in job sequencing problen1s by exchanging positions of jobs
that are close together.)

Moves of lower influence may norn1a.lly be tolerated until the op­
portunities for gain from them appear to be negligible. At such a
point, and in the absence of improving moves, aspiration criteria
should shift to give influential moves a higher rank. Also, once an
influential 1nove is made, ta.bu restrictions previously established for
less influential 1noves should be dropped or 'weakened', in a manner
to be explained. (Bias that may be employed to favour the choice of

Tlie Framework 99

other influential 1noves should likewise be temporarily diminished.)
These considerations of 1nove influence interact with considerations
of regionality and search direction, as indicated below.

Aspirations are of two kinds: move aspirations and att-ribute as­
pirations. A move aspiration, when satisfied, revokes the 1nove's tabu
classification. An attribute aspiration, when satisfied, revokes the at­
tribute's ta.bu-active status. In the latter case the move may or n1ay
not change its ta.bu classification, depending on whether the tabu
restriction can be activated by 1nore than one attribute.

The table below lists criteria for determining the admissibility of
a trial solution, xtrial, as a candidate for consideration (potentially
to become xnext), where xtrial is generated by a move that ordinarily
would be classified ta.bu. The first of these criteria is rarely applica­
ble, but is understood auton1atically to be part of any tabu search
procedure. These aspiration criteria include several useful strategies
for ta.bu search that have not yet been widely exa1nined and that
warrant fuller investigation.

For example, a special case of the Regional Aspiration by Objec­
tive occurs by defining R = { x : g(x) = r}, where g(:r) is a hashing
function created to distinguish an1ong different :r vectors according to
the value assigned to g(x). (E.g. g(x) can be an integer-valued func­
tion defined n1odulo p, taking the values r = 0, 1, ... ,JJ - 1.) Then
besLcost(R) is conveniently recorded as besLcosl(r), identifying the
minimum c(x) found when g(x) = r. The 'regionality' defined by R
in this case provides a basis for integrating the elements of aspiration
and differentiation. (A g(x) hashing function can a.lso be treated as
an attribute function, and incorporated into tabu restrictions as de­
scribed earlier. Or in reverse, a hashing function can be defined over
attributes, with particular emphasis on those that qualify as influ­
ential.) Such an approach can be employed to complement uses of
hashing functions in ta.bu search suggested by Hansen and Jaumard
(11] and by Woodruff and Zemel [12].

Aspiration by Search Direction and Aspiration by Influence pro­
vide attribute aspirations rather than move aspirations. In most cases
attribute and move aspirations are equivalent. (Among the tabu re­
strictions (Rl) to (R7) of Section 3.2 .. 5, only (R3) can provide con­
ditions where these two types of aspirations differ, i.e. where an
attribute may be tabu-inactive without necessarily revoking the tabu

100 Tabu Search

classification of the associated 1nove.) Nevertheless, different means
are employed for testing these two kinds of aspirations.

Illustrative Aspiration Criteria

Aspiration by Default: If all available moves are classified tabu, and are
not rendered admissible by some other aspiration criteria, then a
'least tabu' move is selected. (For exan1ple, select a move that
loses its tabu classification by the least increase in the value of
currenLiteration, or by an approximation to this condition.)

Aspiration by Objective: Global form (customarily used): A move aspi­
ration is satisfied, permitting xtrial to be a candidate for selection,
if c(xtrial) < besLcost.
Regional form: Subdivide the search space into regions R E R,
identified by bounds on values of functions g(x) (or by time inter­
vals of search). Let besLcost(R) denote the minimum c(x) for x
found in R. Then, for xtrial E R, a move aspiration is satisfied
(for moving to xtrial) if c(xtrial) < besLcost(R).

Aspiration by Searcli Direction: Let direction(e) = improving if the
most recent move containing e was an improving move, and
direction(e) = nonimp1'oving, otherwise. (direction(e) and
tabu_end(e) are set to their current values on the same iteration.)
An attribute aspiration fore is satisfied (making e tabu-inactive)
if direction(e) = improving and the current trial move is an im­
proving move, i.e. ifc(xtrial) < c(xnow).

Aspiration by Influence: Let influence{e)= 0 or 1 according to whether
the move that establishes the value of tabu_start(e) is a low in­
fluence move or a high influence move (inffoence{e) is set at the
same time as set.ting tabu_stm·t(e)). Also, let latest(L), for L = 0
or 1, equal the most recent iteration that a move of influence level
L was made. Then an attribute aspiration for e is satisfied if
infiuence(e)= 0 and tabu_start(e) < latest(l). (e is associated
with a low influence move, and a high influence move has been
performed since establishing the tabu status for e.) For n1ultiple
influence levels, L = 0, I, 2, ... , the aspiration for e is satisfied if
there is an L > influence(e) such that tabu_start(e) < latest(L).

The Framework 101

Aspiration criteria refinements

Refinements of the criteria illustrated above provide an opportunity
to enhance the power of tabu search for applications that are more
complex, or that offer a large reward for solutions of very high quality.
We identify some of the possibilities for achieving this in the following.

Creating a tabu status that varies by degrees, rather than simply
designating an attribute to be tabu-active or ta.bu-inactive, leads to
an additional refinement of Aspiration by Search Direction and Aspi­
ration by Influence. Graduated tabu status is implicit in the penalty
function and probabilistic variants of ta.bu search, where status is
customarily expressed as a function of how recently or frequently an
attribute has become tabu-active. However, to employ this idea to
enhance the preceding aspiration criteria, we create a single addi­
tional intermediate tabu state that falls between the two states of
tabu-active and ta.bu-inactive. In particular, when an aspiration is
satisfied for an attribute that otherwise is tabu-active, we call it a
pending tabu attribute.

A move that would be classified tabu if its pending tabu attributes
are treated as tabu-active, but that would not be classified tabu oth­
erwise, is correspondingly called a pending tabu move. A pending
tabu move can be treated in one of two ways. Iu the least restrictive
approach, such a move is not prevented fron1 being selected, but is
shifted in status so that it will only be a candidate for selection if
no improving moves exist except those that are tabu. In the more
moderate approach, a pending ta.bu 1nove additionally n1ust be an
improving move to qualify for selection. (This will occur automat­
ically for Aspiration by Search Direction, since in this case a move
can only become a pending tabu rnove when it is improving.)

An Aspiration consequence for Strong Admissibility The preceding
notions lead to an additional type of aspiration. Define a 1nove to be
strongly admissible if:

(1) it is admissible to be selected and does not rely on aspiration
criteria to qualify for admissibility; or

(2) it qualifies for admissibility based on the Global Aspiration by
Objective, by satisfying c(:rtrial) < besl_cost.

102 Tabu Search

Aspiration by Strong Admissibility: Let. lasLnonimprovement equal
the most recent iteration that a nonimproving move was made,
and let lasLstrong/y_admissible equal the most recent itera­
tion that a strongly admissible move was made. Then, if
lasLnonimp1·ovem.ent < lasLsi1'ong/y_admissible, reclassify ev­
ery improving tabu move as a pending taint move (thus allowing it
to be a candidate for selection if no other improving moves exist).

The inequality lasLnonirnprovenient < last....strong[y_admissible of
the preceding aspiration condition implies two things: first that a
strongly admissible improving move has been n1ade since the last non­
improving move, and second that the search is currently generating an
improving sequence. (The latter results since only improving moves
can occur on iterations n1ore recent than lasLnonimprovernent, and
the set of such iterations is none1npty.)

This type of aspiration ensures that the 1nethod will always pro­
ceed to a local opthnu1n whenever an improving sequence is created
that contains at least one strongly admissible move. In fact, condition
(2) defining a strongly admissible move can be removed without al­
tering this effect, since once the criterion c(xtrial) < besLcost is used
to justify a move selection, then it will continue to be satisfied by all
improving 1noves on subsequent iterations until a local optimum is
reached.

Because of its extended ability to override ta.bu status, the Aspi­
ration by Strong Admissibility may be predicated on the requirement
that a 1nove with a high influence level has been Ina.de since the end
of the most recent (previous) hnproving sequence. Specifically, such a
high influence move should have occurred on a.n iteration greater than
the n1ost recent iteration prior to lasLnonimprovenient on which an
in1proving move was executed. This added requiren1ent is applicable
whether or not Aspiration by Influence is used.

These ideas can be used to generate an alternating TS method
related to the tabu thresholding approach of Glover (13]. Such a
1nethod results by adding a further condition to the Aspiration by
Strong Ad1nissibility, stipulating that once a nonin1proving n1ove is
executed, then no hnproving move is allowed unless it is strongly ad-
1nissible, thereby generating what may be called an alternating ta.bu

The Framework 103

path. The consequence is that each improving sequence in such an
alternating tabu path terminates with a local optimum. (An Aspira­
tion by Default 1nust also be considered a strongly adn1issible move
to assure this in exceptional cases.)

The effect of tabu status in this alternating approach can be
amplified during a nonin1proving phase by interpreting the value
tabu_end(e) to be shifted to a larger value for a.11 attributes e, until
a strongly adn1issible move is executed and the phase ends. Recent
results by Ryan [14] on the depth and width of paths linking local
optima are relevant to determining ranges for shifting tabu_end(e) in
such alternating constructions.

Special considerations for Aspiration by Influence

The Aspiration by Influence criterion can be modified to create a
considerable iinpact on its effectiveness for certain types of applica­
tions. The state111ent of this aspiration derives frmn the observation
that a move characteristically is influential by virtue of containing
one or more influential attributes (jobs with large set-up or process­
ing times, warehouses with large capacities, circuits with n1ultiple
switches, etc.). Under such conditions, it is appropriate to con­
sider levels of influence defined over attributes, as expressed by in­
ftuence(e). In other cases, however, a rnove 1nay derive its influence
from the unique combination of attributes involved, and Aspiration
by Influence then preferably translates into a n1ove aspiration rather
than an attribute aspiration. (In so1ne instances the attribute orien­
tation can be n1aintained by defining inftuence(e) to be the influence
of the trial move that contains e.)

More significantly, in many applications influence depends on a
form of connectivity, causing its effects to be expressed priinarily over
a particular range. We call this range the sphere of influence of the
associated move or attribute. For example, in the problen1 of dis­
tributing weighted objects among boxes, a move that swaps objects
between two boxes has a relatively narrow sphere of influence, affect­
ing only those future moves that transfer an object into, or out of,
one of these two boxes. Accordingly, under such circu1nstances Aspi­
ration by Influence should be confined to 1nodifying the ta.bu status
of attributes, or the tabu classification of moves, that fall within an
associated sphere of influence. In the example of swapping objects

104 Tabu Search

between boxes, the attributes rendered tabu-inactive would be re­
stricted to from-attributes associated with moving an object out of
one of the two boxes and to-attributes associated with moving an
object into one of these boxes. The change of ta.bu status continues
to depend on the conditions noted previously. The influence of the
attribute (or move containing it) must be less than that of the earlier
move, and the iteration tabu_start(e) for the attribute must precede
the iteration on which the earlier infiuentia.l move occurred. These
conditions can be registered by setting a flag for tabu_start(e) when
the influential move is executed, without having to check again later
to see if e is affected by such a move. When tabu_start(e) becomes
reassigned a. new value, the flag is dropped.

As the preceding observations suggest, effective measures of move
influence and associated characterizations of spheres of influence are
extremely important. In addition, it should be noted that influence
can be expressed as a function of tabu search memory components,
as where a move containing attributes that have neither recently nor
frequently been tabu-active may be classified as more highly influen­
tial (because executing the move will change the ta.bu status of these
attributes more radically). This encourages a dynamic definition of
influence, which varies according to the current search state. These
multiple aspects of move infiuence are likely to constitute a more
significant area for future investigation in ta.bu search.

3.2.8 Frequency-based 111e111ory

Frequency-based memory provides a type of information that com­
plements the information provided by recency-based memory, broad­
ening the foundation for selecting preferred moves. Like recency,
frequency is often weighted or decomposed into subclasses by taking
account of the dimensions of solution quality and move influence.

For our present purposes, we conceive frequency measures to con­
sist of ratios, whose numerators represent counts of the number of
occurrences of a particular event (e.g. the number of times a particu­
lar attribute belongs to a solution or move) and whose denominators
generally represent one of four types of quantities, as shown below.

The Framework 105

Denominators for Frequency Measures

(D1) The total number of occurrences of all events represented by the
numerators (such as the total number of associated iterations).

(D2) The sun1 of the numerators.
(D3) The maximum numerator value.
(D4) The average numerator value.

Denominators (D3) and (D4) give rise to what 1nay be called relative
frequencies. The meaning of these different types of frequencies will
be clarified by examples below. In cases where the nun1erators repre­
sent weighted counts, some of which n1ay be negative, (D3) and (D4)
are expressed as absolute values and (D2) is expressed as a sum of
absolute values (possibly shifted by a s1nall constant to avoid a zero
denominator).

Let x(1), x(2), ... , x(currenLiterat-ion) denote the sequence of
solutions generated to the present point of the search process, and
let S denote a subsequence of this solution sequence. We take the
liberty of treating S as a set as well as an ordered sequence. Ele1nents
of S are not necessarily consecutive elements of the full solution se­
quence. (For example, we sometimes will be interested in cases where
S consists of different subsets of high quality local optin1a.)

