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We present a procedure to logically reduce simple implications that comprise 
the rule-base of an expert system. Our method uses topological sorting on a digraph 
representation that detects logical inconsistency and circular reasoning in linear- 
time. Then, the sort order provides an efficient method to detect and eliminate 
forced values and redundant rules. We consider additional diagnostic aids for the 
rule-base manager, notably how to range the number of propositions that could 
be true and how to consolodate the rule-base. We than show how the simple case 
may be extended to logically test a general rule-base with a decomposition principle. 
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1. Introduction 

We study the problems of logical inconsistency and circular reasoning, as cited 
by Bramer [4], associated with a rule-base. We also provide detection of redundant 
rules - that is, whose removal from the rule-base does not alter the set of  feasible 
truth values - and propositions whose truth values are forced. 

The first main result is a linear-time algorithm that detects inconsistency, 
if present, in a rule-base with only simple implications, and provides a diagnostic in 
the form of a minimal cycle for the expert to rectify the logical error. If the rule-base 
is consistent, the algorithm detects and eliminates circular reasoning during its first 
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phase. Then, phase two detects and eliminates redundant rules and forced propositions, 
resulting in a logically irreducible rule-base, whereby there exist truth assignments 
for which each (remaining) proposition may be assigned either value (true or false). 

Underlying the method is the use of topological sorting introduced by 
Kahn [12] and enhanced by Knuth [13]. Elimination of forced propositions is done 
efficiently due to the sort order obtained in phase one; elimination of redundant 
rules is done at the same time in a manner similar to that of Valdes et al. [17]. 

If the rule-base is consistent, optimization models are considered for the 
derived, logically irreducible rule-base. Our second main result then shows the applica- 
bility of max-flow/min-cut algorithms, for which there are efficient labelling methods 
(see [5] and [6]). This equivalence was shown in another context by Rhys [15] and 
Balinski [12], and the underlying combinatorial optimization problem was addressed 
more generally by Picard [14]. 

When the requisite structure for using a simple labelling algorithm is absent, 
special search techniques are still available with linear programming by augmenting 
the algebraic equivalent with special linear inequalities derived by Johnson and 
Padberg [11]. The derived inequalities have special significance in their own right, 
showing the expert implied rules that may otherwise not be easily discemable. 

We next consider another problem of rule-base management: how to consoli- 
date rules for efficient representation and processing. The third main result is a 
methodology, drawing from graph inversion [7,8]. 

Our fourth main result is to show how the logical testing method for simple 
rule-base extends to the general case by a decomposition principle. This is particularly 
well suited for a parallel computer architecture, such as the Intel Hypercube. 

We shall use only propositional logic, but, as described by Jeroslow [10], the 
methods apply to predicate calculus under certain assumptions that generally apply 
to expert systems. 

The rest of this paper is divided into six sections. Section 2 presents the basic 
concepts we shall use in deriving the main results. Section 3 presents the linear-time 
algorithm for the case of a simple rule-base. Section 4 presents a family of optimiza- 
tion models, aimed at helping the expert understand the scope of the rule-base, and 
presents the max-flow/rain-cut equivalence. Section 5 introduces the "consolidation 
problem", which pertains to finding a logically equivalent rule-base with the fewest 
number of rules. Section 6 presents a decomposition principle for the general rule- 
base. Finally, section 7 presents avenues for further research. 

2. Basic concepts  

2.1. GRAPH-THEORETIC DEFINITIONS 

This section reviews the standard graph-theoretic concepts we shall use (see 
Harary et al. [9]). A (finite) digraph D = IV, A] consists of a finite set of vertices V 
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and a finite set of  arcs A. Each arc is an ordered pair of  vertices (o, w), which is 
oriented from o to w. We call o a predecessor of w, and w a successor of o. The sets 
of  predecessors and successors of a vertex o are denoted, respectively, by: 

P(o) = [ u E  V "  ( u , u )  E A ]  and S(o) = [ w E  V" ( o , w )  E A ] .  

Moreover, for W C_ V, we denote: 

P ( W )  = U [ P ( w ) ' w E  W] and S ( W )  = U [ S ( w ) ' w E  W].  

