
Annals of Operations Research 12(1988)199-215 199

L O G I C A L T E S T I N G F O R R U L E - B A S E M A N A G E M E N T

Fred GLOVER

Center for Applied Artificial In telligence, Graduate School of Business,
University of Colorado, BouMer, Colorado 80309-0419, USA

and

Harvey J. GREENBERG

Mathematics Department, University of Colorado at Denver, Denver,
Colorado 80202, USA

Abs t rac t

We present a procedure to logically reduce simple implications that comprise
the rule-base of an expert system. Our method uses topological sorting on a digraph
representation that detects logical inconsistency and circular reasoning in linear-
time. Then, the sort order provides an efficient method to detect and eliminate
forced values and redundant rules. We consider additional diagnostic aids for the
rule-base manager, notably how to range the number of propositions that could
be true and how to consolodate the rule-base. We than show how the simple case
may be extended to logically test a general rule-base with a decomposition principle.

Keywords

Expert systems, rule-base management, logical testing, combinatorial optimization,
precedence graphs, computational logic.

1. Introduction

We study the problems of logical inconsistency and circular reasoning, as cited
by Bramer [4], associated with a rule-base. We also provide detection of redundant
rules - that is, whose removal from the rule-base does not alter the set of feasible
truth values - and propositions whose truth values are forced.

The first main result is a linear-time algorithm that detects inconsistency,
if present, in a rule-base with only simple implications, and provides a diagnostic in
the form of a minimal cycle for the expert to rectify the logical error. If the rule-base
is consistent, the algorithm detects and eliminates circular reasoning during its first

© J.C. Baltzer AG, Scientific Publishing Company

200 F. Glover, H.J. Greenberg, Logical testing for rule-base management

phase. Then, phase two detects and eliminates redundant rules and forced propositions,
resulting in a logically irreducible rule-base, whereby there exist truth assignments
for which each (remaining) proposition may be assigned either value (true or false).

Underlying the method is the use of topological sorting introduced by
Kahn [12] and enhanced by Knuth [13]. Elimination of forced propositions is done
efficiently due to the sort order obtained in phase one; elimination of redundant
rules is done at the same time in a manner similar to that of Valdes et al. [17].

If the rule-base is consistent, optimization models are considered for the
derived, logically irreducible rule-base. Our second main result then shows the applica-
bility of max-flow/min-cut algorithms, for which there are efficient labelling methods
(see [5] and [6]). This equivalence was shown in another context by Rhys [15] and
Balinski [12], and the underlying combinatorial optimization problem was addressed
more generally by Picard [14].

When the requisite structure for using a simple labelling algorithm is absent,
special search techniques are still available with linear programming by augmenting
the algebraic equivalent with special linear inequalities derived by Johnson and
Padberg [11]. The derived inequalities have special significance in their own right,
showing the expert implied rules that may otherwise not be easily discemable.

We next consider another problem of rule-base management: how to consoli-
date rules for efficient representation and processing. The third main result is a
methodology, drawing from graph inversion [7,8].

Our fourth main result is to show how the logical testing method for simple
rule-base extends to the general case by a decomposition principle. This is particularly
well suited for a parallel computer architecture, such as the Intel Hypercube.

We shall use only propositional logic, but, as described by Jeroslow [10], the
methods apply to predicate calculus under certain assumptions that generally apply
to expert systems.

The rest of this paper is divided into six sections. Section 2 presents the basic
concepts we shall use in deriving the main results. Section 3 presents the linear-time
algorithm for the case of a simple rule-base. Section 4 presents a family of optimiza-
tion models, aimed at helping the expert understand the scope of the rule-base, and
presents the max-flow/rain-cut equivalence. Section 5 introduces the "consolidation
problem", which pertains to finding a logically equivalent rule-base with the fewest
number of rules. Section 6 presents a decomposition principle for the general rule-
base. Finally, section 7 presents avenues for further research.

2. Basic concepts

2.1. GRAPH-THEORETIC DEFINITIONS

This section reviews the standard graph-theoretic concepts we shall use (see
Harary et al. [9]). A (finite) digraph D = IV, A] consists of a finite set of vertices V

F. Glover, H.J. Greenberg, Logical testing for rule-base management 201

and a finite set of arcs A. Each arc is an ordered pair of vertices (o, w), which is
oriented from o to w. We call o a predecessor of w, and w a successor of o. The sets
of predecessors and successors of a vertex o are denoted, respectively, by:

P(o) = [u E V " (u , u) E A] and S(o) = [w E V" (o , w) E A] .