Notationally, we let S(xj = p) denote the set of solutions in S

for which Xj = p, and let #S(xj = p) denote the cardinality of this
set (hence the number of times x j receives the value JJ over x E S).
Similarly, let S(x j = p to x j == q) denote the set of solutions in S
that result by a move that changes Xj = p to Xj = q. Finally, let
S(from Xj = p) and S(to Xj = q) denote the sets of solutions in S

that respectively contain x j = p as a from-attribute or x j = q as a
to-attribute (for a move to the next solution, or fro1n the preceding
solution, in the sequence x(1), ... , x(current_iteration)). In general,
if solution_attribute represents any attribute of a solution that can
take the role of a from-attribute or a to-attribute for a n1ove, and
if move_attribute represents an arbitrary move attribute denoted by
(from-attribute, to-attribute), then

106

S(solution_attribute) =
S(move_attribute)

S(from-attribute)

S (to-attribute)

Tahu Search

{ x E S : x contains solution_attribute }
{ x E S : x results from a move containing
1nove_attribute }
{ :r E S : :r initiates a move containing
from-attribute }
{ x E S : .r results from a move containing
to-attribute } .

The quantity #S(xj = p) constitutes a residence measure, since it
identifies the number of times the attribute x j = p resides in the
solutions of S. Correspondingly, we call a frequency that results by
dividing such a 1neasure by one of the <len01ninators (1) to (4) a
residence frequency. For the numerator #S(xj = p), the denomi­
nators (1) and (2) both correspond to #S, while denominators (3)
and (4) respectively are given by lVIax (#S(xk = q) : Vk, q) and by
Mean (#S(xk = q): Vk, q).

The quantities #S(xj = p to ;1:j = q), #S(fro1n Xj = p) and
#S(to Xj = q) constitute transition measures, since they identify the
number of times x j changes fro1n and/ or to specified values. Likewise,
frequencies based on such 1neasures are called transition frequencies.
Denominators for creating such frequencies fron1 the foregoing mea­
sures include #S, the total number of times the indicated changes
occur over S for different j,p and/or q values, and associated Max
and Mean quantities.

Distinctions between frequency types

Residence frequencies and transition frequencies so1neti1nes convey
related infonnation, but in general carry different iinplications. They
are sometimes confused (or treated identically) in the literature. A
noteworthy distinction is that residence 1neasures, by contrast to
transition measures, are not concerned with whether a particular
solution attribute of an element x(i) in the sequence S is a from­
attribute or a to-attribute, or even whether it is an attribute that
changes in moving from a:(i) to :r(i + 1) or fro1n x(i - 1) to x(i).
It is only relevant that the attribute can be a from-attribute or a
to-attribute in some future move. Such 1neasures can yield different
types of implications depending on the choice of the subsequence S.

A high residence frequency, for example, may indicate that an
attribute is highly attractive if S is a subsequence of high quality

The Framework 107

solutions, or may indicate the opposite if S is a subsequence of low
quality solutions. On the other hand, a residence frequency that is
high (or low) when S contains both high and low quality solutions
may point to an entrenched (or excluded) attribute that causes the
search space to be restricted, and that needs to be jettisoned (or
incorporated) to allow increased diversity.

From a computational standpoint, when S consists of all solu­
tions generated after a specified iteration, then a residence measure
can be currently 1naintained and updated by reference to values of the
tabu_start array, without the need to increment a set of counters at
each iteration. For a set S whose solutions do not come from sequen­
tial iterations, however, residence measures are calculated simply by
running a tally over elements of S.

Transition measures are generally quite easy to maintain by per­
forming updates during the process of generating solutions (assu1ning
the conditions defining S, and the attributes whose transition mea­
sures are sought, are specified in advance). This results from the fact
that typically only a few types of attribute changes are considered rel­
evant to track when one solution is replaced by the next, and these
can readily be isolated and recorded. The frequencies in the example
of Section 3.2.1 constitute an instance of transition frequencies that
were maintained in this sin1ple manner. Their use in this example,
however, encouraged diversity by approximating the type of role that
residence frequencies are usually better suited to take.

As a final distinction, a high transition frequency, in contrast
to a high residence frequency, may indicate an associated attribute
is a 'crack filler', that shifts in and out of solution to perform a fine
tuning function. Such an attribute may be interpreted as the opposite
of an influential attribute, as considered earlier in the discussion of
Aspiration by Influence. In this context, a transition frequency may
be interpreted as a measure of volatility.

Examples and uses of frequency measures

Illustrations of both residence and transition frequencies are as fol­
lows. (Only numerators are indicated, understanding denominators
to be provided by conditions (1) to (4) above.)

108

(Fl)
(F2)
(F3)
(F4)
(F5)
(F6)
(F7)

Tabu Search

Exa1nple Frequency Measures (Nu1nerators)

#S(xi = p)
#S(xj = p for some Xj)

#S(to Xj = p)
#S(xj changes), i.e. #S(from-or-to 2:i = p for some p)
'ExeS(xi=P) c(x)/#S(xj = p)
Replace S(xj = p) in (F5) with S(xj =p p to Xj = p)
Replace c(x) in (F6) with a measure of the influence of the solution
attribute Xj = p

The measures (F5) - (F7) implicitly are weighted rneasures, created
by reference to solution quality in (F.5) and (F6), and by reference to
move influence in (F7) (or more precisely, influence of an attribute
composing a move). Measure (F5) may be interpreted as the average
c(x) value over S when Xj = p. This quantity can be directly com­
pared to other such averages or can be translated into a frequency
measure using den01ninators such as the sum or maximum of these
averages.

Attributes that have greater frequency measures, just as those
that have greater recency measures (i.e. that occur in solutions or
moves closer to the present), can initiate a tabu-active status if S
consists of consecutive solutions that end with the current solution.
However, frequency-based memory typically finds its most productive
use as part of a longer tenn strategy, which employs incentives as
well as restrictions to determine which moves are selected. In such
a strategy, restrictions are translated into evaluation penalties, and
incentives become evaluation enhancements, to alter the basis for
qualifying moves as attractive or unattractive.

To illustrate, an attribute such as x j = p with a high residence
frequency may be assigned a strong incentive ('profit') to serve as
a from-attribute, thus resulting in the choice of a move that yields
x j ,j:. p. Such an incentive is particularly relevant in the case where
tabu_start(xi i- p) is small, since this value identifies the latest iter­
ation tl1at Xj /: p served as a from-attribute (for avoiding reversals),

and lzence discloses tlzat :ci = p lzas been an attribute of every solu-

tion since.
Frequency-based memory tlierefore is usually applied by intro­

ducing graduated tabu states, as a. foundation for defiiiing penalty
and incentive values to n1odif.y tlze evaluation of moves. A natural

The Framework 109

connection exists between this approach and the recency-based mem­
ory approach that creates ta.bu status as an all-or-none condition. If
the tenure of an attribute in recency-based n1emory is conceived of
as a conditional threshold for applying a very large penalty, then the
ta.bu classifications produced by such me1nory can be interpreted as
the result of an evaluation that becomes strongly inferior when the
penalties are activated. It is reasonable to anticipate that conditional
thresholds should also be relevant to determining the values of penal­
ties and incentives in longer term strategies. Most applications at
present, however, use a simple linear 1nultiple of a frequency measure
to create a penalty or incentive tenn. Funda1nental ways for tak­
ing advantage of frequency based n1einory are indicated in the next
section.

3.2.9 Frequency-based men1ory in si1uple intensifica-
tion and diversification processes

The roles of intensification and diversification in ta.bu search are al­
ready implicit in several of the preceding prescriptions, but they be­
come especially relevant in longer tenn search processes. Intensifica­
tion strategies undertake to create solutions by aggressively encour­
aging the incorporation of 'good attributes'. In the short term this
consists of incorporating attributes receiving highest evaluations by
the approaches and criteria previously described, while in the inter­
mediate to long tenn it consists of incorporating attributes of so­
lutions from selected elite subsets (iinplicitly focusing the search in
subregions defined relative to these subsets). Diversification strate­
gies instead seek to generate solutions that embody compositions of
attributes significantly different fron1 those encountered previously
during the search. These two types of strategies counterbalance and
reinforce each other in several ways.

We first exan1ine simple fonns of intensification and diversifica­
tion approaches that n1ake use of frequency-based memory. These
approaches will be illustrated by reference to residence frequency
measures, but sin1ilar observations apply to the use of transition mea­
sures, taking account of contrasting features previously noted.

For a diversification strategy we choose S to be a significant subset
of the full solution sequence; for exa1nple, the entire sequence starting
with the first local optiinu1n, or the subsequence consisting of all

110 Tabu Search

local optiina.. (For certain strategics based on transition measures,
S may usefully consist of the subsequence containing ea.ch maximum
unbroken succession of non-hnproving moves that immediately follow
a local optin1um, focusing on S(to_attribute) for these moves.)

For an intensification strategy we choose S to be a small subset of
elite solutions (high quality local optima) that share a large nu1nber of
com1non attributes, and secondarily whose 1ne1nbers can reach each
other by relatively small numbers of moves, independent of whether
these solutions lie close to each other in the solution sequence. For
exa1nple, collections of such subsets S n1ay be generated by clustering
procedures, followed by e1nploying a. parallel processing approach to
treat each selected S separately.

Below we provide rules for generating a. penalty or incentive func­
tion, PI, which apply equally to intensification and diversification
strategies. However, the function PI creates a penalty for one strat­
egy (intensification or diversification) if and only if it creates an in­
centive for the other. For illustrative purposes, suppose that a move
currently under consideration includes two n1ove attributes, denoted
e and J, which further may be expressed as e = (e_J rom, e_to) and
J = (f-frorn,J_to). To describe the function PI, we let F(e_Jrom)
and F(e_to) etc. denote the frequency 1neasure for the indicated from­
attributes and to-attributes, and let 1't, T2, ... , T6 denote selected pos­
itive thresholds, whose values depend 011 the case considered.

These conditions for defining PI are related to those previously
illustrated to identify conditions in which attributes beco1ne tabu­
active. For example, specifying that (1) must be positive to make
PI positive corresponds to introducing a ta.bu penalty (or incentive)
when both 1neasures exceed their common threshold. If a measure is
expressed as the duration since an attribute was most recently made
ta.bu-active, and if the threshold represents a common limit for ta.bu
tenure, then (1) can express a recency-based restriction for determin­
ing a ta.bu classification. Assigning different thresholds to different
attributes in (1) corresponds to establishing attribute-dependent ta.bu
tenures. Similarly, the remaining values (2) through (6) may be in­
terpreted as analogues of values that define recency-based measures
for establishing a ta.bu classification, ilnplen1ented in this case by a
penalty.

Broader Aspects 111

Illustrative Penalty /Incentive Function PI for To-attributes

Choose PI as a monotonic nondecreasing function of one of the following
quantities, where PI is positive when the quantity is positive, and is 0
otherwise. (PI yields a penalty in a diversification st.rategy and an
incentive in an intensification strategy.)

(1) Min{F(e_to), F(f-to)} -Ti

(2) Max{F(e_to), F(f-to)} -T2

(3) Mean{F(e_to), F(f Jo)} - T3

Illustrative Penalty /Incentive Function PI for Fro1n-attributes

Choose PI as a monotonic nondecreasing function of one of the following
quantities, where PI is positive when the quantity is positive, and is 0
otherwise. (PI yields an incentive in a diversification strategy and a
penalty in an intensification strategy.)

(4) Min{F(e-/1'om), F(f _f1·om)} -T4

(5) Max{F(e-f1'om), F(f _f1'om)} -T5

(6) Mean{F(e_from), F(f-f1·om)} -T6

From these observations, it is clear that the frequency n1easure F may
be extended to represent combined measures of both recency and fre­
quency. Although these measures are already implicitly co1nbined­
when penalties and incentives based on frequency measures are joined
with tabu classifications based on recency measures, as a foundation
for selecting current 1noves-it is possible that other forms of co1n­
bination are superior. For exa1nple, human problem-solving appears
to rely on con1binations of these types of rnemory that incorporate a
time-discounted measure of frequency. Such considerations 1nay lead
to the design of n1ore intelligent functions for capturing preferred
combinations of these me1nory types.

3.3 Broader Aspects of Intensification and
Diversification

Intensification and diversification approaches that use penalties and
incentives represent only one class of such strategies. A larger collec-

112 Tabu Search

tion emerges by direct consideration of intensification and diversifi­
cation goals. We examine several approaches that have been demon­
strated to be useful in previous applications, and also indicate ap­
proaches we judge to have promise iu applications of the future. To
begin, we make an important distinction between diversification and
rando1nization.

3.3.1 Diversification versus rando111ization

Seeking a diversified collection of solutions is very different from seek­
ing a randomized collection of solutions. In general, we are interested
not just in diversified collections but also in diversified sequences,
since often the order of examining ele1nents is important in tabu
search. This can apply, for example, where we seek to identify a
sequence of new solutions (not seen before) so that each successive
solution is maximally diverse relative to all solutions previously gen­
erated. This includes possible reference to a baseline set of solutions,
such as x E S, which takes priority in establishing the diversification
objective (i.e. where the first level goal is to establish diversification
relative to S, and then in turn relative to other solutions generated).
The diversification concept applies as well to generating a diverse se­
quence of nun1bers or a diverse set of points from the vertices of a
unit hypercube.