If S is any finite set, # S  denotes its cardinality. A source is a vertex v for 
which #P(o )  = 0; a sink is a vertex o for which # S ( o )  = O. 

A digraph D '  = [V', A ' ]  is a subgraph of  digraph D = [V, A ] ,  denoted 
D '  C_ D, if V' C Vand A '  C A. 

A (directed) path of length p is a sequence of  vertices (Vo, O l , . . .  , up) such 
that v j .  1 E S(vj )  for j = 0, . . . , p - 1. We say that the path contains the vertices 
o o , . . . , up and the arcs (v  o , 01), . . . ,  (up _ 1, up); we also say that an arc (vj ,  oj÷ 1 ) 
is traversed. A semipath is asequence of  vertices (oo, U l , . . . ,  up) such that oj+ 1 E S(oj)  
t3 P(oj)  for j = 0, . . . ,  p - 1. If oj ÷ I E S (vj), we say the arc ( oj, vj ÷ 1 ) is traversed in 
a forward direction; otherwise, if oj+ 1 E P(oj) ,  we say (oj,  oj+ 1) is traversed in a 
backward direction. A path (or semipath) is simple if no vertex is contained twice. If 
o o = up and p > I,  the path (semipath) is a cycle (respectively, semicycle). A digraph 
is acyclic if  it contains no cycles. Vertex w is a descendant of  vertex o, denoted 
v ~ w, if  there exists a path with o o = o and up = w. 

An implication graph is a digraph with 2n vertices with the following properties: 

(1) vertices are numbered so that for each vertex o there is a unique vertex 
-o ,  called its complement; 

(2) if (o, w) is an arc, so is ( -w ,  -o) ,  called its contrapositive. 

We also say o and - o  are a complementary pair and that (v, w) and ( - w ,  - o )  are 
contrapositive arcs. 

For~ I¢ _C 1I, W denotes its set of  complements: W = [ - w  : w E W] ; and, for 
B _C A, B denotes its set of  contrapositive arcs: B = [(-w,  - o ) :  (v, w L E  B ] .  f i g  
is an implication graph and H = [ W_B ] C_ G, the complement of  H is H = [ I41, B ]. 
It follows that for any H _C G, Htd  H is an implication graph. 

If ( o o , o 1 . . . . .  op) is a path, its contrapositive path is ( -up  -vp  _ 1 , - . ' ,  -Vo)" 
A cycle C is contradictory if it contains a complementary pair of  vertices; otherwise, 
its vertices comprise an equivalence class E, and we say C generates E. (Note the 
contrapositivecycle C is also an equivalence class, composed of  the complements, so 
C generates E.)  An implication graph is inconsistent if it contains a contradictory 
cycle; otherwise it is consistent. The condensation of  an equivalence class E C V is 
the replacement of  all vertices in E by a single vertex e and all vertices in E~vith a 
complementary vertex - e  with their predecessor and successor sets given by: 
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=> 

(e) EQUIVALENCE REDUCTION 

C 7 ~  
;> 

(b) TRANSITIVE REDUCTION 

(c) FORCING REDUCTION (3::>--3)  

Fig. 1. Examples of logical reduction. 

Q 

(0) IMMEDIATE REDUCTION BY CYCLE < 1,2,3,1> 

C C ~  © 

(b) 2 -STEP  REDUCTION, FIRST BY SIMPLE CYCLE <1 ,2 ,1>  

Fig. 2. Application of Church-Rosser property to equivalence reduction. 
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P(e) = P(E) - E, S ( - e )  = S(E)  - E 

P ( - e )  - -P( f fT)- f f :  and S ( - e )  = S (E)  - E .  

(Note that E and if? are disjoint, since the generating cycle is presumed not to be 
contradictory.) The equivalence reduction of a consistent implication graph is the 
condensation of each equivalence class, which results in an acyclic implication graph. 
A contradictory cycle is minimal if it contains no proper subcycle that is contra- 
dictory. 

A digraph is transitively closed if every descendant of a vertex u is also a 
successor of v. The transitive closure of a digraph is the digraph obtained by adding 
arcs to make it transitively closed. An arc is transitively redundant if its removal 
leaves the transitive closure unchanged. A digraph with no transitively redundant 
arcs is transitively minimal. The transitive reduction of a digraph is the unique 
transitively minimal digraph having the same transitive closure. 