Moreover, for W C_ V, we denote:

P (W) = U [P (w) ' w E W] and S (W) = U [S (w) ' w E W].

If S is any finite set, # S denotes its cardinality. A source is a vertex v for
which #P(o) = 0; a sink is a vertex o for which # S (o) = O.

A digraph D ' = [V', A '] is a subgraph of digraph D = [V, A] , denoted
D ' C_ D, if V' C Vand A ' C A.

A (directed) path of length p is a sequence of vertices (Vo, O l , . . . , up) such
that v j . 1 E S(vj) for j = 0, . . . , p - 1. We say that the path contains the vertices
o o , . . . , up and the arcs (v o , 01), . . . , (up _ 1, up); we also say that an arc (vj , oj÷ 1)
is traversed. A semipath is asequence of vertices (oo, U l , . . . , up) such that oj+ 1 E S(oj)
t3 P(oj) for j = 0, . . . , p - 1. If oj ÷ I E S (vj), we say the arc (oj, vj ÷ 1) is traversed in
a forward direction; otherwise, if oj+ 1 E P(oj) , we say (oj, oj+ 1) is traversed in a
backward direction. A path (or semipath) is simple if no vertex is contained twice. If
o o = up and p > I, the path (semipath) is a cycle (respectively, semicycle). A digraph
is acyclic if it contains no cycles. Vertex w is a descendant of vertex o, denoted
v ~ w, if there exists a path with o o = o and up = w.

An implication graph is a digraph with 2n vertices with the following properties:

(1) vertices are numbered so that for each vertex o there is a unique vertex
-o , called its complement;

(2) if (o, w) is an arc, so is (-w , -o) , called its contrapositive.

We also say o and - o are a complementary pair and that (v, w) and (- w , - o) are
contrapositive arcs.

For~ I¢ _C 1I, W denotes its set of complements: W = [- w : w E W] ; and, for
B _C A, B denotes its set of contrapositive arcs: B = [(-w, - o) : (v, w L E B] . f i g
is an implication graph and H = [W_B] C_ G, the complement of H is H = [I41, B].
It follows that for any H _C G, Htd H is an implication graph.

If (o o , o 1 op) is a path, its contrapositive path is (-up -vp _ 1 , - . ' , -Vo)"
A cycle C is contradictory if it contains a complementary pair of vertices; otherwise,
its vertices comprise an equivalence class E, and we say C generates E. (Note the
contrapositivecycle C is also an equivalence class, composed of the complements, so
C generates E.) An implication graph is inconsistent if it contains a contradictory
cycle; otherwise it is consistent. The condensation of an equivalence class E C V is
the replacement of all vertices in E by a single vertex e and all vertices in E~vith a
complementary vertex - e with their predecessor and successor sets given by:

202 F. Glover, H.J. Greenberg, Logical testing for rule-base management

=>

(e) EQUIVALENCE REDUCTION

C 7 ~
;>

(b) TRANSITIVE REDUCTION

(c) FORCING REDUCTION (3::>--3)

Fig. 1. Examples of logical reduction.

Q

(0) IMMEDIATE REDUCTION BY CYCLE < 1,2,3,1>

C C ~ ©

(b) 2 -STEP REDUCTION, FIRST BY SIMPLE CYCLE <1 ,2 ,1>

Fig. 2. Application of Church-Rosser property to equivalence reduction.

F. Glover, H.J. Greenberg, Logical testing for rule-base management 203

P(e) = P(E) - E, S (- e) = S(E) - E

P (- e) - -P(f fT)- f f : and S (- e) = S (E) - E .

(Note that E and if? are disjoint, since the generating cycle is presumed not to be
contradictory.) The equivalence reduction of a consistent implication graph is the
condensation of each equivalence class, which results in an acyclic implication graph.
A contradictory cycle is minimal if it contains no proper subcycle that is contra-
dictory.

A digraph is transitively closed if every descendant of a vertex u is also a
successor of v. The transitive closure of a digraph is the digraph obtained by adding
arcs to make it transitively closed. An arc is transitively redundant if its removal
leaves the transitive closure unchanged. A digraph with no transitively redundant
arcs is transitively minimal. The transitive reduction of a digraph is the unique
transitively minimal digraph having the same transitive closure.