Let Z(k) = { z(1), z(2), ... , z(k)} represent a sequence of points
drawn from a set Z. For example, Z may be a line interval if the
points are scalars. We take z(1) to be a seed point of the sequence.
(The seed point may be excepted from the requirement of belonging
to Z.) Then we define Z(k) to be a diversified sequence (or simply
a diverse sequence), relative to a chosen distance metric d over Z by
requiring each subsequence Z(h) of Z(k),h < k, and each associated
point z = z(h + 1) to satisfy the following hierarchy of conditions:

(A) z maximizes the n1iniinu1n distance d(z, z(i)) for i < h;

(B) subject to (A), z 1naximizes the 1ninimum distance d(z, z(i)) for
1 < i < h, then for 2 < i < h, ... , etc. (in strict priority order);

(C) subject to (A) and (B), z maximizes the distance d(z,z(i)) for
i = h, then for i = h - 1, ... , and finally for i = 1. (Additional
ties may be broken arbitrarily.)

Broader Aspects 113

To handle diversification relative to a.n initial baseline set Z* (such
as a set of solutions x E S), the preceding hierarchy of conditions is
preceded by a. condition stipulating that z first maximizes the min­
imum distance d(z, z*) for z* E Z*. A useful (weaker) variant of
this condition simply treats points of z• a.s if they constitute the last
elements of the sequence Z(h).

Variations on (A), (B), and (C), including going deeper in the
hierarchy before arbitrary tie breaking, a.re evidently possible. Such
conditions make it clear that a diverse sequence is considerably dif­
ferent from a random sequence. Further, they a.re cornputa.tionally
very demanding to satisfy. Even by ornitting condition (B), and re­
taining only (A) and (C), if the elements z(i) refer to points on a unit
hypercube, then by our present state of knowledge the only way to
generate a diverse sequence of more than a. few points is to perfonn
comparative enumeration. (However, a diverse sequence of points on
a line interval, particularly if z(1) is an endpoint or midpoint of the
interval, can be generated with much less difficulty.) Because of this,
it can sometiines be useful to generate sequences by approximating
the foregoing conditions (see Glover [15]). Ta.king a broader view,
a.n extensive effort to generate diverse sequences can be performed
in advance, independent of problem solving efforts, so that such se­
quences are pre-computed and available as needed. Further, a diverse
sequence for elements of a high dirnensional unit hypercube may be
derived by reverse projection techniques ('lifting' operations) from a
sequence for a. lower dimensional hypercube, ultimately making ref­
erence to sequences from a line interval.

Biased diversification, just as biased rando1n sampling, is possible
by judicious choices of the set Z. Also, while the goals of diversifi­
cation and randomization are somewhat different, the cornputational
considerations share a feature in cornmon. To generate a random
sequence by the strict definition of randomness would require mas­
sive effort. Years of study have produced schemes for generating se­
quences that en1pirically approximate this goal, and perhaps a. similar
outcome may be possible for generating diversified sequences. The
hypothesis of ta.bu search, in any case, is that recourse to diversifica­
tion is more appropriate (and more powerful) in the proble1n solving
context than recourse to randomization.

We note these observations can be applied in a. setting, as subse-

114 Tabu Searcli

quently discussed, where the device of producing a solution 'distant
from' another is accomplished not by reference to a standard dis­
tance 1netric, but rather by a series of displace1nents which involve
selecting a 1nove from a current neighbourhood at each step. (In
this case the 1netric 1nay derive from differences in weighted mea­
sures defined over frorn-attributes and to-att1·ibutes.) An application
of these ideas is given in Kelly et al. [16], and we also discuss a
special variation under the heading of 'Path Relinking' below. This
stepwise displacement approach is highly relevant to those situations
where neighbourhood structures are essential for preserving desired
properties (such as feasibility).

3.3.2 Reinforcen1ent by restriction

One of the early types of intensification strategy, characterized in
terms of exploiting strongly determined an<l consistent variables in
Glover [17], begins by selecting a set S as indicated for determining
a penalty and incentive function, i.e. one consisting of elite solutions
grouped by a clustering measure. Instead of (or in addition to) creat­
ing penalties and incentives, with the goal of incorporating attributes
into the current solution that have high frequency measures over S,
the method of reinforcement by restriction operates by narrowing the
range of possibilities allowed for adding and dropping such attributes.
For example, if :r j = p has a high frequency over S for only a small
nu1nber of values of JJ, then moves are restricted to allow x j to take
only one of these values in defining a to-attribute. Thus, if x j is a 0-1
variable with a high frequency measure over S for one of its values,
this value will become fixed once an admissible move exists that al­
lows such a value assignment to be made. Other assignn1ents may be
pennitted, by a variant of Aspiration by Default, if the current set of
restricted alternatives is unacceptable.

Initial consideration suggests such a restriction approach offers
nothing beyond the options available by penalties and incentives.
However, the approach can accomplish more than this for two reasons.
First, explicit restrictions can substantially accelerate the execution
of choice steps by reducing the number of alternatives examined.
Second, and more significantly, many proble1ns simplify and collapse
once a number of explicit restrictions are introduced, allowing struc­
tural implications to surface that pennit these problems to be solved

Broader Aspects 115

far more readily.
Reinforcement by restriction is not limited to creating an intensi­

fication effect. Given finite tiine and energy to explore alternatives,
imposing restrictions on some attributes allows more variations to be
examined for re1naining unrestricted attributes than otherwise would
be possible. Thus, intensification with respect to selected elen1ents
can enhance diversification over other elements, creating a form of
selective diversification. Such diversification may be contrasted with
the exhaustive diversification created by the n1ore rigid 1nemory struc­
tures of branch and bound. In an environment where the finiteness of
available search effort is dwarfed by the number of alternatives that
exist to be explored exhaustively, selective diversification can 1nake a
significant contribution to effective search.

Path relinking

Path relinking is initiated by selecting two solutions :i:' and x" from a
collection of elite solutions produced during previous search phases.
A path is then generated fro1n x' to x", producing a solution sequence
x' = x'(l),x'(2), ... ,x'(r) = x", where x'(i+ 1) is created from x'(i)
at each step by choosing a move that leaves the fewest nu1nber of
moves remaining to reach x". (A choice criterion for approxin1ating
this effect is indicated below.) Finally, once the path is co1npleted,
one or 1nore of the solutions x'(i) is selected as a solution to initiate
a new search phase.

This approach provides a fundamental means for pursuing the
goals of intensification and diversification when its steps are imple­
mented to exploit strategic choice rule variations. A number of alter­
native moves will typically qualify to produce a next solution from
x'(i) by the 'fewest remaining moves' criterion, consequently allow­
ing a variety of possible paths fron1 x' to x". Selecting unattractive
moves relative to c(x) at each step will tend to produce a final series
of strongly iinproving 1noves, while selecting attractive 1noves will
tend to produce lower quality moves at the end. (The last move,
however, will be iinproving, or leave c(:1:) unchanged, since x" is a
local optimu1n.) Thus, choosing best, worst or average n1oves, us­
ing an aspiration criterion to override choices in the last two cases
if a sufficiently attractive solution is available, provide options that
produce contrasting effects in generating the indicated sequence. (Ar-

116 Tabu Search

guments exist in favour of selecting best 1noves at each step, and then
repeating the process by interchanging x' and x".)

The issue of an appropriate aspiration is more broadly relevant to
selecting a preferred x'('i) for launching a new search phase, and to
terminating the sequence early. The choice of one or more solutions
x'(i) to launch a new search phase preferably should depend not only
on c(x'(i)) but also on the values c(x) of those solutions x that can be
reached by a move from x'(i). In particular, when x'(i) is examined
to move to x'(i + 1), a number of candidates for x = x'(i + 1) will be
presented for consideration. The process additionally may be varied
to allow solutions to be evaluated other than those that yield x'(i + 1)
closer to x".

Let x*(i) denote a neighbour of :i:'(i) that yields a minimum c(x)
value during an evaluation step, excluding x*(i) = x'(i + 1). (If the
choice rules do not auton1atically eli1ninate the possibility x*(i) =
x'(h) for h < i, then a simple tabu restriction can be used to do this.)
Then the method selects a solution x*(i) that yields a minimum value
for c(x*(i)) as a new point to launch the search. If only a limited set
of neighbours of x'(i) are exan1ined to identify x*(i), then a superior
least cost x'(i), excluding x' and :i.:'', may be selected instead. Early
termination may be elected upon encountering an x*(i) that yields
c(x*(i)) < Min{c(:i:'),c(x"),c(x'(p))}, where x'(p) is the minimum
cost x'(h) for all h < i. (The procedure continues without stopping
if x'(i), in contrast to x*(i), yields a smaller c(x) value than x' and
x", since x' (i) effectively adopts the role of x'.)

Variation and tunnelling

A variant of the path relinking approach proposed in Glover [15] starts
both endpoints x' and x" simultaneously, producing two sequences
x' = x'(l), ... ,x'(r) and x" = x"(l), ... ,x"(s). The choices are de­
signed to yield x'(r) = x"(s), for final values of r and s. To progress
toward this outcome when x'(r) =/ x"(s), either x'(r) is selected to
create x'(r + 1), by the criterion of minimizing the number of moves
remaining to reach x"(s), or x'(s) is chosen to create x"(s+ 1), by the
criterion of minimizing the nmnber of moves reinaining to reach x'(r).
From these options, the move is selected that produces the smallest
c(x) value, thus also determi11ing which of r or s is incremented on
the next step.

Broader Aspects 117

The path relinking approach can benefit by a tunnelling approach
that allows a different neighbourhood structure to be used than in the
standard search phase. In particular, it often is desirable periodically
to allow n1oves for path relinking that would normally be excluded
due to the creation of infeasibility. Such a practice is less susceptible
to becoming 'lost' in an infeasible region than other ways of allowing
periodic infeasibility, since feasibility evidently n1ust be recovered by
the ti1ne x" is reached. The tunnelling effect thus created offers a
chance to reach solutions that n1ight otherwise be bypassed. In the
variant that starts fron1 both x' and x", at least one of x' (1') and
x"(s) may be kept feasible.

Path relinking can be organized to place greater emphasis on in­
tensification or diversification by choosing ;r' and :i.: 11 to share more
or fewer attributes in cornmon. Siinilarly choosing x' and x" from
a clustered set of elite solutions will stimulate intensification, while
choosing them from two widely separated sets will stimulate diversi­
fication.

3.3.3 Extrapolated relinking

An extension of the path relinking approach, which we call extrap­
olated relinking, goes beyond the path endpoint x" (or alternatively
x'), to obtain solutions that span a larger region. The ability to con­
tinue beyond this endpoint results fro1n a 1nethod for approxiinating
the move selection criterion specified for the standard path relinking
approach, which seeks a next solution that leaves the fewest moves
remaining to reach x".

Specifically, let A(x) denote the set of solution attributes in x,
and let Adrop denote the set of solution attributes that are dropped
by moves perforrned to reach the current solution :i.:' (i), i.e. the at­
tributes that have served as from-attributes in these 111oves. (Some
of these may have been reintroduced into x'(i), but they also remain
in Adrop.) Then we seek a 111ove at each step to 1naxiinize the num­
ber of to-attributes that belong to A(x") - A(x'(i)), and subject to
this to minin1ize the number that belong to A drop - A(x"). Such a
rule can generally be implemented very efficiently, by data structures
limiting the exa1nination of moves to those containing to-attributes
of A(x")-A(x'(i)) (or permitting these moves to be exan1ined before
others).

118 Tabu Search

Once x'(r) = x" is reached, the process continues by modifying
the choice rule as follows. The criterion now selects a move to maxi­
mize the number of its to-attributes not in A drop minus the number of
its to-attributes that are in Adrop, and subject to this, to minimize the
nu1nber of its fr·om-attributes that belong to A(x"). (The combina­
tion of these criteria establishes an effect analogous to that achieved
by the standard algebraic formula for extending a line segment be­
yond an endpoint. However, the secondary n1inimization criterion is
probably less important.) The path then stops whenever no choice
remains that permits the 1naxi1nization criterion to be positive.

For neighbourhoods that allow relatively unrestricted choices of
moves, this approach yields an extension beyond x" that introduces
new attributes, without re-incorporating any old attributes, until no
1nove re1nains that sa.tisfies this condition. The ability to go beyond
the limiting points x' and a:" creates a form of diversification not
available to the path that 'lies between' these points. At the same
time the exterior points are influenced by the trajectory that links x'
and x".

3.3.4 Solutions evaluated but not visited

Intensification and diversification strategies may profit by the fact
that a search process generates infonnation not only about solutions
actually visited, but also about additional solutions evaluated during
the exan1ination of 1noves not taken. One n1anifestation of this is
exploited by reference to the solutions a:*(i) in the path relinking
approach.