If, in an implication graph, v ~ - v  for some vertex v, then v is forcing; its 
forcing set F(u) is - v  plus all descendants of -v.  An implication graph is forcing if 
it contains a forcing vertex; otherwise, it is nonforcing. The forcing reduction of an 
implication graph is the removal of F(v) U F(u) for all forcing vertices u. 

An acyclic implication graph that is transitively minimal and has no forcing 
vertex is called logically irreducible or simply irreducible. Figure 1 illustrates each of 
the three reductions just defined: equivalence, transitive and forcing. When applied to 
a consistent implication graph, these three reduction operations can be shown to 
satisfy the Church-Rosser property [16]: if reductions are applied in any order 
until no reduction is possible, the result is a unique implication graph independent 
of the specific reductions applied. Figure 2 illustrates an example. By the Church-  
Rosser property, we arrive at the same irreducible implication graph whether we 
recognize the entire cycle ( l ,  2, 3, 1 ) at once or first the cycle E = ( l ,  2, 1). 

The Church-Rosser  property may fail for an inconsistent implication graph. 
Figure 3 shows an example where different minimal contradictory cycles are obtained, 
depending on whether we first apply transitive reduction. 

~ MINIMAL CONTRADICTORY CYCLE: 
< 1 , 2 , - I , 1 >  

TRANSITIVE 
REDUCTION 

~ MINIMAL CONTRADICTORY CYCLE: 
< 1 , 2 , - 2 , - I ,  I >  

Fig. 3. Failure of  Church - Rosser property 
for an inconsistent implication graph. 
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2.2. RULE-BASES 

We are given atomic propositions Pt ,  P2 . . . . .  Pn, and we let "~ Pi denote the 
negation of Pi" A literal is an atomic proposition or its negation. A logical expression 
is formed by literals and logical connectives: the disjunction (v) ,  conjunction (A) and 
implication ( ~ ) .  

A rule-base R is a collection of  implications of  the form A ~ C, called a rule; 
A is called the antecedent and C is called the consequent. Both A and C are, in 
general, logical expressions. A rule is simple if its antecedent and its consequent are 
literals. The rule-base is simple if each of its rules is simple. 

A feasible solution is a truth assignment to the atomic propositions such that 
all rules in R are logically true. The set of  feasible solutions is denoted by S(R).  

A rule chain is an ordered sequence of rules (A 1 -~ C 1 . . . . .  A k -+ Ck), such 
that k > 1 and A i = C i_ 1 for i = 2 . . . . .  k. This is sometimes abbreviated to 
A 1 - + A  2 ~  . . . - - , A  k. 

The rule-base validity problem is to detect (immediate or deferred): 

- Inconsistency: is S(R)  empty? 
Equivalently, does R contain a rule chain, 

A ~  . . .  ~ " A  --, . . .  --,A? 

Orculari ty : 

Equivalently, 

h - . ~  . . . - ~  

does there exist a subset of  the literals whose truth values 
must always be equal? 
does R contain a rule chain, 

A? 

Redundancy: 

Equivalently, 

a . . @  . . . - - ~  

does there exist a rule whose removal leaves S(R)  un- 
changed? 

if [A ~ C] E R, does R contain a rule chain, 

C? 

Inflexibility: 

Equivalently, 

h . - . ~  . . . - . ~  

does there exist a proposition whose truth value is the 
same in every feasible solution? 

does R contain a rule chain, 

~ A ?  

We solve the simple rule-base validity problem with a 2-phase procedure in 
the next section. Then, we shall introduce optimization criteria and show how to go 
beyond these fundamental questions, giving insights to the expert for the scope of  
the rule-base. Afterwards, we shall consider the general case where rules may not be 
simple. 
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3. Logical reduction of simple rule-bases 

Let R be a simple rule-base with m (simple) implications over n atomic propo- 
sitions. Define the associated implication graph G(R) by letting vertex i represent 
proposition Pt and - i  its negation ~P/ .  Then, define contrapositive arcs associated 
with each rule by the following productions. 

Pt ~ I"/ ~ <i,/> and <-/, -i~. 