If, in an implication graph, v ~ - v for some vertex v, then v is forcing; its
forcing set F(u) is - v plus all descendants of -v. An implication graph is forcing if
it contains a forcing vertex; otherwise, it is nonforcing. The forcing reduction of an
implication graph is the removal of F(v) U F(u) for all forcing vertices u.

An acyclic implication graph that is transitively minimal and has no forcing
vertex is called logically irreducible or simply irreducible. Figure 1 illustrates each of
the three reductions just defined: equivalence, transitive and forcing. When applied to
a consistent implication graph, these three reduction operations can be shown to
satisfy the Church-Rosser property [16]: if reductions are applied in any order
until no reduction is possible, the result is a unique implication graph independent
of the specific reductions applied. Figure 2 illustrates an example. By the Church-
Rosser property, we arrive at the same irreducible implication graph whether we
recognize the entire cycle (l , 2, 3, 1) at once or first the cycle E = (l , 2, 1).

The Church-Rosser property may fail for an inconsistent implication graph.
Figure 3 shows an example where different minimal contradictory cycles are obtained,
depending on whether we first apply transitive reduction.

~ MINIMAL CONTRADICTORY CYCLE:
< 1 , 2 , - I , 1 >

TRANSITIVE
REDUCTION

~ MINIMAL CONTRADICTORY CYCLE:
< 1 , 2 , - 2 , - I , I >

Fig. 3. Failure of Church - Rosser property
for an inconsistent implication graph.

204 F. Glover, H.J. Greenberg, Logical testing for rule-base management

2.2. RULE-BASES

We are given atomic propositions Pt , P2 Pn, and we let "~ Pi denote the
negation of Pi" A literal is an atomic proposition or its negation. A logical expression
is formed by literals and logical connectives: the disjunction (v) , conjunction (A) and
implication (~) .

A rule-base R is a collection of implications of the form A ~ C, called a rule;
A is called the antecedent and C is called the consequent. Both A and C are, in
general, logical expressions. A rule is simple if its antecedent and its consequent are
literals. The rule-base is simple if each of its rules is simple.

A feasible solution is a truth assignment to the atomic propositions such that
all rules in R are logically true. The set of feasible solutions is denoted by S(R).

A rule chain is an ordered sequence of rules (A 1 -~ C 1 A k -+ Ck), such
that k > 1 and A i = C i_ 1 for i = 2 k. This is sometimes abbreviated to
A 1 - + A 2 ~ . . . - - , A k.

The rule-base validity problem is to detect (immediate or deferred):

- Inconsistency: is S(R) empty?
Equivalently, does R contain a rule chain,

A ~ . . . ~ " A --, . . . --,A?

Orculari ty :

Equivalently,

h - . ~ . . . - ~

does there exist a subset of the literals whose truth values
must always be equal?
does R contain a rule chain,

A?

Redundancy:

Equivalently,

a . . @ . . . - - ~

does there exist a rule whose removal leaves S(R) un-
changed?

if [A ~ C] E R, does R contain a rule chain,

C?

Inflexibility:

Equivalently,

h . - . ~ . . . - . ~

does there exist a proposition whose truth value is the
same in every feasible solution?

does R contain a rule chain,

~ A ?

We solve the simple rule-base validity problem with a 2-phase procedure in
the next section. Then, we shall introduce optimization criteria and show how to go
beyond these fundamental questions, giving insights to the expert for the scope of
the rule-base. Afterwards, we shall consider the general case where rules may not be
simple.

F. Glover, H.J. Greenberg, Logical testing for rule-base management 205

3. Logical reduction of simple rule-bases

Let R be a simple rule-base with m (simple) implications over n atomic propo-
sitions. Define the associated implication graph G(R) by letting vertex i represent
proposition Pt and - i its negation ~P/ . Then, define contrapositive arcs associated
with each rule by the following productions.

Pt ~ I"/ ~ <i,/> and <-/, -i~.

Pi "+ "~Pi =~ (i, -1) and (1,-i>.

~ P~ -~ P~ ~ (- i , / > and (- / , i > .

g -, ~ e /=* <-i, -i> and </, i>.

The first phase of the logical reduction procedure applies topological sorting
to the implication graph. If the implication graph is inconsistent, a contradictory cycle
will be found, and it is simple to reduce this in linear-time to a minimal inconsistency
to aid the expert in rectifying the rule-base. Otherwise, if the implication graph is
consistent, phase 1 ends with an equivalence reduction, replacing each cycle with a
literal representative. Phase 2 then proceeds to construct a logically irreducible impli-
cation graph by eliminating transitive redundancy and propositions whose truth
values are forced.