From a different point of view, let S* denote a subset of solu­
tions evaluated but not visited (for example, taken from the sequence
x(1), ... , x(current_iteration)) whose elements x yield c(x) values
within a chosen band of attractiveness. It is relatively easy to main­
tain a count such as #S*(to Xj = p), which identifies the number of
tiines x j = p is a to-attribute of a trial move leading to a solution of
S*. Such a count may be differentiated further, by stipulating that
the trial move 1nust be improving, and of high quality relative to
other moves exarnined on the sa1ne iteration. (Differentiation of this
type in1plicitly shrinks the corn position of S*.) Then an attribute
that achieves a relatively high frequency over S*, but that has a low
residence frequency over solutions actually visited, is given an incen-

Broader Aspects 119

tive to be incorporated into future moves, simultaneously serving the
goals of both intensification and diversification. Recency and fre­
quency interact in this approach, by disregarding the incentive if the
attribute has been selected on a recent move.

3.3.5 Interval-specific penalties and incentives

A useful adjunct to the preceding ideas extends the philosophy of As­
piration by Search Direction and Aspiration by Strong Adn1issibility.
By these aspiration criteria, in1proving 1noves are allowed to escape
a ta.bu classification under certain conditions, but with the result of
lowering their status so that they are treated as inferior improving
moves.

An extension of this preserves the improving/non-i1nproving dis­
tinction when penalties and incentives are introduced that are not
intended to be pre-emptive. For this extension, evaluations are again
divided into the intervals of in1proving and non-in1proving. Penalties
and incentives are then given liinited scope, degrading or enhancing
evaluations within a given interval, but without altering the relation­
ship between evaluations that lie in different intervals.

Incentives granted on the basis of influence are similarly n1ade
subject to this restricted shift of evaluation. Since an influential
move is not usually improving in the vicinity of a local optimum,
maintaining the relationship between evaluations in different intervals
implies such n1oves will usually be selected only when no iinproving
moves exist, other than those classified tabu. But influential moves
also have a recency-based effect. Just as executing a high influence
move can cancel the tabu classification of a lower influence move over
a limited span of iterations, so it should reduce or cancel the incentive
to select other influential 1noves for a corresponding duration.

3.3.6 Candidate list procedures

Section 3.2.4 stressed the importance of procedures to isolate a can­
didate subset of 1noves from a large neighbourhood, to avoid the
computational expense of evaluating 1noves frmn the entire neigh­
bourhood. Procedures of this form have been used in optimization
methods for ahnost as long as issues of reducing computational effort
have been taken seriously (since at least the 1950s and probably much

120 Tabu Search

earlier). Some of the more strategic forms of these procedures came
from the field of network optimization (Glover et al. [18], Mulvey [19],
Frendewey [20]). In such approaches, the candidate subset of moves
is referenced by a list that identifies their defining elements (such as
indexes of variables, nodes, or arcs), and hence these approaches have
acquired the name of candidate list strategies.

A simple form of candidate list strategy is to construct a single el­
en1ent list by san1pling from the neighbourhood space at randon1, and
to repeat the process if the outcon1e is dee1ned unacceptable. This
is the foundation of Monte Carlo 1nethods, as noted earlier. Studies
from network optin1ization, however, suggest that approaches based
on 111ore systen1atic designs produce superior results. Generally, these
involve decomposing a neighbourhood into critical subsets, and us­
ing a rule that assures subsets not exa1nined on one iteration be­
co111e scheduled for examination on subsequent iterations. For subsets
appropriately detern1ined, best outco1nes result by selecting highest
quality moves from these subsets, either by explicit examination of all
alternatives or by using an adaptive threshold to identify such moves
(see Glover et al. [21]).

Another kind of candidate list strategy periodically examines larger
portions of the neighbourhood, creating a master list of some nun1ber
of best alternatives found. The 111aster list is then consulted to iden­
tify moves (derived from or related to those recorded) for additional
iterations until a threshold of acceptability triggers the creation of a
new master list.

Candidate list strategies implicitly have a diversifying influence
by causing different parts of the neighbourhood space to be exam­
ined on different iterations. This suggests there n1ay be benefit fron1
co-ordinating such strategies with other diversification strategies, an
area that re1nains open for investigation.

Candidate list strategies also lend themselves very naturally to
parallel processing, where forms of neighbourhood decomposition oth­
erwise exan1ined serially are exan1ined in parallel. Moves can be
selected by choosing the best candidate from several processes, or
instead each process can execute its own preferred move, generat­
ing parallel solution trajectories that are periodically co-ordinated at
a higher level. These latter approaches hold considerable pron11se.
Some of the options are described in Glover et al. [5].

Broader Aspects 121

3.3. 7 Con1pound neighbourhoods

Identifying an effective neighbourhood for defining moves from one
solution to another can be extrernely important. For example, an at­
tempt to solve a linear program1ning problem by choosing moves that
increment or decrement problem variables, versus choosing moves
that use pivot processes or directional search, obviously can make
a substantial difference to the quality of the final solution obtained.
The innovations that have made linear program1ning a powerful op­
timization tool rely significantly on the discovery of effective neigh­
bourhoods for making moves.

For combinatorial applications where the possibilities for creat­
ing neighbourhoods are largely confined to various constructive or
destructive processes, or to exchanges, improve1nents often result by
combining neighbourhoods to create 1noves. For exan1ple, in sequenc­
ing applications such as that illustrated in Section 3.2.1, it is generally
preferable to combine neighbourhoods consisting of insert moves and
swap moves, allowing both types of moves to be considered at each
step. Another way of combining neighbourhoods is to generate com­
pound moves, where a sequence of siinpler moves is treated as a single
more complex move.

A special tyµe of approach for creating compound moves results
from a succession of steps in which an element is assigned to a new
state, with the outcome of ejecting son1e other ele1nent fron1 its cur­
rent state. The ejected ele1nent is then assigned to a new state, in
turn ejecting another element, and so forth, creating a chain of such
operations. For €Xample, such a process occurs in a job sequencing
problem by moving a job to a new position occupied by another job,
thereby ejecting this job from its position. The second job is then
moved to a new position to eject another job, and so on, finally ending
by inserting the last ejected job between two other jobs. This type of
approach, called an ejection chain strategy, has useful applications for
problems of many types, particularly in connection with scheduling,
routing, and partitioning (Glover [22, 23], Dorndorf and Pesch [24]).
A tabu search method incorporating this approach has proved highly
successful for 111ultilevel generalized assignment proble1ns (Laguna et
al. [25]), suggesting the relevance of ejection chain strategies for cre­
ating compound neighbourhoods in other tabu search applications.

122 Tabu Search

3.3.8 Creating new attributes-vocabulary building and
concept f orn1ation

A frontier area of ta.bu search involves the creation of new attributes
out of others. The learning approach called target analysis, which
can in1plicitly combine or subdivide attributes to yield a basis for
improved move evaluations has been effectively used in conjunction
with ta.bu search in scheduling applications (see Section 3.4), and
provides one of the 1neans for generating new attributes. We focus
here, however, on creating new attributes by reference to a process
that may be called vocabulary building, related to concept formation.

Vocabulary building is based on viewing a chosen set S of solu­
tions as a text to be analyzed, by undertaking to discover attribute
con1binations shared in common by various solutions x in X. At­
tribute combinations that emerge as significant enough to qualify as
units of vocabulary, by a process to be described below, are treated
as new attributes capable of being incorporated into tabu restrictions
and aspiration conditions. In addition, they can be directly assem­
bled into larger units as a basis for constructing new solutions.

We represent collections of attributes by encoding them as assign-
1nents of values to variables, which we denote by Yj = p, to differenti­
ate the vector y from the vector x which possibly may have a different
dituension and encoding. Nonnally we suppose a y vector contains
enough information to be transfonued into a unique x, to which it
corresponds, but this assun1ption can be relaxed to allow more than
one x to yield the sa1ne y. (It is to be noted that a specified range of
different assign1nents for a given attribute can be expressed as a sin­
gle assignn1ent for another, which is relevant to creating vocabulary
of additional utility.)

Let Y(S) denote the collection of y vectors corresponding to the
chosen set S of x vectors. In addition to assignments of the form
Yj = p which define attributes, we allow each Yj to receive the value
Yj = *, in order to generate subvectors that identify specific attribute
combinations. In particular, an attribute con1bination will be implic­
itly determined by the non-* values of y.

The approach to generate vocabulary units will be to compare
vectors y' and y" by an intersection operator, Int(y', y") to yield a
vector z = Int(y', y") by the rule: z;; = Yj if Yj = y;', and Zj = *
if Yj f:. y;', By this definition we also obtain Zj = * if either Yj or

Broader Aspects 123

y'j = *· Int is associative, and the intersection I nt(y : y E Y), for an
arbitrary Y, yields a z in which zi = Yi if all Yi have the same value
for y E Y, and zi = * otherwise.

Accompanying the intersection operator, we also define a relation
of containment, by the stipulation that y" contains y' if Yj = * for
all j such that Yj -=J y;'- Associated with this relation, we identify the
enclosure of y' (relative to S) to be the set Y(S: y') = {y E Y(S): y
contains y'}, and define the enclosure value of y', enc_value(y'), to be
the number of elements in this set, i.e. the value #Y(S: y'). Finally,
we refer to the number of non-* components of y' as the size of the
vector, denoted size(y'). (If y E Y(S), the size of y is the same as its
dimension.)

Clearly the greater size(y') becomes, the smaller enc_value(y')
tends to become. Thus for a given size s, we seek to identify vectors
y' with size(y') 2'. s that maximize enc_value(y'), and for a given
enclosure value v to identify vectors y' with enc_value(y') > v that
maximize size(y'). Such vectors are included among those regarded
as qualifying as vocabulary units.

Similarly we include reference to weighted enclosure values, where
each y E Y(S) is weighted by a measure of attractiveness (such as
the value c(x) of an associated solution x ES), to yield enc_value(y')
as a surn of the weights over Y (S : y'). Particular attribute values
may likewise be weighted, as by a measure of influence, to yield a
weighted value for size(y'), equal to the sum of weights over non-*
con1ponents of y'.

From a broader perspective, we seek vectors as vocabulary units
that give rise to aggregate units called phrases and sentences with cer­
tain properties of consistency and meaning, characterized as follows.
Each Yi is allowed to receive one additional value, Yi = blank, which
may be interpreted as an empty space free to be filled by another
value (in contrast to Yi = *, which may be interpreted as a space
occupied by two conflicting values). We begin with the collection of
vectors created by the intersection operator Int, and replace the *
values with blank values in these vectors. We then define an extended
intersection operator E_Jnt, where z = E_Jnt(y', y") is given by the
rules defining Int if Yj and Yj' are not blank. Otherwise z1 = Yj if
Yj' = blank, and Zj = y'j if Yj = blank. EJnt is likewise associative.
The vector z = EJnt(y : y E Y) yields Zj = * if any two y E Y have

124 Tabu Search

different non-blank values Yj, or if some y has Yj = *· Otherwise Zj

is the common Yj value for ally with Yj non-blank (where Zj = blank
if Yj = blank for all y).

The y vectors created by E J nt are those we call phrases. A sen­
tence (implicitly, a complete sentence) is a phrase that has no blank
values. We call a phrase or sentence grammatical (logically consis­
tent) if it has no * values. Thus gran1matical sentences are y vectors
lacking both blank values and * values, constructed from attribute
combinations (subvectors) derived from the original elements of Y(S).
Finally we call a grammatical sentence y meaningful if it corresponds
to, or 1naps into, a feasible solution x. (Sentences that are not gram-
1natical do not have a form that permits them to be translated into
an x vector, and hence cannot be n1eaningful.)

The ele1nents of Y (S) are all meaningful sentences, assuming they
are obtained frorn feasible x vectors, and the goal is to find other
1neaningful sentences obtained fro111 gram1natical phrases and sen­
tences constructed as indicated. More precisely, we are interested in
generating meaningful sentences (hence feasible solutions) that are
not limited to those that can be obtained from Y(S), but that can
also be obtained by one of the following strategies:

Sentence Construction Strategies

(S 1) Translate a grammatical phrase into a sentence by filling in the
blanks (by the use of neighbourhoods that incorporate construc­
tive moves).

(S2) Identify some set of existing meaningful sentences (e.g. derived
from current feasible x vectors not in S), and identify one or
more phrases, generated by E _J nt over S, that lie in each of these
sentences. Then, by a succession of moves from neighbourhoods
that preserve feasibility, transform each of these sentences into
new meaningful sentences that retain as much of the identified
phrases as possible.

(S3) Identify portions of existing meaningful sentences that are con­
tained in grammatical phrases, and transform these sentences into
new meaningful sentences (using feasibility preserving neighbour­
hoods) by seeking to incorporate additional components of the
indicated phrases.

The foregoing strategies can be irnplemented by incorporating the
same tabu search incentive and penalty mechanisms for choosing

Broader Aspects 125

moves indicated in previous sections. We assume in these strategies
that neighbourhood operations on x vectors are directly translated
into associated changes in y vectors. In the case of (S 1) there is no as­
surance that a rneaningful sentence can be achieved unless the initial
phrase itself is n1eaningful (i.e. is contained in at least one mean­
ingful sentence) and the constructive process is capable of generating
an appropriate completion. Also, in (S3) more than one grammatical
phrase can contain a given part (subvector) of a meaningful sentence,
and it may be appropriate to allow the targeted phrase to change ac­
cording to possibilities consistent with available moves.

