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Abstract 

 
This note describes three line search algorithms for multi-modal function optimization that 
incorporate a combination of binary search and direct search, called the 3-2-3, the Stratified Split 
and Nested Interval  Algorithms. The methods are designed to be used as subroutines of a more 
general global optimization procedure over a bounded search space, as a way to perform 
effective line searches without the limiting assumption of unimodality. 
 
 
   
1. Introduction 
 
The literature on optimization contains a wide variety of line search algorithms for finding a 
minimum of a nonlinear function f(y) on a line (or a line segment in the bounded variable case), 
under the assumption that f(y) is unimodal over the domain of interest (see, e.g., Himmelblau, 
1972; Knuth, 1997; Lasdon, 2002; Mangasarian, 1969; Murty, 1988; Nocedal and Wright, 1999). 
In this note we focus on line search algorithms for the setting where f(y) is a multi-modal 
function, to provide methods that can be used as subroutines for more general global 
optimization methods over bounded spaces. 
   
The problem we address may be expressed as that of minimizing f(y) on a line segment denoted 
by LS(y’,y”), which passes through points y’ and y”, where 
 

LS(y’,y” ) = {y = y(θ):  y(θ)  = y’ + (y” – y’)θ for   θmin ≤ θ ≤ θmax}.   (1.1) 
 
This representation is motivated by an application involving Direct Search methods in global 
optimization, using a design where y’ and y” are strategically or randomly generated to lie within 
a particular region of the solution space. The values θmin and θmax are computed so that LS(y’,y”) 
lies within a bounded convex region defining a set of feasible solutions either for an original 
problem of interest or for a mathematical relaxation of such a problem. Hence the points y’ and 
y” are not necessarily endpoints of LS(y’,y”).  
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We begin by adopting an approach commonly used in nonlinear line search procedures, which 
consists of identifying a succession of points y(θo), y(θ1), …, y(θs) on LS(y’,y”) such that  
 

θo < θ1 < … < θs, where θo = θmin,  θs = θmax and s ≥ 2.    (1.2) 

A straightforward way to generate the θh values is to subdivide the interval [θmin, θmax] into s 
equal subintervals so that  

  θh = θh-1 + ∆ (= θo + h∆) for h = 1, …, s, where ∆ = (θmax – θmin)/s  .  (1.3) 

We have represented the division of the line segment as above to match with notation used in 
certain methods for global function optimization. Other ways of subdividing the line segment 
besides (1.3) can be used if prior knowledge about the form of f(y) is available. In certain 
contexts, for example, it is useful to partition the range of θ values between θmax and θmin into a 
collection of subintervals, each of which is then subdivided in the manner of (1.3) but for 
different values of s.   

We are interested in sequences of points on the subdivided line defined by reference to the θ 
values that have either the form of a pair (y(θh-1), y(θh)) for 1 ≤ h ≤ s or a triple (y(θh-1), y(θh), 
y(θh+1)) for 1 ≤ h ≤ s – 1. (Hence the points y(θo) and y(θs) can be endpoints of intervals defined 
by such pairs and triples.)  
 
The algorithms at the focus of this note begin with a sequence of parameter values θ, and 
undertake to find a solution on the line segment (1.1) that is better than any of the solutions y(θh) 
identified by the initial division of the line segment. Our methods are related to binary search 
methods (such as interval bisection) and also to direct search methods (such as the Golden 
Section method), but in contrast to these approaches require neither that f(y) be differentiable nor 
unimodal.  
 
Some of the methods of this note make use of a sorting algorithm to identify some number of 
best (smallest f(y) value) points from collections that begin with the line segment LS(y’,y”). For 
this purpose, it is possible to use a standard method such as quicksort or quickselect (see, e.g., 
Martínez and Roura, 2001 or Knuth, 1997), but if the number of points to be selected is relatively 
small, for example 32 or fewer, then unpublished experiments (Tseng and Glover, 1998) have 
shown that a combination of simple insertion and binary “hardwired sort” algorithms can work 
as well or better. These simple and easily coded sorting approaches are given in Appendix 1 
(with slight improvements) for the interested reader.  
 
The rest of this note is organized as follows. In Section 2 we introduce an approach called the 3-
2-3 Algorithm that operates by selecting subintervals defined by reference to triples. An 
abbreviated version of this approach provides a configuration of points on LS(y’,y”) that can also 
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be used to launch the other line search algorithms proposed, producing successive values of θh 
for subdividing the interval [θmin, θmax] that are not necessarily equally spaced.  Section 3 then 
describes an Advanced 3-2-3 Algorithm which is designed to perform a more elaborate search by 
investing additional computational effort. Section 4 considers subintervals defined by reference 
to pairs, and introduces a Stratified Split Algorithm that refines ideas of the Advanced 3-2-3 
Algorithm to handle all selected pairs simultaneously, while adaptively varying the scope and 
computational effort of the search. Section 5 then presents a Nested Interval Method which 
utilizes a different way of organizing the search which is highly convenient to implement. 
Finally, Section 6 briefly summarizes conclusions and potential applications of the algorithms. 
 
 
2. The 3-2-3 Line Search Method 
 
The 3-2-3 procedure starts from an initial construction similar to that used by Golden Section 
methods for unimodal function optimization on a line, consisting of triples y(θh-1), y(θh), y(θh+1) 
but allowing more than one starting interval and more complex ways for operating on the 
intervals considered. 
 
This approach can be particularly appropriate when the distances between successive points y(θh) 
are relatively small, or when the goal is to refine a coarse search of the line by focusing more 
thoroughly on the region around the point y(θq). 
 
We select a current instance of such a triple y(θq-1), y(θq), y(θq+1) by requiring that it satisfy  
 
   f(y(θq)) ≤ f(y(θq-1), f(y(θq+1)).       (2.1) 
 
A triple satisfying (2.1) will be called a fertile triple, and the point y(θq) is called the anchor 
point of the triple.  
 
The 3-2-3 Algorithm is organized to operate on each fertile triple for which f(y(θq)) does not 
exceed the globally minimum f(y(θ)) value over the points y(θ1), …, y(θs))  by more than a 
relatively small amount. The treatment of a fertile triple y(θq-1), y(θq), y(θq+1) consists of 
“splitting” each of the two intervals [θh-1, θh] for h = q and h = q + 1 by defining θ = .5(θh-1 + θh), 
thus producing a point y(θ) for each of these two intervals that lies halfway between y(θh-1) and 
y(θh), i.e., y(θ) = .5(y(θh-1) + y(θh)). Because y(θ) can be represented in this latter form, we also 
refer to the operation of splitting the interval [θh-1, θh] as that splitting the associated “vector 
interval” [y(θh-1), y(θh)].   
 

Define an anchor point sequence to be a maximal sequence of (one or more) successively 
adjacent points whose members all qualify as the anchor point y(θq) by (2.1). We are concerned 
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with such sequences due to the following fact. If two adjacent points y(θh-1) and y(θh) of an 
anchor point sequence are both selected in the role of an anchor point y(θq), thus producing the 
two successive fertile triples y(θh-2), y(θh-1), y(θh) and y(θh-1), y(θh) y(θh+1), then this will result in 
splitting the interval [y(θh-1), y(θh)] twice. To avoid this situation, we employ the following rule.  
 
The Odd Skip Rule:  From each anchor point sequence, create a collection of fertile triples by 
selecting the first and then every other (odd) point in the sequence to take the role of an anchor 
point y(θq).  
 
The Odd Skip Rule by itself is insufficient to accomplish the splitting of all intervals [y(θh-1), 
y(θh)] associated with fertile triples, because if the sequence contains an even number of points, 
then the last point y(θq’) of the sequence does not get selected as an anchor point y(θq), and the 
interval [y(θq’), y(θq’+1)] is omitted from consideration. We call such an interval a residual 
interval, and handle it by employing a special design, described later, for splitting it separately. 
 
The reference to residual intervals also has an additional important function, by making it 
possible for y(θo) and y(θs) (i.e., y(θmin) and y(θmax)) to take the role of the anchor point y(θq) of a 
fertile triple. In particular, it is possible that the first two points y(θo) and y(θ1) yield f(y(θo)) < 
f(y(θ1)) or that the last two points y(θs-1) and y(θs) yield f(y(θs)) < f(y(θs-1)), which suggests that 
y(θo) and y(θs) should be considered relevant when undertaking the process of splitting intervals, 
yet y(θo) and y(θs) in these cases do not belong to fertile sequences. (This would be a particularly 
grave oversight if f(y(θo)) or f(y(θs)) gave the smallest f(y) value of all points on the line 
segment.)   
 
We handle this situation by considering [y(θo),y(θ1)] to be a residual interval if f(y(θo)) < f(y(θ1)) 
and considering [y(θs-1),y(θs)] to be a residual interval if f(y(θs)) < f(y(θs-1)). It is convenient to 
relax the “<” requirement of these classifications, under certain circumstances noted later, by 
instead requiring f(y(θo)) ≤ f(y(θ1)) and f(y(θs)) ≤ f(y(θs-1)) in the respective cases.  These latter 
inequalities correspond to the two “halves” of the fertile triple inequalities f(y(θq)) ≤  f(y(θq+1)) 
and f(y(θq)) ≤ f(y(θq-1) for the situation where q = 0 and q = s. (Hence, we consider (2.1) to hold 
by default for the case q = 0 if f(y(θq)) ≤ f(y(θq+1)) and for the case q = s if f(y(θq)) ≤ f(y(θq-1)).) 
Specifically, then, y(θo) and y(θs) are defined as anchor points if they qualify as belonging to 
these special residual intervals.  
 
2.1 The Abbreviated 3-2-3 Line Search Algorithm  
 
We begin by describing an abbreviated version of the 3-2-3 Algorithm which is a one-pass 
algorithm for creating an initial subdivision of the line segment L(y’y”) that differs from the 
“equally spaced” subdivision produced by (1.3). The procedure can be used as a stand-alone 
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starting procedure to give a beginning division of LS(y’,y”) for any of the algorithms of this 
paper. 
 
The basic idea underlying the Abbreviated Algorithm, which is also exploited in other versions 
of the 3-2-3 algorithm, is as follows. For a given fertile triple y(θq-1), y(θq), y(θq+1), let ya = y(θq-

1), yb = y(θq), yc = y(θq+1). Because f(yb) ≤ f(ya), f(yc), the sequence of points ya, yb, yc may be 
viewed as  a “descent configuration” (particularly if f(yb) < f(ya) or f(yb))< f(yc)) which suggests 
the potential existence of a point ya1 lying between ya and yb, or a point yb1 lying between yb and 
yc, such that the new point continues the descent to yield a still better objective value; i.e., f(ya1) 
< f(yb) or f(yb1) < f(yb). We make an “unbiased estimate” about where such an intermediate point 
ya1 or yb1 may lie by bisecting the intervals [ya, yb] and [yb,yc]; i.e., setting ya1 = .5(ya + yb) and 
yb1 = .5(yb + yc). This bisection rule, which is used throughout the paper, can be replaced by a 
rule that forms convex combinations of the endpoints of [ya, yb] and  [yb, yc] by assigning larger 
weights to points that have better (smaller) f(y) values. 
 
The one-pass Abbreviated Algorithm selects an initial value ∆o as the basic step size for 
subdividing the line segment LS(y’,y”), for example by choosing a beginning value so and setting  

    ∆o = (θmax – θmin)/so 

 
When the Abbreviated Algorithm is used as a starting point for other algorithms, so can be 
selected to be somewhat larger (and ∆o, as a result, somewhat smaller) than otherwise might be 
done. We observe that the value so in any event will be smaller than the value s of (1.3) because 
the algorithm splits some of the intervals in the process of subdividing the line segment, hence 
effectively using a ∆ value in these instances equal to .5∆o or .25∆o, etc. 
 
We use the notation θa, θb and θc to denote the values of θ that identify the points ya = y(θa), yb = 
y(θb) and yc = y(θc). The superscripts a, b and c are used as “markers” (symbols) to differentiate 
among the items referenced, while the subscripts h of θh are numbers linked to specific positions 
on the line segment LS(y’,y”). By convention, then, we stipulate that yx = y(θx) for x = a, b, c.  
 
The Abbreviated Algorithm examines successive points on LS(y’,y”) by assigning each in turn 
the role of the “middle point” yb in the sequence ya, yb, yc. Then we employ the customary 
inequalities to check whether this middle point may qualify as an anchor point. More precisely, 
the points ya, yb, yc are related to each other by setting θb = θa + ∆o and θc = θb + ∆o regardless of 
whether an intermediate point is generated between ya and yb or between yb and yc. This is a 
conservative approach to splitting intervals that allows points yb to qualify as anchor points, and 
hence permits more intermediate points to be generated than might otherwise be the case. (The 
value h itself is incremented by the algorithm so that θh is the θ value for the last point generated, 
which may or may not correspond to the value θb, depending on whether an interval is split when 
θb is examined.) 
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We handle the treatment of residual intervals automatically by means of a logical indicator 
PreviousSplit that is set to true or false according to whether the interval immediately preceding 
the one presently examined has already been split. To handle the special residual intervals that 
contain the first point y(θmin) or the last point y(θmax), we organize the method so that the initial 
step only checks f(yb) ≤ f(yc)  and the final step only checks f(yb) ≤ f(ya), instead of checking 
f(yb) ≤ f(ya), f(yc).  
 
We give a simple “Depth-1” version of the Abbreviated Algorithm here, which only splits 
intervals once (without splitting other intervals inside of them), to make the principles of the 
method clear.  More elaborate “Depth-2” and “Depth-3” versions that are generally more 
effective are given in Appendix 2. (The Appendices of this paper provide more detailed 
expositions than customary in order to remove potential ambiguities in going from more general 
ideas to specific implementations, and to make sure that essential features are not 
misinterpreted.)  
 