Here is an overview of the 2-phase logical reduction procedure for simple rule-
bases.

LOGICAL REDUCTION PROCEDURE

Phase 1: (Compute acyclic implication graph.)

For each A ~ C in R, enter arcs (u, v) and (- v , - u) into TOPSORT (where
u and o are signed indexes associated with the literals that define the antecedent
A and consequent C). If TOPSORT terminates successfully, end phase 1.
Otherwise, if TOPSORT terminates with cycle C, test if C contains a comple-
mentary pair of vertices. If so, reduce C to a minimal inconsistency and exit
INCONSISTENT; else, condense C and continue phase 1.

Phase 2: (Compute irreducible implication graph.)

Let (v l , v2, . . . , o N) denote the sort order obtained in phase 1. (Now N is
the number of equivalence classes and v i is a literal that represents the ith
equivalence class.) For i = 1,2 N, do the following.

(1) Test if o i is forcing. If so, remove F(vi) U F(oi) and advance to next i.

206 F. Glover, H.J. Greenberg, Logical testing for rule-base management

(2) For each w E S(vi) , test if (v i, w)is transitively redundant. If so, remove
(v i, w).

Phase 1 of the logical reduction procedure executes Knuth's topological
sorting algorithm TOPSORT, which is linear-time. If it is not successful, Knuth gives
a linear-time algorithm to find a cycle C, and we add a step of recording the minimum
index value:

k = rain [v : v e C] .

Then, we assign the integer label L (v) = k for all v E C If L (v) = L (- v), v and - v
are in a cycle, so R is inconsistent. In that case, we merely traverse once more to
eliminate suhcycles, so the final inconsistency reported to the expert is in the form
of a minimal cycle containing a proposition and its negation.

If the cycle does not contain a complementary pair, the implication graph
is condensed, with k as its representative. This labelling gives automatic merger of
cycles. For example, if we first find cycle (1 ,2 , 3, 1), then v = 1 is its representative
and, if the original graph also has the cycle (2, 3, 4, 2), we will automatically assign
labels of 1 to v = 1,2, 3 ,4 , giving one equivalence class for all four propositions.More-
over, the Church-Rosser property holds: if we obtain cycle C, we also obtain C, and
the complementary pairs of cycles so obtained do not depend on the order of the
condensations.

Thus, phase 1 has the following properties:

(1) It is linear-time.
(2) If R is inconsistent, phase 1 ends with a minimal inconsistent cycle.
(3) If R is consistent, phase 1 ends with an equivalence reduction.

Now consider phase 2. The topological sort order allows us to look forward
(without backtracking) while eliminating all forced propositions and redundant rules.
The worst time complexity is bflinear, O(#V#A), but there are some time-saving
tactics. During topological sorting, it is not difficult to define the level function [17]
L : V -+ {0, 1, . . . , #V}. If v is a source, L(v) = 0; otherwise, L(v) is the length of a
shortest path from some source.

When testing for whether v is forcing, we first ask: L(v) < L(-v)? If not, v
cannot be forcing. If so, we need to test if there is a path from v to - v (and we may
confine lengths to be within L (- o) -L(v)) . One way to do this is to define
a subdigraph composed of o, - o and all vertices w whose level is between:
L(v) < L(w) < L(-v) . Vertex v is a source in this subdigraph, and vertex - v is a
sink. Putting unit capacities on all arcs, we compute a max-flow from v to - v . This
flow will be 1 iff o =~ - o ; otherwise, it will be zero. The worst time to do this is
O(#A), giving an overall worst time of O(#V#A).

F Glover, H.J. Greenberg, Logical testing for rule.base management 207

When testing for whether (v, w) is transitively redundant, we may again
filter candidates by using the min jump function [17], M : V-~ {1, 2 , . . . , #V},
where

M(v) = rain [L(w) - L(v) : w e S(v)].

Then, if L (w) - L (v) = M(v), arc (v, w) is not transitively redundant. Otherwise, if
L (w) - L (v) > M(v), we must test further. This can be done with max-flow, as above,
by defining the subdigraph with v as its source, w as its sink, and all between-level arcs,
except < v, w), included. Then, this will determine if o =~ w without arc (v, w).

Summarizing, phase 2 ends with the following properties:

(1) Its worst time complexity is bilinear, O(#V#A).