Although we have described vocabulary building processes in a
somewhat general forn1 to make their range of application visible,
specific instances can profit frorn special algorithn1s for linking vocab­
ulary units into sentences that are both meaningful and attractive, in
the sense of creating good c(x) values. An example of this is provided
by vocabulary building approaches for the travelling salesman prob­
lem described in [23], where vocabulary units can be transformed into
tours by specialized shortest path procedures. A number of combi­
natorial optimization problems are implicit in generating good sen­
tences by these approaches, and the derivation of effective methods
for handling these problems in various settings, as in the case of the
travelling salesman problem, may provide a valuable contribution to
search procedures generally.

3.3. 9 Strategic oscillation

The strategic oscillation approach is closely linked to the origins of
tabu search, and provides an effective interplay between intensifica­
tion and diversification over the interrnediate to long term. Strategic
oscillation operates by moving until hitting a boundary, represented
by feasibility or a stage of construction, that nonnally would rep­
resent a point where the method would stop. Instead of stopping,
however, the neighbourhood definition is extended, or the evaluation
criteria for selecting moves is modified, to pennit the boundary to
be crossed. The approach then proceeds for a specified depth be­
yond the boundary, and turns around. At this point the boundary
is again approached and crossed, this time from the opposite direc­
tion, proceeding to a new turning point. The process of repeatedly
approaching and crossing the boundary from different directions ere~

126 Tabu Search

ates a fonn of oscillation that gives the 1nethod its name. Control over
this oscillation is established by generating 1nodified evaluations and
rules of movement, depending on the region currently navigated and
the direction of search. The possibility of retracing a prior trajectory
is avoided by standard tabu 1nechanis1ns.

A siinple example of this approach occurs for the multidimen­
sional knapsack problem, where values of 0-1 variables a.re changed
fron1 0 to 1 until reaching the boundary of feasibility. It then contin­
ues into the infeasible region using the same type of changes, but with
a modified evaluator. After a selected nun1ber of steps, direction is re­
versed by changing variables from 1 to 0. Evaluation criteria. to drive
toward iinprovement (or s1nallest disimprovement) vary according to
whether the movement is fro111 n1ore-to-less or less-to-n1ore feasible
(or infeasible), and are accmnpa.nied by associated restrictions on ad­
n1issible changes to values of variables. An implementation of such an
approach by Freville and Plateau [26, 27] has generated particularly
high quality solutions for 1nultidi1nensional knapsack problems.

A so1newha.t different type of application occurs for the proble111 of
finding an optiina.l spanning tree subject to inequality constraints on
subsets of weighted edges. One type of strategic oscillation approach
for this problem results from a constructive process of adding edges
to a growing tree until it is spanning, and then continuing to add
edges to cross the boundary defined by the tree construction. A
different graph structure results when the current solution no longer
constitutes a tree, and hence a different neighbourhood is required,
yielding 1nodified rules for selecting moves. The rules again change
in order to proceed in the opposite direction, removing edges until
again recovering a tree. In such proble1ns, the effort required by
different rules may make it preferable to cross a boundary to different
depths on different sides. One option is to approach and retreat
fro1n the boundary while remaining on a single side, without crossing
(i.e. electing a crossing of 'zero depth'). In this example, additional
types of boundaries may be considered, derived from the inequality
constraints.

The use of strategic oscillation in applications that alternate con­
structive and destructive processes can be accompanied by exchange
moves that maintain the construction at a given level. A proximate
optimality principle, which states roughly that good constructions at

Applications 127

one level are likely to be close to good constructions at another, mo­
tivates a strategy of applying exchanges at different levels, on either
side of a target structure such as a spanning tree, to obtain refined
constructions before proceeding to adjacent levels.

Finally, we remark that the boundary incorporated in strategic
oscillation need not be defined in terms of feasibility or structure,
but can be defined in terms of a region where the search appears to
gravitate. The oscillation then consists of compelling the search to
move out of this region and allowing it to return.

3.4 Tahu Search Applications

Tahu search is still in an early stage of development, with a substan­
tial majority of its applications occurring only since 1989. However,
TS methods have enjoyed successes in a variety of problem settings,
as represented by the partial list shown in the table below. Scheduling
provides one of the most fruitful areas for modern heuristic techniques
in general and for tabu search in particular. Although the schedul­
ing applications presented in Table 3.1 are limited to those found
in the published literature (or about to appear), there are a num­
ber of studies currently in progress that deal with scheduling models
corresponding to modern manufacturing systems.

One of the early applications of TS in scheduling is due to Widmer
and Hertz [28], who develop a TS method for the solution of the
permutation flow shop problem. This problem consists of n 1nultiple
operation jobs arriving at time zero to be processed in the same order
on m continuously available machines. The processing time of a job
on a given machine is fixed (deterministic) and individual operations
are not pre-e1nptable. The objective is to find the ordering of jobs
that minimizes the makespan-the completion time of the last job.

Widmer and Hertz use a simple insertion heuristic based on a
travelling salesman analogy to the pennutation flow shop problem to
generate the starting ordering of the jobs. The procedure considers
neighbourhoods defined by swap moves, and at each iteration the best
non-tabu move is executed evaluated relative to c(x). The tabu tenure
is exclusively set to a value of 7 moves and the tabu restriction is
based on the paired attributes (job index, position). The termination
criterion is specified as a maximum number of iterations.

128 Tabu Search

Table 3.1: Some applications of tabu search

Brief Description

Scheduling
Employee scheduling
Flow shop

Job shop with tooling constraints
Convoy scheduling
Single machine scheduling
Just-in-time scheduling
Multiple-machine weighted flow time
Flexible-resource job shop
Job shop scheduling
Single machine (target analyois)
Resource scheduling
Deadlines and setup times

Transportation
Travelling salesman
Vehicle routing

Layout and circuit design
Quadratic assignment

Electronic circuit design
Telecommunications

Path assignment

Bandwidth packing
Graphs

Clustering
Graph colouring

Stable sets in large graphs
Maximum clique

Probabilistic logic and expert systems
Maximum satisfiability
Probabilistic logic
Probabilistic logic/ expert systems

Neural networks
Learning in an associative memory
Nonconvex optimization problems

Others
Multiconstraint 0-1 knapsack
Large-scale controlled rounding
General fixed charge

Reference

Glover & McMillan [61]
Widmer & Hertz [28) Taillard (30)
Reeves [31)
Widmer [32)
Bovet et al. [62)
Laguna et al. [8]
Laguna & Gonzalez-Velarde [63)
Barnes & Laguna [64)
Daniels & Mazzola [33)
Dell'Amico & Trubian [6]
Laguna & Glover (3)
Mooney & Rardin [36)
Woodruff & Spearman [37]

Malek et al. [38) Glover [22)
Gendreau et al. [39] Osman [42)
Semet & Taillard [43)

Skorin-Kapov [65) Taillard [41]
Chakrapani & Skorin-Kapov [9)
Bland & Dawson [66]

Oliveira & Stroud [67)
Anderson et al. [58]
Glover & Laguna [59)

Glover et al. [68) Hansen et al. (45]
Hertz & de Werra (69]
Hertz et al. [70)
Friden et al. [71]
Gendreau et al. (7)

Hansen & Jaumard [11)
Jaumard et al. [44)
Hansen et al. [60]

de Werra & Hertz [56]
Beyer & Ogier [57]

Dammeyer & Voss (10)
Kelly et al. [47)
Sun & McKeown [72)

Applications 129

Computational experiments co1npare this TS implen1entation with
six previously developed heuristic n1ethods. The study examines 50
problems with n and m ranging from values of 5 to 20 where the max­
imum nun1ber of TS iterations is set to n + ni. In direct competition
with the best previous heuristic developed by N awaz et al. (29], the
TS method returns superior solutions for 58%, and matches the best
solution found for 92% of the problen1s.

This early TS procedure does not include many of the mechanisms
described in this chapter which are now established as important
components of the 1nore effective procedures. Nevertheless, the study
was important for being one of the first of its type, and for disclosing
the relevance of TS for scheduling, thus rnotivating other research to
follow in this area.

The study of Taillard (30] is noteworthy in this regard, applying
tabu search to the flow shop sequencing problen1. This work demon­
strates that ta.bu search obtains solutions unifonnly better than the
best of the classical heuristics, while investing con1parable solution
time. In addition, although optimality of the solutions could not be
proved, by allowing sufficient CPU time Taillard 's TS n1ethod found
optimal solutions for every problem for which a such solution was
known. Reeves [31] further improves the computational efficiency of
this method by incorporating a candidate list strategy; using this ap­
proach, TS consistently outperformed a simulated annealing heuristic
on a wide variety of problem instances. Another study in this area
by Widmer [32] develops a TS method for the solution of an impor­
tant problem in scheduling models for flexible n1anufacturing-the
job shop scheduling problem with tooling constraints. This imple­
mentation establishes the ability of the TS approach to be adapted to
handle highly complex problems, with practical features disregarded
by previous studies of related problems reported in the literature.

Daniels and Mazzola [33] present a TS method for the flexible­
resource flow shop scheduling problem, which generalizes the classic
flow shop scheduling problem by allowing job-operation processing
times to depend on the amount of resource assigned to an operation.
The objective is to determine the job sequence, resource-allocation
policy, and operation start times that optimize system performance.
The TS method e1nploys a nested-search strategy based on a de­
composition of the problem into these three main co1nponents (job

Tabu Seard1

sequencing, resource allocation, and operation start times). The pro­
cedure was tested on over 1600 proble111s and is reported to be ex­
tre1nely effective. On 480 problem instances small enough to permit
optimal solutions to be identified, the TS approach obtained optimal
solutions for over 70% of the test problems, while incurring an average
error of 0.3% and a maxi1num deviation from optimality of 2.5%. On
larger problen1s, comparisons with other heuristic procedures showed
the TS method was able to find significantly superior solutions. In
addition, the authors note the nested TS approach holds considerable
pro111ise for efficient imple111entation in a parallel processing setting.

Dell'Amico and Trubian [6] apply tabu search to the notoriously
difficult job-shop scheduling problem. They develop a bi-directional
111ethod to find 'good' feasible starting solutions. Their procedure al­
ternates between assigning operations at the beginning and at the end
of a partial schedule, which contrasts with previous uni-directional
List Scheduler algoritluns. In addition to starting from a good solu­
tion, their TS procedure assigns tabu tenures that are dependent on
the search state and are selected from a given range. The range is
periodically revised using unifonn distributions to determine new up­
per and lower bounds. A siinple intensification strategy is used that
recovers the best solution found so far and treats it as the current so­
lution, when a given number of iterations have been performed with­
out iinproving the best solution. C0111putational experiments with 53
bencluna.rk problem instances show this TS method is highly robust,
in contrast to previously published local search procedures for this
proble1n. In particular, the TS method outperforms two simulated
annealing methods due to van Laarhoven et al. [34] and Matsuo et
al. [35] in tenns of both solution quality and speed. In addition,
Dell'An1ico and Trubian establish new best solutions for five out of
seven open problems in the literature.

Laguna and Glover [3] develop a tailored TS method for the solu­
tion of a class of single n1achine scheduling problen1s with delay penal­
ties and setup costs. This research discloses the usefulness of target
analysis as a n1eans of integrating effective diversification strategies
within tabu search. The study also establishes the importance of
accounting for regional dependencies of good decision criteria. The
resulting procedure obtains solutions that are uniformly as good as,
or better than, the best previously known solutions over a wide va-

Applications 131

riety of problen1 instances. For large proble1ns (with 100 jobs) the
margin of superiority of the method is more dramatic. (The previ­
ously best available heuristic for this class of problems was also a TS
procedure, as en1pirically shown by Laguna et al. [8].)

Mooney and Rardin [36] develop a TS procedure for a special case
of the problen1 of assigning tasks to a single pri1nary resource, subject
to constraints resulting fron1 the pre-assign1nent of secondary or aux­
iliary resources. Potential applications of this proble1n include shift­
oriented production and manpower scheduling problen1s and course
scheduling, where classrooms n1ay be primary and instructors and
students may be secondary resources. This study includes 7 variants
of a basic TS procedure. These variants co1nbine the use of determin­
istic and rando1n candidate list construction, several n1ove selection
rules, and strategic oscillation. An index is created to measure the
level of diversification that each variant of the method is capable
of achieving. Extensive experiments with randomly-generated and
real data show that the TS variants with strategic oscillation achieve
high levels of diversification (as measured by the defined index) while
outperforn1ing alternative approaches. The motivation for measuring
diversification levels stems from the authors' conjecture that 'an al­
gorithm that diversifies the search must cover the search space more
or less evenly'. As a result of this study, it was found that a simple
iterated descent approach (see Section 3.2.3) obtained high diver­
sification levels but performed poorly in tenns of solution quality.
Therefore, relatively high diversification appears to be a necessary
but not a sufficient condition for finding good solutions.