Depth-1 Abbreviated 3-2-3 Algorithm  
  
Choose  ∆o, set h = 0 and θb = θo = θmin and  θc = θb + ∆o.  
(Initial Step) 
If f(yb) ≤ f(yc) then 
 (Split [yb,yc]) 
 θ1 = θo + .5∆o 
 h := 1 
 PreviousSplit = true 
Else 
 PreviousSplit = false 
Endif 
(Initialize θa, θb and θc for remaining iterations) 
θa = θo 
θb = θa + ∆o 
θc = θb + ∆o 
For ho = 1 to so – 1  

If f(yb) ≤ f(ya), f(yc) then 
(Split the two intervals [ya,yb] and [yb,yc], but exclude [ya,yb] if previously split ) 

  If PreviousSplit = true then 
   (Split [yb,yc]) 
   θh+1 = θb 

   θh+2 = θb + .5∆o 
   h := h + 2 
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  Else 
   (Split both [ya,yb]) and [yb,yc]) 
   θh+1 = θa + .5∆o 
   θh+2 = θb 

   θh+3 = θb + .5∆o 
   h := h + 3 
  Endif 
  PreviousSplit = true 

Else 
  (Don’t split the intervals) 
  θh+1 = θb  
  h :=h + 1 
  PreviousSplit = false 

Endif  
(Update θa, θb and θc for next iteration) 
θa = θb

 

θb = θc
 

θc = θb + ∆o 
Endfor 
(Final Step) 
If f(yb) ≤ f(ya) and PreviousSplit = false then  
 θh+1 = θa + .5∆o 
 θh+2 = θb 

 s = h + 2 
Else 
 θh+1 = θb 

 s = h + 1 
Endif 
 
Throughout the execution of the previous algorithm, the value f(y(θh)) for h = 0 to s is examined 
to determine if y(θh) qualifies as f* or one of the β best solutions, or as one of the β best anchor 
points when the Abbreviated Algorithm is used as the starting point for the Basic or Advanced 3-
2-3 Algorithm . 
 
 
2.2 The Basic 3-2-3 Line Search Algorithm  
 
The Basic 3-2-3 Algorithm starts by segregating the β best anchor points found in the process of 
applying the initial Abbreviated Algorithm by differentiating between those that are anchor 
points selected by the Odd Skip Rule and those that are anchor points associated with residual 
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intervals. Let Triple denote the collection of fertile triples determined by the former anchor 
points and let Residual denote the collection of residual intervals determined by the latter anchor 
points; i.e., 
 

Triple = {(ya, yb, yc):  for selected fertile triples, with anchor point yb} and  
Residual = {(ya,yc):  for selected residual intervals with anchor point ya}.   

 
The elements of Triple are identified by ya = y(θq-1), yb = y(θq), yc = y(θq+1) for the selected 
anchor points yb

, while the elements of Residual are identified by  ya = y(θq’), yc = y(θq’+1) where 
y(θq’) is the last point of an anchor point sequence containing an even number of points, or where 
y(θq’) is the point y(θo) and y(θo) qualifies as an anchor point of a residual sequence. In addition, 
to handle the situation where y(θs) may be the anchor point of a residual sequence, we allow for 
ya =  y(θs) and yc =  y(θs-1). It is understood that the residual intervals for y(θo) and y(θs) are not 
chosen to belong to Residual if these intervals already belong to one of the fertile triples in 
Triple.  
 
We operate on the pairs (ya,yc) in Residual by means of supporting method called the 2-1-2 
Algorithm. This method successively splits a chosen pair (ya,yc) to produce a point yb = .5(ya + 
yc), and immediately transfers to the basic 3-2-3 Algorithm as soon as yb qualifies as an anchor 
point of the triple ya, yb, yc (i.e., f(yb) ≤ f(ya), f(yc)). Until this happens, the splitting operation 
yields f(yb) > f(ya) since ya  is the anchor point (hence f(ya) ≤ f(yc)), and we redefine yc to be the 
resulting yb, so that ya again qualifies as the anchor point for the new pair (ya,yc). 
 
Both the 2-1-2 Algorithm and the 3-2-3 Algorithm use an iteration counter, Iter, and an iteration 
limit, LastIter, initialized by setting Iter = 0 and setting LastIter to a selected value. (In most 
circumstances, LastIter can be relatively small, e.g., from 4 to 7.)  
 
The following methods are applied by successively selecting elements from Residual and Triple, 
and then executing the methods as indicated. The elements may be selected in the order based on 
the f(y) values of their anchor points, if desired. 
 
2-1-2 Line Search Algorithm  
(Start with and maintain f(ya) ≤ f(yc).) 
While Iter ≤ LastIter 

Iter := Iter + 1 
yb = .5(ya + yc).  
If f(yb) ≤ f(ya)  then 

        ((ya,yb,yc) has the proper form for the 3-2-3 Algorithm)   
       If f(yb) < f(y*)  set y* = yb

. 

        Terminate and Execute the 3-2-3 Algorithm 
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Else    
       (f(ya) < f(yb)) 

         Designate (ya,yb) to be the new (ya,yc) 
Endif 

Endwhile    
 
In the situation above where f(ya) < f(yb), if f(ya) = f(yc) then (yc,yb) could equally be chosen as 
the new (ya,yc).  
 
Basic 3-2-3 Line Search Algorithm  
(Start with and maintain f(yb) ≤  f(ya), f(yc).) 
While Iter ≤ LastIter 

Iter := Iter + 1 
ya1 = .5(ya + yb).  
yb1 = .5(yb + yc).  
If f(yb) ≤ f(ya1), f(yb1)  then 

Designate (ya1,yb,yb1) to be the new (ya,yb,yc).  
(The old ya and old yc are discarded.) 

Elseif f(ya1) ≤ f(yb1)  then 
(f(ya1) < f(yb), f(ya)) 
Designate (ya,ya1,yb) to be the new (ya,yb,yc) 
(yb1 and the old yc are discarded) 

     If f(yb) < f(y*)  set y* = yb
. 

Else 
(f(yb1) < f(yb), f(yc)) 
Designate (yb,yb1,yc) to be the new (ya,yb,yc) 
(The old ya and ya1 are discarded.) 
If f(yb) < f(y*)  set y* = yb

. 
 Endif 
Endwhile 
 
The “2-1-2” Algorithm gets its name from the fact that each iteration starts with 2 points, 
generates 1 new point, and then discards one of the starting points to end with 2 points (one 
being the new point). 
 
Similarly, the main algorithm is called the “3-2-3” Algorithm because each iteration starts with 3 
points, generates 2 new points, and then discards two to end with 3 points (including at least one 
of the new points). Viewed from the perspective of intervals, the algorithm might be called the 
“2-4-2” Algorithm, because each iteration starts with the 2 adjacent intervals [ya,yb], [yb,yc], 
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expands them to produce the 4 adjacent subintervals [ya,ya1], [ya1,yb], [yb,yb1], [yb1,yc], and then 
finally shrinks the latter collection to again obtain 2 adjacent intervals.  
 
We illustrate the 2-1-2 and the 3-2-3 Procedures in Diagrams 1 and 2, respectively, using a 2-
dimensional representation.  
 
Diagram 1A shows the starting configuration for the 2-1-2 Procedure, where f(xa) < f(xc). A line 
has been drawn connecting the points f(ya) and f(yc) to clarify their relationship, but the line has 
no role in the procedure itself. Remaining components of Diagram 1 include reference not only 
to ya and yc, but also to the point yb and its function value f(yb). 
 
Diagram 1B illustrates the case where f(yb) ≤ f(ya). The lines successively joining f(ya), f(yb), and 
f(yc) are accentuated to indicate that this configuration qualifies as a 3-2-3 configuration, and 
hence the 2-1-2 Procedure terminates at this point and the 3-2-3 Procedure begins. 
 
Diagrams 1C and 1D illustrate two versions of the same case, where f(ya) < f(yb). In both 
instances, the line joining f(ya) and f(yb) is accentuated, to indicate that the resulting 
configuration qualifies as a 2-1-2 configuration. Hence the 2-1-2 Procedure continues by 
reference to the accentuated portion of the diagram, and yb becomes the new yc. (A third instance 
of the case for f(ya) < f(yb) is also possible, where in addition f(yb) > f(yc). The treatment is the 
same as illustrated in Diagrams 1C and 1D.) 
 
Diagram 2A shows the starting configuration for the 3-2-3 Procedure, where f(yb) ≤ f(ya) and 
f(yb) ≤ f(yc). Again the points identifying the function values are connected by a broken line for 
purposes of illustration. Remaining components of Diagram 2 additionally include the points ya1 
and yb1, together with their function values f(ya1) and f(yb1). 
 
Diagram 2B illustrates the situation in which f(yb). ≤ f(ya1) and f(yb). ≤ f(yb1). In this case yb 
retains its identity as the point having a smallest f(y) value, and the sequence ya1, yb, yb1 qualifies 
as a 3-2-3 configuration as indicated by accentuating the lines successively joining f(ya1), f(yb), 
and f(yb1). The next iteration of the 3-2-3 Procedure therefore resumes with the current ya1 
becoming the new ya and the current yb1 becoming the new yc.   
 
Diagrams 2C and 2D illustrate two versions of the case where the condition of Diagram 2B is not 
satisfied (hence f(ya1) < f(yb) or f(yb1) < f(yb)), and in addition f(ya1) ≤ f(yb1). Now ya1 qualifies to 
become the new yb, and in both of the Diagrams 2C and 2D we have accentuated the broken line 
joining f(ya), f(ya1) and f(yb), thus identifying the configuration that qualifies as a 3-2-3 
configuration for the next iteration.  
 

 



  11

DIAGRAM 1 
 

           
Diagram 1A    Diagram 1B 

 

           
Diagram 1C    Diagram 1D 

 
DIAGRAM 2 

 

            
Diagram 2A   Diagram 2B 

 
 

            
Diagram 2C    Diagram 2D 
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There remains the case where the conditions of both Diagram 2B and of Diagram 2C (and 2D) 
are all not satisfied, and hence we have f(yb1) < f(yb) and f(yb1) < f(ya1). This situation is the same 
as the one illustrated in Diagrams 2C and 2D, with the roles of yb1 and ya1 interchanged, and 
hence we have not included an additional diagram to illustrate it. 
 
The preceding diagrams disclose that this “basic” form of the 3-2-3 procedure neglects to 
examine potentially fruitful regions that might be explored more thoroughly – as in the case of 
Diagram 2D, where the triple (yb, yb1, yc) might reasonably be considered as a candidate to 
become the next (ya, yb, yc). The more advanced version of the 3-2-3 method that follows is 
designed to handle such considerations. 
 
 
3. An Advanced 3-2-3 Algorithm 
 
A more complete version of the 3-2-3 Algorithm results by allowing the method to avoid 
discarding members of the subintervals [ya,ya1], [ya1,yb], [yb,yb1], [yb1,yc] on steps where the first 
two and last two subintervals both appear attractive to take the role of the new [ya,yb] and [yb,yc] 
(i.e., where f(ya1) and f(yb1) are both relatively small). The two new intervals [ya,yb], [yb,yc] are 
then both submitted to the 3-2-3 Algorithm. Likewise, in a case where f(ya) and f(yb) are both 
relatively small, but f(ya1) is larger, we retain [ya, ya1] as a subinterval to be submitted to the 2-1-
2 Algorithm, together with retaining the two intervals [ya1,yb] and [yb,yb1] (as would normally be 
done) to submit to the 3-2-3 Algorithm. Similarly the subinterval [yb1,yc] is retained if f(yb) and 
f(yc) are relatively small but f(yb1) is larger. 
 
To describe this Advanced 3-2-3 Algorithm we employ the Basic 3-2-3 Algorithm a subroutine. 
It is convenient in the following to refer to a pair of points (ya, yc) satisfying the conditions of the 
2-1-2 Algorithm (deriving from a beginning residual interval) as a 2-Structure, and refer to a 3-
tuple of points (ya,yb,yc) satisfying the conditions of the Basic 3-2-3 Algorithm (deriving from a 
beginning fertile triple) as a 3-Structure. The Advanced 3-2-3 Algorithm, like the Basic 
Algorithm, will generate an intermediate 5-tuple of points (ya, ya1,yb,yb1,yc), but under certain 
conditions will not discard various portions to shrink it back to a single 3-Structure. Instead, as 
intimated above, the Advanced Algorithm will sometimes generate two separate 3-Structures 
from the 3-tuples (ya, ya1,yb) and (yb,yb1,yc), and in other instances will generate a single 3-
Structure together with possibly one or two 2-Structures.  
 
The structures produced by the Advanced Algorithm fall into different classes. A Class A 
structure is a 3-Structure (ya,yb,yc) for which f(yb) = f*, where f* denotes the minimum f(y) value 
so far generated by the algorithm.  Such a structure will automatically generate a descendant that 
is another Class A structure by the rules of the Basic 3-2-3 Algorithm, since this algorithm yields 
a 3-Structure that either improves f(yb) or leaves it unchanged (where by definition yb  is the best 
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point of the structure). A Class A structure can also produce a 3-Structure as a descendant that 
instead belongs to Class B when the two 3-tuples (ya, ya1,yb) and (yb,yb1,yc) yield values f(ya1) 
and f(yb1) that match or improve the current value f(yb). If one of these 3-tuples produces a new 
f* value and the other does not, then the second becomes a 3-Structure that receives a Class B 
status. A Class A structure can also produce a 2-Structure belonging to Class B if the 2-Structure 
qualifies as “promising” according to criteria identified by the Advanced Algorithm.  
 
A Class B structure may be determined to lack promise if the new yb point generated does not 
improve upon the current best point of the structure. In this case the Class B structure is simply 
discarded without producing a descendant. However, if the Class B structure produces a new 3-
Structure that yields a new point improving on its current best, the resulting 3 Structure survives 
to become a descendant. If in addition this new structure yields f(yb) = f* (after updating f*, if 
appropriate) then it becomes a Class A structure. Otherwise it transitions to the next lower Class 
(after Class B) and becomes a Class C structure. Finally, when the algorithm processes a Class C 
structure, the outcome is required to produce a new yb that yields f(yb) = f* (hence yielding a 
Class A structure). Otherwise the Class C structure has no descendants.  
 
Only a Class A structure can give rise to more than one descendant (and one or both may be a 
new Class A structure). A descendant that has a Class B structure will automatically have a Class 
B status. To handle the fact that the Advanced Algorithm can generate more than one descendant 
to be processed, the method uses a queue operated by a first-in first-out protocol. This protocol 
assures that the 2-Structures and 3-Structures will be processed according to the order in which 
they are generated. 
 
The iteration counter, Iter, is only incremented when a Class A structure is produced as the 
descendant of the structure currently examined, to approximately match the way this counter is 
incremented in the Basic Algorithm. However, LastIter should be given a larger value for the 
Advanced Algorithm, since it will generate more Class A structures than the Basic Algorithm. 
 