(2) If any proposition is forced to have a particular truth value in every
feasible solution, this is found and the proposition is eliminated (along with
descendants).

(3) Each proposition not eliminated has value TRUE in some feasible solution
and value FALSE in some (other) solution.

(4) If any rule is redundant, it is eliminated from R.

(5) Any rule not eliminated binds the solution set in that its removal admits
at least one more feasible solution.

4. O p t i m i z a t i o n

Here, we suppose we have a logically irreducible simple rule-base, having
applied the procedure of the previous section. Now, it may be desirable to infer
additional properties, such as the maximum number of propositions that can have
value TRUE.

We say R is separable if its implication graph G(R) has the property that
complementary vertices are in different weak components. In this case, we let
I(R) denote the core of the implication graph, where G(R) = I(R) U I (R) and
I(R) N I ' (R) = ¢. When this is the case, define the digraph N(R) as follows. Let V +
denote the vertices o of I(R) for which v > 0, and let V- denote those for which
v < 0. Separability ensures that V ÷ t.J V- is a partition of the vertices of I(R), and
that every proposition or its negation is represented (not both). Augment I(R) with
two vertices: a source s and a sink t. Then, N(R) is this augmented network plus the
arcs (s, V ÷) and (V-, t). Let V' denote the set of labelled vertices after determining
the max-flow from s to t in N(R), and let V" be the unlabelled vertices. Finally,
define

T(R) = {rE V':v4= s and v > O} U { - v : v E V" - { t } and v < 0}.

208 F. Glover, H.J. Greenberg, Logical testing for rule-base management

I (R) : I 2 - 3 4 - 5

N (R): I l ~ i
Fig. 4. Illustrafion ofmax-flowequivalence.

R =f PI~'P2, P 2 - ~ ' ' P 3 , P3- '~ '~P2

G (R):

Fig. 5. Nonseparable rule-base.

MAX-FLOW EQUIVALENCE THEOREM

If R is a separable, simple rule-base, the maximum number of propositions
that can be TRUE equals #T(R). Further, this is achieved by setting Pk = TRUE for
all k in T(R).

Figure 4 shows an example of a logically irreducible implication graph, with
core I(R). Figure 4 also shows labels (*) on N(R) obtained from the Ford-Fu lke rson
max-flow/min-cut algorithm, which yields the vertex partition V' = {s, 1, 2} and
V" = {t, - 3 , 4, - 5 } . The maximum number of propositions that can be TRUE is 4,
and one such assignment is T(R) = {1,2, 3, 5}.

Figure 5 shows a logically irreducible implication graph that is not separable.
In this case, max-flow equivalence fails. We next characterize an essential property of
such failure.

ODD CYCLE THEOREM

graph.

P roof

If R is not separable, G(R) contains an even semi-cycle that is an implication

Suppose v and - u are in the same weak component of G(R). Let the semi-
path connecting them be (v o = v, v 1 , . . . , vp _ 1, vp = -v). If this contains another

F. Glover, H.J. Greenberg, Logical testing for rule-base management 209

complementary pair, reduce the semi-path until o o and op are the only complementary
pair (i.e. discard (o o w) and (- w op), then define v = w, if such w is an
internal vertex in the semi-path). Now G(R) must also contain the semi-path
(- o e = o, -Op_ a , - v i , - r e = -o) . The union of these two semi-paths is an
implication graph and a semi-cycle. Further, there are 2p vertices (and arcs) in this
union, so the semi-cycle is even.

COROLLARY

If G(R) is a forest, R is separable.

Once R is logically reduced, it is easy to test whether it is separable. If so, the
Max-Flow Equivalence Theorem gives an efficient algorithm for maximizing the
number of propositions that can be true in a feasible solution. Moreover, it is not
difficult to apply the same result to obtain the minimum number, giving a range on
the total number of TRUE assignments. It is equally easy to assign weights to the
propositions and obtain a range on total (additive) weight.

The next section presents another rule-base management aid, pertaining to
another form of reduction, aimed at keeping as few rules as possible.

5. Rule-base consolidation

We suppose R is simple, logically irreducible and separable. Without loss of
generality, we shall suppose each implication is of the form Pi -* Pi" (Negations may
be replaced by simple transformation, owing to separability.) Two rule-bases, R and
R ' , are said to be logically equivalent, written R *=* R ' , if they are def'med over the
same set of atomic propositions and their solution sets are equal:

S(R) = S(R') .

We consider the following.