Pi "+ "~Pi =~ (i, -1) and (1,-i>. 

~ P~ -~ P~ ~ ( - i , / >  and ( - / , i > .  

g -, ~ e /=* <-i,  -i> and </, i>. 

The first phase of the logical reduction procedure applies topological sorting 
to the implication graph. If the implication graph is inconsistent, a contradictory cycle 
will be found, and it is simple to reduce this in linear-time to a minimal inconsistency 
to aid the expert in rectifying the rule-base. Otherwise, if the implication graph is 
consistent, phase 1 ends with an equivalence reduction, replacing each cycle with a 
literal representative. Phase 2 then proceeds to construct a logically irreducible impli- 
cation graph by eliminating transitive redundancy and propositions whose truth 
values are forced. 

Here is an overview of the 2-phase logical reduction procedure for simple rule- 
bases. 

LOGICAL REDUCTION PROCEDURE 

Phase 1: (Compute acyclic implication graph.) 

For each A ~ C in R, enter arcs (u, v) and ( - v ,  - u )  into TOPSORT (where 
u and o are signed indexes associated with the literals that define the antecedent 
A and consequent C). If TOPSORT terminates successfully, end phase 1. 
Otherwise, if TOPSORT terminates with cycle C, test if C contains a comple- 
mentary pair of vertices. If so, reduce C to a minimal inconsistency and exit 
INCONSISTENT; else, condense C and continue phase 1. 

Phase 2: (Compute irreducible implication graph.) 

Let (v l ,  v2, . . .  , o N) denote the sort order obtained in phase 1. (Now N is 
the number of equivalence classes and v i is a literal that represents the ith 
equivalence class.) For i = 1,2 . . . . .  N, do the following. 

(1) Test if o i is forcing. If so, remove F(vi) U F(oi) and advance to next i. 
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(2) For each w E S(vi) , test if (v i, w)is transitively redundant. If so, remove 
(v i, w). 

Phase 1 of  the logical reduction procedure executes Knuth's topological 
sorting algorithm TOPSORT, which is linear-time. If it is not successful, Knuth gives 
a linear-time algorithm to find a cycle C, and we add a step of  recording the minimum 
index value: 

k = rain [ v : v e  C] . 

Then, we assign the integer label L (v) = k for all v E C If L (v) = L ( - v), v and - v 
are in a cycle, so R is inconsistent. In that case, we merely traverse once more to 
eliminate suhcycles, so the final inconsistency reported to the expert is in the form 
of a minimal cycle containing a proposition and its negation. 

If the cycle does not contain a complementary pair, the implication graph 
is condensed, with k as its representative. This labelling gives automatic merger of  
cycles. For example, if  we first find cycle ( 1 ,2 ,  3, 1 ), then v = 1 is its representative 
and, if the original graph also has the cycle (2, 3, 4, 2), we will automatically assign 
labels of  1 to v = 1,2,  3 ,4 ,  giving one equivalence class for all four propositions.More- 
over, the Church-Rosser  property holds: if we obtain cycle C, we also obtain C, and 
the complementary pairs of  cycles so obtained do not depend on the order of  the 
condensations. 

Thus, phase 1 has the following properties: 

(1) It is linear-time. 
(2) If R is inconsistent, phase 1 ends with a minimal inconsistent cycle. 
(3) If R is consistent, phase 1 ends with an equivalence reduction. 

Now consider phase 2. The topological sort order allows us to look forward 
(without backtracking) while eliminating all forced propositions and redundant rules. 
The worst time complexity is bflinear, O(#V#A), but there are some time-saving 
tactics. During topological sorting, it is not difficult to define the level function [17] 
L : V -+ {0, 1, . . . , #V}. If v is a source, L(v) = 0; otherwise, L(v) is the length of  a 
shortest path from some source. 