Woodruff and Spearman [37) present a highly innovative TS pro­
cedure for production scheduling, addressing a general sequencing
problem that includes two classes of jobs with setup times, setup
costs, holding costs and deadlines. A TS n1ethod is used with in­
sertion moves to transform one trial solution into another. Due to
the presence of deadline constraints, not every sequence is feasible.
However, the search path is allowed to visit infeasible solutions by a
form of strategic oscillation. A candidate list is also used as a means
of reducing the computational effort involved in evaluating a given
neighbourhood. Diversification is achieved by introducing a param­
eter d into the cost function. Low values of d result in the selection
of the best available 1nove (with reference to the objective function

132 Tabu Search

value) as customarily done in a deterministic tabu search, while high
values result in a randon1ized move selection which resembles a vari­
ant of probabilistic tabu search.

The tabu list designed for this approach is based on the concept of
hashing functions. The list is co1nposed of two entries for each visited
sequence, the cost and the value of a simple hashing function (i.e. a
value that represents the ordering of jobs in the sequence). Computa­
tional experiments were conducted on si1nulated data that captured
the characteristics of the demand and production environment in a
large circuit board plant. For a set of twenty test problems, the av­
erage deviation from optimality was :3% and optimal solutions were
achieved in seventeen cases. The best solutions were found during
searches using d values other than zero, which supports the contention
that long-term memory considerations become important in complex
problem settings. This study also marks the first application of TS
where hashing functions are used to control the tabu structures. A
n1ore detailed study on these kinds off unctions and their use within
the TS framework is given in \,Voodruff and Zemel [12].

The first parallel imple1nentation of tabu search to appear in the
literature is due to Malek et al. (38]. In this in1plementation, each
child process runs a copy of a serial TS 1nethod with different param­
eter settings (i.e. tabu list size and tabu restrictions). After specified
intervals, the child processes are halted a.nd the main process com­
pares their results. The main process then selects the 'best' solution
found and gives it as the initial solution to all the child processes.
The 'best' solution is generally the one with the least tour cost, but
an alternative solution is passed if the tour has been used before. The
tabu data structures are blanked every tiine that the child processes
are te1nporarily stopped. This sche111e requires little overhead due
to interprocessor communication, and implements an intensification
phase around 'good' solutions that is not easily reproduced in a serial
environ1nent. This research shows the importance of parallel comput­
ing in solving large con1binatorial optimization problems, and it also
illustrates one possibility for exploiting the flexibility of ta.bu search
in this kind of environ1nent. Joining such an approach with the use of
stronger move neighbourhoods, such as those of Gendreau et al. [39]
or of Glover [40], may be expected to yield additional improvements.

Chakrapani and Skorin-Kapov [9] present a parallel implemen-

Applications 133

tation on the Connection Machine CM-2 of a TS method for the
quadratic assign1nent problem. The imple1nentation uses n2 proces­
sors, where n is the size of the problem. A n1oving gap strategy is
used to vary the tabu tenure dyna1nically. Addi tiona.l intensification
and diversification are achieved via frequency-based 1ne1nory. The
procedure proves to be very effective in tenns of solution quality.
The largest problen1s that can currently be solved by exact methods
are of size n = 20. The authors' method easily matches all known
optimal solutions and also matches best known solutions for addi­
tional problems of size up to n = 80. (These solutions were obtained
by a TS procedure due to Taillard [41].) In addition the study by
Chakrapani and Skorin-Kapov reports new best solutions to a set of
published proble1ns of size n = 100. A careful iinplementation on
the Connection Machine, a n1assively parallel systen1, proves to be
extremely suitable in this context. The increase in time per iteration
appears to be a logaritlunic function of n. This study also offers di­
rections for alternative implementations that may be 1nore efficient
when solving very large quadratic assignment problems.

Vehicle routing constitutes another important area with many
practical applications. Several TS variants and a hybrid simulated
annealing/TS approach for the vehicle routing problem under capac­
ity and distance constraints are presented by Os1nan [42]. The neigh­
bourhoods are defined using a so-called A-interchange. The hybrid
simulated annealing approach, which uses a n011111onotonic TS strat­
egy for adjusting teinperatures, in1proves significantly over a standard
SA. The hybrid approach produces new best solutions for 7 instances
in a set of 14 previously published problems. However, this approach
exhibits a large variance with regard to solution quality and compu­
tational time. The pure TS methods also find 7 new best solutions
to problems in the same set, and in addition they n1aintain a good
average solution quality without excessive computational effort. The
procedures developed by Osman are easily adapted to the vehicle
routing problem with different vehicle sizes.

Gendreau et al. [39] also develop a TS procedure for vehicle rout­
ing, using a son1ewhat different move neighbourhood than used in
[42]. Their approach is tested against the previously reigning best
solution approaches in the literature, and outperfonns all of them in
most problems. Interestingly, in spite of the different choice of move

134 Tabu Search

neighbourhoods, thefr results are quite closely c01nparable to those
of Os1nan [42].

Se1net and Taillard [43] address a difficult version of the vehicle
routing problem with 1nany co1nplicating side conditions, including
different vehicle types and sizes, different regions, and restricted deliv­
ery windows. Their outcomes iinprove significantly over those previ­
ously obtained for those problems, and again de1nonstrate the ability
of tabu search to be adapted to handle diverse real world features.

One of the first TS methods to use more than one tabu list is due
to Gendreau et al. [7], which is designed to solve the 1naxinnun clique
problem in graphs. The n1ethod uses add-delete 1noves to define
neighbourhoods for the current solutions and a tabu list to store the
indexes of the vertices 1nost recently deleted. A second list is used to
record the solutions visited during a specified nun1ber of 1nost recent
iterations. The second list is always active while the first one is only
consulted when 'aug1nenting' 1noves are considered (i.e. 1noves that
increase the size of the current clique). Storing previously visited
solutions as part of the tabu structure is unusual in TS 1nethods, but
was achieved in this instance due to cleverly designed data structures
to exploit the neighbourhood definition. Multiple tabu lists have now
beco1ne co1n1non in many TS applications.

Jatnnar<l et al. [44] investigate the problem of detennining the
consistency of probabilities that specify whether given collections of
clauses are true, with extensions to include probability intervals, con­
ditional probabilities, and perturbations to achieve satisfiability. By
integrating a tabu search approach with an exact 0-1 nonlinear pro­
gramn1ing procedure for generating colun1ns of a 1naster linear pro­
gran1, they readily solved problems with up to 140 variables and 300
clauses, approxhnately tripling both the nun1ber of variables and the
nu1nber of clauses that could be handled by existing alternative ap­
proaches.

This work is extended in the study of Hansen et al. [70] to address
proble1ns arising in expert syste1ns, as in syste1ns for n1edical diagno­
sis. Tahu search is again embedded in a colu1nn generation schen1e to
detennine opthnal changes to sets of rules that incorporate probabil­
ities. The con1binatorial con1plexity of this proble111 co1nes fron1 the
fact that the nu1nber of colu1nns grows astronon1ically as a function
of the nu1nber of logical sentences used to define rules. This extended

Applications 135

study is able to generate optin1al solutions for rule systems containing
up to 200 sentences, significantly advancing the size of such problems
that previously could be addressed.

Da1nmeyer and Voss [10) studied the 1nulticonstrained 0-1 knap­
sack problem using a TS method that incorporates tabu restrictions
based on the logical structure of the attribute sequence generated.
The method is co1npared against an improved version of a sin1ulated
annealing method from the literature specifically designed for these
problems, using a testbed of 57 problems with known optimal solu­
tions. The TS and SA methods take comparable time on these prob­
lems, but the TS method finds optiinal solutions for nearly 50% more
problems than simulated annealing (44 problems versus 31). On the
remaining problems, deviations from optimality with the TS method
were less than 2% in all cases, and less than 1 % for all proble1ns ex­
cept one. Dammeyer and Voss also note the SA method to be very
sensitive to the choice of control parameters, which greatly influences
the solution quality. By contrast, they found the TS paran1eters to
be very robust. Shnilar differences in outcomes are established in
the study of quadratic se1ni-assignment proble1ns by Domschke et al.
[46).

When publishing tabular data, the United States Bureau of the
Census 1nust so1netiines round fractional data to integer values or
round integer data to n1ultiples of a pre-specified base. Data integrity
can be maintained by rounding tabular data subject to additivity con­
straints while minhnizing the overall perturbation of the data. Kelly
et al. [4 7) describe a tabu search procedure with strategic oscilla­
tion for solving this NP-hard proble1n. A lower bound is obtained by
solving a network flow programming model and the corresponding
solution is used as the starting point for the procedure. Strategic os­
cillation plays a major role in this TS implementation. The oscillation
in this case is around the feasibility boundary. A penalty function is
used first to lead the search from the lower bound solution towards
the feasible region, by linearly incrementing the penalty for an aggre­
gated measure of constraint violation. Once the procedure reaches
feasibility for the first thne, the penalty oscillates within a specified
period. The theoretical lower bound value obtained by network op­
thnization (which may not be attainable by any feasible solution) is
used to gauge the quality of solutions found. Experiinents with 270

136 Tabu Search

simulated problems yield an average deviation from this lower bound
of 1.32%. In addition, for 248 three-dimensional tables provided by
the United States Bureau of the Census, the deviation fron1 the lower
bound was only 0.391 %.

3.5 Connections and conclusions

Relationships between tabu search and other procedures like sim­
ulated annealing and genetic algorithms provide a basis for under­
standing siinilarities and contrasts in their philosophies, and for cre­
ating potentially useful hybrid combinations of these approaches. We
offer some speculation on preferable directions in this regard, and also
suggest how elements of tabu search can add a useful diinension to
neural network approaches.

3.5.1 Simulated annealing

The contrasts between siinulated annealing and tabu search are fairly
conspicuous, though undoubtedly the 1nost pro1ninent is the focus on
exploiting 1ne1nory in tabu search that is absent from sin1ulated an­
nealing. The introduction of this focus entails associated differences
in search 1nechanisms, and in the elements on which they operate.

Accompanying the differences directly attributable to the focus on
memory, and also 1nagnifying then1, several additional elements are
funda1nental for understanding the relationship between the 111ethods.
We consider three such ele1nents in order of increasing in1portance.

First, tabu search e1nphasizes scouting successive neighbourhoods
to identify 1noves of high quality, as by candidate list approaches of
the fonn described in Section 3.3. This contrasts with the simu­
lated annealing approach of randomly sa1npling a1nong these moves
to apply an acceptance criterion that disregards the quality of other
1noves available. (Such an acceptance criterion provides the sole ba­
sis for sorting the n1oves selected in the SA n1ethod.) The relevance
of this difference in orientation is accentuated for tabu search, since
its neighbourhoods include linkages based on history, and therefore
yield access to infonnation for selecting n1oves that is not available
in neighbourhoods of the type used in siinulated annealing.

Next, tabu search evaluates the relative attractiveness of 111oves

Connections and conclusions 137

not only in relation to objective function change, but also in rela­
tion to factors of influence. Both types of measure are significantly
affected by the differentiation among 1nove attributes, as embodied
in tabu restrictions and aspiration criteria, and in turn by relation­
ships manifested in recency, frequency, and sequential interdepen­
dence (hence, again, involving recourse to memory). Other aspects
of the state of search also affect these measures, as reflected in the
altered evaluations of strategic oscillation, which depend on the di­
rection of the current trajectory and the region visited.

Finally TS emphasizes guiding the search by reference to multiple
thresholds, reflected in the tenures for tabu-active attributes and in
the conditional stipulations of aspiration criteria. This may be con­
trasted to the simulated annealing reliance on guiding the search by
reference to the single threshold implicit in the temperature param­
eter. The treatment of thresholds by the two methods compounds
this difference between them. Tahu search varies its threshold non­
monotonically, reflecting the conception that multidirectional param­
eter changes are essential to adapt to different conditions, and to pro­
vide a basis for locating alternatives that 1night otherwise be 1nissed.
This contrasts with the simulated annealing philosophy of adhering
to a temperature parameter that only changes monotonically.

Hybrids are now emerging that are taking prelin1inary steps to
bridge some of these differences, particularly in the realm of tran­
scending the simulated annealing reliance on a monotonic temper­
ature parameter. A hybrid method that allows temperature to be
strategically 1nanipulated, rather than progressively diininished, has
been shown to yield improved performance over standard SA ap­
proaches, as noted in the work by Os1nan [42). Another hybrid
1nethod that expands the SA basis for move evaluations has also
been found to perform better than standard siinulated annealing in
the study by Kassou [48).

Consideration of these findings invites the question of whether re­
moving the 1nemory scaffolding of tabu search and retaining its other
features may yield a viable method in its own right. A foundation
for doing this by a 'tabu thresholding n1ethod' is described by Glover
[13], and is reported in a study of graph layout and design prob­
lems by Verdejo and Cunquero [49) to perform more effectively than
previously best methods for these problems.