The Advanced Algorithm begins from an initial 3 Structure. If such a structure is not initially 
available, the 2-1-2 Algorithm is applied in order to produce it (assuming this can be done within 
LastIter iterations). The method then proceeds as follows, setting Begin = true as a signal to 
permit the first 3-Structure to be treated as an improved structure, making it a potential source of 
new 2-structures. We give the algorithm in a highly detailed form, as in the case of the Basic 3-2-
3 method, in order to convey the content of ideas that are not fully visible from a high level 
description. 
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Advanced 3-2-3 Algorithm 
 
Designate the starting 3-Structure (ya,yb,yc) to be a Class A Structure, set y* = yb, f* = f(yb), and 
place (ya,yb,yc) as the first element on the queue. 
Begin = true 
While Iter ≤ LastIter 
    Remove a structure from the start of the queue.  

      If the structure is a 2-Structure (ya,yc) (where f(ya) ≤ f(yc)) then 
              (the structure is automatically a Class B structure) 

        yb = .5(ya + yc).  
        If f(yb) < f(ya)  then 
                 (an improving 3-Structure is generated)  
                 If f(yb) ≤ f* then 

                                    Designate the 3-Structure (ya,yb,yc) to be a Class A Structure 
              Iter := Iter + 1 

                        If f(yb) < f*  then 
                     y* = yb 
          f* = f(yb) 
   Endif 
       Else 
                                    Designate the 3-Structure (ya,yb,yc) to be a Class C Structure 
       Endif 
       Add the 3-Structure (ya,yb,yc) to the end of the queue. 
                     Endif 
                     (Above, no descendant is produced to be added to the queue unless it is a                  
                     3-Structure that improves on the current 2-Structure examined.) 
 .         Else   
                     (The structure is a 3-Structure) 

         ya1 = .5(ya + yb).  
         yb1 = .5(yb + yc).  

    fo = Min(f(ya1),f(yb),f(yb1))   
         If fo ≤ f* then 
       (at least one descendant of the 3-Structure will be a Class A Structure) 
       Iter := Iter + 1 
                  If f(ya1) ≤ f(yb) and f(yb1) ≤ f(yb) then 

            (create two new 3-Structures) 
                    f* = Min(f(ya1),f(yb1))   

                            If f(ya1) > f* then  
           Assign (ya,ya1,yb) a Class B status 
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           Assign (yb,yb1,yc) a Class A status 
                      y* = yb1 
                            Elseif f(yb1) > f* then  
           Assign (ya,ya1,yb) a Class A status 
           Assign (yb,yb1,yc) a Class B status 
                      y* = ya1 

               Else 
           Assign (ya,ya1,yb) a Class A status 
           Assign (yb,yb1,yc) a Class A status 
                      y* = ya1 
               Endif 
                          Add both of the 3 structures (ya,ya1,yb) and (yb,yb1,yc) to the end of the  
    queue, adding a Class A structure before a Class B structure   

       Elseif  f(ya1) ≤ f(yb) then 
   Assign (ya,ya1,yb) a Class A status 
   Add (ya,ya1,yb) to the start of the queue 
   If  f(ya1) < f* then 
          f* = f(ya1)           

                      y* = ya1 
    Endif 

  Assign the 2-Structure (yb1,yb) a Class B status 
  Add (yb1,yb) to the start of the queue 
      Elseif  f(yb1) ≤ f(yb) then 
  Assign (yb,yb1,yc) a Class A status 
  Add (yb,yb1,yc) to the start of the queue  
   If  f(yb1) < f* then 
          f* = f(yb1)           

                      y* = yb1 
    Endif 

   Assign the 2-Structure (ya1,yb) a Class B status 
   Add (ya1,yb) to the start of the queue 
      Else 
   (The basic unimproved but refined (ya1,yb,yb1) 3-Structure is obtained)   
   Assign the 3- Structure (ya1,yb,yb1) a Class A status 
   Add (ya1,yb,yb1) to the start of the queue 
   If Begin = true then 
          (This is the beginning 3-structure, hence is treated as an improved  
          structure) 
          If f(ya1) < f(ya) then 
                 Assign the 2-Structure (ya1,ya) a Class B status 
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                 Add (ya1,ya) to the start of the queue 
          Endif 
          If f(yb1) < f(yc) then 
                 Assign the 2-Structure (yb1,yc) a Class B status 
                 Add (yb1,yc) to the start of the queue 
          Endif 
          Begin = false 
   Endif 
                 Endif 

                     Else 
   (No descendant of the current 3-Structure (ya,yb,yc)  is a Class A Structure. 
                             If (ya,yb,yc) has a Class C status it will be dropped, with no descendants. 
     Otherwise a single descendant will be generated as in the Basic 3-2-3       
   Algorithm. If (ya,yb,yc) itself was originally assigned a Class A status, then its  
           descendant will receive a Class B status, and otherwise a Class C status.) 
   If (ya,yb,yc) has a Class A or Class B status then 
           (Apply the Basic 3-2-3 algorithm) 

   ya1 = .5(ya + yb).  
   yb1 = .5(yb + yc).  
   If f(yb) ≤ f(ya1), f(yb1)  then 
               Add the 3-Structure (ya1,yb,yb1) to the end of the queue 
           Assign (ya1,yb,yb1) a Class B status if (ya,yb,yc) has a Class A   

            status and assign (ya1,yb,yb1) a Class C status otherwise 
   Elseif f(ya1) ≤ f(yb1)  then 
               Add the 3-Structure (ya,ya1,yb) to the end of the queue 
           Assign (ya,ya1,yb) a Class B status if (ya,yb,yc) has a Class A   

            status and assign (ya,ya1,yb) a Class C status otherwise 
   Elseif f(yb1) ≤ f(ya1)  then 
               Add the 3-Structure (yb,yb1,yc) to the end of the queue 
           Assign (yb,yb1,yc) a Class B status if (ya,yb,yc) has a Class A   

            status and assign (yb,yb1,yc) a Class C status otherwise 
   Endif 

      Endif  
    Endif 

 Endif 
Endwhile 
 
In the next section we identify an algorithm that embodies some of the key ideas of the 
Advanced 3-2-3 Algorithm, but that is less complex in its design and yet highly flexible to 
execute. 
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4. Line Search by Stratified Splitting  
 
Since a 3-Structure is composed of 2 adjacent pairs, the 3-2-3 Algorithm can alternatively be 
viewed as a set of rules for operating on such pairs, subject to implicitly taking account of the 
relationship between them. Building on this observation, we propose a line search that operates 
entirely on pairs (ya,yc). The method is based on a design for assigning the outcomes to certain 
levels, or strata, when a pair (ya,yc) is split to create descendants (ya,yb) and (yb,yc).  
 
Before discussing this stratification process, we first describe the starting procedure for selecting 
the pairs (ya,yc) submitted to the algorithm.  
 
Selecting the Initial Pairs (ya,yc) 
 
It is convenient in the following to use shorthand notation by defining yh = y(θh) and fh = f(yh). 
Accompanying this, we let H = {0, 1, …, s}  and Y = {yh  h ∈ H} (identifying Y as the set of all 
points generated from the line segment (1.1) either by an initial equal spacing or by applying the 
Abbreviated 3-2-3 Algorithm). For two adjacent pairs (yh-1,yh) and (yh,yh+1) determined from a 
selected point yh of Y, we say that (yh-1,yh) is defined if h > 0 and similarly say that (yh,yh+1) is 
defined if h < s. An initial set P of pairs, starting with P empty, is created from a subset of such 
adjacent pairs, as follows.  
 
 Sketch of the Initial Pair Generation Method. 
 1. Choose a value β ≥ 1 as a basis for selecting some number of the points yh from Y.  
     (E.g., β = |Y|/10, rounded to an integer).  
 2. Identify a subset Ho of H, and a corresponding subset Yo = {yh:  h ∈ Ho} of Y, so that   
                the elements yh in Yo yield the β best (smallest) fh values over h ∈ H.  
 3. For each yh ∈ Yo, add the defined instances of the adjacent pairs (yh-1,yh) and (yh,yh+1)    
     to P.  
 
When the Abbreviated 3-2-3 Algorithm is used to generate an initial Y, and Step 1 above uses a 
rule such as β = |Y|/10, the identification of β best points must be postponed until after the 
Abbreviated Algorithm is completed, since the number of elements in Y will not be known in 
advance.  
 
To avoid adding pairs to P that duplicate others already added, we provide the following specific 
algorithm to carry out the steps sketched above. As indicated, we begin by selecting β and 
identifying Yo = {yh:  h ∈ Ho} containing the β best points yh from Y. A generalization of this 
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approach is used again in the Nested Interval Algorithm of Section 5, where it is applied to 
successively different sets in the roles of Y and Yo.  
 
 Pair Generation  
 P = ∅ 
 h’ = Min(h ∈ Ho) 
 Add the defined instances of the pairs (yh’-1,yh’) and (yh’,yh’+1) to P. 
 h” = h’ + 1 

 h# = Min(h ∈ Ho: h ≥ h”) 
 While h# exists 
  h = h# 
  Add (yh,yh+1) to P (if defined) 
  If h > h’ add (yh-1,yh) to P 
  h” = h + 1 
  h# = Min(h ∈ Ho: h ≥ h”) 
 EndWhile 
 
The number of pairs in P takes a minimum value equal to |Ho| + 1 when Ho

 consists of |Ho| 
consecutive indexes of H (and the element h = 0 or h = s belongs to Ho), and takes a maximum 
value equal to 2|Ho| when none of the indexes in Ho are consecutive. Since |Ho| = β, it follows 
that 1 to β of the points y belonging to pairs in P come from Y – Yo. A useful feature of the 
Stratified Split Algorithm is its ability to work with all current pairs simultaneously, starting 
from the initial P, while maintaining a set of decision rules that account for the status of these 
pairs as a basis for determining the preferred step to take at each juncture. 
 
The Stratification Process 
 
The descendants (ya,yb) and (yb,yc) of (ya,yc), based on defining yb = .5(ya + yc), are stratified by 
classifying them as either improving, promising or marginal, with sub-classifications of weakly 
promising and weakly marginal, according to the four cases. We use a notation similar to that of 
fh = f(yh),  by defining fa = f(ya), fb = f(yb) and fc = f(yc). However, in this case the superscripts a, 
b and c of ya, yb and yc are simply to distinguish these points from each other, and do not refer to 
specific indexes such as h ∈ H. We continue to observe the convention fa  ≤ fc.  
 

(C1) If fb < fa (hence also fb < fc), then (ya,yb) and (yb,yc) are improving.  
(C2) If fa ≤ fb ≤ fc, then (ya,yb) is promising  

(a) If fa = fb = fc, then (yb,yc) is promising. 
(b) Otherwise, (yb,yc) is marginal (a lower status than promising). 

(C3) If fa < fc < fb, then (ya,yb) is weakly promising and  (yb,yc) is weakly marginal. 
(C4) If fa = fc < fb, then (ya,yb) and  (yb,yc) are both weakly marginal. 
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The strata produced by these cases will be indexed using the notation Stratum = 1, 2, …, 
MaxStratum. MaxStratum will typically take the value 3, but can range from 2 to 5 as 
subsequently explained. (As will be seen, the strata defined by reference to (C1) through (C4) are 
loosely related to the Classes A, B and C of the Advanced 3-2-3 Algorithm, particularly when 
MaxStratum = 3.)  
 
To begin all pairs of the initial set P are assigned to Stratum 1. Throughout the process of 
modifying P, discarding some pairs and adding others during the splitting process, we refer to a 
pair ρ ∈ P in the conventional form ρ = (ya,yc), and define F(ρ) = fa (hence F(ρ) = Min(fa,fc)). 
The best (smallest) currently known value f* of f(y) can also be expressed as f* = Min(F(ρ):ρ ∈ 
P). 
 
The notation Stratum(ρ) denotes the stratum that a particular pair ρ belongs to. (Hence 
Stratum(ρ) = 1 for pairs in the initial P)1 When a pair ρ = (ya,yc) is split, the cases (C1) – (C4) are 
used to determine the strata to which the new pairs (ya,yb) and (yb,yc) are assigned. By 
convention, Stratum(ρ) > MaxStratum implies that ρ is to be discarded, and is no longer 
considered for future examination. 
 
To state the rules for determining strata membership when ρ = (ya,yc) is split, let ρo denote either 
of the two descendants (ya,yb) or (yb,yc) of ρ, and let δ denote a small positive threshold value to 
determine when F(ρo) lies “close to” the best value f*, as established by the relationship 
 
      F(ρo) ≤ f* + δ       (4.1) 
 
Finally, let S = Stratum(ρ), to identify the stratum of the parent ρ = (ya,yc) of a descendant ρo 
under consideration.  Then the rules to identify the stratum to which ρo belongs are as follows. 
 
(R1) If ρo is improving, then  

(a) If F(ρo) satisfies (4.1) then Stratum(ρo) = 1.  
(b) Otherwise, ρo is assigned to the same stratum as ρ; i.e., Stratum(ρo) = S.  

(R2) If ρo is not improving, then ρo is assigned to a stratum So inferior to that of ρ (So > S).  
(a) If ρo is promising, Stratum(ρo) = S + Inc_f*, where  Inc_f* = 1 if f* changed on the 

preceding pass, and Inc_f* = 0 otherwise. (Inc_f* = 0 when pass = 1.)  

                                                            

1 If we allow more variation in the F(ρ) values of initially selected pairs, then those pairs in the beginning P with 
larger F(ρ) values may be assigned Stratum(ρ) = 2. 
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(b) If ρo is marginal, Stratum(ρo) = S + 2. 
(c) If ρo is weakly marginal, Stratum(ρo) = S + 3. 
 

Note that when MaxStratum = 3, then ρo will be discarded in one of the following cases: S = 3 
under the conditions of (R2)(a); S ≥ 2 under the conditions of (R2)(b); or S ≥ 1 under the 
conditions of (R2)(c). This last case implies that all weakly marginal descendants ρo will be 
discarded (since S ≥ 1 always holds) unless MaxStratum is chosen larger than 3. Such a larger 
choice for MaxStratum implies that fewer descendants will be discarded, and hence the 
algorithm will perform a more thorough search at the expense of greater computational effort.  
 
By default, we treat the weakly promising classification the same as a promising classification 
for the purpose of applying the preceding rules. Under this assumption, MaxStratum will be 
given a value of at most 4. Considerations for choosing other values for MaxStratum are 
discussed in Appendix 3. 
 