RULE-BASE CONSOLIDATION PROBLEM

Given a class of rule-bases R and a member R, find R* E R such that:

(1) R**=~R, and

(2) # R * is a minimum over R, subject to (1).

To illustrate, consider the following example:

210 F. Glover, H.J. Greenberg, Logical testing for rule-base management

Two equivalent rule-bases are:

R" = t(P~ V Ps)"* P 2, (P1 V P4)~ Pa}.

Each rule-base has fewer rules than R, but they are not simple. We have permitted
disjunctive antecedents and conjunctive consequents.

The Rule-Base Consolidation Problem is a special case of digraph inversion
[7,8], as follows. Let M denote a qualitative matrix (i.e. ~ j E {0, - 1, + 1} for all
i, j) . The fundamental digraph D(M) = [V, A] is the following bipartite graph. Let
V = V r u Vc, where vertices in V r correspond to rows of M, and vertices in V c corre-
spond to columns of M. For Mq = - 1, arc (i, j) corresponds with i E V r and j EVc;
for Mq = + 1, arc (L i) corresponds. The row digraph RD(M) = [V r, At] has vertex
set V r. Arc (i, k) E A r corresponds to a 2-pathin D(M); equivalently, there is a column
of M, say], for which Mq = - 1 and M~j = + 1. The digraph inversion problem is to
characterize M for which RD(M) = D, where D is a given digraph. Of particular
interest are minimal inverses: no column may be removed without violating the de-
fining structural equation RD(M) = D. A minimum inverse is one with the fewest
number of columns among all inverses.

The Rule-Base Consolition Problem may be formulated as a digraph inversion
problem by associating V r with propositions and V c with rules. Then, for each column
of M let X i ~ Yj denote an associated diclique:

X. = { i ' M . . = - l } and Y. = { i 'M. . = + 1 } .
I tl l tl

In our case, X i represents a disjunctive antecedent, and Yj represents a conjunctive
consequent. The set of all rule-bases logically equivalent to R is precisely the set of
digraph inverses of RD(M) for M equal to the incidence matrix of I(R).

For the above example, the digraph inverses corresponding to R ' and R" are
M' and M", as follows:

M I

m

- 1

1

1

1

1

- 1

- 1
m

1

2

3

4

5

M,, =

B

-1 - 1

1

-1
B

1

-1

1

2

3

4

5

F. Glover, H.J. Greenberg, Logical testing for rule-base management 211

FIRST CONSOLIDATION THEOREM

Suppose R is a simple, separable rule-base with core graph I(R) = [V, A].
Denote sources by S C V and sinks by T C V.

(1) If R is the class of'rule-bases that has disjunctive antecedents and simple
consequents, #R* equals the number of propositions that are not sinks in I(R),
given by the following (called the "inclaw inverse "):

R* = { V(e - oi c e(oj)) - . e j . e v- T}.

(2) If R is the class of rule-bases that has conjunctive consequents and simple
antecedents, #R* equals the number of propositions that are not sources in I(R),
given by the following (called the "outclaw inverse "):

R* ^(ei: oleS(oi))" o,e V-Sl.

The proof of the First Consolidation Theorem follows from one of the results
in [7]. The more complex case is when R is the class of rule-bases that has disjunctive
antecedents and conjunctive consequents. Now a solution is not immediate, but we
have the bound:

#R* ~> diam(I(R)).

(The diameter of a graph is the longest shortest path between two vertices.) This
bound is useful when combined with a construction that yields a minimal rule-base. It
allows us to bound how far the constructed rule-base is from a minimum.

We now show how to construct a minima~ rule-base, using properties that
every minimum rule-base must satisfy. Let M be the qualitative matrix associated
with an irreducible rule-base, starting with M equal to the incidence matrix of I(R),
where R is the given simple rule-base. Then, the following consolidation operation
may be performed iteratively until no further consolidation is possible.

For two columns, Xi -+ Y/and X k -+ Yk, for which either

X i = X k and Y]N Yk =0' or X i N X k=cj and Y/= Yk'

replace these with the one column: 5(/t3 X k -+ Y/U Yk"

In our example, either of the two rule-bases could be generated by applying
consolidation operations (differently).

212 F. Glover, H.J. Greenberg, Logical testing for rule-base management

SECOND CONSOLIDATION THEOREM

Suppose R is a simple, irreducible, separable rule-base. Then, for R equal to
the set of rule-bases for which antecedents may be disjunctive and consequents may be
conjunctive, the following hold:

(1) Consolidation preserves logical equivalence: R ' ~ R if R ' is the result of
a consolidation applied to R.