138 Tabu Search

3.5.2 Genetic algorithms

Genetic algorithms offer a somewhat different set of comparisons and
contrasts with tabu search. As will be described in chapter 4, GAs
are based on selecting subsets (usually pairs) of solutions fro1n a pop­
ulation, called parents, and combining them to produce new solutions
called children. Rules of combination to yield children are based on
the genetic notion of crossover, which consists of interchanging solu­
tion values of particular variables, together with occasional operations
such as random value changes. Children that pass a survivability test,
probabilistically biased to favor those of superior quality, are then
available to be chosen as parents of the next generation. The choice
of parents to be matched in each generation is based on random or
biased random sampling from the population (in some parallel ver­
sions executed over separate subpopulations whose best members are
periodically exchanged or shared). Genetic tenninology custo1narily
refers to solutions as chromoso1nes, variables as genes, and values of
variables as alleles.

By n1eans of coding conventions, the genes of genetic algoritlnns
may be c01npared to attributes in tabu search, or n1ore precisely to
attributes in the fonn underlying the residence n1easures of frequency­
based me1nory. Introducing 1nemory in GAs to track the history of
genes and their alleles over subpopulations would provide an inune­
diate and natural way to create a hybrid with TS.

S01ne iinportant differences between genes and attributes should
be noted, however. Differentiation of attributes into fr01n and to
co1nponents, each having different 1nemory functions, do not have
a counterpart in genetic algorithn1s. This results because GAs are
organized to operate without reference to n1oves (although, strictly
speaking, combination by crossover can be viewed as a special type
of 1nove). Another distinction derives fron1 differences in the use of
coding conventions. Although an attribute change, fron1 a state to its
con1ple1nent, can be encoded in a zero-one variable, such a variable
does not necessarily provide a convenient or useful representation for
the transfonnations provided by 1noves. Tahu restrictions and aspi­
ration criteria handle the binary aspects of co111ple1nentarity without
requiring explicit reference to a zero-one x vector or two-valued func­
tions. Adopting a siinilar orientation (relative to the special class
of n1oves en1bodied in crossover) 1night yield benefits for genetic al-

Connections and conclusions 139

gorithms in dealing with issues of genetic representation, which cur­
rently pose difficult questions (see e.g. Liepens and Vose (50]).

A domain where a genetic interpretation of tabu search ideas
seems possible concerns the use of vocabulary building approaches,
as described in Section 3.3. Vocabulary units may suggestively be
given the alternative name of 'genetic material'. By this means, such
units may be viewed as substrings of genes, created by a process
that selectively extracts them to establish a substring pool. As ele­
ments are accumulated from different sources within such a pool, and
progressively re-integrated into phrases and sentences by vocabulary
processes, a genetic parallel may be conceived of as incorporating
substring templates to guide construction of new genes.

Perhaps the use of such evolving substring pools, as opposed to
the exclusive focus on parents and children, would prove useful in
genetic algorithms. But there are limiting factors, since the TS pro­
cesses for creating vocabulary are based on conscious and strategic
reconstruction, and hence do not 1nuch resen1ble genetic processes.
To preserve the genetic n1etaphor, one n1ay hnagine relying on in­
telligent enzymes, operating as special subroutines to cut out appro­
priate co1nponents and then recon1bine the1n according to syste1natic
principles. If this is not stretching analogy too far, the outco1ne 1nay
qualify as an interesting hybrid of the GA and TS approaches.

A contrast to be noted between genetic algorithn1s and tabu
search arises in the treat1nent of context, i.e. in the consideration
given to structure inherent in different proble1n classes. For tabu
search, context is funda1nental, e1nbocliecl in the interplay of attribute
definitions and the detennination of 1nove neighbourhoods, and in
the choice of conditions to define tabu restrictions. Context is also
iinplicit in the identification of an1endecl evaluations created in as­
sociation with longer-tenn 1nen1ory, and in the regionally-dependent
neighbourhoods and evaluations of strategic oscillation.

At the opposite encl of the spectru1n, GA literature character­
istically stresses the freedom of its rules fron1 the influence of con­
text. Crossover, in particular, is a context-neutral operation, which
assumes no reliance on conditions that solutions 1nust obey in a par­
ticular proble1n setting, just as genes n1ake no reference to the envi­
ronment as they follow their encoded instructions for reco1nbination
(except, perhaps, in the case of 111utation). Practical application,

140 Tabu Search

however, generally renders this an inconvenient assu1nption, 1naking
solutions of interest difficult to find. Consequently, a good deal of ef­
fort in GA implementation is devoted to developing 'special crossover'
operations that con1pensate for the difficulties created by context, ef­
fectively re-introducing it on a case by case basis. The related branch
of evolutionary algorithms does not rely on the narrower genetic ori­
entation, and hence does not regard the provision for context as a
deviation (or extra-genetic innovation). Still, within these related
families of approaches, there is no rigorous dedication to exploiting
context, as manifested in proble1n structure, and no prescription to
indicate how solutions might be combined syste1natically to achieve
such exploitation, with the exception of special problems such as the
TSP (see, for instance, the discussion of the paper by Whitley et al.
[.51] in chapter 4).

The chief method by which modern genetic algorithms and their
cousins handle structure is by relegating its treatinent to some other
1nethod. That is, genetic algorithms combine solutions by their parent­
children processes at one level, and then a descent 1nethod takes over
to operate on the resulting solutions to produce new solutions. These
new solutions in turn are sub1nitted to be recombined by the GA pro­
cesses. In these versions, pioneered by Miihlenbein et al. [52], and
also advanced by Davis [.53] and Ulder et al. [.54], genetic algorithms
already take the form of hybrid methods. Hence, as will be further
remarked in chapter 4, there is a natural basis for marrying GA and
TS procedures in such approaches. But genetic algorithms and tabu
search can also be joined in a more fundamental way.

Specifically, tabu search strategies for intensification and diversi­
fication are based on the following question: how can information be
extracted fr01n a set of good solutions to help uncover additional (and
better) solutions? Fron1 one point of view, GAs provide an approach
for answering this question, consisting of putting solutions together
and interchanging c01nponents (in so1ne loosely defined sense, if tra­
ditional crossover is not strictly enforced). Tahu search, by contrast,
seeks an answer by using processes that specifically incorporate neigh­
bourhood structures into their design.

Augmented by historical information, neighbourhood structures
are used as a basis for applying penalties and incentives to induce at­
tributes of good solutions to become incorporated into current solu-

Connections and conclusions 141

tions. Consequently, although it may be meaningless to interchange
or otherwise incorporate a set of attributes from one solution into
another in a wholesale fashion, as atte1npted in recombination opera­
tions, a stepwise approach to this goal through the use of neighbour­
hood structures is entirely practicable. This observation, formulated
from a slightly different perspective in Glover [15], provides a basis
for creating structured co1nbinations of solutions that embody desired
characteristics such as feasibility. The use of these structured com­
binations makes it possible to integrate selected subsets of solutions
in any system that satisfies three basic properties. Instead of being
compelled to create new types of crossover to ren1ove deficiencies of
standard operators upon being confronted by changing contexts, this
approach addresses context directly and makes it an essential part
of the design for generating combinations. (A related manifestation
of this theme is provided by the path relinking approach of Section
3.3.) The current trend of genetic algorithms seems to be increas­
ingly con1patible to adopting such an approach, particularly in the
work of Miihlenbein [55], and this could provide a basis for a signifi­
cant hybrid combination of genetic algorith1n and tabu search ideas.
In particular, we note that M iihlen bein has likewise indicated the
relevance of incorporating TS types of 1ne1nory into GAs.

3.5.3 Neural networks

Neural networks have a s01newhat different set of goals fro1n tabu
search, although so1ne overlaps exist. We indicate how tabu search
can be used to extend certain neural net conceptions, yielding a hy­
brid that 1nay have both hardware and software iinplications.

The basic transferable insight fron1 tabu search is that me1nory
con1ponents with diinensions such as recency and frequency can in­
crease the efficacy of a syste1n designed to evolve toward a desired
state. We suggest there 1nay be 1nerit in fusing neural network 1nein­
ory with tabu search 1ne1nory. (A rudi1ncntary acquaintance with
neural network ideas is assu1ned.)

Recency-based considerations can be introduced from tabu search
into neural networks by a tiine delay feedback loop from a given neu­
ron back to itself (or fro1n a given synapse back to itself, by the de­
vice of interposing additional neurons). This pennits firing rules and
synapse weights to be changed only after a certain time threshold,

142 Tabu Search

detennined by the length of the feedback loop. Aspiration thresholds
of the fonn conceived in tabu search can be ernbodied in inputs trans­
rnitted on a secondary level, giving the ability to override the tirne
delay for altering firing thresholds and synaptic weights. Frequency­
based effects ernployed in tabu search rnay sirnilarly be incorporated
by introducing a fonn of cumulative averaged feedback.

Tirne delay feedback n1echanis1ns for creating recency and fre­
quency effects can also have other functions. In a problem-solving
context, for exarnple, it rnay be convenient to disregard one set of op­
tions to concentrate on another, while retaining the ability to recover
the suppressed options after an interval. This farniliar type of hu1nan
activity is not a custornary part of neural network design, but can
be introduced by the tiine dependent functions previously indicated.
In addition, a threshold can be created to allow a suppressed op­
tion to 'go unnoticed' if current activity levels fall in a certain range,
effectively altering the interval before the option re-e1nerges for con­
sideration. Neural network designs to incorporate those features may
directly n1ake use of the TS ideas that have 1nade these ele1nents
effective in the proble1n-solving don1ain.

Tahu search strategies that introduce longer tenn intensification
and diversification concerns are also relevant to neural network pro­
cesses. As a foundation for blending these approaches, it is useful to
adopt an orientation where a collection of neurons linked by synapses
with various activation weights is treated as a set of attribute vari­
ables which can be assigned alternative values. Then the condition
that synapse j (fro1n a specified origin neuron to a specified desti­
nation neuron) is assigned an activation weight in interval p can be
coded by the assignment Yi = p, where Yi is a con1ponent of an at­
tribute vector y, as identified in the discussion of attribute creation
processes in Section 3.2.5. A sirnilar coding identifies the condition
under which a neuron fires (or does not fire) to activate its asso­
ciated synapses. As a neural network process evolves, a sequence
of these attribute vectors is produced over tin1e. The association be­
tween successive vectors 1nay be irnagined to operate by reference to a
neighbourhood structure irnplicit in the neural architecture and asso­
ciated connection weights. There 1nay also be an irnplicit association
with so1ne (unknown) optirnization problem, or a rnore explicit asso­
ciation with a known proble111 and set of constraints. In the latter

Connections and conclusions 143

case, attribute assignments (neuron firings and synapse activation)
can be evaluated for efficacy by transfonnation into a vector x, to be
checked for feasibility by x E X. (We maintain a distinction between
y and x since there 1nay not be a one-one association between them.)

Time records identifying the quality of outco1nes produced by
recent firings, and identifying the frequency with which particular
attribute assignments produce the highest quality firing outco1nes,
yield a basis for delaying changes in certain weight assign1nents and
for encouraging changes in others. The concept of influence, in the
fonn introduced h1 tabu search, should be considered in parallel with
quality of outcomes.

Attribute creation and vocabulary building strategies as discussed
in Section 3.3 have a significant potential for contributing to the issue
of adaptive network design. An element notably lacking in neural net­
works at present is a syste1natic means to generate concepts, as where
a chess player evolves an ability to detect and treat a particular con­
figuration (class of positions) as a single unit. Vocabulary building
yields a direct way to generate new units fron1 existing ones. Applied
to neural networks, such a process 1nay operate to find e1nbedded
configurations of states that correspond to good firing outcon1es, and
asse1nble the1n in to larger units. More particularly, starting with a
set of previous firing states and weightings, represented by assign-
1nents in which y ranges over a set Y(S), attribute creation processes
can be used to identify and integrate significant co1nponents (subvec­
tors). Copying and segregating these co1nponents pennits associated
neural connections to be treated as hardwired, i.e. locked in. This
corresponds to treating the unit as a single new attribute. Activating
the unit (as by setting Yj = p for appropriate j and p) thus autornat­
ically activates the full associated syste1n of firings. The duplication
of co1nponents of y segregated fro1n the original structure pennits the
'original con1ponents' to continue to evolve without the hardwiring
limitation. This occurs in the sa1ne way that created attributes in vo­
cabulary building processes exist side by side with separate instances

of the attributes that gave rise to thezn.

As noted in Table 3.1 of Section 3.4, ele1nents of tabu search have
already been incorporated into neural networks in the work of de
Werra and Hertz [56] and Beyer and Ogier [57]. These applications,
which respectively treat visual pattern identification and nonconvex

144 Tabu Search

opti1nization, are reported significantly to reduce training ti1nes and
increase the reliability of outcomes generated. In addition, TS princi­
ples also have been integrated into a special variant of neural networks
making use of constructions called ghost images in [40].

The preceding observations suggest that TS concepts and strate­
gies offer a variety of fruitful possibilities for creating hybrid 1nethods
in combination with other approaches. Beyond this, 1nany opportu­
nities exist to expand the frontiers of tabu search itself. We have
undertaken to point out sonie of the areas likely to yield particular
benefits. As shown in Section 3.4, TS appears to be opening the
door to new advances in n1any settings, enco1npassing production
scheduling, routing, design, network planning, expert systems, and
a variety of other areas. Tahu search methods present opportunities
for future research both in developing new applications and in cre­
ating improved 1nethodology. The exploration of these realms may
afford a chance to 1nake a useful iinpact on the solution of practical
con1binatorial problen1s.