To decide whether an improving pair ρo should be assigned to Stratum 1 by rule (R1)(a), 
we postpone applying the criterion of (4.1) until all improving pairs are identified, since the 
value of f* may change during this identification process. The final f* that results is then used to 
scan the improving pairs, which are saved on an Improving List, so that these pairs may be 
assigned to their appropriate strata. Each entry on the Improving List is a triple ((ya,yb),(yb,yc),S), 
since by (C1) the two pairs (ya,yb) and (yb,yc) are both improving simultaneously, and we store S 
= Stratum(ρ) for the parent ρ of (ya,yb) and (yb,yc), in order to provide the necessary information 
to execute the rule (R1)(b). (We also implicitly record the value F(ρo) = fb, which is the same for 
ρo = (ya,yb) and ρo = (yb,yc),  to avoid recalculating this value when the threshold condition (4.1) 
is checked.) 
 
Finally, we add a special screening provision as a counterpart to (4.1) to weed out and eliminate 
new pairs ρo that are insufficiently attractive relative to f*, thus saving computational effort by 
reducing the number of descendants that will be evaluated on future passes of the method. To 
accomplish this, we let pass denote the current number of passes (major iterations) of the 
method, and introduce a threshold δ(pass) and eliminate any pair ρo that fails to satisfy 
 
      F(ρo) ≤ f* + δ(pass)      (4.2) 
 
The value of δ(pass) is chosen relatively large for the first two passes, to avoid eliminating early 
descendants that may be “slow starters,” giving them a chance to produce their own descendants 
that may ultimately yield attractive F(ρo) values. (The stratification of cases that underlies rules 
(R1) and (R2) provides its own screening even if δ(pass) is large. Note that δ(pass) is entirely 
independent of δ and is initialized separately.) After the first two passes, δ(pass) may  be 
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progressively decreased so that (4.2) will exclude a greater proportion of descendants and hence 
yield fewer pairs to examine on future iterations.  
 
We now state the Stratified Split algorithm as follows, continuing to maintain the convention that 
the pair (ya,yc) is ordered so that fa ≤ fc. The value LastPass will normally be given a moderately 
small value, e.g., in the range from 4 to 7. (Larger values may be used in cases where an 
exceedingly fine grain search is desired.) 
 
Stratified Split Line Search Algorithm  
Initialization: 
            Assign each initial pair to Stratum 1.        
            Create a Scan List equal to the initial P.  
           Begin with the Next Scan List empty.  
            Begin with the Improving List empty.  

Set pass = 1 and Inc_f* = NextInc_f* = 0. 
While pass ≤ LastPass 
    While the Scan List is not empty 
    Remove a pair ρ = (ya,yc) from the Scan List.  
      S = Stratum(ρ) 

            yb = .5(ya + yc) (creating the two potential descendants (ya,yb) and (yb,yc)) 
 If fb < fa  then 
 ((ya,yb) and (yb,yc) are both improving) 
           Add the triple ((ya,yb),(yb,yc),S) to the Improving List. 
  Also add (ya,yb) and (yb,yc) to the Next Scan List 
             If fb < f*  then 

 y* = yb 
f* = fb 

  NextInc_f* = 1 
 Endif 

  Else 
 (Neither (ya,yb) nor (yb,yc) is improving) 
 If fa ≤ fb ≤ fc, then  

       ((ya,yb) is promising) 
       Stratum(ya,yb) = S + Inc_f* 
       If fa = fc then 

  ((yb,yc) is promising) 
             Stratum(yb,yc) = S + Inc_f* 

         Else 
  ((yb,yc) is marginal) 

             Stratum(yb,yc) = S + 2 
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         Endif 
   Elseif fa < fb < fc, then  

       ((ya,yb) is weakly promising and (yb,yc) is weakly marginal) 
          Stratum(ya,yb) = S + Inc_f* 

       Stratum(yb,yc) = S + 3 
              Else (If fa = fc < fb then)  

       ((ya,yb) and  (yb,yc) are both weakly marginal) 
          Stratum(ya,yb) = S + 3 

       Stratum = (yb,yc) = S + 3 
   Endif 
   Add ρo = (ya,yb) to the Next Scan List if Stratum(ρo) ≤ MaxStratum and  
    F(ρo) ≤ f* + δ(pass) 
   Add ρo = (yb,yc) to the Next Scan List if Stratum(ρo) ≤ MaxStratum and  
    F(ρo) ≤ f* + δ(pass) 
  Endif 
 Endwhile  

(The Scan List is now Empty.) 
    While the Improving List is not empty 
    Remove an element ((ya,yb),(yb,yc),S) from the Improving List.  

  If F(ρo) ≤ f* + δ then 
   Stratum(ya,yb) = Stratum(yb,yc) = 1 
  Else 
   Stratum(ya,yb) = Stratum(yb,yc) = S 
  Endif 
 EndWhile 

 pass := pass + 1 
 If pass ≤ LastPass then 
  Interchange the names of the Next Scan List and the Scan List 

  (equivalently, place the contents of the Next Scan List in the Scan List, leaving 
the Next Scan List empty.) 

  Inc_f* = NextInc_f* 
  NextInc_f* = 0 
 Endif 

EndWhile  
  
By the structure of the foregoing algorithm, the Next Scan List will always have at least one 
element on each pass. Relevant data structures for implementing the algorithm are described in 
Appendix 3. 
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5. The Nested Interval Algorithm 
 
The Nested Interval Algorithm departs from the two preceding algorithms by dispensing with 
rules to differentiate among different classes of solutions. Only very simple data structures are 
needed to provide an effective implementation. 
 
The method treats the beginning collection of points yo, y1, …, ys as a discrete interval  
[yo, y1, …, ys] which is progressively modified by generating new intervals to lie within it. The 
generic structure that launches each iteration is a current domain D that consists of a collection of 
discrete intervals which share no points in common. . 
 
Apart from the value LastIter that limits the total number of iterations, the algorithm has just a 
single decision parameter β. (To be more precise, the rule for subdividing the original line 
segment to produce [yo, y1, …, ys] introduces an additional parameter, which is either the value s 
or the value so of the Abbreviated Algorithm.) Within the Nested Interval Algorithm, β refers to 
the number of best points drawn from the current D (independent of the intervals containing 
these points). We denote the subset of D containing these selected points by D(β).  
 
For convenience in the present context, we refer to a solution yh by representing it as y(h), and 
accordingly represent the solutions in the current partitioned domain D by y(h), h = 0, …,s. The 
value s as well as the identity of the points y(h) in D will vary from iteration to iteration..  
 
Denote the intervals into which D is partitioned by Di = [y(h1(i)), …., y(h2(i))], for , i = 1,…, d, 
and hence h1(i) and h2(i) are respectively the first and last h indexes of the points y(h) of Di 
(yielding h1(1) = 0 and h2(d) = s).  Identify the interval Di for i = i(h) that contains a given point 
y(h) in D. Then the two points y(h-1) and y(h+1) are called “interval adjacent” (or IntAdjacent) 
to y(h) in D if y(h-1) and y(h+1) also belong to Di, hence we exclude y(h-1) from being 
IntAdjacent to y(h) if h = h1(i), and exclude y(h+1) from being IntAdjacent to y(h) if h = h2(i). 
By extension, for any subset S of D, we define IntAdjacent(S) = {y ∈ D: y is IntAdjacent to 
some y’ ∈ S}. We are particularly interested in the set InAdjacent(D(β)) and in the union of this 
set with the points of  D(β), which we denote by Do(β) =  D(β) ∪IntAdjacent(D(β)). The set 
Do(β) is foundation for building the new intervals for the next iteration of the Nested Interval 
Algorithm. We refer to the maximal intervals of IntAdjacent points within Do as source intervals. 
The completed intervals that produce the next domain D are given by expanding each source 
interval by splitting the subinterval between each pair of its IntAdjacent points, thus adding these 
midpoints to the source interval to yield the completed discrete interval for the new D.  
 
To illustrate these ideas, suppose the first interval within the domain D consists of the points y(0) 
to y(9), and the points of D(β) that lie within this first interval consist of y(2), y(4), y(5) and y(9). 
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We provide a visual schematic to support our illustration, where “best” points (belonging to 
D(β)) are denoted by “B” and other points are denoted by “•”, as follows. 
 
     [•           •            B          •           B           B           •            •           •           B]  
      0           1           2           3           4           5           6           7           8           9  
 
The points of Do(β) =  D(β) ∪IntAdjacent(D(β)) are shown next by placing the symbol # above 
them. We also have placed brackets ([ ]) around the points that are the maximal intervals of the 
IntAdjacent points within Do, thus identifying the source intervals for the next domain. 
 
                   #           #           #           #           #           #                       #            #  
      •          [•           B           •           B           B           •]          •          [•           B]  
      0           1           2           3           4           5           6           7           8           9  
 
To produce the next domain, we expand each source interval of D shown above by splitting each 
of its successive pairs y(h-1), y(h) to produce the point .5(y(h-1) + y(h)), and insert this new 
point between its parents within the source interval. For the current illustration we denote each of 
these new points by “n”, and show the completed intervals for the next domain by 
 
                   #           #           #           #           #           #                       #            #  
      •          [•     n     B    n     •     n    B    n    B   n      •]          •          [•    n     B]  
      0           1           2           3           4           5           6           7           8           9  
 
Points of the original D that do not lie in these completed intervals are dropped, and the points 
y(h) that remain are re-indexed to become y(0), …, y(s) so that the new domain D may be 
represented in exactly the same form as the previous one. Likewise, we will again denote the 
intervals into which D is partitioned by Di, i = 1, …, d (where s and d, as well as the intervals Di, 
are new). The indexing for the points of the two newly created intervals of the present illustration 
is as shown below. 
 
                   #           #           #           #             #            #                      #              #  
      •          [•     n     B    n     •     n    B     n     B    n      •]         •          [•      n     B]  
                   0    1     2     3    4     5     6     7     8     9    10                    11    12    13 
 
We can readily identify bounds on the size NumSource which we define to be the number of 
points in the source intervals that are used to generate the new domain produced by the foregoing 
operations (hence the number of points represented by # above). Each point y(h) in D(β) 
(denoted by “B” above) will in general be accompanied by at most 2 IntAdjacent points  to 
produce a source interval in D. Consequently, the total number of points contained in all the 
source intervals is at most 3β, yielding NumSource ≤ 3β. The minimum number is just β, arising 
in the case where D(β) lies in a single interval of D and includes all the points of this interval, 
hence bounding NumSource by β ≤ NumSource ≤ 3β. 
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It is also of interest to identify bounds on the value NumAdd which we define to be the number 
of new points added to the source intervals to produce the completed intervals for the new D (the 
points denoted by “n” above). We note that NumAdd equals the number of pairs (y(h-1), y(h)) 
and (y(h), y(h+1)) that are produced from the IntAdjacent points in the source intervals. The 
number of such pairs is at most 2β, disclosing that NumAdd is likewise at most 2β. The smallest 
number of such pairs (and hence new points) is β.  
 
Putting these results together, we can identify bounds on the size |D’| of the new domain D’ 
produced by the algorithm. In particular, |D’| = NumSource + NumAdd, and hence we conclude 
2β ≤ |D’| ≤ 5β. (In the preceding example, the 4 points of D(β) produced source intervals 
containing a total of 8 points, which resulted in adding 6 new points to contribute a total of 14 
points to the new D, a number that lies midway between the bounds of 2x4 = 8 and 5x4 = 
20.points. The value of β in this example may of course be somewhat larger than 4, since we are 
only considering the instances of D(β) that lie in the first interval.) 
 
By reference to these ideas, we now state the Nested Interval Algorithm using the following 
notation and conventions. For each h = 0, …, s, let EndInterval(h) = true if y(h) is the last 
element (end) of some interval Di (hence h = h2(i) for some i) and EndInterval(h) = false 
otherwise. (The use of the EndInterval(h) array is more convenient for stating the algorithm than 
explicitly accessing the values h1(i) and h2(i).)  
 
Accompanying this we use a “logical indicator” StartInterval  which is assigned the value 
StartInterval = true each time the next y(h) to be examined starts a new interval, and  
StartInterval = false otherwise. (Hence we perform the initialization StartInterval = true before 
examining the first point y(0) of the beginning interval.) 
 
To identify the “best elements” of D contained in D(β), let Best(h) = true if y(h) ∈ D(β) and 
Best(h) = false otherwise. We denote two IntAdjacent points y(h-1) and y(h) of D to be D(β)-
Adjacent if y(h-1) and y(h) belong to Do(β) =  D(β) ∪IntAdjacent(D(β)). It follows that y(h-1) 
and y(h) are D(β)-Adjacent if “Best(h-1) = true or Best(h) = true” excluding the situation where 
StartInterval = true (to appropriately avoid referring to the pair (y(h-1), y(h)) when y(h) is the 
first element of an interval). Consequently, we can identify all elements of Do(β) by identifying 
the pairs for which the condition “Best(h-1) = true or Best(h) = true” holds in conjunction with 
StartInterval = false.  
 
The new solutions to be generated for the next domain D will be denoted by yo(ho), ho = 1, …, so. 
These solutions will include the solutions of Do(β) =  D(β) ∪IntAdjacent(D(β)) as well as the 
new solutions generated from the source intervals of D. Finally, we use a logical indicator 
PreMember, which is set to true whenever the current y(h) satisfies “Best(h-1) = true or Best(h) 
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= true” and is set to false otherwise. Then when examining the next y(h) (i.e., y(h+1)), if 
PreMember = true and if this current y(h) (likewise) does not satisfy “Best(h-1) = true or Best(h) 
= true”, we know that the associated next y(h-1) (the previous y(h)) is a point that will be 
dropped from the domain D to produce the next domain. With these ingredients, we now give the 
details of the Nested Interval Algorithm. 
 
Nested Interval Algorithm 
 
The initial domain D contains the single interval [y(0), y(1), … y(s)].  
EndInterval(h) =  false for h = 0, …, s – 1, and EndInterval(s) = true.  
y* = arg min(f(y): y ∈ D) and f* = f(y*). 
For Iter = 1 to LastIter 

Choose β for the current iteration and identify the set D(β). For each h = 0, …, s. set    
       Best(h) = true if y(h) ∈ D(β) and Best(h) = false otherwise. 