(2) If consolidation operations are applied until no further consolidation is
possible, the resulting rule-base is minimal.

(3) Every minimum rule-base of R can be reached by a sequence of con-
solidation operations.

6. Compound ru le-bases

Here, we consider the general case of compound antecedents and consequents
in any rule. Our strategy is to decompose the rule-base into a related family of simple
rule-bases to which we can apply the efficient Logical Testing Procedure. First, let us
partition the rule-base: R = R s U Re, where R s is simple and R e is compound.

Let [A -~ C] E R c be represented by two sets: a = setofliterals that comprise
the antecedent in elementary conjunctive form, and c = set of literals that comprise
the consequent in elementary disjunctive form. The rule is thus presumed to be of
the form:

(^ L i • i E a) ~ (v L . / "] E c).

(This loses no generality because any disjunction in the antecedent or conjunction in
the consequent immediately decomposes: (A v B) ~ C becomes two rules, A ~ C and
B ~ C, and A ~ (B ^ C) becomes A ~ B and A ~ C.)

The dimension of a rule (a, c)is defined to be the product: DIM (a, c) = #a#c.
Clearly, a rule is simple iff DIM (a, c) = 1. For a compound rule (a, c) E Rc, we define
the decomposition in to simple rule-base Rs, as the collection {R 1, R2 R r }, where
r = DIM (a, c) and

R k = R sU [L i ~ L]] for k = (i - 1) # a +] , i E a and j E c .

Here is an overview of the decomposition strategy, which we shall validate.

DECOMPOSITION PROCEDURE

Start with r = 1 and R 1 = R s. Then, perform each of the following steps.

F. Glover, H.J. Greenberg, Logical testing for rule-base management 213

(1) Apply the Logical Testing Procedure to each simple rule-base R 1 R r.

(2) If R i is inconsistent, permanently remove Ri, reducing r by 1 and , if
this causes r = 0, exit INCONSISTENT.

(3) If Pi has the same forced value in all R i, its value is forced in R. In that
case, eliminate P/and update all rules in R to reflect this elimination. If this
causes a compound rule to become simple, transfer it from R c to each R i.

(4) If E is the same equivalence class in all R t, E is an equivalence class in R.
In that case, replace each literal in E by a representative for all rules in R. If
this causes a compound rule to become simple, transfer it from R c to each R t.

(5) If there were any transfers from Rc, repeat steps 0) - (5) .

(6) If R c = ~, terminate; otherwise, select a rule from R c with minimum
dimension, say (a, c).

(7) Decompose (a, c) into each simple rule-base R i, and increase r accordingly.
Then, go to step (1).

The Decomposition Procedure uses a strategy of "solve what we can" by a
decomposition, which remains to be validated. Implicit in the tests are the following
properties, which are immediate consequences of the definitions and elementary logic.

• Any feasible solution for R must be a solution for at least one of the rule-
bases in the decomposition {R z R r }.

• If P/has the same forced value in every rule-base in the decomposition,
it must have the same forced value in every feasible solution of R.

• If E is the same equivalence class in every rule-base in the decomposition,
it must be an equivalence class in R.

DECOMPOSITION THEOREM

The Decomposition Procedure terminates with the following properties:

(1) If exit is INCONSISTENT, S(R) = ~.

(2) If exit is normal, the decomposition set {R*, . . . , Rrl is composed of
simple rule-bases and

S(R) = U{S(R i) : i= 1 r}.

That is, every feasible solution for R is a feasible solution for some R i.

The decomposition Procedure did not mention redundancy because we must
say more about its meaning for compound rules. In general, a rule [A --> C] ~ R is
redundant if

214 F. Glover, H.J. Greenberg, Logical testing for rule-base management

s (R) = S (R - [A c]),

(i.e. removal of the rules does not alter the set of feasible solutions). In the case of a
simple rule, redundancy is equivalent to transitive redundancy. For a compound rule,
the notion of transitive is undefined. We can,however, infer redundancy in the course
of executing the Decomposition Procedure by the following.

REDUNDANCY THEOREM

Suppose (a, c) is decomposed into R s as{R', . . . , R r}, where R k = R s
U [L i -~ L i] . Then, A -+ C is redundant in R = R s U [A -~ C] i f f L i ~ 1,] is transi-
tively redundant in R k for all k = (i - 1) #a +], i E a and j E c.