When testing for whether v is forcing, we first ask: L(v) < L( -v )?  If not, v 
cannot be forcing. If so, we need to test if  there is a path from v to - v  (and we may 
confine lengths to be within L ( - o )  -L(v)) .  One way to do this is to define 
a subdigraph composed of  o, - o  and all vertices w whose level is between: 
L(v) < L(w) < L( -v ) .  Vertex v is a source in this subdigraph, and vertex - v  is a 
sink. Putting unit capacities on all arcs, we compute a max-flow from v to - v .  This 
flow will be 1 iff o =~ - o ;  otherwise, it will be zero. The worst time to do this is 
O(#A), giving an overall worst time of  O(#V#A). 
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When testing for whether (v, w) is transitively redundant, we may again 
filter candidates by using the min jump function [17], M : V-~ {1, 2 , . . . ,  #V}, 
where 

M(v) = rain [L(w) - L(v) :  w e  S(v)]. 

Then, if L (w) - L (v) = M(v), arc ( v, w) is not transitively redundant. Otherwise, if  
L (w) - L (v) > M(v), we must test further. This can be done with max-flow, as above, 
by defining the subdigraph with v as its source, w as its sink, and all between-level arcs, 
except < v, w), included. Then, this will determine if o =~ w without arc (v, w). 

Summarizing, phase 2 ends with the following properties: 

(1) Its worst time complexity is bilinear, O(#V#A). 

(2) If any proposition is forced to have a particular truth value in every 
feasible solution, this is found and the proposition is eliminated (along with 
descendants). 

(3) Each proposition not eliminated has value TRUE in some feasible solution 
and value FALSE in some (other) solution. 

(4) If any rule is redundant, it is eliminated from R. 

(5) Any rule not eliminated binds the solution set in that its removal admits 
at least one more feasible solution. 

4. O p t i m i z a t i o n  

Here, we suppose we have a logically irreducible simple rule-base, having 
applied the procedure of the previous section. Now, it may be desirable to infer 
additional properties, such as the maximum number of  propositions that can have 
value TRUE. 

We say R is separable if its implication graph G(R) has the property that 
complementary vertices are in different weak components. In this case, we let 
I(R) denote the core of  the implication graph, where G(R) = I(R) U I (R) and 
I(R) N I ' (R)  = ¢. When this is the case, define the digraph N(R) as follows. Let V + 
denote the vertices o of  I(R) for which v > 0, and let V- denote those for which 
v < 0. Separability ensures that V ÷ t.J V- is a partition of  the vertices of I(R), and 
that every proposition or its negation is represented (not both). Augment I(R) with 
two vertices: a source s and a sink t. Then, N(R) is this augmented network plus the 
arcs (s, V ÷) and (V-, t). Let V' denote the set of  labelled vertices after determining 
the max-flow from s to t in N(R), and let V" be the unlabelled vertices. Finally, 
define 

T(R) = {rE V':v4= s and v >  O} U { - v : v E  V" - { t }  and v <  0}. 
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I (R) :  I 2 - 3  4 - 5  

N (R): I l ~ i  
Fig. 4. Illustrafion ofmax-flowequivalence. 

R =f PI~'P2, P 2 - ~ ' ' P 3  , P3- '~ '~P2 

G (R): 

Fig. 5. Nonseparable rule-base. 

MAX-FLOW EQUIVALENCE THEOREM 

If  R is a separable, simple rule-base, the maximum number of  propositions 
that can be TRUE equals #T(R). Further, this is achieved by setting Pk = TRUE for 
all k in T(R). 

Figure 4 shows an example of  a logically irreducible implication graph, with 
core I(R). Figure 4 also shows labels (*) on N(R) obtained from the Ford-Fu lke rson  
max-flow/min-cut algorithm, which yields the vertex partition V' = {s, 1, 2} and 
V" = {t, - 3 ,  4, - 5 } .  The maximum number of  propositions that can be TRUE is 4, 
and one such assignment is T(R) = {1,2, 3, 5}. 

Figure 5 shows a logically irreducible implication graph that is not  separable. 
In this case, max-flow equivalence fails. We next characterize an essential property of  
such failure. 

ODD CYCLE THEOREM 

graph. 

P roof  

If  R is not  separable, G(R) contains an even semi-cycle that is an implication 

Suppose v and - u  are in the same weak component  of  G(R). Let the semi- 
path connecting them be (v o = v, v 1 , . . . ,  vp _ 1, vp = -v). If this contains another 
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complementary pair, reduce the semi-path until o o and op are the only complementary 
pair (i.e. discard (o o . . . . .  w) and ( -  w . . . . .  op), then define v = w, if such w is an 
internal vertex in the semi-path). Now G(R) must also contain the semi-path 
( - o  e = o, -Op_ a . . . .  , - v i ,  - r e  = -o ) .  The union of these two semi-paths is an 
implication graph and a semi-cycle. Further, there are 2p vertices (and arcs) in this 
union, so the semi-cycle is even. 