 StartInterval = true 
 ho = - 1  
 (Next generate the new domain D in the form yo(ho), ho = 0, …, so) 
 For h = 1, …, s 
  If StartInterval = true then 
   StartInterval = false 
   PreMember = false 
  Elseif Best(h-1) = true or Best(h) = true then 
   (y(h-1) and y(h) qualify as members of Do(β) recorded as the new yo(ho+1)  

and yo(ho+3), and we insert their midpoint as the new yo(ho+2)) 
   yo(ho+1) = y(h-1) 

yo(ho+2) = y  = .5(y(h-1) + y(h)) 
   yo(ho+3) = y(h) 

If f(y) < f* then  
y* = y  
f* = f(y*) 

   Endif 
   EndIntervalo(ho+1) = false 
   EndIntervalo(ho+2) = false 
   EndIntervalo(ho+3) = false 
   ho= ho + 3 
   PreMember = true 
  Else   
   If PreMember = false then 
    Drop y(h-1) 
   Endif  
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   PreMember = false 
  Endif 
  If EndInterval(h) = true then 
   StartInterval = true 
   EndIntervalo(ho) = true 
  Endif 
 Endfor (h = 1, …, s) 
 s = ho 

 EndInterval(h) = EndIntervalo(h), h = 1 to s 

 y(h) = yo(h), h = 0 to s 
Endfor (Iter = 1 to LastIter) 
 
The preceding method can use a straightforward data structure to avoid the expense of 
transferring solutions back and forth between vectors y(h) and yo(ho) and at the same time avoid 
expanding the array space required for recording new solutions. Let IndexPool denote a set of 
currently available indexes h for storing solutions y(h). The size of IndexPool can be given by 
|IndexPool| = 2β* + Max(s*+1,5β*), where s* is the original s value for the beginning set of 
points y(h), h = 0 to s, and β* is the largest β value selected by the algorithm. (The method will 
start by removing the first s*+ 1 indexes from IndexPool to build the first domain D = [y(0), …, 
y(s*)].) 
 
An index q is removed from IndexPool each time a new point y(q) is generated to be added to D 
(involving at most 2β* points) and an index h is added back to IndexPool each time a point y(h) 
is dropped from D. By this means, each solution created will be put in a location y(q) that does 
not change as long as the solution remains in D. 
 
To exploit IndexPool, we use an array ID(h) (h = 1 to s) that names the index q = ID(h) such that 
the point y(h) of the preceding algorithmic description actually represents the solution y(q). A 
parallel array, IDo(ho), ho = 1, …, so keeps track of the “new ID(h)” array that will be used on the 
next iteration. 
 
The two instructions yo(ho+1) = y(h-1) and yo(ho+3) = y(h+1) of the algorithm thus become  
IDo(ho+1) = ID(h-1) and IDo(ho+3) = ID(h), while the instruction yo(ho+2) = .y is handled by 
identifying y = .5(y(q’) + y(q”)) where q’ = ID(h-1) and q” = ID(h). Then a new index q is 
selected from IndexPool and we set y(q) = y, followed by IDo(ho + 2) = q.  
 
The instruction “Drop y(h-1)” becomes “Add q’ to the IndexPool” for q’ = ID(h-1). The value 
Best(h) has the interpretation “Best(h) = true” if and only if the point y(q) for q = ID(h) is a 
member of the set D(β). Likewise, the value EndInterval(h) has the interpretation EndInterval(h) 
= true if and only if y(q) is the last solution of an interval. Nothing needs to be done to maintain 
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this interpretation of EndInterval(h). The algorithm as stated will assign EndInterval(h) the 
correct value at each iteration. Finally, the last update of the algorithm, “y(h) = yo(h), h = 0 to s,” 
is replaced by “ID(h) = IDo(h), h = 0 to s.” 
 
Given the bounds on the size of the new domain D’ given by 2β ≤ |D’| ≤ 5β, and more 
particularly the bounds on the number of new points that are added given by β ≤ NumAdd ≤ 2β, 
the computation required by the Nested Interval Algorithm at each iteration can clearly be 
controlled by means of the parameter β. Total computation can be controlled by additionally 
selecting the value s* that determines the size of the first domain D, and by selecting  the value 
of LastIter that determines the number of iterations. (The value LastIter can be indirectly 
determined by imposing a limit on the total number of points generated, though in any event 
LastIter will usually be selected to be at most 7.)  
 
Several elements of the algorithm can be viewed as a simplification of analogous ideas and 
processes of the Stratified Split Algorithm, suggesting that the computation of the Stratified Split 
Algorithm can likewise be susceptible to effective control (by the procedures recommended in 
the Appendix 3).  The increased simplicity of the Nested Interval Algorithm, however, invites 
computational experimentation with strategies for manipulating its primary parameter β in 
conjunction with choosing the initial s* value.  
 
 
6. Concluding Remarks 
 
The 3-2-3, Stratified Split and Nested Interval algorithms have a natural use as subroutines for 
metaheuristic methods. A prominent application of this type arises in the setting of population-
based metaheuristics where the methods can be used to find good local minima over various line 
segments in order to yield candidates for new population members. For example, the scatter 
search method is particularly suited to benefit from such a process, because it characteristically 
uses linear combinations to generate new solutions, hence automatically producing line segments 
that can be submitted to global line searches. In turn, the best solutions obtained by these line 
search algorithms provide a source of potential new population members.  
 
The 3-2-3, Stratified Split and Nested Interval algorithms can also be applied in the situation 
where f(y) is an approximation to another function whose evaluations are expensive to calculate 
or imperfectly known, as occurs in the setting of simulation optimization. In general, the 
algorithms can be used within a variety of more advanced solution processes for global 
minimization over a bounded search space. 
 
Yet another application of these line search algorithms is that of finding global optima for multi-
dimensional functions. This can be accomplished by successively optimizing over different 
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coordinates of the y vector and using re-starting, an approach successfully used for continuous 
nonlinear optimization in Gardeux et al. (2009). More recently, a simplified instance of the 3-2-3 
algorithm has been embedded in such a strategy in Gardeux et al. (2010) with highly promising 
results. A related approach for the fixed-mix problem in finance is employed in Glover, Mulvey 
and Hoyland (1996) which simultaneously changes the values of two variables at a time. In this 
latter case the variables are first scaled and an increase is one variable is matched by a decrease 
in another, thus effectively inducing a unidimensional change within a transformed coordinate 
system. The efficacy of this strategy in the context of the fixed-mix problem motivates a more 
dedicated examination of transformed coordinate systems in the context of multimodal line 
search, where such systems may be used to supplement approaches that restrict attention to 
manipulating variables in the original coordinate system. Issues involved in creating useful 
transformed coordinate systems are discussed in Appendix 4. 
 
Each of the line search algorithms of this paper has its own particular strengths, and the settings 
where each proves most effective will likely vary. For ease of implementation, the “Basic” 
version of the 3-2-3 Algorithm is the simplest of the methods, though the solutions it generates 
will undoubtedly be dominated by those produced by the Advanced 3-2-3 Algorithm. The logic 
that underlies the Advanced 3-2-3 Algorithm is harder to penetrate, however, since a good 
portion of its rationale is embedded in the instructions of the algorithm itself.  
 
The Stratified Split Algorithm has more visible foundations than the Advanced 3-2-3 Algorithm, 
and its principles may give a useful perspective to facilitate an understanding of the 3-2-3 
Algorithm. From a computational standpoint, the increased flexibility of the Stratified Split 
Algorithm will likely translate into greater robustness, with a consequent reduced variability in 
solution quality and computation time. Offsetting this, the implementation of the Stratified Split 
Algorithm is more subtle than that of the Advanced 3-2-3 Algorithm, though again in 
compensation the data structures and supporting considerations described in the Appendix may 
be expected to remove potential obstacles that may otherwise be posed by this subtlety. 
  
Finally, the Nested Interval Algorithm employs a somewhat simpler strategic foundation than the 
other methods, though in certain respects the method exhibits some underlying resemblances to 
the Stratified Split approach. The Nested Interval Algorithm shares the useful feature of working 
with all pairs simultaneously, and its organization may facilitate the discovery of good choice 
strategies, as in rules for manipulating the value of its primary parameter β (e.g., by a schedule 
for decreasing β as the number of iterations increases). In general, the simplicity of the Nested 
Interval Algorithm suggests that it may appropriately serve as a standard for measuring the 
computational performance of the other algorithms. 
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Appendix 1: Hardwired Threshold Sorting 

 
 
The goal is to identify β “best” (smallest) values v(i) and their associated indexes i from a 
collection given by v(i), i = 1, …, n. We assume that β is relatively small, e.g., ≤ 32.  
 
The hardwired threshold sorting procedures we describe will both identify an appropriate set of β 
indexes that give the smallest v(i) values and will also order these indexes by means of an 
auxiliary indexing i(k) so that v(i(1)) ≤ v(i(2)) ≤ … ≤ v(i(β)). The resulting process can of course 
also be used to identify a set of indexes giving the n – β largest v(i) values (since this set will 
consist of those not included in the set for the β smallest v(i) values), but the indexes giving the n 
– β largest v(i) values will not be in sequenced order. (This implies that we can find a set of 
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indexes for the β smallest v(i) values when β is relatively large, e.g., at least n – 32. For this we 
replace the v(i) values by v’(i) = - v(i) and replace β by β’ =  n – β. The result will find an index 
set for the β smallest v(i) values, though not in sorted order.)   
 
Hardwired threshold sorting is based on a binary sort procedure combined with an insertion sort 
procedure (where the latter is used to complete the sorting algorithm when β is not close to a 
power of 2). These methods are designed so that the variable indexes i(1), i(2), …, i(β) are 
treated as “hardwired constants” i1, i2, …, iβ. Likewise, each of the levels of the sorting 
algorithms are also hardwired, instead of being given a variable representation (i.e., using an 
iterative framework). The resulting computer code has more instructions than a more customary 
type of code, but the procedure executes somewhat more rapidly. Empirical tests show that when 
these hardwired codes are given the form indicated below, they can be appreciably faster than the 
more customarily used sorting codes such as quicksort and heapsort, which are reputed to be the 
most effective alternatives. In addition, the simplicity of the hardwired binary sort and insertion 
sort algorithms makes the task of embedding them in software relatively easy. The proper form 
of these codes will become apparent by means of a few basic illustrations, which also show some 
alternatives.     
 
To save space in the following descriptions, we use the notation p  q (where p > q) as 
shorthand for the hardwired version of the sequence of assignments i(p) = i(p-1);  
i(p-1) = i(p-2), … ,i(q+1) = q. Hence, 8  4 is shorthand for the sequence of assignments i8 = i7,  
i7 = i6, i6 = i5, i5 = i4..  
 
1.1 Hardwired Binary Sorting 
 
We first depict the form of the hardwired binary sorting procedure. It is important in the 
following that none of the “≤” inequalities be replaced by strict “<” inequalities, though it is 
permissible to replace any of the “<” inequalities by “≤” inequalities (causing the method to run 
slightly slower in some situations). Specifically, “<” is only permissible for the branch statement 
“If v(i) < Threshold then”, and for the branch statements that are used to identify a single 
element out of 2 remaining posibilities. The value of Threshold in the code is always the value 
v(iβ), as set at the conclusion of each major branch sequence. 
 
 
Hardwired Binary Sort for β = 8. 
 
(Initialization) Set i1 = … = i8 = n + 1 (a dummy value) and Threshold = v(n+1) = ∞.  
 For i = 1 to n 
 If v(i) < Threshold then 
  (i1, i2, …, i8 remain to be checked to identify the precise location of v(i)) 
  If v(i) ≤ v(i4) then 
   (i1,i2,i3,i4 remain to be checked) 
   8  4 
   If v(i) ≤ v(i2) then 
    (i1,i2 remain) 
    4  2 
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     If v(i) < v(i1) then 
     (i1 uniquely remains) 
     2  1 
     i1 = i 

    Else 
     (i2 uniquely remains) 
     i2 = i 
    Endif 
   Elseif v(i) < v(i3) then 
    (i3, i4 remained, but now i3 uniquely remains) 
    4  3 
    i3 = i 
   Else 
    (i4 uniquely remains) 
    i4 = i 
   Endif 
  Elseif v(i) ≤ v6 then 
   (i5, i6, i7, i8 remained, but now i5,i6 remain) 
   8  6 
   If v(i) < v(i5) then 
    (5 uniquely remains) 
    6  5 
    i5 = i 

   Else 
    (i6 uniquely remains) 
    i6 = i 
   Endif 
  Elseif v(i) < v(i7) then 
   (i7,i8 remained but now i7 uniquely remains) 
    8  7 
    i7 = i 

   Else 
    (i8 remains) 
    i8 = i 
   Endif 
  Endif 
  Threshold = v(i8) 
 Endif 
Endfor 
 
If it is desired only to find the best 6 v(i) values, the foregoing code can be used by initializing i1 
= i2 = n + 2, and v(n+2) = – ∞. Then i1 and i2 will retain their initially assigned value n + 2, 
while v(i3) to v(i8) will identify the 6 best v(i) values. The code can of course be made faster in 
this circumstance by dropping the branch “If v(i) ≤ v(i2) then” and replacing it by the “Elseif” 
branch that follows, changing “Elseif” to “If” (thus yielding “If v(i) < v(i3) then”). For a β value 
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as small as 6, however, it can be preferable to use the Hardwired Insertion Sort shown in Section 
1.2. 
  
To see how to extend the preceding code to larger β values, it suffices to consider the hardwired 
binary sort for β = 16. This code contains the instructions for the β = 8 case within it. The “first 
tier” of instructions for the β = 16 code are shown below. 
 
Hardwired Binary Sort for β = 16 (Partial) 
 
(Initialization) Set i1 = i2 = … = i16 = n + 1 and Threshold = v(n+1) = ∞. 
For i = 1 to n 
 If v(i) < Threshold then 
  (i1, i2, …, i16 remain to be checked to determine the precise location of  
  v(i)) 
  If v(i) ≤ v(i8) then 
   (i1,.., i8 remain to be checked) 
   16  8 
   If v(i) ≤ v(i4) then 
    (i1,i2, i3, i4 remain) 
    8  4 
     If v(i) ≤ v(i2) then 
     (i1,i2 remain) 
     4  2 
     If v(i) < v(i1) then 
      (i1 uniquely remains) 
      2  1 
      i1 = i 

     Else 
      (i2 uniquely remains) 
      i2 = i 
     Endif 
    Elseif v(i) < v(i3) then 
     (i3, i4 remained, but now i3 uniquely remains) 
     4  3 
     i3 = i 
    Else 
     (i4 uniquely remains) 
     i4 = i 
    Endif 
 
The pattern for remaining instructions is evident. 
 
An alternative code is possible for binary sorting that is likely to be faster than the preceding 
code for some compilers (unless the v(i) values are arranged so that larger values appear first). 
We illustrate this alternative code for β = 8. The structure of the code permits a more compact 
representation by putting associated instructions on the same line, separated by a semicolon. (It 
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may be noted that this alternative code uses a few more instructions to re-sequence the indexes, 
but does not entail more computation.) 
  