Proof
S (R s U [A ~ C]) = U S (R s U [L i -~ Li]) = S (R s) i f f L i ~ L/ is t ransi-

tively redundant in R k for all k.

In closing, let us consider practical aspects of executing the Decomposition
Procedure. Clearly, this is combinatoriaUy explosive, so complete execution may not
be practical. The procedure is well suited for a parallel computer architecture, such as
the Intel Hypercube, so it is unclear how useful it may prove in practice. With related
experience in other combinatorial problems, notably integer programming, we know
that the search mechanism, perhaps with different selection criteria in step (6), can be
very powerful. In general, it would seem that it is at least useful to apply the procedure
one major iteration; that is, without executing step (6). This will at least test the
simple rules and may cause some compound rules to become simple. The extent of
branching [step (6)] is an avenue for further research, which brings us to the final
section.

7. Avenues fo r f u r t h e r r e sea rch

We have shown how a simple rule-base can be logically tested in linear-time to
check consistency and circular reasoning. As a by-product, we can also eliminate
forced values and redundant rules in bilinear time. In considering further testing, we
showed how, when separability holds, an efficient labelling algorithm can determine
a range of truth assignments. We have not settled the case of non-separable rule-bases,
and we have not considered the complication of certainty factors (where additivity
fails). These comprise two avenues for further research.

The consolidation problem needs additional research to examine what repre-
sentation is most efficient for operation and maintenance. In particular, minimizing
the number of rules need not be the best criterion.

F. Glover, H.J. Greenberg, Logical testing for rule-base management 215

The general case of compound rules was addressed, showing a way to exploit
parallel architecture through a decomposition principle. The method is, however,
combinatoriaUy explosive, so more research is needed to examine how practicable
this can be. The strategy of "solving what we can" is sometimes adequate, but clearly
this is more likely to be a postponement of difficulties as we seek to manage large
rule-bases.

Acknowledgement

The authors gratefully acknowledge stimulating discussions with Robert
Jeroslow, which helped to organize these results.

References

[1] A.V. Abe, M.R. Garey and J.D. Ullman, The transitive reduction of a directed graph, SIAM
J. Comput. 1(1972)131.

[2] M.L. Balinski, On a selection problem, Mgt. Sci. 17(1970)230.
[3] C.E. Blair, R.G. Jeroslow and J.K. Lowe, Some results and experiments in programming

techniques for propositional logic, Comp. and O.R. (to appear).
[4] M.A. Bramer, Expert systems: The vision and the reality, in: Research and Development

in Expert Systems, ed. M.A. Bramer (Cambridge University Press, 1985) pp. 1 -12.
[5] L.R. Ford, Jr. and D.R. Fulkerson, F / o ~ in Network~ (Princeton University Press, 1962).
[6] F. Glover, D. Klingman, M. Mead and J. Mote, A note on specialized versus unspecialized

methods for maximum-flow problems, NRLO 31(1984)63.
[7] HJ. Greenberg, J.R. Lundgren and J.S. Maybee, Inverting graphs of rectangular matrices,

Discr. App. Math. 8(1984)255.
[8] H2. Greenberg, J.R. Lundgren and J.S. Maybee, Digraph inversion, University of Colorado

(1986).
[9] F. Harary, R.Z. Norman and D. Cartwright, Structural Models: An Introduction to the

Theory of Directed Graphs (Wiley, 1965).
[10] R.G. Jeroslow, Computation-oriented reductions of predicate to propositional logic, Dec.

Supp. Systems (to appear).
[11] E.L. Johnson and M.W. Padberg, Degree-two inequalities, clique facets, and biperfect

graphs, Ann. Discr. Math. 16(1982)169.
[12] A.B. Kahn, Topological sorting of large networks, CACM 5 (1962)558.
[13] D.E. Knuth, The Art of Computer Programming, Vol. I: Fundamental Algorithms (Addison-

Wesley, Reading, MA, 1968).
[14] J.C. Picard, Maximal closure of a graph and applications to combinatorial problems, Mgt.

Sci. 22(1976)1268.
[15] J.M.W. Rhys, Shared f'txed cost and network flows, Mgt. Sci. 17(1970)200.
[16] R. Sethi, Testing for the Church-Rosser property, I. ACM 21(1974)671.
[17] J. Valdes, R.E. Ta~an and E.L. Lawler, The recognition of series parallel digraphs, SIAM

J. Comput. 11(1982)298.