COROLLARY 

If G(R) is a forest, R is separable. 

Once R is logically reduced, it is easy to test whether it is separable. If so, the 
Max-Flow Equivalence Theorem gives an efficient algorithm for maximizing the 
number of  propositions that can be true in a feasible solution. Moreover, it is not 
difficult to apply the same result to obtain the minimum number,  giving a range on 
the total number of TRUE assignments. It is equally easy to assign weights to the 
propositions and obtain a range on total (additive) weight. 

The next section presents another rule-base management aid, pertaining to 
another form of reduction, aimed at keeping as few rules as possible. 

5. Rule-base consolidation 

We suppose R is simple, logically irreducible and separable. Without loss of 
generality, we shall suppose each implication is of the form Pi -* Pi" (Negations may 
be replaced by simple transformation, owing to separability.) Two rule-bases, R and 
R ' ,  are said to be logically equivalent, written R *=* R ' ,  if  they are def'med over the 
same set of  atomic propositions and their solution sets are equal: 

S(R) = S(R') .  

We consider the following. 

RULE-BASE CONSOLIDATION PROBLEM 

Given a class of  rule-bases R and a member R,  find R*  E R such that: 

(1) R**=~R, and 

(2) # R *  is a minimum over R,  subject to (1). 

To illustrate, consider the following example: 
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Two equivalent rule-bases are: 

R" = t(P~ V Ps)"* P 2, (P1 V P4)~ Pa}. 

Each rule-base has fewer rules than R, but they are not simple. We have permitted 
disjunctive antecedents and conjunctive consequents. 

The Rule-Base Consolidation Problem is a special case of  digraph inversion 
[7,8],  as follows. Let M denote a qualitative matrix (i.e. ~ j  E {0, - 1, + 1} for all 
i, j ) .  The fundamental digraph D(M) = [V, A]  is the following bipartite graph. Let 
V = V r u Vc, where vertices in V r correspond to rows of M, and vertices in V c corre- 
spond to columns of M. For Mq = - 1, arc (i, j)  corresponds with i E V r and j EVc;  
for Mq = + 1, arc (L i) corresponds. The row digraph RD(M) = [V r, At] has vertex 
set V r. Arc (i, k) E A r corresponds to a 2-pathin D(M);  equivalently, there is a column 
of  M, say ], for which Mq = - 1 and M~j = + 1. The digraph inversion problem is to 
characterize M for which RD(M) = D, where D is a given digraph. Of particular 
interest are minimal inverses: no column may be removed without violating the de- 
fining structural equation RD(M) = D. A minimum inverse is one with the fewest 
number of  columns among all inverses. 

The Rule-Base Consolition Problem may be formulated as a digraph inversion 
problem by associating V r with propositions and V c with rules. Then, for each column 
of  M let X i ~ Yj denote an associated diclique: 

X. = { i ' M . . = - l }  and Y. = { i 'M. .  = + 1 } .  
I tl l tl 

In our case, X i represents a disjunctive antecedent, and Yj represents a conjunctive 
consequent. The set of  all rule-bases logically equivalent to R is precisely the set of  
digraph inverses of  RD(M) for M equal to the incidence matrix of I(R). 

For the above example, the digraph inverses corresponding to R '  and R"  are 
M' and M", as follows: 

M I 

m 

- 1  

1 

1 

1 

1 

- 1  

- 1  
m 

1 

2 

3 

4 

5 

M,, = 

B 

-1  - 1  

1 

-1  
B 

1 

-1  

1 

2 

3 

4 

5 
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FIRST CONSOLIDATION THEOREM 

Suppose R is a simple, separable rule-base with core graph I(R) = [V, A ]. 
Denote sources by S C V and sinks by T C V. 