Alternative Hardwired Binary Sort for β = 8 
 
(Initialization) Set i1 = i2 = … = i8 = n + 1 and Threshold = v(n+1) = ∞. 
 For i = 1 to n 
 If v(i) < Threshold then 
  (i1, i2, …, i8 remain to be checked to determine the precise location of  
  v(i)) 
  If v(i) > v(i4) then 
   (i5 to i8 remain to be checked) 
   If v(i) > v(i6) then 
    (i7, i8 remain) 
     If v(i) > v(i7) then 
     (i8 uniquely remains) 
     i8 = i 

    Else 
     (i7 uniquely remains) 
     8  7;  i7 = i 
    Endif 
   Elseif v(i) > v(i5) then 
    (i5, i6 remained, but now i6 uniquely remains) 
    8  6;  i6 = i 
   Else 
    (i5 uniquely remains) 
    8  5;  i5 = i 
   Endif 
  Elseif v(i) > v(i2) then 
   (i1 to i4 remained, but now i3,i4 remain) 
   8  4 
   If v(i) > v(i3) then 
    (i4 uniquely remains) 
    i4 = i 

   Else 
    (i3 uniquely remains) 
    4  3;  i3 = i 
   Endif 
  Elseif v(i) > v(i1) then 
   (i1, i2 remained but now i2 uniquely remains) 
    8  2;  i2 = i 

   Else 
    (i1 remains) 
    8  1;  i1 = i 
   Endif 
  Endif 
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  Threshold = v(i8) 
 Endif 
Endfor 
 
 
1.2 Hardwired Insertion Sorting 
 
We consider the form of the Hardwired Insertion Sort (sometimes also called the Bubble Sort), 
which we illustrate for β = 6. 
 
Hardwired Insertion Sort for β = 6. 
 
(Initialization) Set i1 = i2 = … = i6 = n + 1 and Threshold = v(n+1) = ∞. 
 For i = 1 to n 
 If v(i) < Threshold then 
  (i1, i2, …, i6 remain to be checked to determine the precise location of  
  v(i)) 
  If v(i) > v(i5) then 
   i6 = i 
  Elseif v(i) > v(i4) then 
   6  5;  i5 = i 
  Elseif v(i) > v(i3) then 
   6  4;  i4 = i 
  Elseif v(i) > v(i2) then 
   6  3;  i3 = i 
  Elseif v(i) > v(i1) then 
   6  2;  i2 = i 
  Else 
   6  1; i1 = i 
  Endif 
  Threshold = v(i6) 
 Endif 
Endfor 
 
The number of instructions used to re-assigning index values can be reduced in the preceding 
code by organizing the portion within the loop as follows: 
 
 If v(i) < Threshold then 
  (i1, i2, …, i6 remain to be checked to determine the precise location of  
  v(i)) 
  If v(i) > v(i5) then 
   i6 = i 
  Else 
   6  5;  
   If v(i) > v(i4) then 
     i5 = i 
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   Else 
    5  4 
   (Etc.) 
 
This nested structure is probably not as fast to execute as the earlier structure using the 
successive “Elseif” statements. 
 
1.3 Combined Hardwired Insertion and Binary Sorting Methods 
 
The Hardwired Insertion Sort can be positioned before the Hardwired Binary Sort to provide a 
fast method for values of β that are not powers of 2. For example, if β = 11 then a Hardwired 
Insertion Sort for v(i11), v(i10) and v(i9) can be joined with a Hardwired Binary Sort for β = 8 
by means of the following design.  
 
If v(i) < Threshold then 
 (i1, i2, …, i11 remain to be checked ) 
 If v(i) > v(i10) then 
  I11 = i 
 Elseif v(i) > v(i9) then 
  11  10;  i10 = i 
 Elseif v(i) > v(i8) then 
  11  9;  i9 = i 
 Else 
  11  9 
  Insert the “If … then” block for the Hardwired Binary Sort for β = 8. 
 Endif 
 Threshold = v(i11) 
Endif 
  
The Alternative Hardwired Binary Sort can also be inserted in this procedure.  
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Appendix 2: Depth-2 and Depth-3 Versions of the Abbreviated  
3-2-3 Line Search Algorithm 

 
The Depth-2 and Depth-3 versions of the Abbreviated Algorithm split additional intervals during 
the pass of subdividing the line segment LS(y’,y”). In the Depth-2 version, whenever a given 
split produces a point y(θ) whose value f(y(θ)) is better than that of both of its adjacent points on 
the line segment, then each of the two subintervals between y and its adjacent points are further 
split. To determine when the condition holds for carrying out this additional splitting, it is only 
necessary to check whether f(y(θ)) ≤ f(yb), since the original split only occurs if f(yb) ≤ f(ya), 
f(yc). The Depth-3 version goes further by seeing whether the intervals produced by additional 
splitting qualify to be split as well. Parenthetical comments within the algorithms provide 
additional explanation of the steps performed. As before, the values f(y(θh)) for h = 0 to s are 
examined as the θh values are generated to determine whether y(θh) qualifies as f* or as one of 
the β best solutions. The choice between implementing the Depth-2 or the Depth-3 Algorithm 
depends on the empirically determined relationship between the ideal size of so for a given depth, 
and the quality of solutions produced for the computational effort expended. The greater 
complexity of the Depth-3 Algorithm does not necessarily translate into a significant difference 
in the amount of computation time consumed.  
 
 
Depth-2 Abbreviated 3-2-3 Algorithm  
  
Choose  ∆o, set h = 0 and θb = θo = θmin and  θc = θb + ∆o.  
(Initial Step) 
If f(yb) ≤ f(yc) then 
 (Split [yb,yc]) 
 θ = θb + .5∆o 

 If f(y(θ)) ≤ f(yb) then 
  (Additionally split [yb,y(θ)] and [y(θ),yc]) 
  θ1 = θb + .25∆o 

  θ2 = θ 
  θ3 = θ + .25∆o 
  h = 3 

Else 
θ1 = θ 

  h := 1 
Endif 

 PreviousSplit = true 
Else 
 PreviousSplit = false 
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Endif 
θa = θo 
θb = θa + ∆o 
θc = θb + ∆o 
For ho = 1 to so – 1  

If f(yb) ≤ f(ya), f(yc) then 
(Split [ya,yb] and [yb,yc], but exclude [ya,yb] if previously split ) 

  If PreviousSplit = true then 
   (Split [yb,yc]) 
   θh+1 = θb 

   θ = θb + .5∆o 
   If f(y(θ)) ≤ f(yb) then 
    (Additionally split [yb,y(θ)] and [y(θ),yc]) 
    θh+2 = θb + .25∆o 

    θh+3 = θ 
    θh+4 = θ + .25∆o 
    h = h+ 4 

Else 
θh+2 = θ 

    h := h + 2 
Endif 

  Else 
   (First split [ya,yb]) 
   θ = θa + .5∆o 

   If f(y(θ)) ≤ f(yb) then 
    (Additionally split [ya,y(θ)] and [y(θ),yb]) 
    θh+1 = θa + .25∆o 

    θh+2 = θ 
    θh+3 = θ + .25∆o 
    h := h+ 3 

Else 
θh+1 = θ 

    h := h + 1 
Endif 

   (Next split [yb,yc]) 
θh+1 = θb  
θh = θb + .5∆o 

   If f(y(θ)) ≤ f(yb) then 
    (Additionally split [yb,y(θ)] and [y(θ),yc]) 
    θh+2 = θb + .25∆o 
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    θh+3 = θ 
    θh+4 = θ + .25∆o 
    h = h+ 4 

Else 
θh+2 = θ 

    h := h + 2 
Endif 

  Endif 
  PreviousSplit = true 

Else 
  (Don’t split the intervals) 
  θh+1 = θb  
  h :=h + 1 
  PreviousSplit = false 

Endif  
θa = θb

 

θb = θc
 

θc = θb + ∆o 
Endfor 
(Final Step) 
If f(yb) ≤ f(ya) and PreviousSplit = false then  
 θh+1 = θa + .5∆o 
 (Split [ya,yb]) 
 θ = θa + .5∆o 

 If f(y(θ)) ≤ f(yb) then 
   (Additionally split [ya,y(θ)] and [y(θ),yb]) 
  θh+1 = θa + .25∆o 

  θh+2 = θ 
  θh+3 = θ + .25∆o 
  θh+4 = θb ( = θmax)  

s = h+ 4 
Else 

θh+1 = θ 
  θh+2 = θb ( = θmax)  
  s = h + 2 

Endif 
Else 
 θh+1 = θb 

 s = h + 1 
Endif 
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The Depth-3 Algorithm begins similarly, but employs a slightly different organization in order to 
efficiently determine the merit of splitting intervals at a greater depth.  
 
Depth-3 Abbreviated 3-2-3 Algorithm  
  
Choose  ∆o, set h = 0 and θb = θo = θmin and  θc = θb + ∆o.  
(Initial Step) 
If f(yb) ≤ f(yc) then 
 (Split [yb,yc]) 
 θ = θb + .5∆o 

 If f(y(θ)) ≤ f(yb) then 
  (Additionally split [yb,y(θ)] and [y(θ),yc]) 
  θ’ = θb + .25∆o 

  θ” = θ + .25∆o 
  If  f(y(θ’)), f(y(θ”)) ≤ f(y(θ))  then 
   (Doubly split [yb,y(θ)] and [y(θ),yc]) 
   θ1 = θb + .125∆o 

   θ2 = θ’  
   θ3 = θ’ + .125∆o 

   θ4 = θ  
   θ5 = θ + .125∆o 

   θ6 = θ”  
   θ7 = θ” + .125∆o  
   h = 7 
  Elseif  f(y(θ’)) ≤ f(y(θ))  then 
   (Doubly split [yb,y(θ)] and split [y(θ),yc]) 
   θ1 = θb + .125∆o 

   θ2 = θ’  
   θ3 = θ’ + .125∆o 

   θ4 = θ  
   θ5 = θ + .25∆o 

   h = 5 
  Elseif  f(y(θ”)) ≤ f(y(θ))  then 
   (Split [yb,y(θ)] and doubly split [y(θ),yc]) 
   θ1 =  θ’ 

   θ2 = θ 
   θ3 = θ + .125∆o 

   θ4 = θ”  
   θ5 = θ” + .125∆o 
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   h = 5 
  Else 
   (Only split [yb,y(θ)] and [y(θ),yc]) 
   θ1 = θ’ 

   θ2 = θ 
   θ3 = θ” 

   h = 3 
  Endif   

Else 
θ1 = θ 

  h := 1 
Endif 

 PreviousSplit = true 
Else 
 PreviousSplit = false 
Endif 
θa = θo 
θb = θa + ∆o 
θc = θb + ∆o 
For ho = 1 to so – 1  

If f(yb) ≤ f(ya), f(yc) then 
(Split [ya,yb] and [yb,yc], but exclude [ya,yb] if previously split ) 

  If PreviousSplit = true then 
   (Split [yb,yc]) 
   θh+1 = θb 

   θ = θb + .5∆o 
   If f(y(θ)) ≤ f(yb) then 
    (Additionally split [yb,y(θ)] and [y(θ),yc]) 
    θ’ = θb + .25∆o 

    θ” = θ + .25∆o 
    If  f(y(θ’)), f(y(θ”)) ≤ f(y(θ))  then 
     (Doubly split [yb,y(θ)] and [y(θ),yc]) 
     θh+2 = θb + .125∆o 

     θh+3 = θ’  
     θh+4 = θ’ + .125∆o 

     θh+5 = θ  
     θh+6 = θ + .125∆o 

     θh+7 = θ”  
     θh+8 = θ” + .125∆o  
     h = h+8 



  42

    Elseif  f(y(θ’)) ≤ f(y(θ))  then 
     (Doubly split [yb,y(θ)] and split [y(θ),yc]) 
     θh+2 = θb + .125∆o 

     θh+3 = θ’  
     θh+4 = θ’ + .125∆o 

     θh+5 = θ  
     θh+6 = θ + .25∆o 

     h = h + 6 
    Elseif  f(y(θ”)) ≤ f(y(θ))  then 
     (Split [yb,y(θ)] and doubly split [y(θ),yc]) 
     θh+2 =  θ’ 

     θh+3 = θ 
     θh+4 = θ + .125∆o 

     θh+5 = θ”  
     θh+6 = θ” + .125∆o 

     h = h+6 
    Else 
     (Only split [yb,y(θ)] and [y(θ),yc]) 
     θh+2 = θ’ 

     θh+3 = θ 
     θh+4 = θ” 

     h = h + 4 
    Endif   

Else 
θh+2 = θ 

    h := h + 2 
Endif 

  Else 
   (First split [ya,yb]) 
   θ = θa + .5∆o 

   If f(y(θ)) ≤ f(yb) then 
    (Additionally split [ya,y(θ)] and [y(θ),yb]) 
    θ’ = θa + .25∆o 

    θ” = θ + .25∆o 
    If  f(y(θ’)), f(y(θ”)) ≤ f(y(θ))  then 
     (Doubly split [ya,y(θ)] and [y(θ),yb]) 
     θh+1 = θa + .125∆o 

     θh+2 = θ’  
     θh+3 = θ’ + .125∆o 

     θh+4 = θ  
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     θh+5 = θ + .125∆o 

     θh+6 = θ”  
     θh+7 = θ” + .125∆o  
     h = h + 7 
    Elseif  f(y(θ’)) ≤ f(y(θ))  then 
     (Doubly split [ya,y(θ)] and split [y(θ),yb]) 
     θh+1 = θa + .125∆o 

     θh+2 = θ’  
     θh+3 = θ’ + .125∆o 

     θh+4 = θ  
     θh+5 = θ + .25∆o 

     h = h + 5 
    Elseif  f(y(θ”)) ≤ f(y(θ))  then 
     (Split [ya,y(θ)] and doubly split [y(θ),yb]) 
     θh+1 =  θ’ 

     θh+2 = θ 
     θh+3 = θ + .125∆o 

     θh+4 = θ”  
     θh+5 = θ” + .125∆o 

     h = h + 5 
    Else 
     (Only split [ya,y(θ)] and [y(θ),yb]) 
     θh+1 = θ’ 

     θh+2 = θ 
     θh+3 = θ” 

     h = h + 3 
    Endif   

Else 
θh+1 = θ 

    h := h + 1 
Endif 

   (Next split [yb,yc]) 
   θh+1 = θb 

   θ = θb + .5∆o 
   If f(y(θ)) ≤ f(yb) then 
    (Additionally split [yb,y(θ)] and [y(θ),yc]) 
    θ’ = θb + .25∆o 