Acknowledgement

This work was supported in part by the Joint Air Force Office of Scientific

Research and Office of Naval Research Contract No. F49620-90-C-003:3 at
the University of Colorado.

References

[1] F.Glover (1986) Future paths for integer progranuning and links
to artificial intelligence. Computers €1 Ops.Res., 5, 533-,549.

[2] P.Hansen (1986) The steepest ascent 1nildest descent heuristic
for combinatorial progra1n1ning. Congress on Numerical Methods
in Combinatorial Optimization, Capri, Italy.

[3] M.Laguna and F.Glover (1992) Integrating target analysis and
tabu search for i1nproved scheduling systems. Expert Systems
with Applications: An International Journal, (to appear).

[4] U.Faigle and W.Kern (1992) So1ne convergence results for prob­
abilistic tabu search. ORSA J. on Computing, 4, 32-37.

References 14.5

[.5] F.Glover, E.Taillard and D.de Werra (1993) A user's guide to
tabu search. Annals of Ops.Res., 41, (to appear).

[6] M.Dell'A1nico and M.Trubian (1993) Applying tabu search to
the job-shop scheduling proble1n. Annals of Ops.Res., 41, (to
appear).

[7] M.Gendreau, L.Salvail and P.Soriano (1992) Solving the 1nax­
imum clique proble1n using a tabu search approach. Discrete
Appl.Math., (to appear).

[8] M.Laguna, J.W.Barnes and F.Glover (1991) Tahu search n1eth­
ods for a single machine scheduling problen1. J. of Intelligent
Manufacturing, 2, 63-74.

[9] J.Chakrapani and J.Skorin-Kapov (1993) Massively parallel
tabu search for the quadratic assignn1ent problem. Annals of
Ops.Res., 41, (to appear).

[10] F.Dammeyer and S.Voss (1993) Dynamic tabu list 1nanage1nent
using the reverse eli1nination 1nethod. Annals of Ops.Res., 41,
(to appear).

[11] P.Hansen and B.Jau1nard (1990) Algorith1ns for the 1naxhnu1n
satisfiability proble1n. Computing, 44, 279-303.

[12] D.L.Woodruff and E.Ze1nel (1993) Hashing vectors for tabu
search Annals of Ops.Res., 41, (to appear).

[13] F.Glover (1992) Simple tabu thresholding in optimization. Grad­
uate School of Business and Ad1ninistration, University of Col­
orado at Boulder.

[14] J.Ryan (1992) Depth and width of local optima. Departinent of
Mathe1natics, University of Colorado at Denver.

[1.5] F.Glover (1992) Tahu search for nonlinear and parametric opti-
1nization (with links to genetic algoritlnns) Discrete Appl.Math.,
(to appear).

[16] J.P.Kelly, M.Laguna and F.Glover (1992) A study of diversifica­
tion strategies for the quadratic assign1nent proble1n. Computers
e3 Ops.Res., (to appear).

146 Tabu Search

[17] F.Glover (1977) Heuristics for integer progranuning using surro­
gate constraints. Dec.Sci., 8, 156-166.

[18] F.Glover, D.Karney, D.Klingman and A.Napier (1974) A com­
putational study on start procedures, basis change criteria, and
solution algorith1ns for transportation proble1ns. Man.Sci., 20,
793-813.

[19] J.Mulvey (1978) Pivot strategies for prhnal shnplex network
codes. J. of the ACM, 25, 266-270.

[20] J.Frendewey (1983) Candidate list strategies for GN and Simplex
SON 1nethods. Graduate School of Business and Ad1ninistration,
University of Colorado at Boulder.

[21] F.Glover, R.Glover and D.Kling1nan (1986) The threshold as­
signn1ent algorith1n. Math.Prog. Study, 26, 12-37.

[22] F.Glover (1992) Multilevel tabu search and en1bedded search
neighbourhoods for the travelling sales1nan proble1n. ORSA J.
on C01nputing. (to appear).

[23] F.Glover (1992) Ejection chains, reference structures, and alter­
nating path methods for the travelling salesman problem. Grad­
uate School of Business and Adn1inistration, University of Col­
orado at Boulder.

[24] U.Dorndorf and E.Pesch (1992) Fast clustering algorithms. IN­
FORM and University of Li1nberg.

[2_5] M.Laguna, J.P.Kelly, J.L.Gonzalez-Velarde and F.Glover (1991)
Tab1, search for the multilevel generalized assignment proble1n.
Graduate School of Business and Achninistration, University of
Colorado at Boulder.

[26] A.Freville and G.Plateau (1986) Heuristics and reduction 1neth­
ods for 1nultiple constraint 0-1 linear progrannning problen1s.
EJOR, 24, 206-215.

[27] A.Freville and G.Plateau (1990) Hard 0-1 1nultiknapsack test
proble1ns for size reduction 1nethods. /nvestigacion Operativa, 1,
251-270.

References 147

[28] M.Widmer and A.Hertz (1989) A new heuristic 1nethod for the
flow shop sequencing problem. EJOR, 41, 186-193.

[29] M.Nawaz, E.E.Emscore, Jr. and I.Hain (1983) A heuristic algo­
rithm for the m-machine, n-job flow-shop sequencing problem.
OMEGA, 11, 91-95.

[30] E.Taillard (1990) Some efficient heuristic methods for the flow
shop sequencing problem. EJOR, 47, 65-74.

[31) C.R.Reeves (1993) Improving the efficiency of tabu search for

machine sequencing problems. JORS, (to appear).

[32] M.Widmer (1991) Job shop scheduling with tooling constraints:
a tabu search approach. JORS, 42, 75-82.

[33] R.L.Daniels and J.B.Mazzola (1993) A tabu search heuristic for
the flexible-resource flow shop scheduling problem. Annals of
Ops.Res., 41, (to appear).

[34] P.J .M.van Laarhoven, E.H.L.Aarts and J .K.Lenstra (1988) Job
shop scheduling by simulated annealing. OS-R8809, Centre for
Mathen1atics and Computer Science, Amsterdam.

[35] H.Matsuo, C.J.Suh and R.S.Sullivan (1988) A controlled search
simulated annealing method for the general job shop scheduling
problem. Graduate School of Business, The University of Texas
at Austin.

[36] E.LJvfooney and R.L.Rardin (1993) Tahu search for a class of
scheduling proble1ns. Annals of Ops.Res., 41, (to appear).

[37] D.L.Woodruff and M.L.Spearman (1992) Sequencing and batch­
ing for two classes of jobs with deadlines and setup tiines. J.
of the Production and Operations Management Society, (to ap­
pear).

[38] M.Malek, M.Guruswamy, M.Pandya and H.Owens {1989) Serial
and parallel simulated annealing and tabu search algorithms for
the travelling salesman problem. Annals of Ops.Res., 21, 59-84.

[39] M.Gendreau, A.Hertz and G.Laporte (1992) A tabu search
heuristic for the vehicle routing problem. Man.Sci., (to appear).

148 Tabu Search

(40] F.Glover (1992) Optimization by ghost image processes in neural
networks. C01nputers & Ops.Res., (to appear).

[41] E.Taillard (1991) Robust taboo search for the quadratic assign-
1nent proble1n. Parallel Computing, 1 7, 443-455.

[42] LR.Osman (1993) Metastrategy sin1ulated annealing and tabu
search algorithms for the vehicle routing proble1n. Annals of
Ops.Res., 41, (to appear).

[43] F.Se1net and E.Taillard (1993) Solving real-life vehicle routing
problen1s efficiently using taboo search. Annals of Ops.Res., 41,
(to appear).

[44] B.Jau1nard, P.Hansen and !A.Poggi di Aragao (1991) Column
generation methods for probabilistic logic. ORSA J. on Com­
puting, 3, 135-148.

[45] P.Hansen, B.Jau1nard and Da Silva (1992) Average linkage divi­
sive hierarchical clustering. J. of Classification, (to appear).

[46] W.Domschke, P.Frost and S.Voss (1991) Tahu search tech­
niques for the quadratic se1ni-assign1nent problen1. In G.Fandel,
T.Gulledge and A.Jones (Eds.) New Directions for Operations
Research in Manufacturing, 389-405. Springer.

[47] J.P.Kelly, B.L.Golden and A.A.Assad (1993) Large-scale round­
ing using tabu search with strategic oscillation. Annals of
Ops.Res., 41, (to appear).

[48] I.Kasson (1992) Anielioration d'ordonnancements par des meth­
odes de voisinage. Doctoral thesis, INSA, Rauen, France.

[49] V.V.Verdejo and R.M.Cunquero (1992) An application of the
tabu thresholding techniques: minirnization of the number of arcs
crossing in an acyclic digraph. Departa1nento de Estadistica e
Investigacion Operativa, Universiclad de Valencia, Spain.

[50] G.Liepins and M.D.Vose (1990) Representational issues 111 ge­
netic opti1nization. J. of Experimental and Theoretical Artificial
Intelligence, 2, 101-115.

References 149

[51] D.Whitley, T .Starkweather and D.Shaner (1991) The traveling
sales1nan and sequence scheduling: quality solutions using ge­
netic edge reco1nbination. In [53], 350-372.

[52] H.Miihlenbein,M.Gorges-Schleuter and O.Kra1ner (1988) Evolu­
tion algorith1ns in co1nbinatorial optiinization. Parallel Comput­
ing, 7, 65-85.

[53] L.Davis (Eel.) (1991) Handbook of Genetic Algorithrns. Van Nos­
trand Reinhold, New York.

[54] N.Ulder, E.Pesch, P.J.M.van Laarhoven, H.J.Bandelt and
E.H.L.Aarts (1991) Genetic local search algorith1n for the trav­
elling salesman problen1. In R.Maenner and H.P.Schwefel (Eds.)
Parallel Problem-solving from Nature. Lecture Notes in Com­
puter Science 496, Springer-Verlag, 109-116.

[55] H.Miihlenbein (1992) Parallel genetic algorith1ns in co1nbinato­
rial opti1nization. In O .Balci (Eel.) Computer Science and Oper­
ations Research., Pergan1on Press.)

[56] D.de Werra and A.Hertz (1989) Tahu search techniques: a tu­
torial and an application to neural networks. OR Spektrum, 11,
131-141.

[57] D.Beyer and R.Ogier (1991) Tahu learning: a neural network
search 1nethocl for solving nonconvex optimization proble1ns.
Proceedings of the International Joint Conference on Neural Net­
works, IEEE and INNS, Singapore.

[58] C.A.Anderson, K.F.Jones, M.Parker and J.Ryan (1993) Path
assign1nent for call routing: an application of tabu search. Annals
of Ops. Res., 41, (to appear).

[,59] F.Glover and M.Laguna (1992) Bandwidth packing: a tabu
search approach. Man.Sci., (to appear).

[60] P.Hansen, B.Jau1nard and M.Poggi di Aragao (1992) Mixed in­
teger colun1n generation algorith1ns and the probabilistic 1naxi-
1nu1n satisfiability proble1n. Proc. of the 2nd Integer Program-
1ning and Combinatorial Optiniization Conference, Carnegie
Mellon.

150 Tabu Search

[61] F.Glover and C.McMillan (1986) The general e1nployee schedul­
ing proble1n: an integration of 1nanagement science and artificial
intelligence. Computers & Ops.Res., 15, 563-.593.

[62] J.Bovet, C.Constantin and D.de Werra (1992) A convoy schedul­
ing proble1n. Discrete Appl.Math., (to appear).

[63] M.Laguna and J.L.Gonzalez-Velarde (1991) A search heuristic
for just-in-time scheduling in parallel machines. J. of Intelligent
Manufacturing, 2, 253-260.

[64] J.W.Barnes and M.Laguna (1992) Solving the n1ultiple-1nachine
weighted flow thne proble111 using tabu search.]IE Transactions,
(to appear).

[65] J.Skorin-Kapov (1990) Tahu search applied to the quadratic as­
signment problem. ORSA J. on Computing, 2, 33-45.

[66] J.A.Bland and G.P.Dawson (1991) Tahu search and design op­
tin1ization. Computer-Aided Design, 23, 195-202.

[67] S.Oliveira and G.Stroud (1989) A parallel version of tabu search
and the path assignn1ent proble1n. Heuristics for C01nbinatorial
Optimization, 4, 1-24.

[68] F.Glover, C.McMillan and B.Novick (1985) Interactive decision
software and computer graphics for architectural and space plan­
ning. Annals of Ops.Res., 5, 557-57:3.

[69] A.Hertz and D.de Werra (1987) Using tabu search techniques
for graph coloring. Computing, 29, 345-351.

[70] A.Hertz, B . .Jaun1ard and M.Poggi di Aragao (1992) Topology
of local optin1a for the k-coloring problern. Discrete Appl.Math.,
(to appear).

[71] C.Friden, A.Hertz and D.de Werra (1989) Stabulus: a technique
for finding stable sets in large graphs with tabu search. Comput­
ing, 42, :3.5-44.

[72] M.Sun and P.G.McKeown (1993) Tahu search applied to the gen­
eral fixed charge problem. Annals of Ops.Res., 41, (to appear).