(1) If R is the class of'rule-bases that has disjunctive antecedents and simple 
consequents, #R* equals the number of propositions that are not sinks in I(R), 
given by the following (called the "inclaw inverse "): 

R* = { V(e - oi c e(oj)) - .  e j .  e v- T}. 

(2) If R is the class of rule-bases that has conjunctive consequents and simple 
antecedents, #R* equals the number of propositions that are not sources in I(R), 
given by the following (called the "outclaw inverse "): 

R* ^(ei: oleS(oi))" o,e V-Sl. 

The proof of the First Consolidation Theorem follows from one of the results 
in [7]. The more complex case is when R is the class of rule-bases that has disjunctive 
antecedents and conjunctive consequents. Now a solution is not immediate, but we 
have the bound: 

#R* ~> diam(I(R)). 

(The diameter of a graph is the longest shortest path between two vertices.) This 
bound is useful when combined with a construction that yields a minimal rule-base. It 
allows us to bound how far the constructed rule-base is from a minimum. 

We now show how to construct a minima~ rule-base, using properties that 
every minimum rule-base must satisfy. Let M be the qualitative matrix associated 
with an irreducible rule-base, starting with M equal to the incidence matrix of I(R), 
where R is the given simple rule-base. Then, the following consolidation operation 
may be performed iteratively until no further consolidation is possible. 

For two columns, Xi -+ Y/and X k -+ Yk, for which either 

X i = X  k and Y]N Yk =0' or X i N X  k=cj and Y/= Yk' 

replace these with the one column: 5(/t3 X k -+ Y/U Yk" 

In our example, either of the two rule-bases could be generated by applying 
consolidation operations (differently). 
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SECOND CONSOLIDATION THEOREM 

Suppose R is a simple, irreducible, separable rule-base. Then, for R equal to 
the set of rule-bases for which antecedents may be disjunctive and consequents may be 
conjunctive, the following hold: 

(1) Consolidation preserves logical equivalence: R '  ~ R if R '  is the result of  
a consolidation applied to R. 

(2) If consolidation operations are applied until no further consolidation is 
possible, the resulting rule-base is minimal. 

(3) Every minimum rule-base of R can be reached by a sequence of con- 
solidation operations. 

6. Compound ru le-bases  

Here, we consider the general case of compound antecedents and consequents 
in any rule. Our strategy is to decompose the rule-base into a related family of simple 
rule-bases to which we can apply the efficient Logical Testing Procedure. First, let us 
partition the rule-base: R = R s U Re, where R s is simple and R e is compound. 

Let [A -~ C] E R c be represented by two sets: a = setofliterals that comprise 
the antecedent in elementary conjunctive form, and c = set of  literals that comprise 
the consequent in elementary disjunctive form. The rule is thus presumed to be of 
the form: 

( ^ L  i • i E  a) ~ ( v L . / " ] E  c). 

(This loses no generality because any disjunction in the antecedent or conjunction in 
the consequent immediately decomposes: (A v B )  ~ C becomes two rules, A ~ C and 
B ~ C, and A ~ (B ^ C) becomes A ~ B and A ~ C.) 

The dimension of  a rule (a, c)is defined to be the product: DIM (a, c) = #a#c. 
Clearly, a rule is simple iff DIM (a, c) = 1. For a compound rule (a, c) E Rc, we define 
the decomposition in to simple rule-base Rs, as the collection {R 1, R2 . . . . .  R r }, where 
r = DIM (a, c) and 

R k = R sU [ L i ~ L ] ]  for k = ( i - 1 ) # a + ] ,  i E a  and j E c .  

Here is an overview of  the decomposition strategy, which we shall validate. 

DECOMPOSITION PROCEDURE 

Start with r = 1 and R 1 = R s. Then, perform each of the following steps. 
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(1) Apply the Logical Testing Procedure to each simple rule-base R 1 . . . . .  R r. 

(2) If R i is inconsistent, permanently remove Ri,  reducing r by 1 and , if  
this causes r = 0, exit INCONSISTENT. 

(3) If Pi has the same forced value in all R i, its value is forced in R. In that 
case, eliminate P/and update all rules in R to reflect this elimination. If this 
causes a compound rule to become simple, transfer it from R c to each R i. 