    θ” = θ + .25∆o 
    If  f(y(θ’)), f(y(θ”)) ≤ f(y(θ))  then 
     (Doubly split [yb,y(θ)] and [y(θ),yc]) 
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     θh+2 = θb + .125∆o 

     θh+3 = θ’  
     θh+4 = θ’ + .125∆o 

     θh+5 = θ  
     θh+6 = θ + .125∆o 

     θh+7 = θ”  
     θh+8 = θ” + .125∆o  
     h = h + 8 
    Elseif  f(y(θ’)) ≤ f(y(θ))  then 
     (Doubly split [yb,y(θ)] and split [y(θ),yc]) 
     θh+2 = θb + .125∆o 

     θh+3 = θ’  
     θh+4 = θ’ + .125∆o 

     θh+5 = θ  
     θh+6 = θ + .25∆o 

     h = h + 6 
    Elseif  f(y(θ”)) ≤ f(y(θ))  then 
     (Split [yb,y(θ)] and doubly split [y(θ),yc]) 
     θh+2 =  θ’ 

     θh+3 = θ 
     θh+4 = θ + .125∆o 

     θh+5 = θ”  
     θh+6 = θ” + .125∆o 

     h = h + 6 
    Else 
     (Only split [yb,y(θ)] and [y(θ),yc]) 
     θh+2 = θ’ 

     θh+3 = θ 
     θh+4 = θ” 

     h = h + 4 
    Endif   

Else 
θh+2 = θ 

    h := h + 2 
Endif 

  Endif 
  PreviousSplit = true 

Else 
  (Don’t split the intervals) 
  θh+1 = θb  
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  h :=h + 1 
  PreviousSplit = false 

Endif  
θa = θb

 

θb = θc
 

θc = θb + ∆o 
Endfor 
(Final Step) 
If f(yb) ≤ f(ya) and PreviousSplit = false then  
 θh+1 = θa + .5∆o 
 (Split [ya,yb]) 
 θ = θa + .5∆o 

 If f(y(θ)) ≤ f(yb) then 
   (Additionally split [ya,y(θ)] and [y(θ),yb]) 
  θ’ = θa + .25∆o 

  θ” = θ + .25∆o 
  If  f(y(θ’)), f(y(θ”)) ≤ f(y(θ))  then 
   (Doubly split [ya,y(θ)] and [y(θ),yb]) 
   θh+1 = θa + .125∆o 

   θh+2 = θ’  
   θh+3 = θ’ + .125∆o 

   θh+4 = θ  
   θh+5 = θ + .125∆o 

   θh+6 = θ”  
   θh+7 = θ” + .125∆o  
   θh+8 = θb   

s = h + 8 
  Elseif  f(y(θ’)) ≤ f(y(θ))  then 
   (Doubly split [ya,y(θ)] and split [y(θ),yb]) 
   θh+1 = θa + .125∆o 

   θh+2 = θ’  
   θh+3 = θ’ + .125∆o 

   θh+4 = θ  
  θh+5 = θ + .25∆o 

   θh+6 = θb   
s = h+ 6 

  Elseif  f(y(θ”)) ≤ f(y(θ))  then 
   (Split [ya,y(θ)] and doubly split [y(θ),yb]) 
   θh+1 =  θ’ 

   θh+2 = θ 
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   θh+3 = θ + .125∆o 

   θh+4 = θ”  
   θh+5 = θ” + .125∆o 

   θh+6 = θb   
s = h+ 6 

  Else 
   (Only split [ya,y(θ)] and [y(θ),yb]) 
   θh+1 = θ’ 

   θh+2 = θ 
   θh+3 = θ” 

   θh+4 = θb   
s = h+ 4 

Else 
θh+1 = θ 

  θh+2 = θb   
  s = h + 2 

Endif 
Else 
 θh+1 = θb 

 s = h + 1 
Endif 
 
Throughout the execution of the previous algorithms, the value f(y(θh)) for h = 0 to s is examined 
to determine if y(θh) qualifies as f* or one of the β best solutions. 
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Appendix 3: Implementation Considerations and Data Structures  

for the Stratified Split Algorithm 
 

 
1. Implementation Aspects 
 
We first discuss implementation aspects, listed by category, and then discuss relevant data 
structures. 
 
Determining the δ(pass) values. 
 
As discussed in Section 4, δ(pass) should receive a large value for pass = 1 and 2. For pass ≥ 3, 
smaller δ(pass) values can usefully be determined in conjunction with imposing an upper bound 
UB on the number of pairs to be examined. For example, δ(pass) could be given the smallest 
value that would allow UB pairs to avoid being eliminated. Once UB pairs have succeeded in 
satisfying F(ρo) ≤ f* + δ(pass), then the screening can stop, and all further pairs can be discarded 
on the current pass.  
 
This rule can be applied without assigning δ(pass) a “smallest acceptable value” for admitting 
UB pairs, and can also be implemented by an aggressive determination of δ(pass) that permits 
fewer than UB pairs to survive the screening. Once such a rule is applied on a given pass, the 
resulting value of δ(pass) can be used as a starting point for determining the value of δ(pass+1), 
since appropriate values on successive passes will probably be fairly similar. (For example, a 
first guess for δ(pass+1) can be δ(pass) + (f*(pass) – f*(pass-1)), where f*(pass) denotes the 
value of f* on the specified pass.)  
 
 
Selecting MaxStratum. 
 
As previously noted, MaxStratum is chosen by default to be either 3 or 4 (and may typically be 
set to 3). However, MaxStratum can be made as large as 5 for a still more thorough (and 
expensive) search if the weakly promising moves are placed in their own special category. This 
can be done by expanding (R2)(a) to specify Stratum(ρo) = S + 2 when ρo is weakly promising, 
accompanied by increasing the amount added to S by 1 in (R2)(b) and (c). In reverse, to have the 
algorithm perform a less thorough but a faster search, we can retain the preceding rule structure 
but stipulate that MaxStratum = 2, and then all marginal and weakly marginal pairs will always 
be discarded by (R2)(b) and (R2)(c).  
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The computation required by the algorithm can also be reduced by replacing the value 
MaxStratum for the first few passes by a smaller value ReducedMax (e.g., ReducedMax = 
MaxStratum – 1), and adding a pair ρo to the Next Scan List only if Stratum(ρo) ≤ ReducedMax. 
Otherwise, if ReducedMax < Stratum(ρo) ≤ MaxStratum, and ρo satisfies (4.2) the pair is placed 
on a Reserve List. Finally, when the time comes to eliminate reference to Reduced Max (making 
it the same as MaxStratum), the contents of the Reserve List can be added to those of the Next 
Scan List. (The criterion (4.2) is not reapplied at this point, even though f* may have changed, in 
order to give descendants of elements on the Reserve List the same chance to be generated that 
they would have had if the pairs on the Reserve List had been added to the Next Scan List 
earlier.) 
 
 
2. Useful Data Structures 
 
It is useful to record and access solution pairs (ya,yc) on the Scan List by using an array 
ScanList(i),  i = 1 to LastScan to identify the locations where the information about these pairs 
reside. 
 
Specifically, for each i = 1 to LastScan, the “pair index” p = ScanList(i) is used to give 
information about the solutions ya and yc  by means of two “solution location indexes” s1 and s2, 
where s1 = SolLocation(p,1) and s2 = SolLocation(p,2).  
 
These solution location indexes identify the component solutions of (ya,yc) by storing ya and yb 
as the 2-dimensional n vectors y(s1,j) and y(s2,j) where yj

a = y(s1,j) and yj
c = y(s2,j) for j = 1 to 

n. Accompanying this, we store the function value f(y) for y = y(s1,j) and y = y(s1,j), 
respectively, as f(s1) and f(s2). Hence, f(s1) ≤ f(s2).by the convention fa ≤ fc.   
 
Viewed from the standpoint of solutions rather than pairs on the Scan List, a given solution y has 
a solution location index s so that y is stored as y(s,j) for j = 1 to n. The same solution y may be 
an endpoint of more than one pair, i.e., y may be either ya or yc in more than one pair (ya,yc). The 
solution y itself will be recorded only once, but its solution location index s will be accessed by 
all (1 or 2) indexes i such that ScanList(i) gives the pair location index p = ScanList(i), and 
where s is accessed as s = s1 = SolLocation(p,1)  or as  s = s2 = SolLocation(p,2). 
 
As the previous discussion indicates, a given solution y with solution location index s is stored as 
y(s,j), and the function value f(y) is stored as f(s).  
 
For each solution y = y(s,j), we also keep track of the pairs that contain y = y(s,j) as an endpoint. 
(i.e., the pairs that y lies “in”) by means of the records InPair(s,1) and InPair(s,2) (noting that y 
can lie in either one or two pairs). Then p = InPair(s,1) and p = InPair(s,2) name the (up to) two 
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pair location indexes such that s = SolLocation(p,1) or s = SolLocation(p,2). (It doesn’t matter 
which of the positions 1 or 2 of SolLocation identifies the solution location index s. All that 
matters is the value of the pair location index p.) In case y = y(s,j) lies in just a single pair, then 
by convention we let InPair(s,2) = -1 (since no pair location index can be -1). We identify how 
this InPair array is used later. 
 
Each pair (ya,yc) has a Stratum value Stratum(ya,yc). If the pair is identified by the pair location 
index p (= ScanList(i) for some i) then Stratum(ya,yc) is recorded as Stratum(p). (In other words, 
the pair location index p accesses all the relevant information about the pair.)  
 
The fact that solutions and pairs can be added and deleted means that we want to put new 
solutions and new pairs in locations previously occupied by old ones, in order to keep the 
memory space from growing. For this purpose we use arrays AvailablePairIndex(h), h = 1 to 
MaxAvailPair and AvailableSolIndex(h), h = 1 to MaxAvailSol, to store the indexes p = 
AvailablePairIndex(h) and s = AvailableSolIndex(h) for pair location indexes and solution 
location indexes that are available to store new pairs and solutions.  
 
It should be noted that the indexes i = 1 to LastScan of the array ScanList(i) are arbitrary. It 
doesn’t matter which i names the pair location index p that identifies a particular pair by p = 
ScanList(i). The operation of examining the pairs on the Scan List corresponds to examining the 
indexes i from 1 to LastScan on the ScanList(i) array, and accessing the associated pair location 
index p = ScanList(i). The process of shrinking the Scan List by removing elements from it is 
implicitly achieved simply by looking at the indexes i from 1 to LastScan, since upon examining 
i = LastScan there are no more elements of the Scan List to consider.  
 
When a pair with the pair location index p* is deleted, we perform the operation 
 
MaxAvailPair = MaxAvailPair + 1        (O1) 
AvailablePairIndex(MaxAvailPair) = p* 
 
Likewise, when a solution y is deleted, where y is accessed as y(s*,j), we perform the operation 
 
MaxAvailSol = MaxAvailSol + 1        (O2) 
AvailableSolIndex(MaxAvailSol) = s* 
 
Note that deleting a pair (using (O1)) may or may not result in deleting a solution that is one of 
its endpoints. The endpoint solutions for the pair stored in p* are given by s1* = 
SolLocation(p*,1) and s2* = SolLocation(p*,2). This is where we make use of the InPair array. 
For s = s1 and s = s2, we check whether InPair(s,2) = -1. If so, then the endpoint solution stored 
as y(s,j) lies in only one pair (which is the one being deleted, and hence we know by implication 
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that InPair(s,2) = p*). Consequently, we know that the solution stored as y(s,j) must be deleted 
too, and we can denote the index for this solution by s* to perform the operation (O2). 
 
If InPair(s,2) > 0, however, then we check to see whether InPair(s,2) = p*. If so, we set 
InPair(s,2) = - 1. If not, we know InPair(s,1) = p*, and hence we first set InPair(s,1) = 
InPair(s,2), followed by setting InPair(s,2) = s*. 
 
Executing the Splitting Operation. 
 
We now consider the operation of examining and splitting a particular pair (ya,yc) to create the 
two new pairs (ya,yb) and (yb,yc). We will repeat some of the foregoing observations for clarity. 
The examination of (ya,yc) corresponds to examining a current index i* and accessing the pair 
location index p* = ScanList(i*). Then p* gives the information that identifies the component 
solutions ya and yc of (ya,yc). Specifically, for s1* = SolLocation(p*,1) and s2* = 
SolLocation(p*,2), if f(s1*) ≤ f(s2*) then ya corresponds to y(s1*,j) and yc corresponds to 
y(s2*,j), and otherwise ya corresponds to y(s2*,j) and yc corresponds to y(s1*,j). (It makes no 
difference which solution is treated as ya or yc if f(s1*) = f(s2*).) 
 
From the recorded solutions y(s1*,j) and y(s2*,j) we form yb by setting  
 
yjb = .5(y(s1*,j) + y(s2*,j)) for j = 1 to n.        (O3) 
At the same time we identify fb = f(yb).   
 
The operation of generating (ya,yb) and (yb,yc) by splitting (ya,yc) automatically results in 
deleting (ya,yc). However, if one of the pairs (ya,yb) and (yb,yc) survives to be added to the Next 
Scan List, then we will replace (ya,yc) by putting one of these surviving pairs in the location 
previously allotted to (ya,yc).  
 
As in (O3), we denote the solutions that identify the current ya and yc respectively as y(s1*,j) and 
y(s2*,j) (for s1* = SolLocation(p*,1) and s2* = SolLocation(p*,2)).  
 
There are four cases to consider. 
 
Case 1.(ya,yb) survives to be added to the Next Scan List but .(yb,yc) does not. 
    
We first check whether the current solution yc = y(s2*,j) will no longer be an endpoint of a pair 
solution pair as a result of dropping the pair (ya,yc) and failing to add (yb,yc).  
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If InPair(s2*,2) = -1, we know that the solution y(s2*,j) lies in the single pair whose index p is 
given by p = InPair(s2*,1) (and hence by implication, p = p*). Hence we perform the following 
operation. 
 