(4) If E is the same equivalence class in all R t, E is an equivalence class in R. 
In that case, replace each literal in E by a representative for all rules in R. If 
this causes a compound rule to become simple, transfer it from R c to each R t. 

(5) If there were any transfers from Rc,  repeat steps 0 ) - ( 5 ) .  

(6) If R c = ~, terminate; otherwise, select a rule from R c with minimum 
dimension, say (a, c). 

(7) Decompose (a, c) into each simple rule-base R i, and increase r accordingly. 
Then, go to step (1). 

The Decomposition Procedure uses a strategy of  "solve what we can" by a 
decomposition, which remains to be validated. Implicit in the tests are the following 
properties, which are immediate consequences of  the definitions and elementary logic. 

• Any feasible solution for R must be a solution for at least one of  the rule- 
bases in the decomposition {R z . . . . .  R r }. 

• If P/has  the same forced value in every rule-base in the decomposition, 
it must have the same forced value in every feasible solution of R. 

• If E is the same equivalence class in every rule-base in the decomposition, 
it must be an equivalence class in R. 

DECOMPOSITION THEOREM 

The Decomposition Procedure terminates with the following properties: 

(1) If exit is INCONSISTENT, S(R)  = ~. 

(2) If exit is normal, the decomposition set {R*, . . .  , Rrl  is composed of 
simple rule-bases and 

S(R)  = U{S(R i) : i=  1 . . . . .  r}. 

That is, every feasible solution for R is a feasible solution for some R i. 

The decomposition Procedure did not mention redundancy because we must 
say more about its meaning for compound rules. In general, a rule [A --> C] ~ R is 
redundant if 
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s ( R )  = S ( R - [ A  c]), 

(i.e. removal of  the rules does not alter the set of  feasible solutions). In the case of a 
simple rule, redundancy is equivalent to transitive redundancy. For a compound rule, 
the notion of transitive is undefined. We can,however, infer redundancy in the course 
of  executing the Decomposition Procedure by the following. 

REDUNDANCY THEOREM 

Suppose (a, c) is decomposed into R s as{R', . . . , R r}, where R k = R s 
U [L i -~ L i ] .  Then, A -+ C is redundant in R = R s U [A -~ C] i f f L  i ~ 1,] is transi- 
tively redundant in R k for all k = (i - 1) #a + ], i E a and j E c. 

Proof 
S ( R  s U [A ~ C])  = U S ( R  s U [L i -~  Li] ) = S ( R s )  i f f  L i ~  L/ is t ransi-  

tively redundant in R k for all k. 

In closing, let us consider practical aspects of executing the Decomposition 
Procedure. Clearly, this is combinatoriaUy explosive, so complete execution may not 
be practical. The procedure is well suited for a parallel computer architecture, such as 
the Intel Hypercube, so it is unclear how useful it may prove in practice. With related 
experience in other combinatorial problems, notably integer programming, we know 
that the search mechanism, perhaps with different selection criteria in step (6), can be 
very powerful. In general, it would seem that it is at least useful to apply the procedure 
one major iteration; that is, without executing step (6). This will at least test the 
simple rules and may cause some compound rules to become simple. The extent of  
branching [step (6)] is an avenue for further research, which brings us to the final 
section. 

7. Avenues  fo r  f u r t h e r  r e sea rch  

We have shown how a simple rule-base can be logically tested in linear-time to 
check consistency and circular reasoning. As a by-product, we can also eliminate 
forced values and redundant rules in bilinear time. In considering further testing, we 
showed how, when separability holds, an efficient labelling algorithm can determine 
a range of  truth assignments. We have not settled the case of non-separable rule-bases, 
and we have not considered the complication of certainty factors (where additivity 
fails). These comprise two avenues for further research. 

The consolidation problem needs additional research to examine what repre- 
sentation is most efficient for operation and maintenance. In particular, minimizing 
the number of  rules need not be the best criterion. 
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The general case of compound rules was addressed, showing a way to exploit 
parallel architecture through a decomposition principle. The method is, however, 
combinatoriaUy explosive, so more research is needed to examine how practicable 
this can be. The strategy of  "solving what we can" is sometimes adequate, but clearly 
this is more likely to be a postponement of  difficulties as we seek to manage large 
rule-bases. 
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