If InPair(s2*,2) = -1 then         (O4) 
 (drop the solution y(s2*,j)) 
 MaxAvailSol = MaxAvailSol + 1  
 AvailableSolIndex(MaxAvailSol) = s2* 
Elseif p* = InPair(s2*,2) then 
 (InPair(s2*,1) is appropriate and doesn’t need to be changed) 
 InPair(s2*,2) = -1 
Else 
 InPair(s2*,1) = InPair(s2*,2) 
 InPair(s2*,2) = -1 
Endif 
 
Next we add the new solution yb to the record of current solutions. For this we obtain a location 
s* for yb from the AvailableSolIndex array, and then record yb as the solution y(s*,j), by the 
operation 
 
s* = AvailableSolIndex(MaxAvailSol)       (O5) 
MaxAvailSol = MaxAvailSol – 1  
y(s*,j) = yj

b for j = 1 to n 
f(s*) = fb 

 
In fact, the vector y(s*,j) in (O5) can be created directly from the formula for generating yj

b in 
(O3) without going through the step of generating and storing intermediate yj

b values for j = 1 to 
n. In the special case where y(s2*,j) was dropped in (O4) the new s* is just the same as the old 
s2*. (It isn’t worth the trouble to try to check in advance for this, since the update of 
AvailableSolIndex requires a trivial amount of computation.) 
 
Having thus stored yb as the solution y(s*,j),  we now check to find out which of fa and fb is 
smaller, in order to determine which of ya and yb will be stored as the new ya and which will be 
stored as the new yc. The appropriate operation is as follows, where p* now changes from 
referring to the current pair (ya,yc) (which is dropped) to refer to the new pair (ya,yc) created from 
the current (ya,yb). 
 
If f(s1*) ≤ f(s*) then          (O6) 
 (The current ya = y(s1*,j) becomes the new ya, and y(s*,j) becomes the new yc.). 
 (SolLocation(p*,1) = s1* is already true and doesn’t need to be changed) 
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 SolLocation(p*,2) = s*            
Else 
          (yb = y(s*,j) becomes the new ya. Record the new s1* and s2* values.) 
 SolLocation(p*,1) = s* 
 SolLocation(p*,2) = s1*            
Endif 
InPair(s*,1) = p*  and InPair(s*,2) = - 1.  
     (the – 1 is because p* is the only pair containing s*, since (yb,yc) is not added.). 
LastNextScan = LastNextScan + 1 
NextScan(LastNextScan) = p* (thus adding the pair p*, which now identifies the new (ya,yc),  to     
     the Next Scan List) 
 
 
Case 2.(yb,yc) survives to be added to the Next Scan List but (ya,yb) does not. 
    
We first check whether the current solution ya = y(s1*,j) will no longer be an endpoint of a pair 
solution pair as a result of dropping the pair (ya,yc) and failing to add (ya,yb).  
 
If InPair(s2*,2) = -1, we know that the solution y(s2*,j) lies in the single pair whose index p is 
given by p = InPair(s2*,1) (and hence by implication, p = p*). Hence we perform the following 
operation, which is essentially the same as (O4), except that s2* is replaced with s1* 
 
If InPair(s1*,2) = -1 then         (O4a) 
 (drop the solution y(s1*,j)) 
 MaxAvailSol = MaxAvailSol + 1  
 AvailableSolIndex(MaxAvailSol) = s1* 
Elseif p* = InPair(s1*,2) then 
 (InPair(s1*,1) is appropriate and doesn’t need to be changed) 
 InPair(s1*,2) = -1 
Else 
 InPair(s1*,1) = InPair(s1*,2) 
 InPair(s1*,2) = -1 
Endif 
 
Next we add the new solution yb to the record of current solutions. For this we perform operation 
(O5) as in Case 1. 
 
We now check to find out which of fb and fc is smaller, in order to determine which of yb and yc 
will be stored as the new ya and which will be stored as the new yc. The appropriate operation is 
as follows, where p* now changes from referring to the current pair (ya,yc) (which is dropped) to 
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refer to the new pair (ya,yc) created from the current (yb,yc). This first part of this operation 
differs slightly from (O6). 
 
If f(s2*) ≤ f(s*) then          (O6a) 
 (The current yc = y(s2*,j) becomes the new ya, and y(s*,j) becomes the new yc.). 
 SolLocation(p*,1) = s2*  
 SolLocation(p*,2) = s*            
Else 
          (yb = y(s*,j) becomes the new ya. Record the new s1* and s2* values.) 
 SolLocation(p*,1) = s* 
 SolLocation(p*,2) = s2*            
Endif 
InPair(s*,1) = p*  and InPair(s*,2) = - 1.  
     (the – 1 is because p* is the only pair containing s*, since (yb,yc) is not added.). 
LastNextScan = LastNextScan + 1 
NextScan(LastNextScan) = p* (thus adding the pair p*, which now identifies the new (ya,yc),  to     
     the Next Scan List) 
 
 
Case3. Both (ya,yb)  and (yb,yc) survive to be added to the Next Scan List. 
    
We don’t need to check whether the current solutions ya = y(s1*,j) and yc = y(s2*,j) will no 
longer be endpoints of a solution pair.  
 
We add the new solution yb to the record of current solutions by performing operation (O5) as in 
Case 1 and Case 2. 
 
We will use p* as the pair location index to store the current (ya,yb) as a new (ya,yc) pair, and 
consequently we must also generate another new pair location index p# in order to store the 
current (yb,yc) as a second new (ya,yc) pair. This is accomplished by the operation 
 
p# = AvailablePairIndex(MaxAvailPair)        
MaxAvailPair = MaxAvailPair – 1. 
 
We now account for adding the pair (ya,yb). As in Case 1 we check to find out which of fa and fb 
is smaller, in order to determine which of ya and yb will be stored as the new ya and which will be 
stored as the new yc. The appropriate operation is as follows, where p* now changes from 
referring to the current pair (ya,yc) (which is dropped) to refer to the new pair (ya,yc) created from 
the current (ya,yb). The operation is almost the same as operation (O6) of Case 1, except that we 
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account for the pair index p# for the pair (yb,yc), since this pair will contain yb (as will the pair 
indexed by p*).  
 
If f(s1*) ≤ f(s*) then          (O6b) 
 (The current ya = y(s1*,j) becomes the new ya, and y(s*,j) becomes the new yc.). 
 (SolLocation(p*,1) = s1* is already true and doesn’t need to be changed) 
 SolLocation(p*,2) = s*            
Else 
          (yb = y(s*,j) becomes the new ya. Record the new s1* and s2* values.) 
 SolLocation(p*,1) = s* 
 SolLocation(p*,2) = s1*            
Endif 
InPair(s*,1) = p*  and InPair(s*,2) = p#.  
LastNextScan = LastNextScan + 1 
NextScan(LastNextScan) = p* (thus adding the pair p*, which now identifies the new (ya,yc),  to     
     the Next Scan List) 
 
Finally, as in Case 2, we find out which of fb and fc is smaller, in order to determine which of yb 
and yc will be stored as the new ya and which will be stored as the new yc. The appropriate 
operation is almost the same as (O6a) of Case 2, except that p# is now used to refer to the new 
pair (ya,yc) created from the current (yb,yc), while p* is only used to identify the value for 
InPair(s*,2). 
 
If f(s2*) ≤ f(s*) then          (O6c) 
 (The current yc = y(s2*,j) becomes the new ya, and y(s*,j) becomes the new yc.). 
 SolLocation(p#,1) = s2*  
 SolLocation(p#,2) = s*            
Else 
          (yb = y(s*,j) becomes the new ya. Record the new s1* and s2* values.) 
 SolLocation(p#,1) = s* 
 SolLocation(p#,2) = s2*            
Endif 
InPair(s*,1) = p#  and InPair(s*,2) = p*.  
LastNextScan = LastNextScan + 1 
NextScan(LastNextScan) = p# (thus adding the pair p#, which now identifies the new (ya,yc),  to     
     the Next Scan List) 
 
  
Case4. Neither (ya,yb)  nor (yb,yc) survive to be added to the Next Scan List. 
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Here we must update the InPair lists InPair(s1*,__) and InPair(s2*,__) for the solutions ya 
(accessed by s1*) and yc (accessed by s2*), 
 
If InPair(s1*,2) = -1 (InPair(s2*,2) = -1), then the solution y(s1*,j) (respectively, y(s2*,j)) lies 
solely in the single pair indexed by p*, and hence this solution will be discarded. Otherwise, we 
simply remove p* from the InPair record for the solution. This is done simply by executing both 
of the operations (O4) and (O4a).  
 
Nothing else needs to be done for Case 4, since no new solution is added and no new pair is 
created. The deletion of the old pair indexed by p* is automatic, since p* is not added to the Next 
Scan List. 
 
Once the last pair index i = LastScan is examined (to operate on the pair p* = 
ScanList(LastScan)), the Next Scan List replaces the Scan List by setting  
 
ScanList(i) = NextScanList(i) for i = 1 to NextLastScan 
LastScan = NextLastScan 
NextLastScan = 0 
 
 
 
 

Appendix 4: Transformed Coordinate Systems 
 
We examine the situation where a line search algorithm is adapted to multi-dimensional function 
optimization by modifying variables one-at-a-time, hence effectively using unidimensional line 
searches along the coordinate axes. Our premise is that such an approach can be enhanced by a 
strategy of using more than one coordinate system. Consequently, it becomes of interest to 
consider the appropriate form of such alternative systems. 
 
Geometric Motivation 
 
We adopt the viewpoint that an alternative coordinate system, which we represent by a vector z = 
(z1, z2, …, zn),  will prove more valuable if it is significantly different from the original system, 
which we represent by the vector y = (y1, …, yn). The supposition is that a system that exhibits 
marked differences from the original will make it possible to produce appreciably altered search 
trajectories and to gain access to regions that were bypassed when employing the original 
system.  
 



  56

A geometric analysis is helpful to get a picture of how a transformed system may be made to 
differ significantly from the original,. We start by examining the two-dimensional case. 
 
A coordinate system (z1, z2) in two dimensions that contrasts with the (y1, y2) system can be 
visualized to arise as follows. Imagine the z1 and z2  axes begin by coinciding with the y1 and y2 
axes, but then are rotated until further rotation fails to increase the difference between the two 
systems. Evidently a 45 degree rotation creates the maximum difference.  
 
The same effect can be achieved by creating a hypercube centered at (x1, x2) = (0, 0), whose 
vertices are given by (a) (1, 1), (-1, -1) and (b) (-1, 1), (1, -1). We have grouped the vertices in 
pairs of points that are diagonally opposite each other. Then we stipulate that the axes for the (z1, 
z2) system lie along the diagonals of this hypercube. The corresponding geometric construction 
consists of picking any point of (a) and any point of (b) as a foundation for defining z in terms of 
y. (All such choices, consisting of one point from (a) and one from (b), will cause the z axes to 
go through the same set of vertices.) Hence, for example, we may select the point (z1, z2) = (1, 0) 
to correspond to the point (y1, y2) = (1, 1), and the point (z1, z2) = (0,1) to correspond to the point 
(y1, y2) = (- 1, 1). This is algebraically equivalent to defining z1 = (y1 + y2)/2 and z2 = (- y1 + 
y2)/2. Hence the transformation we seek is given by the matrix equation z = Ay, where A is given 
by writing 
 
 2A   = 1      1 
           – 1      1   
  
(We have identified 2A instead of A as a convenience to avoid the use of fractions.) The inverse 
B of this transformation, yielding y = Bz, is given by  
  
 B   = 1   – 1  
              1      1   
 
This inverse can then be used in a line search that operates along the z coordinate dimension by 
referring to the equation y = Bz. (For example, the transformation discloses that changing z1 by 
∆ corresponds to changing both y1 and y2 by ∆, whereas changing z2 by ∆ corresponds to 
changing y2 by ∆ changing y1 by – ∆.) 
 
Generalization 
 
 The situation for three dimensions is a bit more complex. We envelope the point (y1, y2, y3) = 0 
in a hypercube whose diagonally opposed vertices are given by the pairs (a) (1, 1, 1), (-1, -1, -1), 
(b) (-1, 1, 1), (1, - 1, -1), (c) (-1, -1, 1), (1, 1, -1), (d) (1, -1, 1), (-1, 1, 1). Only three of these pairs 
are required to provide the basis for a complete coordinate system. We arbitrarily choose (a), (b) 
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and (c), and select the first of the two points within each (which gives a representation most 
closely analogous to our two-dimensional case). Then the z coordinate system can be expressed 
by the transformation z = Ay where 
 
      1      1      1 
 2A   =         – 1      1      1 
             – 1   – 1      1 
      
 Again, 2A is shown in place of A to avoid listing fractions. (Geometrically it is appealing to 
instead identify the indicated matrix as 3A, which would provide a correspondence between the 
two sets of points given by z = (1  0  0), (0  1  0), (0  0  1) and y = (1  1  1), (-1  1  1), (-1  -1  1). 
Numerically, however, for computing the inverse it is preferable to use 2A here instead of 3A.)  
The inverse of A which gives the transformation y = Bz is given by 
 
   1   – 1      0 
 B   = 0      1   – 1  
              1      0      1. 
 
The general form of A and B can be inferred by showing the five dimensional case, where the 
equation z = Ay results by defining 
 
   1      1      1      1      1 
           – 1      1      1      1      1 
                          2A   =         – 1   – 1      1      1      1 
           – 1   – 1   – 1      1      1 
           – 1   – 1   – 1   – 1      1 
      
 and the inverse of A that yields the transformation y = Bz is given by 
 
   1   – 1      0      0      0 
   0      1   – 1      0      0 
 B   = 0      0      1   – 1      0 
    0      0      0      1   – 1 
              1      0      0      0      1. 
 
The fact that A and B are inverses allows us to interchange their roles. Specifically, we reverse 
the preceding operations by starting out with z = By, and then recover y by the inverse 
transformation y = Az. Then the latter equation can be used to identify how a change of ∆ in a 
variable zj creates a change in each component of y.  
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Experimentation may be performed to address the question of whether one of the two 
transformations z = Ay and z = By is more useful than the other. The first alternative, which 
yields y = Bz, clearly entails less computation (since each change in a variable zj affects only two 
components of the y vector). 
 
Additional transformations can be derived from this same model, each creating a somewhat 
different relationship between y and z, by permuting the components of the y vector in the 
original equation z = Ay or z = By. The more “radical” the permutation (i.e., the greater the 
difference between the permuted y and the original y, as measured for example by a Hamming 
distance measure), the more the resulting transformation will be altered. For example, a 
transformation that completely reverses the ordering of the components of y will yield a 
significant change in the relationship between z and y.  
 
A further question to be settled by experimentation concerns the relative merits of a search based 
on permuting components of y versus one based on changing the roles of A and B. For large 
problems, the advantage of only changing two components of y for each change in a component 
of z will likely make the system based on y = Bz preferable, and simply permuting components 
of y in order to obtain different transformations to drive the search. 
 
 
 
 
 


